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Abstract In this paper, we are interested in numerical solution of some linear bound-

ary value problems with Wentzell’s boundary part and superabundant data on this

part, by the means of simulation of reflected random walks. We use a probabilistic

interpretation of solution, assuming that the diffusion coefficient and the boundary

data are sufficiently smooth, and applying Itô’s formula. From this stochastic repre-

sentation of solution, we extend the algorithm obtained for mixed standard boundary

conditions to the case of diffusion-reflection on the boundary, so called Wentzell’s

boundary condition. We then obtain numerical results by applying the stochastic

method based upon this generalized algorithm.

Keywords Monte Carlo method for linear BVP · Wentzell boundary condition ·
Reflected diffusion · Probabilistic representation · Stochastic numerical method

PACS 90-08 · 90C-15

1 Introduction

A large number of numerical studies have been devoted to mixed boundary value

problems (BVPs) using some deterministic methods: numerical solution can be per-

formed by the means of usual or mixed finite element methods after a variational

formulation of a class of standard BVPs.

Probabilistic methods can also be relevant: see, for instance, Monte Carlo meth-

ods for Neumann and Dirichlet BVPs in [18] where the equations are discretized and

specific treatments in the neighborhood of the boundary are applied.
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97487 Saint-Denis Cedex
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The aim of this paper is to investigate probabilistic numerical approach to the

mixed BVP with generalized Wentzell condition on a boundary part, by the means

of simulation of reflected random walks. In particular, the BVPs with Dirichlet, Neu-

mann or Robin reflection conditions are known to have integral representations [10]

which are used to obtain algorithms which compute the solution by implementing

a reflected and/or absorbed random walk simulation [28,23]. In this paper,we use a

probabilistic interpretation of solution, assuming that the diffusion coefficient and the

boundary data are sufficiently smooth, and applying Itô’s formula. From this stochas-

tic representation of solution, we extend the algorithm obtained for mixed standard

boundary conditions to the case of diffusion-reflection on the boundary, so called

Wentzell’s boundary condition. We then obtain numerical results by applying the

stochastic method based upon this generalized algorithm.

The limitations and the main advantages of these stochastic methods are already

presented, for instance, in [28,23]. In particular, the ensuing numerical methods do

not require the storage of a grid discretization in computer memory, nor specific treat-

ments related to domain local geometry. Programming is short, easy to check step

by step. A contrario, the usual finite element method (FEM) leads to approximate

Wentzell-Dirichlet BVP by means of a refinement of FEM on a boundary layer of

thickness ε [27].

In this paper, we first introduce a Wentzell-Dirichlet BVP. Let G be a bounded

open set of R
2 with a regular boundary Γ = ∂ G partitioned into two boundary parts

ΓD and ΓV : Γ = ΓD ∪ΓV and ΓD ∩ΓV = /0.

A mixed Wentzell-Dirichlet BVP is the following one:


























−1

2
aG∆u = f in G

γ0u = gD on ΓD

∂ u

∂ ν
+

1

2
aV

∂ 2u

∂ τ2
= gV on ΓV

(1)

where the function u, defined from G ⊂ R
2 into R, is to be determined, and the data

are the sufficiently smooth functions:

f : G −→ R aG : G −→ R
+

gD : ΓD −→ R aV : ΓV −→ R
+

gV : ΓV −→ R

with aG > a0 > 0, aV > a0 > 0 (a0 is a strictly positive constant), and where ν is the

inward unit normal vector and τ is the unit tangential vector defined on ΓV .

If σ1 is the Lebesgue measure on R, then we here assume: σ1 (ΓD ) 6= 0 and

σ1 (ΓV ) 6= 0. When Γ is a polygonal boundary, we will impose the Wentzell con-

dition at least on one straight line segment, and the Dirichlet condition on the other

segments.

The boundary condition on ΓV = Γ \ΓD so called Wentzell’s boundary condi-

tion [30] corresponds to the heat exchange between the body G and a thin layer of

thickness ε with a thermal conductivity aV /ε.
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The body is either partially or completely covered with a highly heat-conduct-

ive thin shell, and the quantity u is then the temperature. The ”heat particle” which

reached the boundary at x ∈ΓV , diffuses on ΓV just as on a boundary layer, and moves

back into G along the line normal to ΓV just as the rebound effect for Neumann

boundary condition; then the diffusion on G takes over again [12].

This type of non-standard BVP stems from various physical phenomenae. Let

us note that the same type of boundary conditions appears in absorbing boundary

conditions of wave-scattering problems and, more generally, in multilayer structure

problems.

Our numerical approach of Wentzell BVP is based on the limit of the following

problem:















































































−1

2
aG∆u = f in G\Γ h

V

−1

2

1

h
aV ∆u = gh

V in Γ h
V

γ0u = gD on ΓD

∂ u

∂ ν
= gν

V on ΓV +h/2

u+ = u− on G∩Γ h
V

(

∂ u

∂ ν

)+

=
1

h

(

∂ u

∂ ν

)−
on G∩Γ h

V

(2)

when h tends to 0, so that the domain G∪Γ h
V of the BVP (2) converges to the ini-

tial domain G and the BVP (2) approximates to the Wentzell-Dirichlet BVP (1), and

where Γ h
V =

{

x ∈ R
2 |d(x,ΓV ) < h/2

}

is a boundary layer so that Γ h
V is a neighbor-

hood of ΓV , and ΓV +h/2 =
{

x ∈ R
2 \

(

G∪Γ h
V

)

|d(x,ΓV ) = h/2
}

is a boundary part

of G∪Γ h
V .

The two last equalities are the transmission conditions between domain G and

boundary layer Γ h
V .

The extended domain G∪Γ h
V is the union of G and boundary layer Γ h

V , the bound-

ary of G∪Γ h
V is the union of ΓD and ΓV +h/2.

