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A general system that can be used for the modelization of metabolic pathways dynamics
in a heterogeneous milieu is presented. It consists in a set of nonlinear reaction-diffusion
equations, involving a convection term originating from the transport of metabolites
by an electric field. The functional study is focused on the existence, uniqueness, and
positiveness of the solution. A aumerical algorithm based on a mixed finite element meth-
od is presented, and illustrative examples are also given.

Keywaords: Enzyme organization; metabolic pathways; reaction-diffusion PDE.

1. INTRODUCTION

Metabolic processes generally occur in a heterogeneous milieu; for
instance, enzymes can be either bound to charged membranes or
cytoskeleton, or confined within an organelle, both features being
facets of enzyme organization [16]. Many theoretical studies have been
devoted to biochemical pathways in a homogeneous isotropic phase
[15] whereas very few models have been worked out to study the
dynamics of metabolic pathways in the heterogencous cell miliew.
Ricard et al [9,14] used a system of two ordinary differential
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384 R. COSTALAT et al.

equations (ODEs) to model a metabolic cycle occurring at the surface
of a charged membrane, whereas Marmillot et al. [12] used partial
differential equations (PDEs) to model patterns of spatiotemporal
organization of phosphofructokinase when it is partitioned between
two phases. We used both ODEs [4, 6, 13], and PDEs soived using a
finite element method {5}, to study the effect of enzyme organization
on the stability of Yates-Pardee metabolic pathways. More precisely,
Ricard et al., take into account electrostatic effects, but they don’t
explicitly include diffusion coeflicients, so that an essential assump-
tion of their model is that of quasi-equilibrium or of rapid equilibrium
within each phase and between different phases. On the other hand,
Marmillot et af. [12], and we and co-authors explicitly model diffusion,
but don’t take into account the electrical phenomena,

The purpose of this paper is to study, from both a functional and
a numerical point of view, a general system that can be used to model
the dynamics of metabolic pathways in a heterogeneous milieu, as-
suming that the transport of metabolites is the result of the effects of
both diffusion and electrical field. This general system is a set of non-
linear coupled partial differential equations [5], and it can be regarded
as a reaction-diffusion system with an additional term accounting for
the migration of charged metabolites in an electrical field.

Illustrative examples are also given, which are based on the Yates-
Pardee model of metabolic pathway. These examples show that an
electric field can greatly alter the stability of metabolic pathways
dynamics, and, more specifically, the amplitude and period of
oscillations,

2. THE BIOLOGICAL MODEL

Let us consider » metabolic species undergoing biochemical transfor-
mations within a heterogenecus cell miliew, where transport of meta-
bolites is due to both diffusion and migration in an electric field. We
assume that in this condition a one-dimensional model is relevant. The
evolution of the metabolite concentrations #, i=1,...,n can be
written as

Bu,- aJ

— _ P .
T ax—i—f,(x,ul,...,u,,) {1)
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where f;, the reaction term, depends on metabolite concentrations
u; as well as on the space coordinate x (for instance due to the
heterogeneous diffusion of enzymes in the cell milieu). According to
Nernst-Planck theory (for a discussion, see [1] or [7]), we shall as-
sume that the flux J; of metabolite i can be written, as

Bu,- F
J,‘ = —Df(a—ziﬁufE) (2)

where D; is the diffusion comstant and z; the charge number of
metabolite i, E is the electric field, F the Faraday’s constant, R the
universal gas constant and T the absolute temperature.

Rearranging Eqgs. (1) and (2) we obtain

5 Ge i Pig +zi=—=DE—+z;—— wp = fi(x, 41,00 thy)

% a D Buf F 814,' F 8(DIE)
RT dx RT &x

that can be rewritten as

o 0 0w\ | ou
N ——ax(a;ax) —b,a—c,u,-!-ﬁ(x,u],---,un)

Boundary conditions for metabolite { will be written as

Ouy "
afal = i — ) (3)
where 7 is the external normal vector to the boundary, and y; and
given constants. Boundary conditions (3), which are Fourier-type,
include specifically (i) Neumann boundary conditions with zero flux
{for p;=0), and (ii) Dirichlet boundary conditions.

