HAL
open science

SOLVING WENTZELL-DIRICHLET BOUNDARY VALUE PROBLEM WITH SUPERABUNDANT DATA USING REFLECTING RANDOW WALK SIMULATION

Jean-Paul Morillon

To cite this version:

Jean-Paul Morillon. SOLVING WENTZELL-DIRICHLET BOUNDARY VALUE PROBLEM WITH SUPERABUNDANT DATA USING REFLECTING RANDOW WALK SIMULATION. Methodology and Computing in Applied Probability, 2013, 15 (4), pp.1-23. 10.1007/s11009-013-9390-3 . hal00967558

HAL Id: hal-00967558

https://hal.science/hal-00967558

Submitted on 29 Mar 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Solving Wentzell-Dirichlet Boundary Value Problem with superabundant data using reflecting random walk simulation

Jean-Paul MORILLON

Received: date / Accepted: date

Abstract

In this paper, we are interested in numerical solution of some linear boundary value problems with Wentzell's boundary part and superabundant data on this part, by the means of simulation of reflected random walks. We use a probabilistic interpretation of solution, assuming that the diffusion coefficient and the boundary data are sufficiently smooth, and applying Itô's formula. From this stochastic representation of solution, we extend the algorithm obtained for mixed standard boundary conditions to the case of diffusion-reflection on the boundary, so called Wentzell's boundary condition. We then obtain numerical results by applying the stochastic method based upon this generalized algorithm.

Keywords Monte Carlo method for linear BVP . Wentzell boundary condition • Reflected diffusion • Probabilistic representation • Stochastic numerical method

PACS 90-08 • 90C-15

1 Introduction

A large number of numerical studies have been devoted to mixed boundary value problems (BVPs) using some deterministic methods: numerical solution can be performed by the means of usual or mixed finite element methods after a variational formulation of a class of standard BVPs.

Probabilistic methods can also be relevant: see, for instance, Monte Carlo methods for Neumann and Dirichlet BVPs in [18] where the equations are discretized and specific treatments in the neighborhood of the boundary are applied.

[^0]The aim of this paper is to investigate probabilistic numerical approach to the mixed BVP with generalized Wentzell condition on a boundary part, by the means of simulation of reflected random walks. In particular, the BVPs with Dirichlet, Neumann or Robin reflection conditions are known to have integral representations [10] which are used to obtain algorithms which compute the solution by implementing a reflected and/or absorbed random walk simulation [28,23]. In this paper,we use a probabilistic interpretation of solution, assuming that the diffusion coefficient and the boundary data are sufficiently smooth, and applying Itô's formula. From this stochastic representation of solution, we extend the algorithm obtained for mixed standard boundary conditions to the case of diffusion-reflection on the boundary, so called Wentzell's boundary condition. We then obtain numerical results by applying the stochastic method based upon this generalized algorithm.

The limitations and the main advantages of these stochastic methods are already presented, for instance, in $[28,23]$. In particular, the ensuing numerical methods do not require the storage of a grid discretization in computer memory, nor specific treatments related to domain local geometry. Programming is short, easy to check step by step. A contrario, the usual finite element method (FEM) leads to approximate Wentzell-Dirichlet BVP by means of a refinement of FEM on a boundary layer of thickness ε [27].

In this paper, we first introduce a Wentzell-Dirichlet BVP. Let G be a bounded open set of \mathbb{R}^{2} with a regular boundary $\Gamma=\partial G$ partitioned into two boundary parts Γ_{D} and $\Gamma_{V}: \Gamma=\Gamma_{D} \cup \Gamma_{V}$ and $\Gamma_{D} \cap \Gamma_{V}=\emptyset$.

A mixed Wentzell-Dirichlet BVP is the following one:

$$
\left\{\begin{align*}
-\frac{1}{2} a_{G} \Delta u & =f & & \text { in } G \tag{1}\\
\gamma_{0} u & =g_{D} & & \text { on } \Gamma_{D} \\
\frac{\partial u}{\partial v}+\frac{1}{2} a_{V} \frac{\partial^{2} u}{\partial \tau^{2}} & =g_{V} & & \text { on } \Gamma_{V}
\end{align*}\right.
$$

where the function u, defined from $G \subset \mathbb{R}^{2}$ into \mathbb{R}, is to be determined, and the data are the sufficiently smooth functions:

$$
\begin{aligned}
f: G \longrightarrow \mathbb{R} & a_{G}: G \longrightarrow \mathbb{R}^{+} \\
g_{D}: \Gamma_{D} \longrightarrow \mathbb{R} & a_{V}: \Gamma_{V} \longrightarrow \mathbb{R}^{+} \\
g_{V}: \Gamma_{V} \longrightarrow \mathbb{R} &
\end{aligned}
$$

with $a_{G}>a_{0}>0, a_{V}>a_{0}>0$ (a_{0} is a strictly positive constant), and where v is the inward unit normal vector and τ is the unit tangential vector defined on Γ_{V}.

If σ_{1} is the Lebesgue measure on \mathbb{R}, then we here assume: $\sigma_{1}\left(\Gamma_{D}\right) \neq 0$ and $\sigma_{1}\left(\Gamma_{V}\right) \neq 0$. When Γ is a polygonal boundary, we will impose the Wentzell condition at least on one straight line segment, and the Dirichlet condition on the other segments.

The boundary condition on $\Gamma_{V}=\Gamma \backslash \overline{\Gamma_{D}}$ so called Wentzell's boundary condition [30] corresponds to the heat exchange between the body G and a thin layer of thickness ε with a thermal conductivity a_{V} / ε.

The body is either partially or completely covered with a highly heat-conductive thin shell, and the quantity u is then the temperature. The "heat particle" which reached the boundary at $x \in \Gamma_{V}$, diffuses on Γ_{V} just as on a boundary layer, and moves back into G along the line normal to Γ_{V} just as the rebound effect for Neumann boundary condition; then the diffusion on G takes over again [12].

This type of non-standard BVP stems from various physical phenomenae. Let us note that the same type of boundary conditions appears in absorbing boundary conditions of wave-scattering problems and, more generally, in multilayer structure problems.

Our numerical approach of Wentzell BVP is based on the limit of the following problem:

$$
\left\{\begin{align*}
-\frac{1}{2} a_{G} \Delta u & =f & & \text { in } G \backslash \Gamma_{V}^{h} \tag{2}\\
-\frac{1}{2} \frac{1}{h} a_{V} \Delta u & =g_{V}^{h} & & \text { in } \Gamma_{V}^{h} \\
\gamma_{0} u & =g_{D} & & \text { on } \Gamma_{D} \\
\frac{\partial u}{\partial v} & =g_{V}^{v} & & \text { on } \Gamma_{V}+h / 2 \\
u^{+} & =u^{-} & & \text {on } \bar{G} \cap \overline{\Gamma_{V}^{h}} \\
\left(\frac{\partial u}{\partial v}\right)^{+} & =\frac{1}{h}\left(\frac{\partial u}{\partial v}\right)^{-} & & \text {on } \bar{G} \cap \overline{\Gamma_{V}^{h}}
\end{align*}\right.
$$

when h tends to 0 , so that the domain $G \cup \Gamma_{V}^{h}$ of the BVP (2) converges to the initial domain G and the BVP (2) approximates to the Wentzell-Dirichlet BVP (1), and where $\Gamma_{V}^{h}=\left\{x \in \mathbb{R}^{2} \mid d\left(x, \Gamma_{V}\right)<h / 2\right\}$ is a boundary layer so that Γ_{V}^{h} is a neighborhood of Γ_{V}, and $\Gamma_{V}+h / 2=\left\{x \in \mathbb{R}^{2} \backslash\left(G \cup \Gamma_{V}^{h}\right) \mid d\left(x, \Gamma_{V}\right)=h / 2\right\}$ is a boundary part of $G \cup \Gamma_{V}^{h}$.

The two last equalities are the transmission conditions between domain G and boundary layer Γ_{V}^{h}.

The extended domain $G \cup \Gamma_{V}^{h}$ is the union of G and boundary layer Γ_{V}^{h}, the boundary of $G \cup \Gamma_{V}^{h}$ is the union of Γ_{D} and $\Gamma_{V}+h / 2$.