Therefore, for the functional approach of the BVP (1), we distinguish the dif-

fusion on a boundary layer ΓV and the Neumann condition on this boundary, so we

consider a mixed Wentzell-Dirichlet BVP with superabundant data:
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where the Neumann condition on ΓV is additional.

When Γ =
N
⋃

j=1

Γj is a polygonal boundary where Γj is an open straight line seg-

ment, we consider the Wentzell condition at least on one straight line segment Γj, and

we obtain the stochastic representations even if the boundary ∂ G of domain G is not

necessary of class C 3, nor sufficiently smooth : ∂ G can show corners or edges (see

Section 2.).

Many situations exist in which solutions to BVP are represented as function space

integrals. Such stochastic representations can be used to evaluate them numerically

using Monte Carlo methods [13]. For instance, a second-order elliptic operator sub-

ject to normal reflection or to oblique derivative boundary conditions generates a

diffusion process. For general definition of diffusions with reflection in a domain, see

[29], and for efficient approximation, see for instance [4] and references therein. We

consider here Wentzell’s boundary condition corresponding to such diffusion phe-

nomenon that a Markovian particle moves both by jumps and continuously in the

state space until it dies at the time when it reaches the set where the particle is defi-

nitely absorbed.

The schedule of this paper is the following one : in Section 2, we introduce the

probabilistic formulation of BVPs of Wentzell’s type by means of Itô’s formula as-

sociated with stochastic differential equations (SDEs). For these SDEs, we need to

consider the reflecting Brownian motion and a local time on a boundary. For theoret-

ical results on reflecting Brownian motion and on local time, see [15,21].

Section 3 is devoted to the resolution algorithm. More precisely, the stochastic

methods is introduced, and the process discretization is described. Section 4 is de-

voted to some numerical experiments and applications of algorithm obtained in the

previous section. Finally, we present some comments in the last section.

2 Representation of solutions of Wentzell boundary value problem for the

Laplacian

Wentzell’s BVP is a model for the heat transfer between a solid G and its environ-

ment when the boundary ∂ G is covered with a thin layer of a material with higher

conductibility.

When G is a bounded convex domain in R
d , there exists a unique solution in

H2(G) when the data are sufficiently smooth [20]. From a probabilistic point of view,

when G is an open bounded set of R
d with C 3 boundary, there exists a unique solution

in C
2
b

(

G
)

when the data and their derivatives are bounded and sufficiently smooth

[3].

This section is devoted to the stochastic representation of solution of Wentzell’s

BVP by means of stochastic integrals. Let us recall that the representations according

to the Robin, Neumann and mixed boundary conditions are already presented in [23,

24], and that the theoretical background can be view, for instance, in [10,6].

Let us consider an open bounded region G in R
d (the space dimension d being

fixed: d = 2 in this paper). Let us denote x ∈ R
d the space variable and ν the unit

inward normal defined on the boundary ∂ G.
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We will show how, from stochastic differential equations, we can represent so-

lution of Wentzell’s BVP. We will use the expectation of integrals, i.e. functionals

of trajectories and random variable which are solutions of SDE. The application of

Itô’s formula associated with SDE leads to a representation of solutions of Wentzell’s

BVP.

From a functional point of view, the stochastic representations of solutions of dif-

ferential problems with general boundary conditions have only been obtained accord-

ing to regularity hypotheses on the geometry of domain G, and on the boundary data

(see [10] for the probabilistic representation of solutions of first and second BVP).

In particular, the solutions are assumed of class C 2
b

(

G
)

, i.e. with bounded first and

second order continuous derivatives.

Nevertheless, we herein are using the stochastic representations obtained in ap-

plying Itô’s formula even when the data are not necessary smooth. This procedure

previously proved to be effective for the discretized equations [14,6,19], for the

Dirichlet problem [28], and for the Robin, Neumann or mixed BVPs [23,24] in bi- or

tridimensional domains.

More precisely, Itô’s formula is used even if solutions of BVP belong to Sobolev

spaces of order 1 and are not necessary of class C 2
b

(

G
)

.

In the sequel, we omit the arguments (Xx
t (ω) ) in the functions aG, aV , a j for

brevity.

2.1 Wentzell-Dirichlet problem

Let us consider the following bidimensional BVP:











































−1

2
aG ∆u = f in G

γ0 u = gD on ΓD

∂ u

∂ ν
+

1

2
aV

∂ 2u

∂ τ2
= gν

V +gτ
V on ΓV

∂ u

∂ ν
= gν

V on ΓV

(4)

where the superabundant data gN of problem (3) corresponds to gν
V and verifies gV =

gν
V +gτ

V , and where gν
V and gτ

V : ΓV −→ R are also sufficiently smooth functions.

Let us introduce the Markov process defined by the two-dimensional Laplacian

operator within the domain G, by the one-dimensional Laplacian operator on the

boundary part ΓV , and by reflection on the boundary in the direction of inward normal

ν .

For sake of simplicity, the initial point x ∈ G being fixed, we denote: Xt ≡ Xx
t ,

ξt ≡ ξ x
t , and θ ≡ θ x, where Xt is the corresponding Markov process, ξt the reflection

process, and θ the hitting time of R
d \ (G∪ΓV ).
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For the bidimensional case, we have:

∀t ≥ 0,

Xt = x+
√

aG Wt +

∫ t

0
1ΓV

(Xs)
√

aV τ(Xs)dβξs
+

∫ t

0
1ΓV

(Xs)ν(Xs)dξs,

X0 = x,

ξ0 = 0,

where:

- Wt is the standard Wiener process with values in R
2,

- βt is the standard Wiener process with values in R, independent of Wt ,

- ξt is a non decreasing process which increases only when t hits the set Λ defined

by: Λ =
{

s > 0
∣

∣Xx
s ∈ ΓV

}

, so that: ξ0 = 0 and

∫ t

0
1G(Xs)dξs = 0, ξt is the so-called

local time on ΓV ,

- 1A is the indicator of set A,

- τ is the unit tangential vector, and

- ν is the unit inward normal vector.