3. MATHEMATICAL STATEMENT
OF THE PROBLEM

Let £1=]0, L] be the one-dimensional spatial domain, and 7=10, T[
a time interval. The concentrations u;, i=1,...,n of the metabolites
depend on space x and time ¢. If we set I'= {0, L}, the boundary of
}, 0=0x1I, and E=T x I, the evolution of the concentrations
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u=(uy,....1,) is governed by the following nonlinear system
Bt — By(adu) + bOyu + cu = f(x,u) inQ
adyu = p(u™ —u) on X (4)
u=1uy ift=0

where a=diag(a,...,a,), b, ¢ and p are diagonal matrices with
coeflicients defined from € into R or from T into R™. The function
f=(f1.--..f,) is such that f; is defined from € x R” into R, and the
function #™ is defined from ¥ into R". The initial condition wu, is
defined from §2 into R”,

4. EXISTENCE AND UNIQUENESS OF THE SOLUTION

Let us introduce the following classical notations [2, 8]:

(i) H=(LXQ)Y', where L*(€)) is the Hilbert space of square inte-
grable functions over £);
(iiy V'=(H'()", where H'(Ql) is the Iilbert space of square inte-
grable functions with first derivative belonging to L*(£2);
(iii) L*(Z, V) is the space of functions v such that

[ 1ol ar< + oo
1

(iv) W (I,V,V') is the space of functions v belonging to L*7, V)
whose derivative dv/dt belongs to LI V'), ¥V’ being the dual
of V.

The main result can be summarized in the theorem:
TueoreM 1 If the following assumptions are satisfied:
(1) The function f is Lipschitz continuous, i.e.:
AC >0 such that |f(u) —f(W)| £ Clu—v| Yu,veR"

and f is such that:

Yuel*(I,H), flu)el’(I,H)
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(it) The functions a, b, ¢ and p are such that for i=1,...,m

O<m<alx)<M YxeQ
0< |bi(x) <M VYxefd
D<m<o(x)<M Vxef
0< pu(x)<M VxeT

(i)} The function uy* belongs to X1, H '@y,
(iv) The function uy belongs to H;

then sysiem (4) admits a unigue solution in W{I, V, V').
Proof The main steps of the proof are as follows:

(1) Consider a given function &'V ¢ L*(Z, H), and prove that system
(4) admits a unique solution #® when the second member equals

F@O);
(2) Define the application G by »*) = (1"}, and prove that G admits
a unique fixed point in an adequate functional space,

The first step of the proof is obtained by introducing a variational
equation associated to system (4), say

(Ostt, v)g + (@B, Oxv)y + ppu(L)v(L)
+ pout0)v(0) + (BOyu, v)g + (c1, v)q
= (s Vo + 1aAL) + il (0) WvEV
u(-t1=0)=u()cH

(5)

where the scalar products are in H.

A bilinear continuous form w defined on ¥ x ¥ is now introduced
wu, v) = (@Bou, 8xv)g + pru{L)v(L) + pou{0)v(0) + (BOyu, v)o + (cu, v),

Following Dautray— Lions [8] (t.8), the coercivity of w can be deduced,
Le.,

A and o, 00> 0w, u) + Nuly > oful)

The classical assumptions on parabolic systems [8, 2] being verified, the
variational equation (5) admits a unique solution in WA(Z, ¥, V').
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The second step of the proof consists in proving that G is a con-
traction on L*I, H). Let us consider " and #" in L%, H), and
u® and @ the related solutions. If we introduce the generic notation
dg = q — g, the proof consists in determining the existence of a real
number » £]0, 1 such that

|‘5g(”(1))|L2(1,H) < Vw“(])iy(l,m
The solutions #® and #? to system (4) satisfy the following system:

B (66 — 8y (ad (6u®)) + bO(6uP) + et = 67(u™) in O
aa,?(éu(l)) +ub® =0 on X
u® =0 if t=0

and the associated variational equation

(8:(6u),v)g + (s (64, 0,9)g + pr8u ()WL)
+ Hobu™ (0)v(0) + (b0, (6u®), v)y + (c6u®, v},
= (§£("),v)y Wev

By considering v=#6x", and taking the assumptions on a, b, ¢ and g
into account, we get

d
21805 < 18P GG + 22+ D) ()

Integrating both sides of inequality (6) between 0 and s€ 7, and ap-
plying the Gronwall lemma [8], we obtain

6ui6) < expls) [ 167WMR(r)ar
0
and
16u12(s) < exp(DIB ) s, @

Since the function f is Lipschitz continuous, we have, from in-
equality (7)

t
4 < Con) 164 10T @
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The proof can now be completed by a recursive calculation, where the
m-th value of the application G is contracting with a constant » such
that

> _ (Coxp(m)y"T™

(m—1)! <1

We conclude that G™) admits a unique fixed point, and with a Banach
fixed point theorem [2] p. 83, that G admits also a fixed point u in
L*(1, H) such that u = G(x).

5. POSITIVENESS OF THE SOLUTION

In this section, we prove that under suitable conditions, from the
biological point of view, the solution to system (4) is positive. More
precisely, we establish the following result.

THEOREM 2 If the assumptions of Theorem 1 hold, and if, moreover,
the functions f, u** and uy are rnonnegative, then the solution to system
(4} is nonnegative.

Proof If we perform the following change of variable: z=
exp{ — Af) i, the variational equation (5) may be rewritten as

(Giz, v)g + (@Oxz, Oxv)y + prz(L)v(L) + poz(0)v(0)
+ (bOsz, v}y + {(e + Nz, V),
= exp(—At)(f(x, exp(Af)z), v}y (9
+ przyv(L) + pozgv(0) VYveV
2., t=0)=z()eH

By writing z=z" -z~ and considering v= —z~, Eq. (9) becomes:

%% Iz (0 + w1z ,27) + pelz (L)) + polz(0))?

= —exp(—At)(f,z7) — =z (L) — pozgz (0)

with a nonpositive second member and w; defined by

wi{z7,z27) = fo a(8ez™ ) + BBz )z + (e + A)(z7)dx



390 R. COSTALAT et al.

1et us now prove that w; is nonnegative. By Young inequality, we
have

ol s &2 —\2 —\2
< _ am
|b(3x2 )z | b (sz ) + (z ) >0

s0 that
& £ 1
wi{z ,z) > / a—=0 }(Bz )V + e+ A—— ) (z7) dx
0 2 2€

It is always possible to choose ¢ so that a—b’e/2 >0 and then A
so that e+ A—1/(2e) > 0. Tt follows that w; is nonnegative and
we have

d, _
Sl @k <o

The function |z‘|§ is then a decreasing function of time, and since
z~ (x,0)=0, the theorem is proved.

It can be noted that when #=1, Theorem 2 can directly be applied
to a Yates-Pardee metabolic pathway, as described in Section 7, using
Eq. (25).

6. NUMERICAL RESOLUTION

‘We indicate in this section, how the numerical calculation of the solu-
tion to the system can be performed with adequate mathematical
machinery. The procedure for solving the system of coupled equations
is based on the calculation of the solution of a single equation. In this
section, u# denotes the concentration of one species, that is #=1.
The main difficulty in the resolution is to take into account the term
ba,u. Further it is shown how a variational formulation relevant to
the given problem leads to a rigorous discretization.

6.1. Variational Formulation

The mixed variational formulation [10] consists in performing scalar
products of the terms of the partial differential equation by some test
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functions belonging to appropriate spaces. This formulation makes
it possible to take the boundary conditions into account, and leads to
an approximate solution of the initial model for a wide range of the
coefficients of the equations, which is not the case for more conven-
tional methods [11].