Therefore, for the functional approach of the BVP (1), we distinguish the diffusion on a boundary layer Γ_{V} and the Neumann condition on this boundary, so we consider a mixed Wentzell-Dirichlet BVP with superabundant data:

$$
\left\{\begin{align*}
-\frac{1}{2} a_{G} \Delta u & =f & & \text { in } G \tag{3}\\
\gamma_{0} u & =g_{D} & & \text { on } \Gamma_{D} \\
\frac{\partial u}{\partial v}+\frac{1}{2} a_{V} \frac{\partial^{2} u}{\partial \tau^{2}} & =g_{V} & & \text { on } \Gamma_{V} \\
\frac{\partial u}{\partial v} & =g_{V}^{v} & & \text { on } \Gamma_{V}
\end{align*}\right.
$$

where the Neumann condition on Γ_{V} is additional.
When $\Gamma=\bigcup_{j=1}^{N} \bar{\Gamma}_{j}$ is a polygonal boundary where Γ_{j} is an open straight line segment, we consider the Wentzell condition at least on one straight line segment Γ_{j}, and we obtain the stochastic representations even if the boundary ∂G of domain G is not necessary of class \mathscr{C}^{3}, nor sufficiently smooth: ∂G can show corners or edges (see Section 2.).

Many situations exist in which solutions to BVP are represented as function space integrals. Such stochastic representations can be used to evaluate them numerically using Monte Carlo methods [13]. For instance, a second-order elliptic operator subject to normal reflection or to oblique derivative boundary conditions generates a diffusion process. For general definition of diffusions with reflection in a domain, see [29], and for efficient approximation, see for instance [4] and references therein. We consider here Wentzell's boundary condition corresponding to such diffusion phenomenon that a Markovian particle moves both by jumps and continuously in the state space until it dies at the time when it reaches the set where the particle is definitely absorbed.

The schedule of this paper is the following one: in Section 2, we introduce the probabilistic formulation of BVPs of Wentzell's type by means of Itô's formula associated with stochastic differential equations (SDEs). For these SDEs, we need to consider the reflecting Brownian motion and a local time on a boundary. For theoretical results on reflecting Brownian motion and on local time, see [15,21].

Section 3 is devoted to the resolution algorithm. More precisely, the stochastic methods is introduced, and the process discretization is described. Section 4 is devoted to some numerical experiments and applications of algorithm obtained in the previous section. Finally, we present some comments in the last section.

2 Representation of solutions of Wentzell boundary value problem for the Laplacian

Wentzell's BVP is a model for the heat transfer between a solid G and its environment when the boundary ∂G is covered with a thin layer of a material with higher conductibility.

When G is a bounded convex domain in \mathbb{R}^{d}, there exists a unique solution in $H^{2}(G)$ when the data are sufficiently smooth [20]. From a probabilistic point of view, when G is an open bounded set of \mathbb{R}^{d} with \mathscr{C}^{3} boundary, there exists a unique solution in $\mathscr{C}_{b}^{2}(\bar{G})$ when the data and their derivatives are bounded and sufficiently smooth [3].

This section is devoted to the stochastic representation of solution of Wentzell's BVP by means of stochastic integrals. Let us recall that the representations according to the Robin, Neumann and mixed boundary conditions are already presented in [23, 24], and that the theoretical background can be view, for instance, in [10,6].

Let us consider an open bounded region G in \mathbb{R}^{d} (the space dimension d being fixed: $d=2$ in this paper). Let us denote $x \in \mathbb{R}^{d}$ the space variable and v the unit inward normal defined on the boundary ∂G.

We will show how, from stochastic differential equations, we can represent solution of Wentzell's BVP. We will use the expectation of integrals, i.e. functionals of trajectories and random variable which are solutions of SDE. The application of Itô's formula associated with SDE leads to a representation of solutions of Wentzell's BVP.

From a functional point of view, the stochastic representations of solutions of differential problems with general boundary conditions have only been obtained according to regularity hypotheses on the geometry of domain G, and on the boundary data (see [10] for the probabilistic representation of solutions of first and second BVP). In particular, the solutions are assumed of class $\mathscr{C}_{b}^{2}(\bar{G})$, i.e. with bounded first and second order continuous derivatives.

Nevertheless, we herein are using the stochastic representations obtained in applying Itô's formula even when the data are not necessary smooth. This procedure previously proved to be effective for the discretized equations [14,6,19], for the Dirichlet problem [28], and for the Robin, Neumann or mixed BVPs [23,24] in bi- or tridimensional domains.

More precisely, Itô's formula is used even if solutions of BVP belong to Sobolev spaces of order 1 and are not necessary of class $\mathscr{C}_{b}^{2}(\bar{G})$.

In the sequel, we omit the arguments $\left(X_{t}^{x}(\omega)\right)$ in the functions a_{G}, a_{V}, a_{j} for brevity.

2.1 Wentzell-Dirichlet problem

Let us consider the following bidimensional BVP:

$$
\left\{\begin{align*}
-\frac{1}{2} a_{G} \Delta u & =f & & \text { in } G \tag{4}\\
\gamma_{0} u & =g_{D} & & \text { on } \Gamma_{D} \\
\frac{\partial u}{\partial v}+\frac{1}{2} a_{V} \frac{\partial^{2} u}{\partial \tau^{2}} & =g_{V}^{v}+g_{V}^{\tau} & & \text { on } \Gamma_{V} \\
\frac{\partial u}{\partial v} & =g_{V}^{v} & & \text { on } \Gamma_{V}
\end{align*}\right.
$$

where the superabundant data g_{N} of problem (3) corresponds to g_{V}^{v} and verifies $g_{V}=$ $g_{V}^{V}+g_{V}^{\tau}$, and where g_{V}^{V} and $g_{V}^{\tau}: \Gamma_{V} \longrightarrow \mathbb{R}$ are also sufficiently smooth functions.

Let us introduce the Markov process defined by the two-dimensional Laplacian operator within the domain G, by the one-dimensional Laplacian operator on the boundary part Γ_{V}, and by reflection on the boundary in the direction of inward normal v.

For sake of simplicity, the initial point $x \in G$ being fixed, we denote: $X_{t} \equiv X_{t}^{x}$, $\xi_{t} \equiv \xi_{t}^{x}$, and $\theta \equiv \theta^{x}$, where X_{t} is the corresponding Markov process, ξ_{t} the reflection process, and θ the hitting time of $\mathbb{R}^{d} \backslash\left(G \cup \Gamma_{V}\right)$.

For the bidimensional case, we have:

$$
\begin{aligned}
\forall t & \geq 0 \\
X_{t} & =x+\sqrt{a_{G}} W_{t}+\int_{0}^{t} \mathbb{1}_{\Gamma_{V}}\left(X_{s}\right) \sqrt{a_{V}} \tau\left(X_{s}\right) d \beta_{\xi_{s}}+\int_{0}^{t} \mathbb{1}_{\Gamma_{V}}\left(X_{s}\right) v\left(X_{s}\right) d \xi_{s}, \\
X_{0} & =x, \\
\xi_{0} & =0,
\end{aligned}
$$

where:

- W_{t} is the standard Wiener process with values in \mathbb{R}^{2},
- β_{t} is the standard Wiener process with values in \mathbb{R}, independent of W_{t},
- ξ_{t} is a non decreasing process which increases only when t hits the set Λ defined by: $\Lambda=\left\{s>0 \mid X_{s}^{x} \in \overline{\Gamma_{V}}\right\}$, so that: $\xi_{0}=0$ and $\int_{0}^{t} 1_{G}\left(X_{s}\right) d \xi_{s}=0, \xi_{t}$ is the so-called local time on Γ_{V},
$-\mathbb{1}_{A}$ is the indicator of $\operatorname{set} A$,
- τ is the unit tangential vector, and
- v is the unit inward normal vector.

We apply Itô formula to the function $u\left(X_{t}\right)$:

$$
\begin{aligned}
u\left(X_{t}\right) & -u\left(X_{0}\right)=\int_{0}^{t} \mathbb{1}_{G}\left(X_{s}\right)\left(\nabla u\left(X_{s}\right), \sqrt{a_{G}} d W_{s}\right)+\int_{0}^{t} \frac{1}{2} a_{G} \Delta u\left(X_{s}\right) \mathbb{1}_{G}\left(X_{s}\right) d s \\
& +\int_{0}^{t} \mathbb{1}_{\Gamma_{V}}\left(X_{s}\right)\left(\nabla u\left(X_{s}\right), \sqrt{a_{V}} \tau\left(X_{s}\right) d \beta_{\xi_{s}^{\tau}}\right)+\int_{0}^{t} \frac{1}{2} a_{V} \frac{\partial^{2} u}{\partial \tau^{2}}\left(X_{s}\right) \mathbb{1}_{\Gamma_{V}}\left(X_{s}\right) d \xi_{s}^{\tau} \\
& +\int_{0}^{t} \mathbb{1}_{\Gamma_{V}}\left(X_{s}\right)\left(\nabla u\left(X_{s}\right), v\left(X_{s}\right) d \xi_{s}^{v}\right)
\end{aligned}
$$