We apply Itô formula to the function u (Xt ):

u (Xt) − u (X0) =

∫ t

0
1G(Xs) (∇u(Xs),

√
aG dWs )+

∫ t

0

1

2
aG∆u(Xs)1G(Xs)ds

+

∫ t

0
1ΓV

(Xs)
(

∇u(Xs),
√

aV τ(Xs)dβξ τ
s

)

+

∫ t

0

1

2
aV

∂ 2u

∂ τ2
(Xs)1ΓV

(Xs)dξ τ
s

+

∫ t

0
1ΓV

(Xs) (∇u(Xs),ν(Xs)dξ ν
s )

where ξ τ
s is the sojourn time when the process Xs diffuses on ΓV and ξ ν

s is the local

time after diffusion when the process Xs is reflected inward of G,

then we use the data of problem (4):

u (Xt )−u (x) =

∫ t

0
1G(Xs) (∇u(Xs),

√
aG dWs )−

∫ t

0
f (Xs)1G(Xs)ds

+

∫ t

0
1ΓV

(Xs)
(

∇u(Xs),
√

aV τ(Xs)dβξ τ
s

)

+

∫ t

0
gτ

V (Xs)1ΓV
(Xs)dξ τ

s

+

∫ t

0
gν

V (Xs)1ΓV
(Xs)dξ ν

s

On taking expectation of both sides of this equality, we get:

E [u(Xt) ]−u(x) = −E

[

∫ t

0
f (Xs)1G(Xs)ds

]

+E

[

∫ t

0
gτ

V (Xs)1ΓV
(Xs)dξ τ

s

]

+E

[

∫ t

0
gν

V (Xs)1ΓV
(Xs)dξ ν

s

]
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The hitting time θ of R
d \G∪ΓV is defined by:

θ ≡ θ x = inf{t > 0 |Xx
t /∈ G∪ΓV } .

and is denoted by θ to avoid confusion with the tangential vector τ. We obviously

assume: Prob {θ x < ∞} = 1 for every x ∈ G since aG is strictly elliptic (see a similar

result in [11], page 144).

The application of Itô’s formula to u (Xt ) leads to the following representation of

the solution of (4) in the form:

u(x) = E [R ] , x ∈ G, (5)

with the random variable:

R = gD (Xθ )+

∫ θ

0
f (Xt)1G(Xt )dt−

∫ θ

0
gτ

V (Xt)1ΓV
(Xt)dξ τ

t

−
∫ θ

0
gν

V (Xt )1ΓV
(Xt )dξ ν

t (6)

Let us mention that some functional results regarding SDE with reflection on ΓV ,

and associated BVP with general boundary conditions are given in [8,9].

If we adopt the modified sojourn time on ΓV : στ
t = inf{ s |ξ τ

s > t }, then we can

write:

E

[

∫ θ

0
gτ

V (Xt)1ΓV
(Xt)dξ τ

t

]

= E

[

∫ ξ τ
θ

0
gτ

V (Xσ τ
t
)1ΓV

(Xσ τ
t
)dt

]

where Xσ τ
t

is a Markov process with values in ΓV , t ∈ [0,θ ], ξ τ
t ∈ [ξ τ

0 ,ξ τ
θ ] = [0,ξ τ

θ ],

and στ
t ∈

[

στ
ξ τ

0
,στ

ξ τ
θ

]

= [0,θ ].

The numerical method given below in Section 3 will be based on the above ex-

pectation E

[

∫ ξ τ
θ

0
gτ

V (Xσ τ
t
)1ΓV

(Xσ τ
t
)dt

]

where the Markov process
(

Xσ τ
t

)

diffuses

on ΓV , then purely and simply reflected by ΓV , so the Wentzell diffusion boundary

condition is considered as a degenerated elliptic equation in a boundary layer.

2.2 Wentzell-Dirichlet BVP in a polygonal domain

Let us denote G a bounded open set of R
2 with a polygonal boundary Γ =

N
⋃

k=1

Γk,

where Γk is an open straight line segment ]Sk−1,Sk [ or ]SN ,S1 [.
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Let us consider the Wentzell-Dirichlet problem:











































































−1

2
aG ∆u = f in G

γ0 u = gD on

N1
⋃

i=1

Γki

∂ u

∂ ν j
+

1

2
a j

∂ 2u

∂ τ2
j

= gν
j +gτ

j on

N
⋃

j=N1+1

Γk j

∂ u

∂ ν
= gν

j on

N
⋃

j=N1+1

Γk j

a j
∂ u

∂ τ j

−a j+1
∂ u

∂ τ j+1

= 0 on S j

(7)

with the superabundant data gN of problem (3) corresponds to gν
j , j = N1 +1, . . .,N

and verifies g j = gν
j + gτ

j , and where the unknown u is defined in G∪Γ with real

values, N1 verifies N1 < N , ν j is the unit inward normal vector, τ j the unit tangential

vector on Γk j
, j = N1 + 1, . . .,N , the vertices S j exist and are defined by

{

S j

}

=

Γk j
∩Γk j+1

if j and j + 1 ∈ {N1 + 1, . . .,N}, and the data aG, a j, j = N1 + 1, . . . , N ,

are strictly positive functions so that: aG ≥ a0 > 0 and a j ≥ a0 > 0, j = N1 +1, . . .,N

where a0 is positive constant.

