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EXPONENTIAL CONVERGENCE TO EQUILIBRIUM FOR THE

HOMOGENEOUS BOLTZMANN EQUATION FOR HARD

POTENTIALS WITHOUT CUT-OFF

ISABELLE TRISTANI

Abstract. This paper deals with the long time behavior of solutions to the spatially
homogeneous Boltzmann equation. The interactions considered are the so-called (non
cut-off and non mollified) hard potentials, we thus only deal with a moderate angular
singularity. We prove an exponential in time convergence towards the equilibrium, im-
proving results of Villani from [40] where a polynomial decay to equilibrium is proven.
The basis of the proof is the study of the linearized equation for which we prove a new
spectral gap estimate in a L

1 space with a polynomial weight by taking advantage of
the theory of enlargement of the functional space for the semigroup decay developed by
Gualdani et al. in [22]. We then get our final result by combining this new spectral gap
estimate with bilinear estimates on the collisional operator that we establish.
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1. Introduction

1.1. The model. In the present paper, we investigate the asymptotic behavior of so-
lutions to the spatially homogeneous Boltzmann equation without angular cut-off, that
is, for long-range interactions. Previous works have shown that these solutions converge
towards the Maxwellian equilibrium with a polynomial rate when time goes to infinity.
Here, we are interested in improving the rate of convergence and we show an exponential
decay to equilibrium.

We consider particles described by their space homogeneous distribution density
f = f(t, v). We hence study the so-called spatially homogeneous Boltzmann equation:

(1.1) ∂tf(t, v) = Q(f, f)(t, v), v ∈ R
3, t ≥ 0.

The Boltzmann collision operator is defined as

Q(g, f) :=

∫

R3×S2

B(v − v∗, σ)
[

g′∗f
′ − g∗f

]

dσ dv∗.

Here and below, we are using the shorthand notations f = f(v), g∗ = g(v∗), f ′ = f(v′)
and g′∗ = g(v′∗). In this expression, v, v∗ and v′, v′∗ are the velocities of a pair of particles
before and after collision. We make a choice of parametrization of the set of solutions to
the conservation of momentum and energy (physical law of elastic collisions):

v + v∗ = v′ + v′∗,

|v|2 + |v∗|2 = |v′|2 + |v′∗|2,
so that the post-collisional velocities are given by:

v′ =
v + v∗

2
+

|v − v∗|
2

σ, v′∗ =
v + v∗

2
− |v − v∗|

2
σ, σ ∈ S

2.

The Boltzmann collision kernel B(v− v∗, σ) only depends on the relative velocity |v− v∗|
and on the deviation angle θ through cos θ = 〈κ, σ〉 where κ = (v − v∗)/|v − v∗| and 〈·, ·〉
is the usual scalar product in R

3. By a symmetry argument, one can always reduce to the
case where B(v − v∗, σ) is supported on 〈κ, σ〉 ≥ 0 i.e 0 ≤ θ ≤ π/2. So, without loss of
generality, we make this assumption.

In this paper, we shall be concerned with the case when the kernel B satisfies the
following conditions:

• it takes product form in its arguments as

(1.2) B(v − v∗, σ) = Φ(|v − v∗|) b(cos θ);
• the angular function b is locally smooth, and has a nonintegrable singularity for
θ → 0, it satisfies for some cb > 0 and s ∈ (0, 1/2) (moderate angular singularity)

(1.3) ∀ θ ∈ (0, π/2],
cb

θ1+2s
≤ sin θ b(cos θ) ≤ 1

cb θ1+2s
;

• the kinetic factor Φ satisfies

(1.4) Φ(|v − v∗|) = |v − v∗|γ with γ ∈ (0, 1),

this assumption could be relaxed to assuming only that Φ satisfies Φ(·) = CΦ | · |γ
for some CΦ > 0.
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Our main physical motivation comes from particles interacting according to a repulsive
potential of the form

(1.5) φ(r) = r−(p−1), p ∈ (2,+∞).

The assumptions made on B throughout the paper include the case of potentials of the
form (1.5) with p > 5. Indeed, for repulsive potentials of the form (1.5), the collision kernel
cannot be computed explicitly but Maxwell [25] has shown that the collision kernel can be
computed in terms of the interaction potential φ. More precisely, it satisfies the previous
conditions (1.2), (1.3) and (1.4) in dimension 3 (see [11, 12, 39]) with s := 1

p−1 ∈ (0, 1)

and γ := p−5
p−1 ∈ (−3, 1).

One traditionally calls hard potentials the case p > 5 (for which 0 < γ < 1), Maxwell
molecules the case p = 5 (for which γ = 0) and soft potentials the case 2 < p < 5 (for
which −3 < γ < 0). We can hence deduce that our assumptions made on B include
the case of hard potentials. The equation (1.1) preserves mass, momentum and energy.

Indeed, at least formally, we have:
∫

R3

Q(f, f)(v)ϕ(v) dv = 0 for ϕ(v) = 1, v, |v|2;

from which we deduce that a solution ft to the equation (1.1) is conservative, meaning
that

(1.6) ∀ t ≥ 0,

∫

R3

f(t, v)ϕ(v) dv =

∫

R3

f0(v)ϕ(v) dv for ϕ(v) = 1, v, |v|2.

We introduce the entropy H(f) =
∫

R3 f log(f) and the entropy productionD(f). Boltz-
mann’s H theorem asserts that

(1.7)
d

dt
H(f) = −D(f) ≤ 0

and states that any equilibrium (i.e any distribution which maximizes the entropy) is a
Maxwellian distribution µρ,u,T for some ρ > 0, u ∈ R

3 and T > 0:

µf (v) = µρ,u,T (v) =
ρ e−

|v−u|2

2T

(2πT )3/2
,

where ρ, u and T are the mass, momentum and temperature of the gas:

ρ := ρf =

∫

R3

f(v) dv, u := uf =
1

ρ

∫

R3

f(v) v dv, T := Tf =
1

3ρ

∫

R3

f(v) |v − u|2 dv.

Thanks to the conservation properties of the equation (1.6), the following equalities
hold:

ρf = ρf0 , uf = uf0 , Tf = Tf0
where f0 is the initial datum.

Moreover, a solution ft of the Boltzmann equation is expected to converge towards the
Maxwellian distribution µρ,u,T when t→ +∞.

In this paper, we only consider the case of an initial datum satisfying

(1.8) ρf0 = 1, uf0 = 0, Tf0 = 1,

one can always reduce to this situation (see [40]). We then denote µ the Maxwellian with

same mass, momentum and energy of f0: µ(v) = (2π)−3/2e−|v|2/2.
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1.2. Function spaces and notations. We introduce some notations about weighted
Lp spaces. For some given Borel weight function m ≥ 0 on R

3, we define the Lebesgue
weighted space Lp(m), 1 ≤ p ≤ +∞, as the Lebesgue space associated to the norm

‖h‖Lp(m) := ‖hm‖Lp .

We also define the weighted Sobolev space W s,p(m), s ∈ N, 1 ≤ p < +∞, as the Sobolev
space associated to the norm

‖h‖W s,p(m) :=





∑

|α|≤s

‖∂αh‖pLp(m)





1/p

.

Throughout this paper, we will use the same notation C for positive constants that may
change from line to line. Moreover, the notation A ≈ B will mean that there exist two
constants C1, C2 > 0 such that C1A ≤ B ≤ C2A.