where ξ_{s}^{τ} is the sojourn time when the process X_{s} diffuses on Γ_{V} and ξ_{s}^{v} is the local time after diffusion when the process X_{s} is reflected inward of G, then we use the data of problem (4):

$$
\begin{aligned}
u\left(X_{t}\right)-u(x) & =\int_{0}^{t} \mathbb{1}_{G}\left(X_{s}\right)\left(\nabla u\left(X_{s}\right), \sqrt{a_{G}} d W_{s}\right)-\int_{0}^{t} f\left(X_{s}\right) \mathbb{1}_{G}\left(X_{s}\right) d s \\
& +\int_{0}^{t} \mathbb{1}_{\Gamma_{V}}\left(X_{s}\right)\left(\nabla u\left(X_{s}\right), \sqrt{a_{V}} \tau\left(X_{s}\right) d \beta_{\xi_{s}^{\tau}}\right)+\int_{0}^{t} g_{V}^{\tau}\left(X_{s}\right) \mathbb{1}_{\Gamma_{V}}\left(X_{s}\right) d \xi_{s}^{\tau} \\
& +\int_{0}^{t} g_{V}^{v}\left(X_{s}\right) \mathbb{1}_{\Gamma_{V}}\left(X_{s}\right) d \xi_{s}^{v}
\end{aligned}
$$

On taking expectation of both sides of this equality, we get:

$$
\begin{aligned}
\mathbb{E}\left[u\left(X_{t}\right)\right]-u(x)= & -\mathbb{E}\left[\int_{0}^{t} f\left(X_{s}\right) \mathbb{1}_{G}\left(X_{s}\right) d s\right]+\mathbb{E}\left[\int_{0}^{t} g_{V}^{\tau}\left(X_{s}\right) \mathbb{1}_{\Gamma_{V}}\left(X_{s}\right) d \xi_{s}^{\tau}\right] \\
& +\mathbb{E}\left[\int_{0}^{t} g_{V}^{v}\left(X_{s}\right) \mathbb{1}_{\Gamma_{V}}\left(X_{s}\right) d \xi_{s}^{v}\right]
\end{aligned}
$$

The hitting time θ of $\mathbb{R}^{d} \backslash G \cup \Gamma_{V}$ is defined by:

$$
\theta \equiv \theta^{x}=\inf \left\{t>0 \mid X_{t}^{x} \notin G \cup \Gamma_{V}\right\}
$$

and is denoted by θ to avoid confusion with the tangential vector τ. We obviously assume: Prob $\left\{\theta^{x}<\infty\right\}=1$ for every $x \in \bar{G}$ since a_{G} is strictly elliptic (see a similar result in [11], page 144).

The application of Itô's formula to $u\left(X_{t}\right)$ leads to the following representation of the solution of (4) in the form:

$$
\begin{equation*}
u(x)=\mathbb{E}[R], \quad x \in G \tag{5}
\end{equation*}
$$

with the random variable:

$$
\begin{align*}
R= & g_{D}\left(X_{\theta}\right)+\int_{0}^{\theta} f\left(X_{t}\right) \mathbb{1}_{G}\left(X_{t}\right) d t-\int_{0}^{\theta} g_{V}^{\tau}\left(X_{t}\right) \mathbb{1}_{\Gamma_{V}}\left(X_{t}\right) d \xi_{t}^{\tau} \\
& -\int_{0}^{\theta} g_{V}^{v}\left(X_{t}\right) \mathbb{1}_{\Gamma_{V}}\left(X_{t}\right) d \xi_{t}^{v} \tag{6}
\end{align*}
$$

Let us mention that some functional results regarding SDE with reflection on Γ_{V}, and associated BVP with general boundary conditions are given in $[8,9]$.

If we adopt the modified sojourn time on $\Gamma_{V}: \sigma_{t}^{\tau}=\inf \left\{s \mid \xi_{s}^{\tau}>t\right\}$, then we can write:

$$
\mathbb{E}\left[\int_{0}^{\theta} g_{V}^{\tau}\left(X_{t}\right) \mathbb{1}_{\Gamma_{V}}\left(X_{t}\right) d \xi_{t}^{\tau}\right]=\mathbb{E}\left[\int_{0}^{\xi_{\theta}^{\tau}} g_{V}^{\tau}\left(X_{\sigma_{t}^{\tau}}\right) \mathbb{1}_{\Gamma_{V}}\left(X_{\sigma_{t}^{\tau}}\right) d t\right]
$$

where $X_{\sigma_{t}^{\tau}}$ is a Markov process with values in $\Gamma_{V}, t \in[0, \theta], \xi_{t}^{\tau} \in\left[\xi_{0}^{\tau}, \xi_{\theta}^{\tau}\right]=\left[0, \xi_{\theta}^{\tau}\right]$, and $\sigma_{t}^{\tau} \in\left[\sigma_{\xi_{0}^{\tau}}^{\tau}, \sigma_{\xi_{\theta}^{\tau}}^{\tau}\right]=[0, \theta]$.

The numerical method given below in Section 3 will be based on the above expectation $\mathbb{E}\left[\int_{0}^{\xi_{\theta}^{\tau}} g_{V}^{\tau}\left(X_{\sigma_{t}^{\tau}}\right) \mathbb{1}_{\Gamma_{V}}\left(X_{\sigma_{t}^{\tau}}\right) d t\right]$ where the Markov process $\left(X_{\sigma_{t}^{\tau}}\right)$ diffuses on Γ_{V}, then purely and simply reflected by Γ_{V}, so the Wentzell diffusion boundary condition is considered as a degenerated elliptic equation in a boundary layer.
2.2 Wentzell-Dirichlet BVP in a polygonal domain

Let us denote G a bounded open set of \mathbb{R}^{2} with a polygonal boundary $\Gamma=\bigcup_{k=1}^{N} \overline{\Gamma_{k}}$, where Γ_{k} is an open straight line segment $] S_{k-1}, S_{k}[$ or $] S_{N}, S_{1}[$.

Let us consider the Wentzell-Dirichlet problem:

$$
\left\{\begin{align*}
-\frac{1}{2} a_{G} \Delta u & =f & & \text { in } G \tag{7}\\
\gamma_{0} u & =g_{D} & & \text { on } \bigcup_{i=1}^{N_{1}} \overline{\Gamma_{k_{i}}} \\
\frac{\partial u}{\partial v_{j}}+\frac{1}{2} a_{j} \frac{\partial^{2} u}{\partial \tau_{j}^{2}} & =g_{j}^{v}+g_{j}^{\tau} & & \text { on } \bigcup_{j=N_{1}+1}^{N} \Gamma_{k_{j}} \\
\frac{\partial u}{\partial v} & =g_{j}^{v} & & \text { on } \bigcup_{j=N_{1}+1}^{N} \Gamma_{k_{j}} \\
a_{j} \frac{\partial u}{\partial \tau_{j}}-a_{j+1} \frac{\partial u}{\partial \tau_{j+1}} & =0 & & \text { on } S_{j}
\end{align*}\right.
$$

with the superabundant data g_{N} of problem (3) corresponds to $g_{j}^{v}, j=N_{1}+1, \ldots, N$ and verifies $g_{j}=g_{j}^{v}+g_{j}^{\tau}$, and where the unknown u is defined in $G \cup \Gamma$ with real values, N_{1} verifies $N_{1}<N, v_{j}$ is the unit inward normal vector, τ_{j} the unit tangential vector on $\Gamma_{k_{j}}, j=N_{1}+1, \ldots, N$, the vertices S_{j} exist and are defined by $\left\{S_{j}\right\}=$ $\overline{\Gamma_{k_{j}}} \cap \overline{k_{k_{j+1}}}$ if j and $j+1 \in\left\{N_{1}+1, \ldots, N\right\}$, and the data $a_{G}, a_{j}, j=N_{1}+1, \ldots, N$, are strictly positive functions so that: $a_{G} \geq a_{0}>0$ and $a_{j} \geq a_{0}>0, j=N_{1}+1, \ldots, N$ where a_{0} is positive constant.

In order to avoid solutions defined up to an additive constant when the data are compatible, we assume that the interior of Γ_{D} is not empty.

The elliptic part of the boundary condition on $\Gamma_{k_{j}}$ is the tangential derivative of order 2. The Wentzell boundary condition is applied on the open set $\Gamma_{V} \equiv \bigcup_{j=N_{1}+1}^{N} \Gamma_{k_{j}}$. The point boundary conditions are the transmission conditions of the boundary operator.

Let us mention [20] where functional results to Wentzell BVP in a polygonal domain G. In particular, the solution u belongs to a Sobolev space of order 1 .