In order to avoid solutions defined up to an additive constant when the data are

compatible, we assume that the interior of ΓD is not empty.

The elliptic part of the boundary condition on Γk j
is the tangential derivative of

order 2. The Wentzell boundary condition is applied on the open set ΓV ≡
N
⋃

j=N1+1

Γk j
.

The point boundary conditions are the transmission conditions of the boundary oper-

ator.

Let us mention [20] where functional results to Wentzell BVP in a polygonal

domain G. In particular, the solution u belongs to a Sobolev space of order 1.

Let us introduce the Markov process Xt with values in G ⊂ R
2 using analogous

notation:

∀t ≥ 0,

Xt = x+
√

aG Wt +
N

∑
j=N1+1

∫ t

0
1Γk j

(Xs)
√

a j τ j(Xs) dβξs

+
N

∑
j=N1+1

∫ t

0
1Γk j

(Xs)ν j(Xs) dξs

+
N

∑
j=1

χP(ΓV )

(

Γk j
∪Γk j+1

)

∫ t

0
1S j

(Xs)aρ j(ξs)(S j)τρ j(ξs)(S j) dξs,

X0 = x,

ξ0 = 0,
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where χP(ΓV ) (B ) equals to 1 if B is a part of ΓV , 0 otherwise, and ρk is the uniform

distribution on {k,k + 1} so that: Prob{ρk(ξs) = k} = Prob{ρk(ξs) = k + 1} = 1
2

,

k = 1, . . . , N −1, and Prob{ρN(ξs) = N}= Prob{ρN(ξs) = 1} = 1
2

.

As above, this process Xt is absorbed by ΓD at the hitting time θ defined by:

θ = inf{ t > 0 |Xt ∈ ΓD } .

The application of Itô’s formula to u (Xt ) leads to the following representation of

the solution of (7) in the form:

u(x) = E [R ] , x ∈ G, (8)

with the random variable:

R = gD (Xθ )+

∫ θ

0
f (Xt )1G(Xt )dt

−
N

∑
j=N1+1

∫ θ

0
gτ

j(Xt)1Γk j
(Xt )dξ τ

t −
N

∑
j=N1+1

∫ θ

0
gν

j (Xt)1Γk j
(Xt )dξ ν

t (9)

The problem (7) can be written in the following condensed form, using appropri-

ate values of coefficients α, β , and γ:














−1

2
aG ∆u = f in G

β
∂ u

∂ ν
+

1

2
α

∂ 2u

∂ τ2
− γu = g on Γ = ∂ G

(10)

Let us note the analogy between problems (7) and (10). Nevertheless, from the func-

tional point of view, some difficulties occur since the coefficients α, β and γ are

discontinuous. Some partial results on this subject can be found in [3,26].

In the next section of this paper, we will focus on one stochastic method based

upon the probabilistic representation of solution of BVP (7).

3 Resolution algorithm for Wentzell-Dirichlet mixed boundary value problem

The main purpose of this section is to give an approach of the representations of Sec-

tion 2 by means of realization of random processes, in order to compute the solutions

of BVP with a Wentzell boundary part.

Let us recall that some efficient algorithms according to the Dirichlet, Neumann,

Robin and mixed boundary conditions are already presented in [28,23] for the Lapla-

cian and in [24] for the parabolic operator. Our present aim is then to extend the above

techniques to our problem (7).

In order to estimate an expectation E[R], we simulate a large number (say NT ) of

independent random variables with the same law as R. The mean of the NT realiza-

tions Ri converges almost surely to E[R] (see [13] where the almost sure convergence

of the Monte Carlo methods is proved) :

1

NT

NT

∑
i=1

Ri
a.s.−→ E[R] as NT →+∞.
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Thanks to CLT, the rate of convergence of this approximation is known, it is of order

1/
√

NT .

In order to simulate the diffusion process X , we approach X by means of an Eu-

ler’s scheme as in [1,2,24] or the Box Muller algorihm. We need also the simulation

of random walks by using some predefined generators of normally distributed pseu-

dorandom numbers.

Let us consider the Wentzell-Dirichlet BVP (7) in a polygonal domain.

The solution u(x) to BVP (7) is represented as the mean of a random variable

R, involving function of a non instantaneously reflected random walk, then absorbed

random walk.

The representation (8)–(9) is used and u(x) is computed as the mean of NT ap-

proximated values of R, i.e. R1, . . . , RNT , in order to obtain an estimation of u(x):

u(x) ' 1

NT

NT

∑
i=1

Ri.

Each value Ri results from a simulation of a random walk on G, first reflected by the

Wentzell boundary part ΓV , then absorbed by the Dirichlet boundary part ΓD. Each

random walk is then finite. From now on, we shall assume that the hitting time θ is

not too large and, in particular, the Dirichlet boundary part ΓD versus the Wentzell

boundary part ΓV is significant.

The standard Wiener processes are simulated as follows. The mean of space step

h > 0 being fixed, the process Wt can be simulated by the sequence of random vectors

W0, W1, . . . , W j defined by means of the recurrent formulae:

W0 = x ∈ G, and W j+1 = W j +hD j, j ∈ N,

where D j is a random vector so that, if (ei, i = 1,2 ) is the canonical basis of R
2, D j

verifies:

D j = r1 e1 + r2 e2 in G

where r1 and r2 are independent normally distributed pseudorandom numbers, and:

D j = r3 τ + |r4| ν on ΓV

where r3 and r4 are independent normally distributed pseudorandom numbers.

The absolute value |r4| leads to a reflection inward G.

Since the simulated process happens to leave the domain G, its trajectory resumes

to the interior after a diffusion on ΓV or stops when the trajectory hits the Dirichlet

boundary part ΓD.

