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DYNAMICAL STABILITY AND LYAPUNOV EXPONENTS FOR

HOLOMORPHIC ENDOMORPHISMS OF Pk

FRANÇOIS BERTELOOT, FABRIZIO BIANCHI, AND CHRISTOPHE DUPONT

Abstract. We introduce a notion of stability for equilibrium measures in holomorphic families
of endomorphisms of Pk and prove that it is equivalent to the stability of repelling cycles and
equivalent to the existence of a measurable holomorphic motion of Julia sets. We characterize
the corresponding bifurcations by the strict subharmonicity of the sum of Lyapunov exponents or
the instability of critical dynamics and analyze how repelling cycles may bifurcate. Our methods
deeply exploit the properties of Lyapunov exponents and are based on ergodic theory and on
pluripotential theory.
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1. Introduction

1.1. Main definitions and results. In the early 1980’s, Mañé, Sad and Sullivan [MSS] and Lyu-
bich [Ly1, Ly2] have independently obtained fundamental results on the stability of holomorphic
families (fλ)λ∈M of rational maps of the Riemann sphere P1. They proved that the parameter
space M splits into an open and dense stability locus and its complement, the bifurcation locus.
They also obtained precise informations on the distribution of hyperbolic parameters which lead
to the so-called hyperbolic conjecture. This conjecture asserts that hyperbolic maps are dense in
the space of rational maps. The works of Douady and Hubbard on the Mandelbrot set provide a
deeper understanding of these questions for the quadratic polynomial family.

In this theory, the finiteness of the critical set and Picard-Montel theorem play a crucial role.
They allow to characterize the stability of a parameter λ0 ∈ M by the stability of the critical
orbits of the map fλ0 . Equivalently, λ0 is in the bifurcation locus if, after an arbitrarily small
perturbation, there exists a repelling cycle capturing a critical orbit. The one-dimensional setting
also permits, by mean of the λ-lemma, to build holomorphic motions of Julia sets which conjugate
the dynamics on connected components of the stability locus. The bifurcation locus also coincides
with the closure of the parameters λ ∈M for which fλ admits an unpersistent neutral cycle.

This article deals with bifurcations within holomorphic families of endomorphisms of Pk for k ≥
1. LetM be connected complex manifold of dimensionm. A holomorphic family of endomorphisms
of Pk can be seen as a holomorphic mapping

f :M × Pk →M × Pk , (λ, z) 7→ (λ, fλ(z))

This research is partially supported by the ANR project LAMBDA, ANR-13-BS01-0002. The work of the second
author is partially supported by the FIRB2012 grant “Differential Geometry and Geometric Function Theory”.
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where the algebraic degree d of fλ is larger than or equal to 2 and does not depend on λ. For
instance, M can be the space Hd(P

k) of all degree d holomorphic endomorphisms of Pk, which is
a Zariski open subset in some PN .

Our main result is Theorem 1.1 below, it asserts that different natural notions of stability
are equivalent and leads to a coherent notion of bifurcation for holomorphic families f in Pk.
Our arguments exploit some ergodic and pluripotential tools as those developped in the works of
Bedford-Lyubich-Smillie, Fornaess-Sibony, Briend-Duval, Dinh-Sibony on holomorphic dynamics
on Pk or Ck (see the survey [DS3] for precise references). Let us recall that, for each λ ∈ M , we
have an ergodic dynamical system (Jλ, fλ, µλ) where µλ is the equilibrium measure of fλ and Jλ is
the topological support of µλ called the Julia set. The measure µλ enjoys a potential interpretation

µλ = (ddcz g(λ, z) + ωFS)
k
,

where g is the Green function of f and ωFS the Fubini-Study form on Pk. The repelling cycles of
fλ equidistribute the measure µλ and hence are dense in Jλ. However, in higher dimension, some
repelling cycles may belong to the complement of Jλ. We denote by L(λ) :=

∫
Pk log Jac f dµλ the

sum of the Lyapunov exponents of µλ. This is a plurisubharmonic function on M which satisfies
L(λ) ≥ k log d

2 . Let Cf denote the current of integration on the critical set of f taking into account
the multiplicities of f .