1.3. Main results and known results.

1.3.1. Convergence to equilibrium. We first state our main result on exponential conver-
gence to equilibrium.

Theorem 1.1. Consider a collision kernel B satisfying conditions (1.2), (1.3), (1.4) and
f0 a nonnegative distribution with finite mass, energy and entropy:

f0 ≥ 0,

∫

R3

f0(v) (1 + |v|2) dv <∞,

∫

R3

f0(v) log(f0(v)) dv <∞

and satisfying (1.8). Then, if ft is a smooth solution (see Definition 1.2) to the equa-
tion (1.1) with initial datum f0, there exists a constant C > 0 such that

∀ t ≥ 0, ‖ft − µ‖L1 ≤ C e−λ t

where λ > 0 is defined in Theorem 1.4.

We improve a polynomial result of Villani [40] and generalize to our context similar
exponential results known for simplified models. Mouhot in [32] proved such a result for
the spatially homogeneous Boltzmann equation with hard potentials and Grad’s cut-off.
Carrapatoso in [10] recently proved exponential decay to equilibrium for the homogeneous
Landau equation with hard potentials which is the grazing collisions limit of the model we
study in the present paper. Let us also mention the paper of Gualdani et al. [22] where
an exponential decay to equilibrium is proved for the inhomogeneous Boltzmann equation
for hard spheres (see also [27, 28, 26] for related works).

It is a known fact that our equation (1.1) admits solutions which are conservative and
satisfy some suitable properties of regularity, we will call them smooth solutions. We here
precise the meaning of this term and give an overview of results on the Cauchy theory of
our equation.

Definition 1.2. Let f0 be a nonnegative function defined on R
3 with finite mass, energy

and entropy. We shall say that (t, v) 7→ f(t, v) is a smooth solution to the equation (1.1)
if the following conditions are fulfilled:

• f ≥ 0, f ∈ C(R+, L1);
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• for any t ≥ 0,
∫

R3

f(t, v)ϕ(v) dv =

∫

R3

f0(v)ϕ(v) dv for ϕ(v) = 1, v, |v|2

and
∫

R3

f(t, v) log(f(t, v)) dv +

∫ t

0
D(f(s, ·)) ds ≤

∫

R3

f0(v) log(f0(v)) dv ;

where D(f) is the entropy production defined in (1.7);
• for any ϕ ∈ C1(R+,D(R3)) and for any t ≥ 0,
∫

R3

f(t, v)ϕ(t, v) dv =

∫

R3

f0(v)ϕ(0, v) dv +

∫ t

0

∫

R3

f(τ, v) ∂tϕ(τ, v) dv dτ

+

∫ t

0

∫

R3

Q(f, f)(τ, v)ϕ(τ, v) dv dτ

where the last integral is define through the following formula
∫

R3

Q(f, f)(v)ϕ(v) dv =
1

4

∫

R3×R3×S2

B(v− v∗, σ) [f
′
∗f

′− f∗f ] (ϕ+ϕ∗ −ϕ′ −ϕ′
∗) dσ dv∗ dv;

• for any t0 > 0 and for any ℓ ∈ R
+,

(1.9) sup
t≥t0

‖f(t, ·)‖L1(〈v〉ℓ) <∞ ;

• for any t0 > 0 and for any N , ℓ ∈ R
+,

(1.10) sup
t≥t0

‖f(t, ·)‖HN (〈v〉ℓ) <∞.

Such a solution is known to exist. The problem of existence of solutions was first studied
by Arkeryd in [2] where existence of solutions is proven for not too soft potentials, that
is γ > −1 (Goudon [20] and Villani [38] then improved this result enlarging the class of
γ considered). We mention that uniqueness of solution for hard potentials can be proved
under some more restrictive conditions on the initial datum, see the paper of Desvillettes
and Mouhot [16] where f0 is supposed to be regular (f0 ∈ W 1,1(〈v〉2)) and the paper of

Fournier and Mouhot [19] where f0 is supposed to be localized (
∫

R3 f0 e
a|v|γdv < ∞ for

some a > 0) for hard potentials.
Concerning the moment production property, it was discovered by Elmroth [17] and

Desvillettes [15] and improved by Wennberg [42], which justifies our point (1.9) in the
definition of a smooth solution. We here point out the fact that this property is not
anymore true for Maxwell molecules or soft potentials. As a consequence, our method,
which relies partially on this property, works only for hard potentials.

Finally, we mention papers where regularization results are proven for “true” (that is
non mollified) physical potentials: [1] by Alexandre et al. and [13] by Chen and He where
the initial datum is supposed to have finite energy and entropy, [3] by Bally and Fournier
where only the 2D case is treated and [18] by Fournier under others conditions on the
initial datum. Theorem 1.4 from [13] explains our point (1.10).

We now recall previous results on convergence to equilibrium for solutions to equa-
tion (1.1). It was first studied by Carlen and Carvalho [8, 9] and then by Toscani and
Villani [36]. Up to now, the best rate of convergence in our case was obtained by Villani
in [40]:
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Theorem 1.3. Let us consider ft a smooth solution to (1.1) with an initial datum f0
satisfying (1.8) with finite entropy. Then ft satisfies the following polynomial decay to
equilibrium: for any t0 > 0 and any ε > 0, there exists Ct0,ε > 0 such that

∀ t ≥ t0, ‖ft − µ‖L1 ≤ Ct0,ε t
− 1

ε .

This result comes from [40, Theorem 4.1] which states that if f is a function which
satisfies the following lowerbound

(1.11) ∀ v ∈ R
3, f(v) ≥ K0 e

−A0|v|q0 with K0, A0 > 0, q0 ≥ 2

then for any ε > 0, there exists an explicit constant Kε > 0 such that

(1.12) D(f) ≥ KεH(f |µ)1+ε.

It is a result from Mouhot [30, Theorem 1.2] that the lowerbound (1.11) holds for any
smooth solution ft of our equation (1.1). Let us mention that lowerbounds of solutions were
first studied by Carleman [7] (for hard spheres) and then by Pulvirenti and Wennberg [35]
(for hard potentials with cut-off). Finally, Mouhot [30] extended these results to the
spatially inhomogeneous case without cut-off. We here state Theorem 1.2 from [30] that
we use: for any t0 > 0 and for any exponent q0 such that

q0 > 2
log
(

2 + 2s
1−s

)

log 2
,

a smooth solution ft to (1.1) satisfies

∀ t ≥ t0, ∀ v ∈ R
3, f(t, v) ≥ K0 e

−A0|v|q0

for some K0, A0 > 0.
We can then deduce that the conclusion of Theorem 1.3 holds using the Csiszár-

Kullback-Pinsker inequality ‖f − µ‖L1 ≤
√

2H(f |µ) combined with the result of Vil-
lani (1.12).

Let us here emphasize that the method of Villani to prove the polynomial convergence
towards equilibrium is purely nonlinear. Ours is based on the study of the linearized
equation.

1.3.2. The linearized equation. We introduce the linearized operator. Considering the
linearization f = µ + h, we obtain at first order the linearized equation around the equi-
librium µ

(1.13) ∂th = Lh := Q(µ, h) +Q(h, µ),

for h = h(t, v), v ∈ R
3. The null space of the operator L is the 5-dimensional space

(1.14) N (L) = Span
{

µ, µ v1, µ v2, µ v3, µ |v|2
}

.