The process is not instantaneously reflected by the boundary part ΓV when dif-

fusion occurs.The elementary boundary reflections without diffusion are detailed in

[24], where the basic reflection algorithm is given, and general obliquely reflected

diffusions (without diffusion on the boundary) are studied in [4]. The diffusion on

the Wentzell boundary part is governed by the Wiener process βt which is simulated

as the process Wt but on the boundary layer:

Γ h
V =

{

x ∈ R
2 | d(x,ΓV ) < h/2

}

.
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In the bidimensional case, the process diffuses on ΓV , along the tangential line

given by τ, and is reflected inward the interior G along the normal direction given by

ν .

Each simulation gives a discrete realization (X j , 0 ≤ j ≤ NP) of a random walk

in G with NP steps, so that:

X0 ∈ G\ΓD, . . .,XNP−1 ∈ G\ΓD, and XNP ∈Γ h
D =

{

x ∈ R
2 |d(x,ΓD) < h/2

}

,

which trajectory is the polygonal line connecting successively the points X j and X j+1,

j = 0, . . . , NP−1, in order to form a random path.

The random processes are discretized in time according to the Euler scheme.

For each simulated random walk (X j , 0 ≤ j ≤ NP), we compute the score:

Ri = gD (XNP )+∆ t ·
NP−1

∑
j=0

f (X j )−∆s ·
NP−1

∑
j=0

gτ
V (X j )1Γ h

V
(X j )

−∆W ·
NP−1

∑
j=0

gν
V (X j )1Γ h

V
(X j )

where ∆ t is the time of a step in G, ∆s is the local time of a step along τ on Γ h
V , and

∆W is the step increment along ν .

Then this procedure is iterated NT times in order to obtain a sample of R, and an

estimation of its arithmetic mean u(x).
The integer NT corresponds to the number of simulated random walks, and con-

sequently to the number of absorptions by the Dirichlet boundary part ΓD, more pre-

cisely by Γ h
D .

This integer NT is the maximum index of the main loop of the associated program.

The second (and latter) loop follows, step by step, each random walk by adding up

successively the values of the source function f , and the values of the Wentzell con-

dition gV by diffusion and the values of the Neumann condition by straight reflection,

then the value of the absorption effect gD. Finally the score of each corresponding Ri

is added up.

For each realization of the random variable R, we generate:

1. a first random walk in the open set G, depending on the Wiener process Wt (see,

for instance, the simplest random walk in [28]),

2. a second random walk on the boundary part ΓV , depending on the Wiener process

βt which is simulated as the process Wt extended on the boundary layer Γ h
V , and

3. a reflection by ΓV along the inward normal ν .

If h is the fixed average of stepsize of a simulated bidimensional walk X j, the time

and space increments are defined by:

∆ t =
h2

aG

in G, ∆s =
h2

2aV

on Γ h
V , ∆W = h inward along ν .

If aV ≡ 0, then the random walk is instantaneously reflected by the boundary ΓV

as in [23] for the Neumann BVP. Else aV 6≡ 0, we have a diffusion on ΓV and a mirror

effect: the random walk diffuses on ΓV and resumes to the interior; this procedure

goes on until the trajectory reaches the Dirichlet boundary part ΓD.
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Remark 1 When Xt hits the boundary part ΓV by means of the Wiener process Wt ,

then (W · τ)τ is replaced by β τ and (W ·ν)ν by |W ·ν|ν , i.e. if Xt ∈ ΓV , then

Xt+dt = Xt +
√

aV τ(Xt )dβξt
+
√

aV |dWt ·ν |ν

where · is the scalar product in the euclidean space R
2 and:

|dWt ·ν | = sgn [ (Xt +dWt) ·ν ] (dWt ·ν )

(see [10], page 85 for the relation between the positive process |x+Wt | in R
+ and

the local time ξt at zero).

Remark 2 In our algorithm (see the pseudo-code shown below, page 13), we can use

antithetic random variables with the same distribution to estimate u and improve its

variance.

Two processes W
(1)

t and W
(2)
t are simulated by the two sequences of random

vectors W0, W
(1)
1 , . . . , W

(1)
j and W0, W

(2)
1 , . . . , W

(2)
j defined by means of the recurrent

formulae:

W0 = x ∈ G, W
(1)
j+1 = W

(1)
j +hD

(1)
j , and W

(2)
j+1 = W

(2)
j +hD

(2)
j j ∈ N,

where D
(1)
j and D

(2)
j are random vectors so that, if (ei, i = 1,2 ) is the canonical basis

of R
2, D

(1)
j and D

(2)
j verify:

D
(1)
j = r1 e1 + r2 e2 and D

(2)
j = −D

(1)
j in G

where r1 and r2 are independent normally distributed pseudorandom numbers, and:

D
(1)
j = r3 τ + |r4| ν and D

(2)
j = −r3 τ + |r4| ν on ΓV

where r3 and r4 are independent normally distributed pseudorandom numbers, inde-

pendent of r1 and r2.

When a process W
(i)
t is absorbed by ΓD, the second W

( j)
t , j 6= i, continues until it

also reaches ΓD.