By introducing an intermediate function 7(x, {), the system may be
rewritten as

P, 8) = —a(x) 02 (x, ) (10)

Ou ar du

— =——— — — - 11
(5 ) = — o (%) = () 52 (1) — e(ulx, ) +F () (1)
By performing scalar products of Egs. (10) and (11) by two
test functions, respectively v belonging to H'(f2) and ¢ belonging
to H(f}), and by integrating by parts, we get the two following
equations

/ﬂ ”i)(‘;;) i = /9 i) % ()b — u(l, (L) + u(0, (0
(12)

./ngi; (x, 2)p(x)dx -+ Lg {x, Dp(x)dx + /n o4 % b

+Lc(x)u(x, t)go(x)dx:/nf(x,u(x, Ne{x)dx
(13)

6.2. Discretization

Equations (12) and {13) are now discretized, by projection onto
different sub-spaces of H'(§2) and L*(€) [10].

6.2.1. Discretization in Space

Discretization in space is performed by a classical composite finite
element method of order zero, which brings forth an ordinary dif-
ferential equations system in time.
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The space domain  is divided into & spacc intervals of the
same length . We then consider a grid of N+ 1 points in £, the
closure of £}, made up of the nodes x;=( — DA;i=1,....N + 1, and
we set

Qf :]x;,x,-.,_l[, 121,,N

The spaces L) in which we search for u(., ), and HY)) in which
we search for r(., #), are respectively approached by the sub-spaces Tg
and S9 defined by:

75 = {p e L)/ € P(0:)}
Sh=

{vh € LX)/ € P ()}

where P™((2;,) denotes the set of polynomials, of degree lower or equal
to m, defined 1n Q.
For o€ T, we set

N
p{x) = Z o T3{(x)
where the functions 7; form a basis of Tg and are defined by

I}(x):{l xeqy

0 elsewhere

On this basis, we consider in T and we set together

u(x, 6) =Y w(O)Tx(x) (14)
=1
Flongd] = Zf}(f (15)
=
For /€ 89, we set
Nl

X) = Z ¥;8;(x) (16)
j=1
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where the functions S; form a basis of SY and are defined by
—x)/h Q
81(x) = { (20— x)/ xely
0 elsewhere
(x—x_1)/h xe€y
Si{x) = (1 —x)/h xety

0 elsewhere
(x = XN) /h x€ln
S =
we1(x) { 0 elsewhere

These functions are usually called “hat” functions.
On this basis, we consider in S and we set

N+1
r(x,0) =Y ri{D8;(x). (17)

=

We now assume that the function a(-) belongs to the space S}, and

that the functions b(-} and «(-) belong to the space T%.
By putting expressions (14) to {17) into Eq. (13) and by taking suc-
cessively ¢ =T}, j=1,..., N, we obtain

Er Z/u, (NT:(x)T; x)dx+/6 (x, OT;(x)dx
+ [0 e TR+ ; [ cbomlomin Ty

f FHOT; w)idx e L
We use the method of Lesaint [10] to approach the term
/n b(x) % (x, Hp(x)dx

in each interval 2, by Q; defined by
0;(8) = (uf () —u; ()b(x])p(x]) j=1,...,N

where we denote b(x}) = by, as the value of b in the interval Q. We

set, as well, ¢; as the value of ¢ in the interval £,
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By calculating the integrals, we obtain
a X Buj
53 [ wtomez o = n %5
Oor
T (x, §Ti{x)dx = rip (1) — ;)

./b(x)g;(x, )Ty (x)dx = Q;(r)
0
0;(2) = bi{us{t) — w1 (1) with w5 (1) = w(2)
and  u; (1) = w1 (1)
; /“ e(x)w (OTH(x)T; (x)dx = cju{1)h
N
;Lﬁ(l‘)f}(x)l‘}(x)dx — £ (O

The discrete equation corresponding to Eq. {13) for 1 <j< N is
given by

(£) —w1()
]

Ou; () + ra(f) —ri(e)

4
ot % +b

+eu(t) =f(5)  (18)

In the same way, by taking successively ¥=2S;, j=1,...,N+1, in
Eq. (12}, we obtain