Our main result is as follows. The definitions occuring in (A), (C) and (D) are explained below.

Theorem 1.1. Let f : M × Pk → M × Pk be a holomorphic family of endomorphisms where M
is a simply connected open subset of the space Hd(P

k) of endomorphisms of Pk of degree d ≥ 2.
Then the following assertions are equivalent:

(A) the repelling J-cycles move holomorphically over M ,
(B) the function L is pluriharmonic on M ,
(C) f admits an equilibrium web,
(D) f admits an equilibrium lamination,
(E) any λ0 ∈M admits a neighbourhood U such that lim infn d

−kn|(fn)∗Cf |U = 0.

These equivalences remain true when k = 2 for every simply connected manifold M not neces-
sarily included in Hd(P

2). Idem for every k ≥ 1 and for every family whose repelling J-cycles are
neither persistently resonant nor persistently undiagonalizable (see Proposition 5.6). It also stays
partially true for general families (see Theorem 1.6).

Theorem 1.1 leads us to define the bifurcation current of a holomorphic family of endomor-
phisms of Pk as the closed positive current ddcλL, and the bifurcation locus as the support of this
current. The family is stable if its bifurcation locus is empty. This is coherent with the classical
one-dimensional definition, due to DeMarco [dM].

Let us now specify the definitions. A central notion is the set

J :=
{
γ :M → Pk : γ is holomorphic and γ(λ) ∈ Jλ for every λ ∈M

}
.

The graph {(λ, γ(λ)) λ ∈M} of any element γ ∈ J is denoted Γγ . We endow J with the topology
of local uniform convergence and note that f induces a continuous self-map

F : J → J given by F · γ(λ) := fλ(γ(λ)).
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Definition 1.2. For every λ ∈ M , a repelling J-cycle of fλ is a repelling cycle which belongs to
Jλ. We say that these cycles move holomorphically over M if, for every period n, there exists a
finite subset {ρn,j, 1 ≤ j ≤ Nn} of J such that {ρn,j(λ), 1 ≤ j ≤ Nn} is precisely the set of n
periodic repelling J-cycles of fλ for every λ ∈M .

Our notions of equilibrium webs and laminations are as follows.

Definition 1.3. An equilibrium web is a probability measure M on J such that

(1) M is F-invariant and its support is a compact subset of J ,
(2) for every λ ∈M the probability measure Mλ :=

∫
J
δγ(λ) dM(γ) is equal to µλ.

This notion is related to Dinh’s theory of woven currents and somehow means that the measures
(µλ)λ∈M are holomorphically glued together. In this article we shall also say that (µλ)λ∈M move
holomorphically when such a web exists.

Definition 1.4. An equilibrium lamination is a subset L of J such F(L) = L and

(1) Γγ ∩ Γγ′ = ∅ for every distinct γ, γ′ ∈ L,
(2) µλ{γ(λ), γ ∈ L} = 1 for every λ ∈M ,
(3) Γγ does not meet the grand orbit of the critical set of f for every γ ∈ L,
(4) the map F : L → L is dk to 1.

One can see an equilibrium lamination as a holomorphic motion of the Borel supports of the
measures µλ. Equilibrium laminations will be extracted from the support of equilibrium webs by
using ergodic theory for the dynamical system (J ,F ,M).