Our strategy is to combine the polynomial convergence to equilibrium and a spectral
gap estimate on the linearized operator to show that if the solution enters some stability
neighborhood of the equilibrium, then the convergence is exponential in time. Previous
results on spectral gap estimates hold only in L2(µ−1/2) and the Cauchy theory for the
nonlinear Boltzmann equation is constructed in L1-spaces with polynomial weight. In
order to link the linear and the nonlinear theories, our approach consists in proving new
spectral gap estimates for the linearized operator L in spaces of type L1(〈v〉k). To do that,
we exhibit a convenient splitting of the linearized operator in such a way that we may use
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the abstract theorem from [22] which allows us to enlarge the space of spectral estimates
of a given operator.

Here is the result we obtain on the linearized equation which provides a constructive
spectral gap estimate for L in L1(〈v〉k) and which is the cornerstone of the proof of
Theorem 1.1.

Theorem 1.4. Let k > 2 and a collision kernel B satisfying (1.2), (1.3) and (1.4).
Consider the linearized Boltzmann operator L defined in (1.13). Then for any positive

λ < min(λ0, λk) (where λ0 is the spectral gap of L in L2(µ−1/2) defined in Proposition 2.1
and λk is a constant depending on k defined in Lemma 2.7), there exists an explicit constant
Cλ > 0, such that for any h ∈ L1(〈v〉k), we have the following estimate

(1.15) ∀ t ≥ 0, ‖SL(t)h−Πh‖L1(〈v〉k) ≤ Cλ e
−λt‖h−Πh‖L1(〈v〉k),

where SL(t) denotes the semigroup of L and Π the projection onto N (L).

Let us briefly review the existing results concerning spectral gap estimates for L.
Pao [34] studied spectral properties of the linearized operator for hard potentials by non-
constructive and very technical means. This article was reviewed by Klaus [24]. Then,
Baranger and Mouhot gave the first explicit estimate on this spectral gap in [4] for hard
potentials (γ > 0). If we denote D the Dirichlet form associated to −L:

D(h) :=

∫

R3

(−Lh)hµ−1,

and N (L)⊥ the orthogonal of N (L) defined in (1.14) and Π the projection onto N (L), the
Dirichlet form D satisfies

(1.16) ∀h ∈ N (L)⊥, D(h) ≥ λ0 ‖h‖2L2(µ−1/2)
,

for some constructive constant λ0 > 0. This result was then improved by Mouhot [31]
and later by Mouhot and Strain [33]. In the last paper, it was conjectured that a spectral
gap exists if and only if γ + 2s ≥ 0. This conjecture was finally proven by Gressman and
Strain in [21].

Another question would be to obtain similar results in other spaces: Lp spaces with
1 < p ≤ 2 and a polynomial weight or Lp spaces with 1 ≤ p ≤ 2 and a stretched
exponential weight. Our computations do not allow to conclude in those cases, more
precisely, we are not able to do the computations which allow to obtain the suitable
splitting of the linear operator in order to apply the theorem of enlargement of the space
of spectral estimates. As a consequence, we can not prove the existence of a spectral gap
on those spaces. However, we believe that such results may hold.

We here point out that the knowledge of a spectral gap estimate in L1(〈v〉k) for the
fractional Fokker-Planck equation (see [37]) is consistent with our result. Indeed, the
behavior of the Boltzmann collision operator has been widely conjectured to be that of a
fractional diffusion (see [14, 20, 38]).

Acknowledgments. We thank Stéphane Mischler for fruitful discussions and his encour-
agement.
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2. The linearized equation

Here and below, we denote m(v) := 〈v〉k with k > 2. The aim of the present section is
to prove Theorem 1.4. To do that, we exhibit a splitting of the linearized operator into
two parts, one which is bounded and the second one which is dissipative. We can then
apply the abstract theorem of enlargement of the functional space of the semigroup decay
from Gualdani et al. [22] (see Subsection 2.4).

2.1. Notations. We now introduce notations about spectral theory of unbounded oper-
ators. For a given real number a ∈ R, we define the half complex plane

∆a := {z ∈ C, ℜe z > a} .

For some given Banach spaces (E, ‖ · ‖E) and (E , ‖ · ‖E ), we denote by B(E, E) the
space of bounded linear operators from E to E and we denote by ‖ · ‖B(E,E) or ‖ · ‖E→E
the associated norm operator. We write B(E) = B(E,E) when E = E . We denote by
C (E, E) the space of closed unbounded linear operators from E to E with dense domain,
and C (E) = C (E,E) in the case E = E .

For a Banach space X and Λ ∈ C (X) we denote by SΛ(t), t ≥ 0, its semigroup, by
D(Λ) its domain, by N(Λ) its null space and by R(Λ) its range. We also denote by Σ(Λ)
its spectrum, so that for any z belonging to the resolvent set ρ(Λ) := C\Σ(Λ) the operator
Λ− z is invertible and the resolvent operator

RΛ(z) := (Λ− z)−1

is well-defined, belongs to B(X) and has range equal to D(Λ). An eigenvalue ξ ∈ Σ(Λ) is
said to be isolated if

Σ(Λ) ∩ {z ∈ C, |z − ξ| ≤ r} = {ξ} for some r > 0.

In the case when ξ is an isolated eigenvalue, we may define ΠΛ,ξ ∈ B(X) the associated
spectral projector by

ΠΛ,ξ := − 1

2iπ

∫

|z−ξ|=r′
RΛ(z) dz

with 0 < r′ < r. Note that this definition is independent of the value of r′ as the application
C\Σ(Λ) → B(X), z → RΛ(z) is holomorphic. For any ξ ∈ Σ(Λ) isolated, it is well-known
(see [23] paragraph III-6.19) that Π2

Λ,ξ = ΠΛ,ξ, so that ΠΛ,ξ is indeed a projector.

When moreover the so-called “algebraic eigenspace” R(ΠΛ,ξ) is finite dimensional we
say that ξ is a discrete eigenvalue, written as ξ ∈ Σd(Λ).

2.2. Spectral gap in L2(µ−1/2). We here state a direct consequence of inequality (1.16)

from [4], which gives us a spectral gap estimate in L2(µ−1/2).

Proposition 2.1. There is a constructive constant λ0 > 0 such that

∀ t ≥ 0, ∀h ∈ L2(µ−1/2), ‖SL(t)h−Πh‖L2(µ−1/2) ≤ e−λ0t‖h−Πh‖L2(µ−1/2).
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2.3. Splitting of the linearized operator. We first split the linearized operator L
defined in (1.13) into two parts, separating the grazing collisions and the cut-off part, we
define

bδ := 1θ≤δ b and bcδ := 1θ≥δ b

for some δ ∈ (0, 1) to be chosen later, it induces the following splitting of L:
Lh = Lδh+ Lc

δh

=:

∫

R3×S2

[

µ′∗h
′ − µ∗h+ h′∗µ

′ − h∗µ
]

bδ(cos θ)|v − v∗|γ dσ dv∗

+

∫

R3×S2

[

µ′∗h
′ − µ∗h+ h′∗µ

′ − h∗µ
]

bcδ(cos θ)|v − v∗|γ dσ dv∗.

In the rest of the paper, we shall use the notations

Bδ(v − v∗, σ) := bδ(cos θ) |v − v∗|γ and Bc
δ(v − v∗, σ) := bcδ(cos θ) |v − v∗|γ .

As far as the cut-off part is concerned, our strategy is similar as the one adopted in [22]
for hard-spheres. For any ε ∈ (0, 1), we consider Θε ∈ C∞ bounded by one, which equals
one on

{

|v| ≤ ε−1 and 2ε ≤ |v − v∗| ≤ ε−1 and | cos θ| ≤ 1− 2ε
}

and whose support is included in
{

|v| ≤ 2ε−1 and ε ≤ |v − v∗| ≤ 2ε−1 and | cos θ| ≤ 1− ε
}

.