For1<j<N+1

r(x,l‘) {x)dx = ulx %x T, : y ;
/ﬂ a(x) Sj(x)d -/n (x,7) ax( Jdx — (L, 1)§;(L) + (0, 1)5;(0)

The integration of the first member of this equation by the method
of trapezium leads to the following result

For j=1

/ Hl) Si(x)dx ~ iJ"l(t)
a

alx) 2ay
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For2<j<N

r(x, 1) e x’*-‘ﬁr-
I seas = 2o

&

Forj=N+1

r(x, 1) -
fﬂ o S =

The second member of the equation gives

h
2ani1 el (t)

For j=1

u(0, 1) — (1)
For2<j< N

1 () — (1)
For j=N+1

uy(t) — u(L, 1)

Equation (10), which gives r(f), becomes

n() =2 (0 - w(0) (19)
() = F g ()~ () J=2,..,N (20)
R et COREAC) @)

Finally, Eq. (18) may be rewritten as a system of ordinary differ-
ential equations

i(r) + Gu(s) = F(1) (22)

u(0) = uy (23)

where

ut) = m@Ow@)---un() s () = F1(0F2(0) - Fy(2)"
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and G is a tridiagonal matrix defined by

81 m
ax [ 1

o B o

ay Bw

in which coeflicients ¢y, 8; and ~; are given by

ai b
a;s—ﬁ—z P
. 1 2a1h(,u,0—b1) b]
b= 2 (02+ 24, + Fi +I+Cl

1 b; .
ﬂi:ﬁ(ai+1+ai)+ﬁ+ci i=2..,N-1

_ 2ayhpr by
P =1 (aN dave thpr) T TN
a+1
y=— ’h2 i=1,...,N—1

_ Hob 2ppm P
File) = (ml i, +h,u,0))”° () +A0)

Fit)=filt) i=2,...,N—1

2V en() 4 (1)

F = —
w(1) E(2an1 + hur)

6.2.2. Discretization in Time

We use the f-method where 8£[0,1] is a parameter [9]. This method
consists in replacing the equation by a scheme with finite differences
in time, either explicit or implicit according to the valne of ¢.

The interval [ is divided into equal sub-intervals I =1, 1] of
length 7. Equations (22, 23} are written in the form

(il + ec)y!‘“ = (;I —-(1- a)G)u" +oF + (1-8)F*  (24)
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El =1y
where I is the identity matrix of dimension N x N.

Taking §=0.5, we obtain the classical Crank-Nicolson method
which is unconditionally stable,

Equation (24) is solved, at each step in time, by calculating the
solution of a tridiagonal linear system by a LU decomposition
method.

The system (4) of » coupled partial differential equations is then
solved by computing successively the solution of each equation, where
the source term fis calculated in the i-th equation by considering the
values of #y,...,u;_1 obtained from the previous equations. It has
been verified [3] in a similar problem that, if the time step 7 is not too
large, this method of resolution remains precise in comparison with
a global and cumbersome resolution.

7. APPLICATION TO A YATES-PARDEE-TYPE
PATHWAY

Let us now consider a metabolic pathway where the last metabolite
inhibits the enzyme catalyzing the first reaction [5]. The spatial domain
{1 is divided in three sub-domains. For instance (0, x,) corresponds to
the inner of an organelle, (x,, x;) to the membrane of the organelle,
and (x;, L) to the cytosol.

By considering » = 4 metabolites, the concentrations u; are governed
by the following system, which is a particular case of system (4)

B = 3 (dl(x)%l;) —bi(x) i = Vi a5 onfx) = Cl(x)ul

Bt Ox ax  Kitw 1+ K
(23)
Bu,- _ ad Bu,v Bu,- V,-(x)u,- V,-_l(x)u;_l
E - 8_ (a: (x) ax ) bI(X) —a Ki+u, Ki1+ug " (x)ui
(26)