Let us introduce the Markov process X_{t} with values in $\bar{G} \subset \mathbb{R}^{2}$ using analogous notation:

$$
\begin{aligned}
& \forall t \geq 0 \\
& X_{t}= x+\sqrt{a_{G}} W_{t}+\sum_{j=N_{1}+1}^{N} \int_{0}^{t} \mathbb{1}_{\Gamma_{k_{j}}}\left(X_{s}\right) \sqrt{a_{j}} \tau_{j}\left(X_{s}\right) d \beta_{\xi_{s}} \\
&+\sum_{j=N_{1}+1}^{N} \int_{0}^{t} \mathbb{1}_{\Gamma_{k_{j}}}\left(X_{s}\right) v_{j}\left(X_{s}\right) d \xi_{s} \\
&+\sum_{j=1}^{N} \chi_{\mathscr{P}\left(\Gamma_{V}\right)}\left(\Gamma_{k_{j}} \cup \Gamma_{k_{j+1}}\right) \int_{0}^{t} \mathbb{1}_{S_{j}}\left(X_{s}\right) a_{\rho_{j}\left(\xi_{s}\right)}\left(S_{j}\right) \tau_{\rho_{j}\left(\xi_{s}\right)}\left(S_{j}\right) d \xi_{s}, \\
& X_{0}= x \\
& \xi_{0}= 0
\end{aligned}
$$

where $\chi_{\mathscr{P}\left(\Gamma_{V}\right)}(B)$ equals to 1 if B is a part of $\Gamma_{V}, 0$ otherwise, and ρ_{k} is the uniform distribution on $\{k, k+1\}$ so that: $\operatorname{Prob}\left\{\rho_{k}\left(\xi_{s}\right)=k\right\}=\operatorname{Prob}\left\{\rho_{k}\left(\xi_{s}\right)=k+1\right\}=\frac{1}{2}$, $k=1, \ldots, N-1$, and $\operatorname{Prob}\left\{\rho_{N}\left(\xi_{s}\right)=N\right\}=\operatorname{Prob}\left\{\rho_{N}\left(\xi_{s}\right)=1\right\}=\frac{1}{2}$.

As above, this process X_{t} is absorbed by Γ_{D} at the hitting time θ defined by:

$$
\theta=\inf \left\{t>0 \mid X_{t} \in \Gamma_{D}\right\} .
$$

The application of Itô's formula to $u\left(X_{t}\right)$ leads to the following representation of the solution of (7) in the form:

$$
\begin{equation*}
u(x)=\mathbb{E}[R], \quad x \in G \tag{8}
\end{equation*}
$$

with the random variable:

$$
\begin{align*}
R= & g_{D}\left(X_{\theta}\right)+\int_{0}^{\theta} f\left(X_{t}\right) \mathbb{1}_{G}\left(X_{t}\right) d t \\
& -\sum_{j=N_{1}+1}^{N} \int_{0}^{\theta} g_{j}^{\tau}\left(X_{t}\right) \mathbb{1}_{\Gamma_{k_{j}}}\left(X_{t}\right) d \xi_{t}^{\tau}-\sum_{j=N_{1}+1}^{N} \int_{0}^{\theta} g_{j}^{v}\left(X_{t}\right) \mathbb{1}_{\Gamma_{k_{j}}}\left(X_{t}\right) d \xi_{t}^{v} \tag{9}
\end{align*}
$$

The problem (7) can be written in the following condensed form, using appropriate values of coefficients α, β, and γ :

$$
\left\{\begin{align*}
-\frac{1}{2} a_{G} \Delta u & =f & & \text { in } G \tag{10}\\
\beta \frac{\partial u}{\partial v}+\frac{1}{2} \alpha \frac{\partial^{2} u}{\partial \tau^{2}}-\gamma u & =g & & \text { on } \Gamma=\partial G
\end{align*}\right.
$$

Let us note the analogy between problems (7) and (10). Nevertheless, from the functional point of view, some difficulties occur since the coefficients α, β and γ are discontinuous. Some partial results on this subject can be found in [3,26].

In the next section of this paper, we will focus on one stochastic method based upon the probabilistic representation of solution of BVP (7).

3 Resolution algorithm for Wentzell-Dirichlet mixed boundary value problem

The main purpose of this section is to give an approach of the representations of Section 2 by means of realization of random processes, in order to compute the solutions of BVP with a Wentzell boundary part.

Let us recall that some efficient algorithms according to the Dirichlet, Neumann, Robin and mixed boundary conditions are already presented in [28,23] for the Laplacian and in [24] for the parabolic operator. Our present aim is then to extend the above techniques to our problem (7).

In order to estimate an expectation $\mathbb{E}[R]$, we simulate a large number (say $N T$) of independent random variables with the same law as R. The mean of the $N T$ realizations R_{i} converges almost surely to $\mathbb{E}[R]$ (see [13] where the almost sure convergence of the Monte Carlo methods is proved):

$$
\frac{1}{N T} \sum_{i=1}^{N T} R_{i} \xrightarrow{\text { a.s. }} \mathbb{E}[R] \quad \text { as } N T \rightarrow+\infty .
$$

Thanks to CLT, the rate of convergence of this approximation is known, it is of order $1 / \sqrt{N T}$.

In order to simulate the diffusion process X, we approach X by means of an Euler's scheme as in $[1,2,24]$ or the Box Muller algorihm. We need also the simulation of random walks by using some predefined generators of normally distributed pseudorandom numbers.

Let us consider the Wentzell-Dirichlet BVP (7) in a polygonal domain.
The solution $u(x)$ to BVP (7) is represented as the mean of a random variable R, involving function of a non instantaneously reflected random walk, then absorbed random walk.

The representation (8)-(9) is used and $u(x)$ is computed as the mean of $N T$ approximated values of R, i.e. $R_{1}, \ldots, R_{N T}$, in order to obtain an estimation of $u(x)$:

$$
u(x) \simeq \frac{1}{N T} \sum_{i=1}^{N T} R_{i} .
$$

Each value R_{i} results from a simulation of a random walk on G, first reflected by the Wentzell boundary part Γ_{V}, then absorbed by the Dirichlet boundary part Γ_{D}. Each random walk is then finite. From now on, we shall assume that the hitting time θ is not too large and, in particular, the Dirichlet boundary part Γ_{D} versus the Wentzell boundary part Γ_{V} is significant.

The standard Wiener processes are simulated as follows. The mean of space step $h>0$ being fixed, the process W_{t} can be simulated by the sequence of random vectors $W_{0}, W_{1}, \ldots, W_{j}$ defined by means of the recurrent formulae:

$$
W_{0}=x \in G, \quad \text { and } \quad W_{j+1}=W_{j}+h D_{j}, \quad j \in \mathbb{N},
$$

where D_{j} is a random vector so that, if $\left(e_{i}, i=1,2\right)$ is the canonical basis of \mathbb{R}^{2}, D_{j} verifies:

$$
D_{j}=\mathrm{r}_{1} e_{1}+\mathrm{r}_{2} e_{2} \quad \text { in } G
$$

where r_{1} and r_{2} are independent normally distributed pseudorandom numbers, and:

$$
D_{j}=\mathrm{r}_{3} \tau+\left|\mathrm{r}_{4}\right| v \quad \text { on } \Gamma_{V}
$$

where r_{3} and r_{4} are independent normally distributed pseudorandom numbers.
The absolute value $\left|\mathrm{r}_{4}\right|$ leads to a reflection inward G.
Since the simulated process happens to leave the domain G, its trajectory resumes to the interior after a diffusion on Γ_{V} or stops when the trajectory hits the Dirichlet boundary part Γ_{D}.

The process is not instantaneously reflected by the boundary part Γ_{V} when diffusion occurs. The elementary boundary reflections without diffusion are detailed in [24], where the basic reflection algorithm is given, and general obliquely reflected diffusions (without diffusion on the boundary) are studied in [4]. The diffusion on the Wentzell boundary part is governed by the Wiener process β_{t} which is simulated as the process W_{t} but on the boundary layer:

$$
\Gamma_{V}^{h}=\left\{x \in \mathbb{R}^{2} \mid d\left(x, \Gamma_{V}\right)<h / 2\right\} .
$$

In the bidimensional case, the process diffuses on Γ_{V}, along the tangential line given by τ, and is reflected inward the interior G along the normal direction given by v.

Each simulation gives a discrete realization $\left(X_{j}, 0 \leq j \leq N P\right)$ of a random walk in G with $N P$ steps, so that:

$$
X_{0} \in \bar{G} \backslash \Gamma_{D}, \ldots, X_{N P-1} \in \bar{G} \backslash \Gamma_{D}, \quad \text { and } \quad X_{N P} \in \Gamma_{D}^{h}=\left\{x \in \mathbb{R}^{2} \mid d\left(x, \Gamma_{D}\right)<h / 2\right\}
$$

which trajectory is the polygonal line connecting successively the points X_{j} and X_{j+1}, $j=0, \ldots, N P-1$, in order to form a random path.