We then denote the truncated operator

Aδ,ε(h) :=

∫

R3×S2

Θε

[

µ′∗ h
′ + µ′ h′∗ − µh∗

]

bcδ(cos θ)|v − v∗|γ dσ dv∗

and the corresponding remainder operator

Bc
δ,ε(h) :=

∫

R3×S2

(1−Θε)
[

µ′∗ h
′ + µ′ h′∗ − µh∗

]

bcδ(cos θ)|v − v∗|γ dσ dv∗.

We also introduce

νδ(v) :=

∫

R3×S2

µ∗ b
c
δ(cos θ)|v − v∗|γ dσ dv∗,

so that we have the following splitting: Lc
δ = Aδ,ε + Bc

δ,ε − νδ.
Moreover, νδ satisfies

νδ(v) = Kδ (µ ∗ | · |γ)(v)
with

Kδ :=

∫

S2

bcδ(cos θ) dσ ≈
∫ π/2

δ
b(cos θ) sin θ dθ ≈ δ−2s −

(π

2

)−2s
−−−→
δ→0

+∞

using the spherical coordinates to get the second equality and (1.3) to get the final one;
and

(µ ∗ | · |γ)(v) ≈ 〈v〉γ .
We finally define

Bδ,ε := Lδ + Bc
δ,ε − νδ

so that L = Aδ,ε + Bδ,ε.
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2.3.1. Dissipativity properties.

Lemma 2.2. There exists a function ϕk(δ) depending on k and tending to 0 as δ tends
to 0 such that for any h ∈ L1(〈v〉γm), the following estimate holds:

(2.1)

∫

R3

Lδ(h) sign(h)mdv ≤ ϕk(δ) ‖h‖L1(〈v〉γm).

Proof. Let us first introduce a notation which is going to be useful in the sequel of the
proof:

(2.2) κδ :=

∫ π/2

0
bδ(cos θ) sin

2(θ) dθ =

∫ δ

0
b(cos θ) sin2(θ) dθ ≈ δ1−2s −−−→

δ→0
0,

where the last equality comes from (1.3). We here underline the fact that considering a
moderate singularity, meaning s ∈ (0, 1/2), is here needed to get the convergence of κδ
to 0 as δ goes to 0.

We split Lδ into two parts in the following way:

Lδh =

∫

R3×S2

[

µ′∗ h
′ − µ∗ h

]

bδ(cos θ)|v − v∗|γ dσ dv∗

+

∫

R3×S2

[

h′∗ µ
′ − h∗ µ

]

bδ(cos θ)|v − v∗|γ dσ dv∗

=: L1
δh+ L2

δh,

this splitting corresponds to the splitting of Lδ as Qδ(µ, h) + Qδ(h, µ) if Qδ denotes the
collisional operator associated to the kernel Bδ.

We first deal with L1
δ . Let us recall that we have µµ∗ = µ′ µ′∗. In the following

computation, we denote g := hµ−1:

∫

R3

L1
δ(h) sign(h)mdv

=

∫

R3×R3×S2

Bδ(v − v∗, σ)µµ∗
[

g′ − g
]

sign(g)mdσ dv∗ dv

=

∫

R3×R3×S2

Bδ(v − v∗, σ)µµ∗
[

g′ − g
] [

sign(g) − sign(g′)
]

mdσ dv∗ dv

+

∫

R3×R3×S2

Bδ(v − v∗, σ)µµ∗
[

g′ − g
]

sign(g′)mdσ dv∗ dv

≤
∫

R3×R3×S2

Bδ(v − v∗, σ)µµ∗
[

g′ − g
]

sign(g′)mdσ dv∗ dv,

where we used that for any a, b ∈ R, (a−b)(sign(a)−sign(b)) ≤ 0 to get the last inequality.

Remark 2.3. We here emphasize that this computation is particularly convenient in the
L1 case since sign(h) = sign(g). In the Lp case, it is trickier and for now, we are not able
to adapt it to get the wanted estimates.
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We now use the classical pre-post collisional change of variables to pursue the compu-
tation:
∫

R3

L1
δ(h) sign(h)mdv ≤

∫

R3×R3×S2

Bδ(v − v∗, σ)µµ∗
[

g − g′
]

sign(g)m′ dσ dv∗ dv

=

∫

R3×R3×S2

Bδ(v − v∗, σ)µµ∗
[

g − g′
]

sign(g) (m′ −m) dσ dv∗ dv

+

∫

R3×R3×S2

Bδ(v − v∗, σ)µµ∗
[

g − g′
]

sign(g)mdσ dv∗ dv.

=

∫

R3×R3×S2

Bδ(v − v∗, σ)µµ∗
[

g − g′
]

sign(g) (m′ −m) dσ dv∗ dv

−
∫

R3

L1
δ(h) sign(h)mdv.

We hence deduce that
∫

R3

L1
δ(h) sign(h)mdv

≤ 1

2

∫

R3×R3×S2

Bδ(v − v∗, σ)µµ∗
[

g − g′
]

sign(g) (m′ −m) dσ dv∗ dv

≤
∫

R3×R3×S2

Bδ(v − v∗, σ)µµ∗ |g| |m′ −m| dσ dv∗ dv

=

∫

R3×R3×S2

Bδ(v − v∗, σ)µ∗ |h| |m′ −m| dσ dv∗ dv.

We now estimate the difference |m′ −m|:

|m′ −m| ≤
(

sup
z∈B(v,|v′−v|)

|∇m| (z)
)

|v′ − v|,

with

|v′ − v| = |v − v∗|/2 sin (θ/2) ≤ 1

2
√
2
|v − v∗| sin θ.

Then, we use the fact

sup
z∈B(v,|v′−v|)

|∇m| (z) ≤ k 2k−1
(

〈v〉k−2 + 〈v − v′〉k−1
)

≤ k 22(k−1)
(

〈v〉k−2 + 〈v∗〉k−1
)

,

which implies that

(2.3) |m′ −m| ≤ Ck |v − v∗| sin θ
(

〈v〉k−1 + 〈v∗〉k−1
)

,

for some constant Ck > 0 depending on k.

Remark 2.4. We here point out that this kind of estimate does not hold in the case
of a stretched exponential weight. Indeed, taking the gradient of a stretched exponential
function, there is not anymore a gain in the degree as in the case of a polynomial function.

We finally obtain

(2.4)
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∫

R3

L1
δ(h) sign(h)mdv

≤ Ck

∫

R3×R3×S2

bδ(cos θ) sin θ µ∗ |v − v∗|γ+1
(

〈v〉k−1 + 〈v∗〉k−1
)

|h| dσ dv∗ dv

≤ Ck

∫ π/2

0
bδ(cos θ) sin

2(θ) dθ

∫ 2π

0
dφ

∫

R3×R3

µ∗|v − v∗|γ+1
(

〈v〉k−1 + 〈v∗〉k−1
)

|h| dv∗ dv

≤ Ck κδ

∫

R3

|h| 〈v〉γ mdv,

where we used spherical coordinates to obtain the second inequality and (2.2) to obtain
the last one.

We now deal with L2
δ . We split it into two parts:

L2
δh =

∫

R3×S2

[

h′∗ µ
′ − h∗ µ

]

bδ(cos θ)|v − v∗|γ dσ dv∗

=

∫

R3×S2

Bδ(v − v∗, σ)h
′
∗
[

µ′ − µ
]

dσ dv∗ +
∫

R3×S2

Bδ(v − v∗, σ)
[

h′∗ − h∗
]

dσ dv∗ µ

=: L2,1
δ h+ L2,2

δ h.