For each simulated random walk (X j ; 0 ≤ j ≤ NP), we compute the score:

Ri = gD (XNP )+
h2

aG

NP−1

∑
j=0

f (X j )1G (X j )−
h2

2aV

NP−1

∑
j=0

gτ
V (X j )1Γ h

V
(X j )

−h
NP−1

∑
j=0

gν
V (X j )1Γ h

V
(X j )

We then estimate u(x) by computing the arithmetic mean of these NT scores Ri.
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A pseudo-code description of the global algoritm can be written as follows:

Declarations — Initializations, diffusion coefficient aV on Wentzell boundary part ΓV

included

Loop Points of domain G grid

Set initial point x of the domain grid

Main Loop i = 1, . . .,NT random walks from x to Dirichlet boundary part ΓD

Let j = NT + i for the antithetic random walks

Initialize for each random walk:

Start points of antithetic random walks: Wi = x; W j = x

Source function f effect in domain G: yai = 0.0 and ya j = 0.0

Wentzell diffusion effect on ΓV : maVi = 0.0 and maV j = 0.0
Neumann effect on ΓV : maNi = 0.0 and maN j = 0.0

While the random walks Wi and W j within the domain G (Loop step by step)

Source function f effect at points Wi and W j:

yai = yai + f (Wi) and ya j = ya j + f (W j)

Set Di a normally distributed pseudo-random vector

Set r a normally distributed pseudo-random number

If Wi on Wentzell boundary ΓV

Wi = Wi +hrτ
Diffusion effect: maVi = maVi +gV (Wi)
Reflection of random walk inside G with Neumann effect:

maNi = maNi +gN (Wi)
endIf

If W j on Wentzell boundary ΓV

W j = W j −hrτ
Diffusion effect: maV j = maV j +gV (W j)
Reflection of random walk inside G with Neumann effect:

maN j = maN j +gN (W j)
endIf

Wi = Wi +hDi, i.e. a step of first random walk

W j = W j −hDi, i.e. a step of second random walk

endWhile the random walks Wi and W j within the domain G (Loop step by step)

Comment: Dirichlet condition: absorption of Wi or W j by ΓD

If Wi ∈ ΓD

maU(x, i) = gD (Wi)−0.5h2/aV maVi −hmaNi

endIf

If W j ∈ΓD

maU(x, j) = gD (W j)−0.5h2/aV maV j −hmaN j

endIf

Comment: Continue with the unabsorbed walk Wi or W j

If W j ∈ΓD

While Wi /∈ ΓD

yai = yai + f (Wi)
Set Di and r normally distributed pseudo-random vector and number

If Wi on Wentzell boundary ΓV
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Wi = Wi +hrτ
Diffusion effect: maVi = maVi +gV (Wi)
Reflection of random walk inside G with Neumann effect:

maNi = maNi +gN (Wi) ;

endIf

Wi = Wi +hDi A step of first random walk

endWhile Wi /∈ ΓD

If Wi ∈ΓD

maU(x, i) = gD (Wi)−0.5h2/aV maVi −hmaNi

endIf

endIf W j ∈ ΓD

If Wi ∈ ΓD

While W j /∈ ΓD

ya j = ya j + f (W j)
Set Di and r normally distributed pseudo-random vector and number

If W j on Wentzell boundary ΓV

W j = W j +hrτ
Diffusion effect: maV j = maV j +gV (W j)
Reflection of random walk inside G with Neumann effect:

maN j = maN j +gN (W j) ;

endIf

W j = W j +hD j A step of second random walk

endWhile W j /∈ ΓD

If W j ∈ ΓD

maU(x, j) = gD (W j)−0.5h2/aV maV j −hmaN j

endIf

endIf Wi ∈ ΓD

Add source effect and boundary conditions:

1) maU(x, i) = maU(x, i)+h2/aGyai for the first random walk Wi

2) maU(x, j) = maU(x, j)+h2/aGya j for the antithetic random walk W j

end Main Loop i = 1, . . .,NT random walks from x to Dirichlet boundary part ΓD

Calculate estimated solution (arithmetic mean): u(x) = 1
2NT ∑2NT

k=1 maU(x,k)
U(x) = mean{maU(x,k) | 1 ≤ k ≤ 2NT}
Display per point approximated solution, empirical errors, standard deviation and

95% confidence intervals

endLoop Points of domain G grid

4 Numerical experiments

The validity and suitability of the present approach, i.e. the stochastic representation

in Section 2 and the approximate solution in Section 3, are investigated here by con-

sidering and evaluating a set of BVPs with Wentzell’s boundary condition according

to the above numerical scheme used sequential calculus on personal computers (In-

tel i7 CPU 2.67 GHz, and Athlon 2850e 1.80 GHz) by the means of MATLAB R©
applications.
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In all the following examples, the solution u is approximated by uc in NPT points Q1,

Q2, . . . , QNPT in G.

The quality of the stochastic approximation is controlled as follows:

ERmax = max{ERi : 1 ≤ i ≤ NPT }

ERi =
10 |u(Qi)−uc(Qi) |

1 +10 |u(Qi) |

so that ERi, i = 1, . . . , NPT , furnish relative errors or absolute errors, according to the

magnitude of the theoretical value.

The following examples show BVP (7), one defined in a rectangular domain

G = ]0,a[× ]0,b[, and two in the unit square G = ]0,1[2. The fourth example shows

BVP (4) defined in quadrant of ring G = D(0; 3) \D(0; 1)∩ (R∗+ ×R
∗+). For sake

of simplicity, the diffusion coefficient aG in G equals to 1.

4.1 Wentzell-Dirichlet mixed BVP in a rectangular domain

Let us consider problem (7) in G = ]0,a[× ]0,b[ with the following data:

f ≡ 0 in G

ΓD = ([0,a]×{0})∪ ([0,a]×{b})
gD(x,0) = 0 on [0,a]×{0}
gD(x,b) = cos2(πx/a) on [0,a]×{b}
ΓV = ({0}× ]0,b[)∪ ({a}× ]0,b[)

gτ
V (x,y) = aV

π2

a2

sinh(2πy/a)

sinh(2πb/a)
on ΓV

gν
V (x,y) = 0 on ΓV

such that this Wentzell-Dirichlet BVP admits a unique solution u written in the form:

u(x,y) =
y

2b
+ cos(2πx/a)

sinh(2πy/a)

2 sinh(2πb/a)
.