The random processes are discretized in time according to the Euler scheme.
For each simulated random walk ($X_{j}, 0 \leq j \leq N P$), we compute the score:

$$
\begin{aligned}
R_{i}= & g_{D}\left(X_{N P}\right)+\Delta t \cdot \sum_{j=0}^{N P-1} f\left(X_{j}\right)-\Delta s \cdot \sum_{j=0}^{N P-1} g_{V}^{\tau}\left(X_{j}\right) \mathbb{1}_{\Gamma_{V}^{h}}\left(X_{j}\right) \\
& -\Delta W \cdot \sum_{j=0}^{N P-1} g_{V}^{v}\left(X_{j}\right) \mathbb{1}_{\Gamma_{V}^{h}}\left(X_{j}\right)
\end{aligned}
$$

where Δt is the time of a step in $G, \Delta s$ is the local time of a step along τ on Γ_{V}^{h}, and ΔW is the step increment along v.

Then this procedure is iterated $N T$ times in order to obtain a sample of R, and an estimation of its arithmetic mean $u(x)$.

The integer $N T$ corresponds to the number of simulated random walks, and consequently to the number of absorptions by the Dirichlet boundary part Γ_{D}, more precisely by Γ_{D}^{h}.

This integer $N T$ is the maximum index of the main loop of the associated program. The second (and latter) loop follows, step by step, each random walk by adding up successively the values of the source function f, and the values of the Wentzell condition g_{V} by diffusion and the values of the Neumann condition by straight reflection, then the value of the absorption effect g_{D}. Finally the score of each corresponding R_{i} is added up.

For each realization of the random variable R, we generate:

1. a first random walk in the open set G, depending on the Wiener process W_{t} (see, for instance, the simplest random walk in [28]),
2. a second random walk on the boundary part Γ_{V}, depending on the Wiener process
β_{t} which is simulated as the process W_{t} extended on the boundary layer Γ_{V}^{h}, and
3. a reflection by Γ_{V} along the inward normal v.

If h is the fixed average of stepsize of a simulated bidimensional walk X_{j}, the time and space increments are defined by:

$$
\Delta t=\frac{h^{2}}{a_{G}} \text { in } G, \quad \Delta s=\frac{h^{2}}{2 a_{V}} \text { on } \Gamma_{V}^{h}, \quad \Delta W=h \text { inward along } v .
$$

If $a_{V} \equiv 0$, then the random walk is instantaneously reflected by the boundary Γ_{V} as in [23] for the Neumann BVP. Else $a_{V} \not \equiv 0$, we have a diffusion on Γ_{V} and a mirror effect: the random walk diffuses on Γ_{V} and resumes to the interior; this procedure goes on until the trajectory reaches the Dirichlet boundary part Γ_{D}.

Remark 1 When X_{t} hits the boundary part Γ_{V} by means of the Wiener process W_{t}, then $(W \cdot \tau) \tau$ is replaced by $\beta \tau$ and $(W \cdot v) v$ by $|W \cdot v| v$, i.e. if $X_{t} \in \Gamma_{V}$, then

$$
X_{t+d t}=X_{t}+\sqrt{a_{V}} \tau\left(X_{t}\right) d \beta_{\xi_{t}}+\sqrt{a_{V}}\left|d W_{t} \cdot v\right| v
$$

where \cdot is the scalar product in the euclidean space \mathbb{R}^{2} and:

$$
\left|d W_{t} \cdot v\right|=\operatorname{sgn}\left[\left(X_{t}+d W_{t}\right) \cdot v\right]\left(d W_{t} \cdot v\right)
$$

(see [10], page 85 for the relation between the positive process $\left|x+W_{t}\right|$ in \mathbb{R}^{+}and the local time ξ_{t} at zero).

Remark 2 In our algorithm (see the pseudo-code shown below, page 13), we can use antithetic random variables with the same distribution to estimate u and improve its variance.

Two processes $W_{t}^{(1)}$ and $W_{t}^{(2)}$ are simulated by the two sequences of random vectors $W_{0}, W_{1}^{(1)}, \ldots, W_{j}^{(1)}$ and $W_{0}, W_{1}^{(2)}, \ldots, W_{j}^{(2)}$ defined by means of the recurrent formulae:

$$
W_{0}=x \in G, \quad W_{j+1}^{(1)}=W_{j}^{(1)}+h D_{j}^{(1)}, \quad \text { and } \quad W_{j+1}^{(2)}=W_{j}^{(2)}+h D_{j}^{(2)} \quad j \in \mathbb{N},
$$

where $D_{j}^{(1)}$ and $D_{j}^{(2)}$ are random vectors so that, if $\left(e_{i}, i=1,2\right)$ is the canonical basis of $\mathbb{R}^{2}, D_{j}^{(1)}$ and $D_{j}^{(2)}$ verify:

$$
D_{j}^{(1)}=\mathrm{r}_{1} e_{1}+\mathrm{r}_{2} e_{2} \quad \text { and } \quad D_{j}^{(2)}=-D_{j}^{(1)} \quad \text { in } G
$$

where r_{1} and r_{2} are independent normally distributed pseudorandom numbers, and:

$$
D_{j}^{(1)}=\mathrm{r}_{3} \tau+\left|\mathrm{r}_{4}\right| v \quad \text { and } \quad D_{j}^{(2)}=-\mathrm{r}_{3} \tau+\left|\mathrm{r}_{4}\right| v \quad \text { on } \Gamma_{V}
$$

where r_{3} and r_{4} are independent normally distributed pseudorandom numbers, independent of r_{1} and r_{2}.

When a process $W_{t}^{(i)}$ is absorbed by Γ_{D}, the second $W_{t}^{(j)}, j \neq i$, continues until it also reaches Γ_{D}.

For each simulated random walk ($\left.X_{j} ; 0 \leq j \leq N P\right)$, we compute the score:

$$
\begin{aligned}
R_{i}= & g_{D}\left(X_{N P}\right)+\frac{h^{2}}{a_{G}} \sum_{j=0}^{N P-1} f\left(X_{j}\right) \mathbb{1}_{G}\left(X_{j}\right)-\frac{h^{2}}{2 a_{V}} \sum_{j=0}^{N P-1} g_{V}^{\tau}\left(X_{j}\right) \mathbb{1}_{\Gamma_{V}^{h}}\left(X_{j}\right) \\
& -h \sum_{j=0}^{N P-1} g_{V}^{v}\left(X_{j}\right) \mathbb{1}_{\Gamma_{V}^{h}}\left(X_{j}\right)
\end{aligned}
$$

We then estimate $u(x)$ by computing the arithmetic mean of these $N T$ scores R_{i}.

A pseudo-code description of the global algoritm can be written as follows:
Declarations - Initializations, diffusion coefficient a_{V} on Wentzell boundary part Γ_{V} included