Concerning L2,2
δ , we use the cancellation lemma [1, Lemma 1]. It implies that

L2,2
δ h = (Sδ ∗ h) µ

with

Sδ(z) = 2π

∫ π/2

0
sin θ bδ(cos θ)

( |z|γ
cosγ+3(θ/2)

− |z|γ
)

dθ

= 2π |z|γ
∫ π/2

0
sin θ bδ(cos θ)

1− cosγ+3(θ/2)

cosγ+3(θ/2)
dθ

= 2π |z|γ
∫ δ

0
sin θ b(cos θ)

1− cosγ+3(θ/2)

cosγ+3(θ/2)
dθ

≤ C |z|γ
∫ δ

0
sin θ b(cos θ) θ2 dθ

≤ C δ2−2s |z|γ ,

where the next-to-last inequality comes from the fact that 1−cosγ+3(θ/2)
cosγ+3(θ/2)

∼ γ+3
2 θ2 as θ goes

to 0. We hence deduce that for any θ ∈ (0, δ), 1−cosγ+3(θ/2)
cosγ+3(θ/2)

≤ C θ2 for some C > 0; and

the last inequality comes from (1.3). We deduce that

(2.5)

∫

R3

L2,2
δ (h) sign(h)mdv ≤

∫

R3

|Sδ ∗ h| mµdv

≤ C δ2−2s

∫

R3

(| · |γ ∗ |h|) µmdv

≤ C δ2−2s

∫

R3

(| · |γ ∗ µm) |h| dv

≤ C δ2−2s

∫

R3

|h| 〈v〉γ dv.
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We now deal with L2,1
δ . To do that, we introduce the notation M :=

√
µ and write that

µ′ − µ = (M ′ −M)(M ′ +M), which implies
∫

R3

L2,1
δ (h) sign(h)mdv ≤

∫

R3×R3×S2

Bδ(v − v∗, σ) |h′∗| |M ′ −M | (M ′ +M)mdσ dv∗ dv

≤
∫

R3×R3×S2

Bδ(v − v∗, σ) |h′∗| |M ′ −M |M ′ |m′ −m| dσ dv∗ dv

+

∫

R3×R3×S2

Bδ(v − v∗, σ) |h′∗| |M ′ −M |M ′m′ dσ dv∗ dv

+

∫

R3×R3×S2

Bδ(v − v∗, σ) |h′∗| |M ′ −M |M mdσ dv∗ dv.

We now perform the pre-post collisional change of variables, which gives us:
∫

R3

L2,1
δ h sign(h)mdv ≤

∫

R3×R3×S2

Bδ(v − v∗, σ) |h∗| |M ′ −M |M |m′ −m| dσ dv∗ dv

+

∫

R3×R3×S2

Bδ(v − v∗, σ) |h∗| |M ′ −M |M mdσ dv∗ dv

+

∫

R3×R3×S2

Bδ(v − v∗, σ) |h∗| |M ′ −M |M ′m′ dσ dv∗ dv

=: I1 + I2 + I3.

For the term I1, we use the fact that M is bounded and the estimate (2.3) on |m′ −m|:

(2.6)

I1 ≤ Ck

∫

R3×R3×S2

bδ(cos θ) sin θ |v − v∗|γ+1 |h∗|M
(

〈v〉k−1 + 〈v∗〉k−1
)

dσ dv∗ dv

≤ Ck κδ

∫

R3

|h| 〈v〉γ mdv.

The term I2 is treated using that M is Lipschitz continuous, we obtain:

(2.7) I2 ≤ C κδ

∫

R3

|h| 〈v〉γ+1 dv.

To treat I3, we first estimate the integral
∫

R3×S2

Bδ(v − v∗, σ) |M ′ −M |M ′m′ dσ dv =: J(v∗) = J.

Using the fact that M is Lipschitz continuous, we have

J ≤ C

∫

R3×S2

bδ(cos θ) sin(θ/2) |v − v∗|γ+1M ′m′ dσ dv.

Then, for each σ, with v∗ still fixed, we perform the change of variables v → v′. This
change of variables is well-defined on the set {cos θ > 0}. Its Jacobian determinant is

∣

∣

∣

∣

dv′

dv

∣

∣

∣

∣

=
1

8
(1 + κ · σ) = (κ′ · σ)2

4
,

where κ = (v− v∗)/|v− v∗| and κ′ = (v′− v∗)/|v′− v∗|. We have κ′ ·σ = cos(θ/2) ≥ 1/
√
2.

The inverse transformation v′ → ψσ(v
′) = v is then defined accordingly. Using the fact

that

cos θ = κ · σ = 2(κ′ · σ)2 − 1 and sin(θ/2) =
√

1− cos2(θ/2) =
√

1− (κ′ · σ)2,
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we obtain

J ≤ C

∫

R3×S2

bδ(2(κ
′ · σ)2 − 1)

√

1− (κ′ · σ)2 |ψσ(v
′)− v∗|γ+1M(v′)m(v′) dv dσ

≤ C

∫

κ′·σ≥1/
√
2
bδ(2(κ

′ · σ)2 − 1)
√

1− (κ′ · σ)2|ψσ(v
′)− v∗|γ+1M(v′)m(v′)

1

(κ′ · σ)2 dv
′ dσ

≤ C

∫

κ·σ≥1/
√
2
bδ(2(κ · σ)2 − 1)

√

1− (κ · σ)2 |ψσ(v) − v∗|γ+1M(v)m(v)
1

(κ · σ)2 dv dσ.

We now use the fact that |ψσ(v)− v∗| = |v − v∗|/(κ · σ). We deduce that

J ≤ C

∫

κ·σ≥1/
√
2
bδ(2(κ · σ)2 − 1)

√

1− (κ · σ)2 |v − v∗|γ+1M(v)m(v)
1

(κ · σ)γ+3
dv dσ

≤ C

∫

R3×S2

bδ(2(κ · σ)2 − 1)
√

1− (κ · σ)2 |v − v∗|γ+1M(v)m(v) dv dσ

where we used the fact that κ · σ ≥ 1/
√
2 to bound from above 1/(κ · σ)γ+3. Using the

equalities

cos(2θ) = 2(κ · σ)2 − 1 and sin θ =
√

1− (κ · σ)2,
we obtain

J ≤ C

∫

R3×S2

bδ(cos(2θ)) sin θ |v − v∗|γ+1Mmdv dσ

≤ C

∫

S2

bδ(cos(2θ)) sin θ dσ

∫

R3

〈v〉γ+1M mdv 〈v∗〉γ+1

≤ C κδ 〈v∗〉γ+1,

Using this last estimate, we can conclude that

(2.8) I3 ≤ C κδ

∫

R3

|h| 〈v〉γ+1 dv.

Gathering estimates (2.4), (2.5), (2.6), (2.7) and (2.8), we can conclude that (2.1)
holds. �

We now want to deal with the part Bc
δ,ε−νδ. To do that, we shall review a classical tool

in the Boltzmann theory, a version of the Povzner lemma (see [41, 5, 29, 6]). The version
stated here is a consequence of the proof of Lemma 2.2 from [29].

Lemma 2.5. For any k > 2,

∀ v, v∗ ∈ R
3,

∫

S2

[

〈v′∗〉k + 〈v′〉k − 〈v∗〉k − 〈v〉k
]

bcδ(cos θ) dσ

≤ Ck

(

〈v∗〉k−1〈v〉+ 〈v〉k−1〈v∗〉
)

− C ′
k |v|k

for some constants Ck, C
′
k > 0 depending on k.