The coefficients 4;(x) describe a classical and passive diffusion process,
while the b;(x) coefficients are nonzero only for x € (x,, x;), i.e., in the
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membrane, and also describe the effect of an electric field E originating
from electrical charges distributed on both sides of the membrane. The
Vi(x) and K; terms are those of the Henri-Michaelis-Menten law
in enzyme catalyzed reactions. An allosteric inhibition of the first
reaction by the last product is characterized by the coefficients ey,
K and p.
The reaction terms are rewritten as
V,-u,- _ V,‘ V,—uiz/K,-

=——u; +
Ki+u; K" Ki+u

50 that we can set ¢;= V;/K; in the equations, The boundary conditions
are set as Neumann conditions, i.e., the flux through the boundary
1s zero, so that we have u=0 in Eq. (4).

Our purpose is to study the influence of the sign of the product zE
in the membrane on the stability of the solution to the system.

The numerical resolution of Egs. (25) and (26) is performed with the
following values of the coefficients:

L=1, x,=0.15 x—0.20,
a;{x) =100 for x{0,x,) U (xs,L) i=1,...,4,
ai(x) =1 for x€(x,x5),
Vi(x) = Valx) = Va(x) = Vg(x) =3
for xe (0, x,), = 0 elsewhere,
Ki=1, i=1,...,4,
ag(x) =3 for xe (0, x,),= 0 elsewhere,
K=1, p=3,
bi(x) = £50 for x € (x4, x5) = 0 elsewhere.

The boundary conditions are assumed to be of Neumann type, so that
wi=0.

If the length is expressed in pm, while time is expressed in units of
10~ "s, then @,=D,;=100 corresponds to a typical value of D;=
10 *em®s ', both inside and outside the organelle. Although the
membrane width is slightly overestimated, due to the space discretiza-
tion step, the absolute value of the b; coefficients is chosen to ensure
a typical ratio of metabolite concentrations at steady state.
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Two cases are considered

(1

@

When b;(x)= -+ 50, a steady state is obtained with the following
values (i=1,...,4), which correspond to a Nernst equilibrium:
1;{x)=0.996 for xe{(0,x,), u;(x)=9.2808 for x&(x;, L). If this
steady state is perturbed, let say if all initial concentrations are
multiplied by a factor 1.5, so that u{x, 0)=1.495 for x€ (0, x,),
u;{x,0)=13.92 for x&(xp L), damped oscillations with large
amplitude and very large period are observed (Fig. 1, where the
evolution of u4(x,/2) 1s plotied versus time).

When b(x)= —50, a steady state is obtained with u(x)=1 for
xe{0,x,}, u;(x)=0.107 for x&{x, L). If initial conditions are
perturbed by a factor 1.5, so that w;(x,0)=1.5 for x<(0,x,),
u{x,0)=0.161 for x&{xp, L), then damped oscillations are
still observed, buf their pseudo-period is dramatically reduced
(Fig. 2).

In both cases, the enzymes are confined to the (0, x,;) compartment.
If we assume that (0,x;) is an organelle bounded by a membrane
so that internal electric potential is lower than external potential

Ud(Xa/2.1)

e
(=]
1

b
(4]
f

0.0 W — ; : :
0 2000 4000 6000 8000 10000
Time

FIGURE 1 Evolution of the 4-th species for b;(x)= + 50.
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1.5 T

-
o
]

U4(Xa/2,t)

=
n
1

0.0

0 1000 2000 3000 4000 5000
Time

FIGURE 2 Evalution of the 4-th specics for b,(x)= — 50.

(which is the case of mitochondria), then E < 0, and we have

o In case (1), b;==z;E> 0, so that metabolites ar¢ negatively charged;
o In case (2), b;=z,E < 0, and metabolites are positively charged.

Other interpretations coukd be given: if (x;, L) is the interior of the
organelle, case (2) corresponds to z; < 0.

These examples suggest that the stability of metabolic pathways
can be strongly influenced by electric fields effects resulting in migra-
tion of metabolites. Our proposed method could be used to study
more extensively the possible implications of diffusion-migration upon
cellular homeostasis and information transfer.
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