Loop Points of domain G grid
Set initial point x of the domain grid
Main Loop $i=1, \ldots, N T$ random walks from x to Dirichlet boundary part Γ_{D}
Let $j=N T+i$ for the antithetic random walks
Initialize for each random walk:
Start points of antithetic random walks: $W_{i}=x ; W_{j}=x$
Source function f effect in domain G : $\mathrm{ya}_{i}=0.0$ and ya ${ }_{j}=0.0$
Wentzell diffusion effect on $\Gamma_{V}: \mathrm{maV}_{i}=0.0$ and $\mathrm{maV}_{j}=0.0$
Neumann effect on $\Gamma_{V}: \operatorname{maN}_{i}=0.0$ and $\mathrm{maN}_{j}=0.0$
While the random walks W_{i} and W_{j} within the domain G (Loop step by step)
Source function f effect at points W_{i} and W_{j} :
$\mathrm{ya}_{i}=\mathrm{ya}_{i}+f\left(W_{i}\right)$ and $\mathrm{ya}_{j}=\mathrm{ya}_{j}+f\left(W_{j}\right)$
Set D_{i} a normally distributed pseudo-random vector
Set r a normally distributed pseudo-random number
If W_{i} on Wentzell boundary Γ_{V}
$W_{i}=W_{i}+h r \tau$
Diffusion effect: $\mathrm{maV}_{i}=\mathrm{maV}_{i}+g_{V}\left(W_{i}\right)$
Reflection of random walk inside G with Neumann effect:
$\operatorname{maN}_{i}=\operatorname{maN}_{i}+g_{N}\left(W_{i}\right)$
endIf
If W_{j} on Wentzell boundary Γ_{V}
$W_{j}=W_{j}-h r \tau$
Diffusion effect: $\mathrm{maV}_{j}=\mathrm{maV}_{j}+g_{V}\left(W_{j}\right)$
Reflection of random walk inside G with Neumann effect:
$\operatorname{maN}_{j}=\operatorname{maN}_{j}+g_{N}\left(W_{j}\right)$
endIf
$W_{i}=W_{i}+h D_{i}$, i.e. a step of first random walk
$W_{j}=W_{j}-h D_{i}$, i.e. a step of second random walk
endWhile the random walks W_{i} and W_{j} within the domain G (Loop step by step)
Comment: Dirichlet condition: absorption of W_{i} or W_{j} by Γ_{D}
If $W_{i} \in \Gamma_{D}$
$\operatorname{maU}(x, i)=g_{D}\left(W_{i}\right)-0.5 h^{2} / a_{V} \mathrm{maV}_{i}-h \mathrm{maN}_{i}$
endIf
If $W_{j} \in \Gamma_{D}$
$\operatorname{maU}(x, j)=g_{D}\left(W_{j}\right)-0.5 h^{2} / a_{V} \mathrm{maV}_{j}-h \mathrm{maN}_{j}$
endIf
Comment: Continue with the unabsorbed walk W_{i} or W_{j}
If $W_{j} \in \Gamma_{D}$
While $W_{i} \notin \Gamma_{D}$
$\mathrm{ya}_{i}=\mathrm{ya}_{i}+f\left(W_{i}\right)$
Set D_{i} and r normally distributed pseudo-random vector and number If W_{i} on Wentzell boundary Γ_{V}
$W_{i}=W_{i}+h r \tau$
Diffusion effect: $\mathrm{maV}_{i}=\operatorname{maV}_{i}+g_{V}\left(W_{i}\right)$
Reflection of random walk inside G with Neumann effect:
$\operatorname{maN}_{i}=\operatorname{maN}_{i}+g_{N}\left(W_{i}\right) ;$
endIf
$W_{i}=W_{i}+h D_{i}$ A step of first random walk
endWhile $W_{i} \notin \Gamma_{D}$
If $W_{i} \in \Gamma_{D}$
$\operatorname{maU}(x, i)=g_{D}\left(W_{i}\right)-0.5 h^{2} / a_{V} \mathrm{maV}_{i}-h \mathrm{maN}_{i}$
endIf
endIf $W_{j} \in \Gamma_{D}$
If $W_{i} \in \Gamma_{D}$
While $W_{j} \notin \Gamma_{D}$
$\mathrm{ya}_{j}=\mathrm{ya}_{j}+f\left(W_{j}\right)$
Set D_{i} and r normally distributed pseudo-random vector and number
If W_{j} on Wentzell boundary Γ_{V}
$W_{j}=W_{j}+h r \tau$
Diffusion effect: $\mathrm{maV}_{j}=\mathrm{maV}_{j}+g_{V}\left(W_{j}\right)$
Reflection of random walk inside G with Neumann effect:
$\operatorname{maN}_{j}=\operatorname{maN}_{j}+g_{N}\left(W_{j}\right) ;$
Add source effect and boundary conditions:

1) $\mathrm{maU}(x, i)=\operatorname{maU}(x, i)+h^{2} / a_{G} \mathrm{ya}_{i}$ for the first random walk W_{i}
2) $\operatorname{maU}(x, j)=\operatorname{maU}(x, j)+h^{2} / a_{G} \mathrm{ya}_{j}$ for the antithetic random walk W_{j}
end Main Loop $i=1, \ldots, N T$ random walks from x to Dirichlet boundary part Γ_{D}
Calculate estimated solution (arithmetic mean): $u(x)=\frac{1}{2 N T} \sum_{k=1}^{2 N T} \mathrm{maU}(x, k)$
$U(x)=\operatorname{mean}\{\operatorname{maU}(x, k) \mid 1 \leq k \leq 2 N T\}$
Display per point approximated solution, empirical errors, standard deviation and
95% confidence intervals
endLoop Points of domain G grid

4 Numerical experiments

The validity and suitability of the present approach, i.e. the stochastic representation in Section 2 and the approximate solution in Section 3, are investigated here by considering and evaluating a set of BVPs with Wentzell's boundary condition according to the above numerical scheme used sequential calculus on personal computers (Intel i7 CPU 2.67 GHz , and Athlon 2850e 1.80 GHz) by the means of MATLAB® applications.

In all the following examples, the solution u is approximated by u_{c} in NPT points Q_{1}, $Q_{2}, \ldots, Q_{N P T}$ in \bar{G}.

The quality of the stochastic approximation is controlled as follows:

$$
\begin{aligned}
\mathrm{ER}_{\max } & =\max \left\{\mathrm{ER}_{i}: 1 \leq i \leq N P T\right\} \\
\mathrm{ER}_{i} & =\frac{10\left|u\left(Q_{i}\right)-u_{c}\left(Q_{i}\right)\right|}{1+10\left|u\left(Q_{i}\right)\right|}
\end{aligned}
$$

so that $\mathrm{ER}_{i}, i=1, \ldots, N P T$, furnish relative errors or absolute errors, according to the magnitude of the theoretical value.

The following examples show BVP (7), one defined in a rectangular domain $G=] 0, a[\times] 0, b[$, and two in the unit square $G=] 0,1\left[^{2}\right.$. The fourth example shows BVP (4) defined in quadrant of ring $G=\mathrm{D}(0 ; 3) \backslash \overline{\mathrm{D}(0 ; 1)} \cap\left(\mathbb{R}^{*+} \times \mathbb{R}^{*+}\right)$. For sake of simplicity, the diffusion coefficient a_{G} in G equals to 1 .

4.1 Wentzell-Dirichlet mixed BVP in a rectangular domain

Let us consider problem (7) in $G=] 0, a[\times] 0, b[$ with the following data:

$$
\begin{array}{lll}
f & \equiv 0 & \text { in } G \\
\Gamma_{D} & =([0, a] \times\{0\}) \cup([0, a] \times\{b\}) & \\
g_{D}(x, 0)=0 & & \text { on }[0, a] \times\{0\} \\
g_{D}(x, b) & =\cos ^{2}(\pi x / a) & \\
\Gamma_{V} & =(\{0\} \times] 0, b[) \cup(\{a\} \times] 0, b[) & \\
g_{V}^{\tau}(x, y) & =a_{V} \frac{\pi^{2}}{a^{2}} \frac{\sinh (2 \pi y / a)}{\sinh (2 \pi b / a)} & \\
g_{V}^{v}(x, y)=0 & & \text { on } \Gamma_{V} \\
\text { on } \Gamma_{V}
\end{array}
$$

such that this Wentzell-Dirichlet BVP admits a unique solution u written in the form:

$$
u(x, y)=\frac{y}{2 b}+\cos (2 \pi x / a) \frac{\sinh (2 \pi y / a)}{2 \sinh (2 \pi b / a)}
$$

Let us first consider the point $(a / 2, b / 2)$ and the solution $u(a / 2, b / 2)$ for different values of diffusion coefficient a_{V} on $\Gamma_{V}: a_{V} \in\{1, \ldots, 20\}$.

The results of the mean value of the approximate solution $u(a / 2, b / 2)$ are obtained with the following data:

1. Rectangular domain: $a=2$ and $b=3$
2. Number of random walks: $N T=6 \times 10^{4}$, i.e. $2 N T=12 \times 10^{4}$ by means of antithetic variables
3. Stepsize of each random walk: $h=0.01$

Fig. 1 Numerical solution $u(a / 2, b / 2)$ and empirical error versus a_{V}

The arithmetic mean of these $2 N T$ scores R_{i} gives: $u(a / 2, b / 2) \simeq 0.2455$, the standard deviation $\sigma=0.1775$ is obtained by means of antithetic variables, and 95% confidence intervals $\left[u_{c}-1.96 \sigma / \sqrt{2 N T}, u_{c}+1.96 \sigma / \sqrt{2 N T}\right]$, around $u_{c}=0.2455$, is of amplitude 0.028.

The empirical error for the Wentzell diffusion coefficient a_{V} :

$$
\mathrm{ER}_{a_{V}}(a / 2, b / 2)=\frac{10\left|u(a / 2, b / 2)-u_{c}(a / 2, b / 2)\right|}{1+10|u(a / 2, b / 2)|}
$$

is less than 2×10^{-3} and verifies:
$\max _{1 \leq a_{V} \leq 20} \operatorname{ER}_{a_{V}}(a / 2, b / 2) \simeq 1.9 \times 10^{-3}$ and $\frac{1}{20} \sum_{a_{V}=1}^{20} \operatorname{ER}_{a_{V}}(a / 2, b / 2) \simeq 0.8 \times 10^{-3}$.