Proof. If we adapt the proof of Lemma 2.2 from [29] taking ψ = 〈·〉, we obtain
∫

S2

[

〈v′∗〉k + 〈v′〉k − 〈v∗〉k − 〈v〉k
]

bcδ(cos θ) dσ

≤ Ck

(

∫ π/2

0
bcδ(cos θ) sin

2(θ) dθ

)

(

〈v∗〉k−1〈v〉 + 〈v〉k−1〈v∗〉
)

− C ′
k,δ |v|k
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with C ′
k,δ −−−→

δ→0
+∞ and C ′

k,δ ≥ C ′
k > 0 for any δ ∈ (0, 1). We then conclude using (1.3)

which implies that

∫ π/2

0
bcδ(cos θ) sin

2(θ) dθ ≈
(π

2

)1−2s
− δ1−2s ≤ C

for any δ ∈ (0, 1). �

We can now prove the following estimate on Bc
δ,ε − νδ.

Lemma 2.6. For any k > 2, for any ε ∈ (0, 1) and for δ ∈ (0, 1) small enough, we have
the following estimate

(2.9)

∀h ∈ L1(〈v〉γm),

∫

R3

Bc
δ,ε(h) sign(h)mdv−

∫

R3

νδ |h|mdv ≤ (Λk,δ(ε)− λk) ‖h‖L1(〈v〉γm)

where λk > 0 is a constant depending on k and Λk,δ(ε) is a constant depending on k and
δ which tends to 0 as ε goes to 0 when k and δ are fixed.

Proof. We compute

‖Bc
δ,εh‖L1(m) ≤

∫

R3×R3×S2

(1−Θε)B
c
δ(v − v∗, σ)

[

µ′∗|h′|+ µ′|h′∗|+ µ|h∗|
]

mdσ dv∗ dv.

We first bound from above the truncation function (1−Θε):

‖Bc
δ,εh‖L1(m) ≤

∫

{| cos θ|∈[1−ε,1]}
Bc

δ(v − v∗, σ)µ∗|h| (m′ +m′
∗ +m∗) dσ dv∗ dv

+

∫

{|v−v∗|≤ε}
Bc

δ(v − v∗, σ)µ∗|h| (m′ +m′
∗ +m∗) dσ dv∗ dv

+

∫

{|v|≥ε−1 or |v−v∗|≥ε−1}
Bc

δ(v − v∗, σ)
[

µ′∗|h′|+ µ′|h′∗|+ µ|h∗|
]

mdσ dv∗ dv,

where the pre-post collisional change of variables has been used in the two first terms. We
obtain that ‖Bc

δ,εh‖L1(m) is bounded from above by

(2.10)

Ck

(

∫

{| cos θ|∈[1−ε,1]}
1θ≥δ b(cos θ) dσ +Kδ ε

γ

)

∫

R3×R3

µ∗〈v∗〉γ+k |h| 〈v〉γ+k dv∗ dv

+

∫

R3×R3×S2

χε−1Bc
δ(v − v∗, σ)

[

µ′∗|h′|+ µ′|h′∗|+ µ|h∗|
]

mdσ dv∗ dv

=: J1 + J2

where χε−1 is the characteristic function of the set
{

√

|v|2 + |v∗|2 ≥ ε−1 or |v − v∗| ≥ ε−1
}

.

The first term of the right hand side of (2.10) is easily controlled as

(2.11) J1 ≤ Ck Cδ ε
γ ‖h‖L1(〈v〉γm).
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As far as the second term in (2.10) is concerned, we write

J2 =

∫

R3×R3×S2

χε−1Bc
δ(v − v∗, σ)

[

µ′∗|h′|+ µ′|h′∗|+ µ|h∗|
]

mdσ dv∗ dv

=

∫

R3×R3×S2

χε−1Bc
δ(v − v∗, σ)

[

µ′∗|h′|+ µ′|h′∗| − µ∗|h| − µ|h∗|
]

mdσ dv∗ dv

+Kδ

∫

R3×R3

χε−1 µ∗|h| |v − v∗|γ mdv∗ dv

+ 2Kδ

∫

R3×R3

χε−1 µ|h∗| |v − v∗|γmdv∗ dv

=: T1 + T2 + T3.

We notice that the characteristic function χε−1 is invariant under the usual pre-post col-
lisional change of variables as it only depends on the kinetic energy and momentum. We
hence bound the term T1 thanks to Lemma 2.5:

T1 ≤
∫

R3×R3

χε−1 µ∗|h| |v − v∗|γ
∫

S2

(

〈v′∗〉k + 〈v′〉k − 〈v∗〉k − 〈v〉k
)

bcδ(cos θ) dσ dv∗ dv

≤ Ck

∫

R3×R3

χε−1 µ∗|h| |v − v∗|γ
(

〈v〉k−1〈v∗〉+ 〈v〉〈v∗〉k−1
)

dv∗ dv

− C ′
k

∫

R3×R3

χε−1 µ∗|h| |v − v∗|γ |v|k dv∗ dv

≤ Ck

∫

R3×R3

χε−1 µ∗|h| |v − v∗|γ
(

〈v〉k−1〈v∗〉+ 〈v〉〈v∗〉k−1
)

dv∗ dv

+ C ′
k

∫

R3×R3

χε−1 µ∗|h| |v − v∗|γ dv∗ dv

− C ′
k 2

1−k/2

∫

R3×R3

χε−1 µ∗|h| |v − v∗|γ 〈v〉k dv∗ dv

=: T11 + T12 + T13.

We treat together the terms T11, T12 and T3 using the following inequality:

χε−1(v, v∗) ≤ 1{|v|≥ε−1/2} + 1{|v∗|≥ε−1/2} ≤ 2 ε(|v| + |v∗|).

We obtain:

(2.12)

T11 + T12 + T3

≤ εCk

∫

R3×R3

(|v|+ |v∗|)µ∗|h| |v − v∗|γ
(

〈v〉k−1〈v∗〉+ 〈v〉〈v∗〉k−1
)

dv∗ dv

+ εC ′
k

∫

R3×R3

(|v| + |v∗|)µ∗|h| |v − v∗|γ dv∗ dv

+ εKδ

∫

R3×R3

(|v|+ |v∗|)µ|h∗| |v − v∗|γ mdv∗ dv

≤ εCk Cδ ‖h‖L1(〈v〉γm).

Gathering (2.11) and (2.12), we conclude that

(2.13) J1 + T11 + T12 + T3 ≤ Ck Cδ (ε+ εγ) ‖h‖L1(〈v〉γm) =: Λk,δ(ε) ‖h‖L1(〈v〉γm).
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We now put together the terms T13, T2 and the term coming from νδ, their sum is
bounded from above by

−Kδ

∫

R3×R3

(1−χε−1)µ∗ |v−v∗|γ |h|mdv∗dv−C ′
k 2

1−k/2

∫

R3×R3

χε−1 µ∗ |v−v∗|γ |h|mdv∗dv.

Since Kδ → ∞ as δ → 0, we can take δ small enough so that Kδ ≥ C ′
k 2

1−k/2, we obtain
the following bound:

(2.14) −C ′
k 2

1−k/2

∫

R3

(µ ∗ | · |γ) |h|mdv ≤ −λk ‖h‖L1(〈v〉γm).