Let us first consider the point (a/2,b/2) and the solution u(a/2,b/2) for different

values of diffusion coefficient aV on ΓV : aV ∈ {1, . . .,20}.

The results of the mean value of the approximate solution u(a/2,b/2) are ob-

tained with the following data:

1. Rectangular domain: a = 2 and b = 3

2. Number of random walks: NT = 6×104, i.e. 2NT = 12×104 by means of anti-

thetic variables

3. Stepsize of each random walk: h = 0.01
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Fig. 1 Numerical solution u(a/2,b/2) and empirical error versus aV

The arithmetic mean of these 2 NT scores Ri gives: u(a/2,b/2)' 0.2455, the stan-

dard deviation σ = 0.1775 is obtained by means of antithetic variables, and 95%

confidence intervals
[

uc −1.96σ/
√

2NT ,uc +1.96σ/
√

2NT
]

, around uc = 0.2455,

is of amplitude 0.028.

The empirical error for the Wentzell diffusion coefficient aV :

ERaV
(a/2,b/2)=

10 |u(a/2,b/2)−uc(a/2,b/2) |
1 +10 |u(a/2,b/2) |

is less than 2×10−3 and verifies:

max
1≤aV ≤20

ERaV
(a/2,b/2)' 1.9×10−3 and

1

20

20

∑
aV =1

ERaV
(a/2,b/2)' 0.8×10−3.

See figure 1 where numerical solutions and empirical errors are represented versus

aV . The effect of Dirichlet condition is isolated, so we can appreciate the effect of

diffusion on ΓV .

Let us secondly consider the points Qi j = Q(xi,y j), where xi = 0.1× a× i, 1 ≤
i ≤ 9, y j = 0.1×b× j, 1 ≤ j ≤ 9, the approximated solution uc(Qi j), the empirical

errors ERi j at the point Q(xi,y j), and ERmax when the boundary diffusion coefficient

aV belongs to {5,10,15,20}.

The values of ERmax given in Table 1 are obtained with the number of simulated

random walks: NT = 2× 105 and the data above, and the empirical errors ERi j are

given in Figure 2.
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Table 1 Maximum empirical errors for different aV

aV ERmax at point (xi,yi)

5 0.0251 at (0.6;2.4)
10 0.0180 at (1.8;2.7)
15 0.0194 at (1.6;2.4)
20 0.0208 at (0.6;2.7)
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Fig. 2 Empirical errors in rectangular domain for aV = 5,10,15,20

4.2 Wentzell-Dirichlet mixed BVPs in the unit square

Let us consider two problems (7) in G = ]0,1[2 where the Dirichlet and Wentzell

boundary parts ΓD and ΓV are:

ΓD = ([0,1]×{0})∪ ([0,1]×{1}) and ΓV = ({0}× ]0,1[)∪ ({1}× ]0,1[) ,

and with the following data:
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First problem P1 in the unit square:

f ≡ −2 in G

gD(x,0) = x2 +1 ∀x ∈ [0,1]

gD(x,1) = x2 ∀x ∈ [0,1]

gτ
V ≡ aV on ΓV

gν
V (0,y) = 0 ∀y ∈ ]0,1[

gν
V (1,y) = −2 ∀y ∈ ]0,1[

such that this first Wentzell-Dirichlet BVP P1 admits a unique solution u written

in the form:

u(x,y) = x2 +(y−1)2.

Second problem P2 in the unit square:

f ≡ 0 in G

gD(x,0) = cos(πx) ∀x ∈ [0,1]

gD(x,1) = cos(πx)exp(π) ∀x ∈ [0,1]

gτ
V (0,y) = 1

2
aV π2 exp(πy) ∀y ∈ ]0,1[

gτ
V (1,y) = − 1

2
aV π2 exp(πy) ∀y ∈ ]0,1[

gν
V ≡ 0 on ΓV

such that this second Wentzell-Dirichlet BVP P2 admits a unique solution u:

u(x,y) = cos(πx)exp(πy).

Let us consider the points Qi j = Q(xi,y j), where xi = 0.1× i, 1 ≤ i ≤ 9, y j =
0.1× j, 1 ≤ j ≤ 9, the approximated solution uc(Qi j), the empirical errors ERi j at

the point Q(xi,y j), and ERmax when the boundary diffusion coefficient aV belongs to

{5,10,15,20}.

The value of ERmax and the mean of ER given in Table 2 for problem P1 and in

Table 3 for problem P2 are obtained with the following data:

1. Number of simulated random walks: NT = 6×104, i.e. 2NT = 12×104 by means

of antithetic variables

2. Stepsize of each random walk: h = 0.01

and the empirical errors ERi j are given in Figure 3 for problem P1 and in Figure 4 for

problem P2.

For the BVP P2, the maximum error ERmax is obviously where the exact solution

equals to zero (the results in Figure 4 where the zero points are clearly identified,

confirm this effect due to the choice of the expression of ERmax); for these points,

the maximum error is equal to 10 times the absolute error and the 95% confidence

intervals given in Table 4 always contain the exact solution u = 0.
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Table 2 BVP P1: Maximum empirical error and error mean for different aV

aV ERmax at point (xi,yi) mean(ER)

5 0.0248 at (0.2;0.2) 0.0086

10 0.0182 at (0.1;0.1) 0.0055

15 0.0336 at (0.1;0.2) 0.0074

20 0.0214 at (0.1;0.3) 0.0076
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Fig. 3 BVP P1: Empirical errors in the unit square when aV = 5,10,15,20

Table 3 BVP P2: Maximum empirical error and error mean for different aV

aV ERmax at point (xi,yi) mean(ER)

5 0.3250 at (0.5;0.1) 0.0497

10 0.6922 at (0.5;0.4) 0.0531

15 0.6208 at (0.5;0.6) 0.0569

20 0.7145 at (0.5;0.2) 0.0612
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Table 4 BVP P2: 95% confidence intervals when empirical error is maximum

aV 95% confidence interval at point (xi,yi)