See figure 1 where numerical solutions and empirical errors are represented versus a_{V}. The effect of Dirichlet condition is isolated, so we can appreciate the effect of diffusion on Γ_{V}.

Let us secondly consider the points $Q_{i j}=Q\left(x_{i}, y_{j}\right)$, where $x_{i}=0.1 \times a \times i, 1 \leq$ $i \leq 9, y_{j}=0.1 \times b \times j, 1 \leq j \leq 9$, the approximated solution $u_{c}\left(Q_{i j}\right)$, the empirical errors $\mathrm{ER}_{i j}$ at the point $Q\left(x_{i}, y_{j}\right)$, and $\mathrm{ER}_{\text {max }}$ when the boundary diffusion coefficient a_{V} belongs to $\{5,10,15,20\}$.

The values of $E R_{\text {max }}$ given in Table 1 are obtained with the number of simulated random walks: $N T=2 \times 10^{5}$ and the data above, and the empirical errors $\mathrm{ER}_{i j}$ are given in Figure 2.

Table 1 Maximum empirical errors for different a_{V}

a_{V}	$\mathrm{ER}_{\max }$	at point $\left(x_{i}, y_{i}\right)$
5	0.0251	at $(0.6 ; 2.4)$
10	0.0180	at $(1.8 ; 2.7)$
15	0.0194	at $(1.6 ; 2.4)$
20	0.0208	at $(0.6 ; 2.7)$

Fig. 2 Empirical errors in rectangular domain for $a_{V}=5,10,15,20$
4.2 Wentzell-Dirichlet mixed BVPs in the unit square

Let us consider two problems (7) in $G=] 0,1\left[{ }^{2}\right.$ where the Dirichlet and Wentzell boundary parts Γ_{D} and Γ_{V} are:

$$
\Gamma_{D}=([0,1] \times\{0\}) \cup([0,1] \times\{1\}) \quad \text { and } \quad \Gamma_{V}=(\{0\} \times] 0,1[) \cup(\{1\} \times] 0,1[)
$$

and with the following data:

First problem P_{1} in the unit square:

$$
\begin{array}{lll}
f & \equiv-2 & \text { in } G \\
g_{D}(x, 0) & =x^{2}+1 & \forall x \in[0,1] \\
g_{D}(x, 1) & =x^{2} & \forall x \in[0,1] \\
g_{V}^{\tau} & \equiv a_{V} & \\
\text { on } \Gamma_{V} \\
g_{V}^{v}(0, y) & =0 & \forall y \in] 0,1[\\
g_{V}^{v}(1, y) & =-2 & \\
& \forall y \in] 0,1[
\end{array}
$$

such that this first Wentzell-Dirichlet BVP P_{1} admits a unique solution u written in the form:

$$
u(x, y)=x^{2}+(y-1)^{2}
$$

Second problem P_{2} in the unit square:

$$
\begin{array}{lll}
f & \equiv 0 & \\
g_{D}(x, 0)=\cos (\pi x) & & \forall x \in[0,1] \\
g_{D}(x, 1) & =\cos (\pi x) \exp (\pi) & \\
g_{V}^{\tau}(0, y) & =\frac{1}{2} a_{V} \pi^{2} \exp (\pi y) & \\
\forall y \in] 0,1] \\
g_{V}^{\tau}(1, y) & =-\frac{1}{2} a_{V} \pi^{2} \exp (\pi y) & \forall y \in] 0,1[\\
g_{V}^{v} & \equiv 0 &
\end{array}
$$

such that this second Wentzell-Dirichlet BVP P_{2} admits a unique solution u :

$$
u(x, y)=\cos (\pi x) \exp (\pi y)
$$

Let us consider the points $Q_{i j}=Q\left(x_{i}, y_{j}\right)$, where $x_{i}=0.1 \times i, 1 \leq i \leq 9, y_{j}=$ $0.1 \times j, 1 \leq j \leq 9$, the approximated solution $u_{c}\left(Q_{i j}\right)$, the empirical errors $\mathrm{ER}_{i j}$ at the point $Q\left(x_{i}, y_{j}\right)$, and $\mathrm{ER}_{\text {max }}$ when the boundary diffusion coefficient a_{V} belongs to $\{5,10,15,20\}$.

The value of $E R_{\text {max }}$ and the mean of $E R$ given in Table 2 for problem P_{1} and in Table 3 for problem P_{2} are obtained with the following data:

1. Number of simulated random walks: $N T=6 \times 10^{4}$, i.e. $2 N T=12 \times 10^{4}$ by means of antithetic variables
2. Stepsize of each random walk: $h=0.01$
and the empirical errors $\mathrm{ER}_{i j}$ are given in Figure 3 for problem P_{1} and in Figure 4 for problem P_{2}.

For the BVP P_{2}, the maximum error $\mathrm{ER}_{\text {max }}$ is obviously where the exact solution equals to zero (the results in Figure 4 where the zero points are clearly identified, confirm this effect due to the choice of the expression of $E R_{\max }$); for these points, the maximum error is equal to 10 times the absolute error and the 95% confidence intervals given in Table 4 always contain the exact solution $u=0$.

Table 2 BVP P_{1} : Maximum empirical error and error mean for different a_{V}

a_{V}	$\mathrm{ER}_{\max }$	at point $\left(x_{i}, y_{i}\right)$	mean(ER)
5	0.0248	at $(0.2 ; 0.2)$	0.0086
10	0.0182	at $(0.1 ; 0.1)$	0.0055
15	0.0336	at $(0.1 ; 0.2)$	0.0074
20	0.0214	at $(0.1 ; 0.3)$	0.0076

Fig. 3 BVP P_{1} : Empirical errors in the unit square when $a_{V}=5,10,15,20$

Table 3 BVP P_{2} : Maximum empirical error and error mean for different a_{V}

a_{V}	ER $_{\max }$	at point $\left(x_{i}, y_{i}\right)$	mean(ER)
5	0.3250	at $(0.5 ; 0.1)$	0.0497
10	0.6922	at $(0.5 ; 0.4)$	0.0531
15	0.6208	at $(0.5 ; 0.6)$	0.0569
20	0.7145	at $(0.5 ; 0.2)$	0.0612

Table 4 BVP P_{2} : 95% confidence intervals when empirical error is maximum

a_{V}	95% confidence interval	at point $\left(x_{i}, y_{i}\right)$
5	$[-0.025899 ; 0.09089]$	at $(0.5 ; 0.1)$
10	$[-0.027408 ; 0.16584]$	at $(0.5 ; 0.4)$
15	$[-0.011347 ; 0.13551]$	at $(0.5 ; 0.6)$
20	$[-0.001648 ; 0.14454]$	at $(0.5 ; 0.2)$

Fig. 4 BVP P_{2} : Empirical errors in the unit square when $a_{V}=5,10,15,20$

Let us finally consider the BVP P_{1} with a coefficient a_{V} different on each part of Γ_{V}; the results are analogous as for instance:

$$
a_{V}=\left\{\begin{array}{lll}
4 & \text { on } & \left.\Gamma_{V}^{1}=\right] 0,1[\times\{0\} \\
8 & \text { on } & \left.\Gamma_{V}^{2}=\right] 0,1[\times\{1\}
\end{array}\right.
$$

with the following data:

1. Number of simulated random walks: $N T=1 \times 10^{4}$, i.e. $2 N T=2 \times 10^{4}$ by means of antithetic variables

Fig. 5 Empirical error when a_{V} is different on each part of Γ_{V}
2. Stepsize of each random walk: $h=0.01$

The empirical errors $\mathrm{ER}_{i j}$ for a_{V} non constant are given in Figure 5.
4.3 Wentzell-Dirichlet mixed BVP in quadrant of a ring

Let us consider problem (4) in $G=\left\{(x, y) \in \mathbb{R}^{2} \mid 1<x^{2}+y^{2}<9, x>0, y>0\right\}$ with the following data:

$$
\begin{array}{ll}
f \equiv-2 \text { in } G \\
\Gamma_{D}= & \left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1, x>=0, y>=0\right\} \\
& \cup\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=9, x>=0, y>=0\right\} \\
g_{D} \equiv 4 & \text { on }\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1, x>=0, y>=0\right\} \\
g_{D} \equiv 9 & \text { on }\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=9, x>=0, y>=0\right\} \\
\Gamma_{V}= & (] 1,3[\times\{0\}) \cup(\{0\} \times] 1,3[) \\
g_{V}^{\tau} \equiv a_{V} & \text { on } \Gamma_{V} \\
g_{V}^{v} \equiv 0 & \text { on } \Gamma_{V}
\end{array}
$$

such that this Wentzell-Dirichlet BVP admits a unique solution u written in the form:

$$
u(x, y)=x^{2}+y^{2}
$$

Fig. 6 Exact and estimated solutions - Empirical error on quadrant of a ring

Let us consider the points $Q_{i j}=Q\left(x_{i}, y_{j}\right) \in G$, where $x_{i}=0.2 \times i, 0 \leq i \leq 15$, $y_{j}=0.2 \times j, 0 \leq j \leq 15$, and $1<x_{i}^{2}+y_{j}^{2}<9$, i.e. a total number of 163 points in G.