1.2. Sketch of the proofs and further results. The novelty of our approach stays on two
specific features. The first one is the use of a formula for the ddc of the sum L of the Lyapunov
exponents to read the interplay between bifurcations and critical dynamics. This formula is

(1) ddcλL = πM⋆

((
ddcλ,z g(λ, z) + ωFS

)k
∧Cf

)
,

it was proved by Bassanelli and the first author [BB1], see also Pham’s formula in Theorem 3.3.
Like in dimension one, our proofs crucially rely on the links between bifurcations and instability
in the critical dynamics. In higher dimensions these interactions cannot be detected by a simple
application of Picard-Montel theorem, Formula (1) aims to overcome this problem.

The second feature is the introduction of equilibrium webs to overcome the lack of λ-lemma and
build holomorphic motions of Julia sets. This is a weaker, but natural, notion dealing with the
measures µλ rather than with their supports Jλ. It should be stressed that equilibrium webs are
actually obtained as limits of discrete measures by mean of a compactness statement which may
be considered as a measurable version of the λ-lemma (see Lemma 2.2).

We now specify our approach and summarize the proof of Theorem 1.1. Simultaneously we
state some related results. We obtain (B) ⇔ (E) by using Formula (1) and the f -invariance of the
Green function g. The implication (A) ⇒ (B) is proved in Proposition 3.5. We actually establish
a stronger statement: we show that ddcλL is vanishing if f admits an equilibrium web which is a
limit of discrete measures supported on graphs avoiding the critical set of f .

To show that the vanishing of ddcλL is a sufficient condition for stability, we exploit the dynamics
of the critical set. For that purpose we introduce a suitable notion of Misiurewicz parameters.
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Definition 1.5. One says that λ0 ∈ M is a Misiurewicz parameter if there exists a holomorphic
map γ from a neighbourhood of λ0 into Pk such that:

1) γ(λ) ∈ Jλ and is a repelling p0-periodic point of fλ for some p0 ≥ 1,
2) (λ0, γ(λ0)) ∈ fn0(Cf ) for some n0 ≥ 1,
3) the graph Γγ of γ is not contained in fn0(Cf ).

We first prove that the pluriharmonicity of L prevents the apparition of such parameters. To do
this, we use again Formula (1) and a dynamical rescaling argument. This is done in subsection 3.3.
To prove that the absence of Misiurewicz parameters implies the existence of an equilibrium web,
we apply our measurable version of the λ-lemma to sequences of discrete measures on pull-backs
by fn of a graph of repelling J-cycles avoiding the post-critical set of f , see Proposition 2.3. The
existence of such a graph is involved, we use entropy arguments. These results, which are valid in
arbitrary families, are summarized in the following theorem.

Theorem 1.6. Let f : M × Pk → M × Pk be a holomorphic family of endomorphisms of Pk of
degree d ≥ 2. Then the following assertions are equivalent:

(a) the function L is pluriharmonic on M ,
(b) there are no Misiurewicz parameters in M ,
(c) the restriction fB×Pk , where B is any sufficently small ball, admits an equilibrium web

M = limnMn and the graph of any γ ∈ ∪nsuppMn avoids the critical set of f .

Among equilibrium webs, those giving no mass to the subset of γ’s in J whose graphs meet
the grand orbit of the critical set of f will play an essential role in the construction of equilib-
rium laminations. Such webs are called acritical (see Definition 2.1). Both Theorem 1.6 and the
implication (A) ⇒ (B) in Theorem 1.1 are used to get the following important fact.

Corollary 1.7. Let f : M × Pk → M × Pk be a holomorphic family of endomorphisms of Pk of
degree d ≥ 2. If the repelling J-cycles move holomorphically over M then f admits an ergodic and
acritical equilibrium web.

In section 4 we prove that (A) ⇒ (D). We use there the Corollary 1.7 and exploit the stochastic
properties of (J ,F ,M) where M is an acritical and ergodic equilibrium web. We show that the
iterated inverse branches of f are exponentialy contracting near the graph Γγ of M-almost every
γ ∈ J (see Proposition 4.2). This implies that for M-almost every γ ∈ J the graph Γγ does
not intersect any other graph Γγ′ where γ 6= γ′ ∈ suppM and allows us to build equilibrium
laminations (see Theorem 4.1).