5 [−0.025899 ;0.09089] at (0.5;0.1)
10 [−0.027408 ;0.16584] at (0.5;0.4)
15 [−0.011347 ;0.13551] at (0.5;0.6)
20 [−0.001648 ;0.14454] at (0.5;0.2)
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Fig. 4 BVP P2: Empirical errors in the unit square when aV = 5,10,15,20

Let us finally consider the BVP P1 with a coefficient aV different on each part of

ΓV ; the results are analogous as for instance:

aV =

{

4 on Γ 1
V = ]0,1[×{0}

8 on Γ 2
V = ]0,1[×{1}

with the following data:

1. Number of simulated random walks: NT = 1×104, i.e. 2NT = 2×104 by means

of antithetic variables



Solving Wentzell-Dirichlet Boundary Value Problem 21

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9

0.9
0.8

0.7
0.6

0.5
0.4

0.3
0.2

0.1

0

0.005

0.01

0.015

0.02

0.025

 

x
i

a
V
 = 4 on Γ

V

1
 and a

V
=8 on Γ

V

2

y
j

 

E
R

(x
i,y

j)

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

Fig. 5 Empirical error when aV is different on each part of ΓV

2. Stepsize of each random walk: h = 0.01

The empirical errors ERi j for aV non constant are given in Figure 5.

4.3 Wentzell-Dirichlet mixed BVP in quadrant of a ring

Let us consider problem (4) in G =
{

(x,y) ∈ R
2 | 1 < x2 + y2 < 9, x > 0, y > 0

}

with

the following data:

f ≡ −2 in G

ΓD =
{

(x,y) ∈ R
2 | x2 + y2 = 1, x >= 0, y >= 0

}

∪
{

(x,y) ∈ R
2 | x2 + y2 = 9, x >= 0, y >= 0

}

gD ≡ 4 on
{

(x,y) ∈ R
2 | x2 + y2 = 1, x >= 0, y >= 0

}

gD ≡ 9 on
{

(x,y) ∈ R
2 | x2 + y2 = 9, x >= 0, y >= 0

}

ΓV = (]1,3[×{0})∪ ({0}× ]1,3[)

gτ
V ≡ aV on ΓV

gν
V ≡ 0 on ΓV

such that this Wentzell-Dirichlet BVP admits a unique solution u written in the form:

u(x,y) = x2 + y2.
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Let us consider the points Qi j = Q(xi,y j) ∈ G, where xi = 0.2× i, 0 ≤ i ≤ 15,

y j = 0.2× j, 0 ≤ j ≤ 15, and 1 < x2
i + y2

j < 9, i.e. a total number of 163 points in G.

The estimated solution uc(xi,y j) and empirical error ERi j when the boundary

diffusion coefficient aV equals to 5, are obtained with the following data:

1. Number of simulated random walks: NT = 104, i.e. 2NT = 2×104 by means of

antithetic variables

2. Stepsize of each random walk: h = 0.01

and are given in Figure 6.

Remark 3 When the number of realizations is NT = 104, the average CPU time used

by the MATLAB R© application implemented with a processor Intel i7 2.67 GHz (6.9
operations per second) for the numerical resolution of the BVP P2 in the unit square,

equals to 160 seconds when the results are displayed at each point, and 97 second per

point without displaying.

The results can be improved by using more realizations and smaller stepsize h,

but this increases CPU time involved. Let us note that the reflections increase the

CPU time involved, in particular when the initial point of the random walk is near

one part of the boundary ΓV .

5 Concluding remarks

In the present paper, we have presented stochastic method for the numerical approx-

imation of some boundary value problems with Wentzell’s boundary part and su-

perabundant data on this part. The representations of solution are deduced from the

application of Itô’s formula even when the boundary data are non smooth. These

probabilistic interpretations have given some easily implementable algorithms: they

consist in the simulation of diffused-reflected random walks in order to generate sam-

ples from a distribution having a mean equal to the solution of the Wentzell BVP

considered. This algorithm do not require to store in memory any mesh of the region
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G, nor deal with the corresponding numbering-lists. Programming is short, easy to

check step by step.

As for the classical Monte Carlo schemes, this stochastic method admits an ex-

pected rate of convergence of about 1/
√

NT . Relative error and empirical variance

can be computed. The variance reduction techniques as antithetic variates can be ap-

plied. The essential properties of Monte Carlo methods are maintained; on the one

hand, this stochastic method of the solution approximation does not depend on the

choice of the point, on the other hand, their implementations on a parallel computer

are intrinsically possible.

The development of the stochastic methods by the means of an integral repre-

sentation makes possible not only the solution of these systems but extensions to

more general models with general linear elliptic or parabolic operators and with wide

classes of boundary conditions.
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Inst. Fourier, Vol. 18 (2). pp:369–521 (1968).

4. M. Bossy, E. Gobet, D. Talay. A Symmetrized Euler Scheme for an Efficient Approximation of Reflected

Diffusions. J. Appl. Prob., Vol. 41. pp:877-889 (2004).

5. F. Brezzi, M. Fortin. Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991).

6. M. Cessenat, R. Dautray, G. Ledanois, P.-L. Lions, É. Pardoux, R. Sentis. Méthodes probabilistes pour

les équations de la physique. Eyrolles, Paris (1989).

7. P.G. Ciarlet, M. Fortin. The Finite Element Method for Elliptic Problems. Vol. 4 of Studies in Mathe-

matics and its Applications. North Holland, Amsterdam (1978).
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équations différentielles stochastiques sur R, cas continu. Astérisque. pp:52–53, 117–144 (1978).
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