Combining the bounds obtained in (2.13) and (2.14), we can conclude that (2.9) holds,
which concludes the proof. �

We can now prove the dissipativity properties of Bδ,ε = Lδ + Bc
δ,ε − νδ.

Lemma 2.7. Let us consider a ∈ (−λk, 0) where λk is defined in Lemma 2.6. For δ > 0
and ε > 0 small enough, Bδ,ε − a is dissipative in L1(m), namely

∀ t ≥ 0, ‖SBδ,ε
(t)‖L1(m)→L1(m) ≤ eat.

Proof. Gathering results coming from lemmas 2.2 and 2.6, we obtain
∫

R3

Bδ,ǫ(h) sign(h)mdv ≤
∫

R3

(ϕk(δ) + Λk,δ(ε)− λk) |h| 〈v〉γ mdv

We first take δ small enough so that ϕk(δ) ≤ (a+λk)/2. We then chose ε small enough so
that Λk,δ(ε) ≤ (a+ λk)/2. With this choice of δ and ε, we have the following inequality:

ϕk(δ) + Λk,δ(ε) − λk ≤ a.

It implies that
∫

R3

Bδ,ǫ(h) sign(h)mdv ≤ a‖h‖L1(〈v〉γm),

which concludes the proof. �

2.3.2. Regularization properties. We first state a regularity estimate on the truncated op-
erator Aδ,ε which comes from [22, Lemma 4.16].

Lemma 2.8. The operator Aδ,ε maps L1(〈v〉) into L2 functions with compact support. In

particular, we can deduce that Aδ,ε ∈ B
(

L2
(

µ−1/2
))

and Aδ,ε ∈ B
(

L1 (m)
)

.

We now study the regularization properties of T (t) := Aδ,ε SBδ,ε
(t).

Lemma 2.9. Consider a ∈ (−λk, 0). For a choice of δ, ε such that the conclusion of
Lemma 2.7 holds, there exists a constant C > 0 such that

‖T (t)h‖L2(µ−1/2) ≤ C eat ‖h‖L1(m).

Proof. We here use Lemma 2.8. We introduce a constant R > 0 such that for any h in
L1(〈v〉), supp (Ah) ⊂ B(0, R). We then compute

‖T (t)h‖L2(µ−1/2) ≤ C

(

∫

B(0,R)
(T (t)h)2 dv

)1/2

≤ C ‖SBδ,ε
(t)h‖L1(〈v〉)

≤ C ‖SBδ,ε
(t)h‖L1(m) ≤ C eat ‖h‖L1(m),

where the last inequality comes from Lemma 2.7. �
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2.4. Spectral gap in L1(〈v〉k).

2.4.1. The abstract theorem. Let us now present an enlargement of the functional space
of a quantitative spectral mapping theorem (in the sense of semigroup decay estimate).
The aim is to enlarge the space where the decay estimate on the semigroup holds. The
version stated here comes from [22, Theorem 2.13].

Theorem 2.10. Let E, E be two Banach spaces such that E ⊂ E with dense and con-
tinuous embedding, and consider L ∈ C (E), L ∈ C (E) with L|E = L and a ∈ R. We
assume:

(1) L generates a semigroup SL(t) and

Σ(L) ∩∆a = {ξ} ⊂ Σd(L)

for some ξ ∈ C and L− a is dissipative on R(Id−ΠL,ξ).
(2) There exist A, B ∈ C (E) such that L = A + B (with corresponding restrictions A

and B on E) and a constant Ca > 0 so that
(i) B − a is dissipative on E,
(ii) A ∈ B(E) and A ∈ B(E),
(iii) T (t) := ASB(t) satisfies

∀ t ≥ 0, ‖T (t)‖
B(E,E) ≤ Ca e

at.

Then the following estimate on the semigroup holds:

∀ a′ > a, ∀ t ≥ 0, ‖SL(t)− SL(t)ΠL,ξ‖B(E) ≤ Ca′e
a′t

where Ca′ > 0 is an explicit constant depending on the constants from the assumptions.

2.4.2. Proof of Theorem 1.4. The conclusion of Theorem 1.4 is a direct consequence of
Theorem 2.10. Indeed, denoting E = L2(µ−1/2) and E = L1(m), assumption (1) is nothing
but Proposition 2.1, assumption (2)-(i) comes from Lemma 2.7, (2)-(ii) from Lemma 2.8
and (2)-(iii) from Lemma 2.9. We can conclude that estimate (1.15) holds.

3. The nonlinear equation

We first establish bilinear estimates on the collisional operator and we then prove our
main result: Theorem 1.1.

3.1. The bilinear estimates.

Proposition 3.1. Let B satisfying (1.2), (1.3) and (1.4). Then

‖Q(h, h)‖L1(m) ≤ C
(

‖h‖L1(〈v〉γm)‖h‖L1(m) + ‖h‖L1(〈v〉γ+1)‖h‖W 1,1(〈v〉γ+1m)

)

for some C > 0.
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Proof. We split Q(h, h) into two parts and we use the pre-post collisional change of vari-
ables for the second one, we obtain

‖Q(h, h)‖L1(m) =

∫

R3

∣

∣

∣

∣

∫

R3×S2

B(v − v∗, σ)
(

(h′∗ − h∗)h+ (h′ − h)h′∗
)

dσ dv∗

∣

∣

∣

∣

mdv

≤
∫

R3

∣

∣

∣

∣

∫

R3×S2

B(v − v∗, σ) (h
′
∗ − h∗) dσ dv∗

∣

∣

∣

∣

|h|mdv

+

∫

R3×R3×S2

B(v − v∗, σ) |h′ − h| |h′∗|mdσ dv∗ dv

≤
∫

R3

∣

∣

∣

∣

∫

R3×S2

B(v − v∗, σ) (h
′
∗ − h∗) dσ dv∗

∣

∣

∣

∣

|h|mdv

+

∫

R3×R3×S2

B(v − v∗, σ) |h′ − h| |h∗|m′ dσ dv∗ dv

=: T1 + T2.

We first deal with T1 using the cancellation lemma [1, Lemma 1]:

T1 =

∫

R3

|S ∗ h| |h|mdv

with

S(z) = 2π

∫ π/2

0
sin θ b(cos θ)

( |z|γ
cosγ+3(θ/2)

− |z|γ
)

dθ

= 2π |z|γ
∫ π/2

0
sin θ b(cos θ)

1− cosγ+3(θ/2)

cosγ+3(θ/2)
dθ

≤ C |z|γ .

We deduce that

(3.1) T1 ≤ C ‖h‖L1(〈v〉γ )‖h‖L1(〈v〉γm).

We now treat the term T2 which is splitted into two parts:

T2 =

∫

R3×R3×S2

B(v − v∗, σ) |h′m′ − hm′| |h∗| dσ dv∗ dv

≤
∫

R3×R3×S2

B(v − v∗, σ) |h′m′ − hm| |h∗| dσ dv∗ dv

+

∫

R3×R3×S2

B(v − v∗, σ) |m′ −m| |h| |h∗| dσ dv∗ dv

=: T21 + T22.

Concerning T21, we have to estimate

∫

R3×S2

b(cos θ) |v − v∗|γ |h′m′ − hm| dv dσ =: J(v∗) = J.
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To do that, we use Taylor formula denoting vu := (1− u)v + uv′ for any u ∈ [0, 1], which
allows us to estimate |h′m′ − hm|:

|h′m′ − hm| =
∣

∣

∣

∣

∫ 1

0
∇(hm)(vu) · (v − v′) du

∣

∣

∣

∣

≤
∫ 1

0
|∇(hm)(vu)| |v − v∗| sin(θ/2) du.