The estimated solution $u_{c}\left(x_{i}, y_{j}\right)$ and empirical error $\mathrm{ER}_{i j}$ when the boundary diffusion coefficient a_{V} equals to 5 , are obtained with the following data:

1. Number of simulated random walks: $N T=10^{4}$, i.e. $2 N T=2 \times 10^{4}$ by means of antithetic variables
2. Stepsize of each random walk: $h=0.01$
and are given in Figure 6.
Remark 3 When the number of realizations is $N T=10^{4}$, the average CPU time used by the MATLAB® ${ }^{\circledR}$ application implemented with a processor Intel i7 $2.67 \mathrm{GHz}(6.9$ operations per second) for the numerical resolution of the BVP P_{2} in the unit square, equals to 160 seconds when the results are displayed at each point, and 97 second per point without displaying.

The results can be improved by using more realizations and smaller stepsize h, but this increases CPU time involved. Let us note that the reflections increase the CPU time involved, in particular when the initial point of the random walk is near one part of the boundary Γ_{V}.

5 Concluding remarks

In the present paper, we have presented stochastic method for the numerical approximation of some boundary value problems with Wentzell's boundary part and superabundant data on this part. The representations of solution are deduced from the application of Itô's formula even when the boundary data are non smooth. These probabilistic interpretations have given some easily implementable algorithms: they consist in the simulation of diffused-reflected random walks in order to generate samples from a distribution having a mean equal to the solution of the Wentzell BVP considered. This algorithm do not require to store in memory any mesh of the region
G, nor deal with the corresponding numbering-lists. Programming is short, easy to check step by step.

As for the classical Monte Carlo schemes, this stochastic method admits an expected rate of convergence of about $1 / \sqrt{N T}$. Relative error and empirical variance can be computed. The variance reduction techniques as antithetic variates can be applied. The essential properties of Monte Carlo methods are maintained; on the one hand, this stochastic method of the solution approximation does not depend on the choice of the point, on the other hand, their implementations on a parallel computer are intrinsically possible.

The development of the stochastic methods by the means of an integral representation makes possible not only the solution of these systems but extensions to more general models with general linear elliptic or parabolic operators and with wide classes of boundary conditions.

Acknowledgements I warmly thank the reviewers for their suggestions and comments.

References

1. V. Bally, D. Talay. The Euler scheme for stochastic differential equations: error analysis with Malliavin calculus. Math. Comput. Simulation, Vol. 38 (1-3). pp:35-41 (1995).
2. V. Bally, D. Talay. The law of the Euler scheme for stochastic differential equations. I. Convergence rate of the distribution function. Prob. Theory Related Fields, Vol. 104 (1). pp:43-60 (1996).
3. J.-M. Bony, P. Courrège, P. Priouret. Semi-groupe de Feller sur une variété à bord compacte. Ann Inst. Fourier, Vol. 18 (2). pp:369-521 (1968).
4. M. Bossy, E. Gobet, D. Talay. A Symmetrized Euler Schemefor an Efficient Approximation of Reflected Diffusions. J. Appl. Prob., Vol. 41. pp:877-889 (2004).
5. F. Brezzi, M. Fortin. Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991).
6. M. Cessenat, R. Dautray, G. Ledanois, P.-L. Lions, É. Pardoux, R. Sentis. Méthodes probabilistes pour les équations de la physique. Eyrolles, Paris (1989).
7. P.G. Ciarlet, M. Fortin. The Finite Element Method for Elliptic Problems. Vol. 4 of Studies in Mathematics and its Applications. North Holland, Amsterdam (1978).
8. N. El Karoui. Processus de réflexion, Séminaire de Probabilités, Université de Strasbourg N ${ }^{\circ} 9$ (1975).
9. N. El Karoui, M. Chaleyat-Maurel. Un problème de réflexion et ses applications au temps local et aux équations différentielles stochastiques sur \mathbb{R}, cas continu. Astérisque. pp:52-53, 117-144 (1978).
10. M. I. Freidlin. Functional Integration and Partial Differential Equations. Vol. 109 of Annals of Mathematics Studies. Princeton University Press, Princeton, New Jersey (1985).
11. A. Friedman. Stochastic differential equations and applications. Academic Press, New York (1975).
12. G. R. Goldstein. Derivation and physical interpretation of general boundary conditions. Adv. Diff. Eqns., Vol. 11. pp:457-480 (2006).
13. C. Graham, D. Talay. Stochastic Simulation and Monte Carlo Methods - Mathematical Foundations of Stochastic Simulation. Vol. 68 of Stochastic Modelling and Applied Probability. Springer (2013).
14. A. Haji-Sheikh. Monte Carlo Methods in W.J. Minkowcyz et al. (eds), Handbook of Numerical Heat Transfer, Chapter 16 John Wiley Sons Inc., New York (1988).
15. P. Hsu. Reflecting Brownian motion, boundary local time and the Neumann problem. Ph.D. Thesis, Stanford University (1984).
16. N. Ikeda. On the construction of two-dimensional diffusion processes satisfying Wentzell's boundary conditions and its application to boundary value problems. Mem. Coll. Sci. Univ. Kyoto, Ser. A Math. $n^{\circ} 33$, (Kyoto). pp:367-427 (1960/1961).
17. I. Karatzas, S.E. Shreve. Brownian Motion and Stochastic Calculus. Springer, New York (1991).
18. H.J. Kushner. Probabilistic methods for finite difference approximations to degenerate elliptic and parabolic equations with Neumann and Dirichlet boundary conditions. J. Math. Appl. Vol 53. pp:644668 (1976).
19. H.J. Kushner, P.G. Dupuis. Numerical Methods for Stochastic Control Problems in Continuous time. Springer, New York (1992).
20. K. Lemrabet. Problème aux limites de Ventcel dans un domaine non régulier. C.R. Acad. Sc. Paris t. 300, Série I, $n^{\circ} 15$, Paris. pp:531-534 (1985)
21. P.-L. Lions, A.-S. Sznitman. Stochastic differential equations with reflecting boundary conditions. Comm. Pure and Appl. Math. Vol 37. pp:511-537 (1984).
22. B. Lucquin, O. Pironneau. Introduction au calcul scientifique. Masson, Paris (1996)
23. J.-P. Morillon. Numerical solutions of linear mixed boundary value problems using stochastic representations. International Journal for Numerical Methods in Engineering, Vol 40. pp:387-405 (1997).
24. J.-P. Morillon. Résolution de systèmes de réaction-diffusion; Méthodes déterministes, stochastiques et fonctionnelles à e-près; Application en biologie. Thesis, Université d'Angers (1995).
25. É. Pardoux, D. Talay. Discretization and simulation of stochastic differential equations. Acta Applicandae Mathematicae, Vol. 3. pp:23-47 (1985).
26. Y. Qingji. Solving boundary value problems by means of stochastic calculus. Mathematica Applicata, Vol. 4 (${ }^{\circ}$ 4). pp:86-97 (1991).
27. N. Raynaud. Approximation par éléments finis de problèmes de transmission raide. Thesis, Université de Pau (1994).
28. J. E. Souza de Cursi. Numerical methods for linear boundary value problems based on Feyman-Kac representations. Mathematics and Computers in Simulation, Vol. 36. pp:1-16 (1994).
29. D.W. Stroock, S.R.S Varadhan. Diffusion processes with boundary conditions. Comm. Pure and Appl. Math. Vol. 24. pp:147-225 (1971).
30. A. D. Ventcel'. On lateral conditions for multidimensional diffusion processes. Teor. Veroyatnost. i Primenen (in russian), Vol.4. pp:172-185 (1959), and Theor. Prob. and Appl. Vol4. pp:164-177 (1959).

[^0]: J.-P. MORILLON

 Laboratoire PIMENT
 Université de La Réunion
 97487 Saint-Denis Cedex
 La Réunion Island
 Tel.: +262-(0)262-199891
 E-mail: Jean-Paul.Morillon@univ-reunion.fr