It implies the following inequality on J :

J ≤ C

∫

R3×S2×[0,1]
b(cos θ) sin(θ) |v − v∗|γ+1 |∇(hm)(vu)| du dσ dv.

Moreover, if v 6= v∗, we have the following equality:

|v − v∗| =
1

∣

∣

(

1− u
2

)

κ+ u
2 σ
∣

∣

|vu − v∗|.

Using the fact that 0 ≤ 〈κ, σ〉 ≤ 1, one can show that for any u ∈ [0, 1],
∣

∣

∣

(

1− u

2

)

κ+
u

2
σ
∣

∣

∣ ≥ 1√
2
.

We can thus deduce that for any u ∈ [0, 1], we have |v − v∗| ≤ C|vu − v∗| for some C > 0,
which implies

J ≤ C

∫

R3×S2×[0,1]
b(cos θ) sin(θ) |vu − v∗|γ+1 |∇(hm)(vu)| du dσ dv.

For u, v∗ and σ fixed, we now perform the change of variables v → vu. Its Jacobian
determinant is

∣

∣

∣

∣

dvu
dv

∣

∣

∣

∣

=
(

1− u

2

)2 (

1− u

2
+
u

2
〈κ, σ〉

)

≥
(

1− u

2

)3
≥ 1

8

since 〈κ, σ〉 ≥ 0. Gathering all the previous estimates, we obtain

J ≤ C

∫

S2

b(cos θ) sin(θ) dσ

∫

R3

|v − v∗|γ+1 |∇(hm)(v)| dv.

We thus obtain :

(3.2) T21 ≤ C ‖h‖L1(〈v〉γ+1) ‖h‖W 1,1(〈v〉γ+1m).

Let us finally deal with T22. We here use the inequality (2.3):

(3.3)

T22 ≤ C

∫

R3×R3×S2

B(v − v∗, σ) |h| |h∗|
(

〈v〉k−1 + 〈v∗〉k−1
)

|v′ − v| dσ dv∗ dv

≤ C

∫

S2

b(cos θ) sin(θ) dσ

∫

R3×R3

|h| |h∗|
(

〈v〉k−1 + 〈v∗〉k−1
)

|v − v∗|γ+1 dv∗ dv

≤ C ‖h‖L1(〈v〉γm) ‖h‖L1(〈v〉γ+1).

Inequalities (3.1), (3.2) and (3.3) together yields the result. �

We now recall a classical result from interpolation theory (see for example Lemma B.1
from [27]).
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Lemma 3.2. For any s, s∗, q, q∗ ∈ Z with s ≥ s∗, q ≥ q∗ and any θ ∈ (0, 1), there exists
C > 0 such that for any h ∈W s∗∗,1(〈v〉q∗∗), we have

‖h‖W s,1(〈v〉q ) ≤ C ‖h‖1−θ
W s∗,1(〈v〉q∗ ) ‖h‖

θ
W s∗∗,1(〈v〉q∗∗ )

with s∗∗, q∗∗ ∈ Z such that s = (1− θ)s∗ + θs∗∗ and q = (1− θ)q∗ + θq∗∗.

It allows us to prove the following corollary which is going to be useful in the proof of
our main theorem.

Corollary 3.3. Let B satisfying (1.2), (1.3) and (1.4). Then

‖Q(h, h)‖L1(m) ≤ C
(

‖h‖3/2
L1(m)

‖h‖1/2
L1(〈v〉2γm)

+ ‖h‖3/2
L1(m)

‖h‖1/2
H4(〈v〉4γ+k+6)

)

.

Proof. On the one hand, using Lemma 3.2, we obtain:

‖h‖L1(〈v〉γm) ≤ ‖h‖1/2
L1(〈v〉2γm)

‖h‖1/2
L1(m)

.

On the other hand, again using twice Lemma 3.2, we obtain

‖h‖L1(〈v〉γ+1) ‖h‖W 1,1(〈v〉γ+1m) ≤ ‖h‖2W 1,1(〈v〉γ+k+1)

≤ C ‖h‖L1(m) ‖h‖W 2,1(〈v〉2γ+k+2)

≤ C ‖h‖3/2
L1(m)

‖h‖1/2
W 4,1(〈v〉4γ+k+4)

.

To conclude we use that for any q ∈ N, we can show using Hölder inequality that

‖h‖L1(〈v〉q) ≤ C ‖h‖L2(〈v〉q+2).

�

3.2. Proof of Theorem 1.1. Let f0 = µ+ h0 and consider the equation

(3.4) ∂tht = Lht +Q(ht, ht), h(t = 0) = h0.

Let us notice that for any t ≥ 0, we have Πht = 0. Indeed, f0 has same mass, momentum
and energy as µ, it implies that Πh0 = 0 and these quantities are conserved by the
equation.

We now state a nonlinear stability theorem which is the third key point (with Theo-
rems 1.3 and 1.4) in the proof of Theorem 1.1.

Theorem 3.4. Consider a solution ht to (3.4) such that

∀ t ≥ 0, ‖ht‖H4(〈v〉4γ+k+6) ≤ K

for some K > 0. There exists η > 0 such that if moreover

∀ t ≥ 0, ‖ht‖L1(〈v〉2γm) ≤ η

then there exists C > 0 (depending on K and η) such that

∀ t ≥ 0, ‖ht‖L1(m) ≤ C e−λt ‖h0‖L1(m)

for any positive λ < min(λ0, λk) (see Theorem 1.4).
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Proof. We use Duhamel’s formula for the solution of (3.4):

ht = SL(t)h0 +
∫ t

0
SL(t− s)Q(hs, hs) ds.

We now estimate ‖ht‖L1(m) thanks to Theorem 1.4 and Corollary 3.3:

‖ht‖L1(m) ≤ e−λt‖h0‖L1(m)

+C

∫ t

0
e−λ(t−s)

(

‖hs‖1/4L1(m)
‖hs‖1/2H4(〈v〉4γ+k+6)

+ ‖hs‖3/4L1(〈v〉2γm)

)

‖hs‖5/4L1(m)
ds

≤ e−λt ‖h0‖L1(m) + C

∫ t

0
e−λ(t−s)

(

K1/2η1/4 + η3/4
)

‖hs‖5/4L1(m)
ds.

We denote η′ := C
(

K1/2η1/4 + η3/4
)

. We end up with a similar differential inequality as in
[32, Lemma 4.5]. We can then conclude in the same way that

∀ t ≥ 0, ‖ht‖L1(m) ≤ C ′e−λt‖h0‖L1(m),

for some C ′ > 0. �

To conclude the proof of Theorem 1.1, we consider η > 0 defined in Theorem 3.4. Using
Theorem 1.3, we can choose t1 > 0 such that

∀ t ≥ t1, ‖ht‖L1(m) = ‖ft − µ‖L1(m) ≤ η.

Thanks to the properties of a smooth solution, we also have

∀ t ≥ t1, ‖ht‖H4(〈v〉4γ+k+6) ≤ ‖ft‖H4(〈v〉4γ+k+6) + ‖µ‖H4(〈v〉4γ+k+6) ≤ K

for some K > 0. We can hence apply Theorem 3.4 to ht starting from t1. We finally
obtain

∀ t ≥ t1, ‖ft − µ‖L1(m) ≤ C ′e−λt‖ht1‖L1(m) ≤ C ′′e−λt,

for some C ′′ > 0. The conclusion of Theorem 1.1 is hence established.
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