So far we have established that (A) ⇒ (B), (A) ⇒ (D), (E) ⇔ (B) and that (B) ⇒ (C′) were
(C′) is a local version of (C) (see Theorem 1.6). We prove simultaneously that (C′) ⇒ (C) ⇒ (A).
To this purpose, we investigate how the apparition of Siegel discs may affect the continuity of
λ 7→ Jλ in the Hausdorff topology. The section 5 is mainly devoted to that study (see in particular
Proposition 5.3). Finally, by the same argument than in the proof of (b) ⇒ (c) in Theorem 1.6 one
gets (D) ⇒ (C). This completes the proof of Theorem 1.1.

In the last section, we investigate a few properties of bifurcation loci. We first consider the
possibility for a bifurcation locus to have a non-empty interior.

Theorem 1.8. Let f :M × Pk →M × Pk be a holomorphic family of endomorphisms of Pk. The
set of parameters λ for which Pk coincides with the closure of the post-critical set of fλ is dense
in any open subset of the bifurcation locus of f .
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We then show that bifurcation loci contain some remarkable elements. Theorem 1.6 says that
Misiurewicz parameters are dense in any bifurcation locus. In the same vein, we prove in Theorem
6.6 that the bifurcation locus in Hd(P

k) coincides with the closure of the set of endomorphisms
which admit repelling J-cycles which bifurcate either by giving Siegel periodic cycles or repelling
cycles outside the Julia set. We finally observe in Theorem 6.7 that in any stable family, all
elements are Lattès maps as soon as one element is a Lattès map. This follows from the charac-
terization of such maps by their Lyapunov exponents, see [BL, BtDp, Du2].

Let us finally mention that bifurcation phenomena in families of Hénon maps of C2 have already
been studied by Bedford, Lyubich and Smillie [BLS] and by Dinh and Sibony [DS5], the sharpest
achievements are due to Dujardin and Lyubich in their recent work on the two dimensional and
dissipative case [DuLy].

Aknowledgements: We would like to thank Eric Bedford, Xavier Buff, Tien-Cuong Dinh,
Romain Dujardin, Thomas Gauthier, Michael Lyubich, Jasmin Raissy and Nessim Sibony for
helpful discussions or comments on the first draft of this paper.

2. Equilibrium webs

2.1. Definition and construction. Let f : M × Pk → M × Pk be a holomorphic family of
endomorphisms of Pk of degree d ≥ 2. We recall that M is a connected complex manifold of
dimension m and that f(λ, z) = (λ, fλ(z)). Let µλ denote the equilibrium measure of fλ and
let Jλ denote the support of µλ, this is the Julia set of fλ. We want here to define a notion
of holomorphic motion for the family (µλ)λ∈M . To this purpose we consider the set O

(
M,Pk

)

of holomorphic maps from M to Pk, endowed with the metric space topology of local uniform
convergence, and the closed subspace

J :=
{
γ ∈ O

(
M,Pk

)
: γ(λ) ∈ Jλ for every λ ∈M

}
.

For any probability measure M on O
(
M,Pk

)
and every λ ∈M we define the measure

Mλ :=

∫
δγ(λ) dM(γ).

This is a probability measure on Pk which is actually equal to pλ⋆M, where the mapping pλ :
O
(
M,Pk

)
→ Pk is given by pλ(γ) := γ(λ).

Let us recall that an equilibrium web for f is a F -invariant and compactly supported probability
measure M on J such that Mλ = µλ for every λ ∈M . We shall sometimes say that the measure µλ
move holomorphically over M when f admits an equilibrium strucural web. For every probability
measure M on O

(
M,Pk

)
and in particular for any equilibrium web we can define the current

WM :=

∫
[Γγ ] dM(γ).

It has bidimension (m,m) on M × Pk and is a woven current following Dinh’s terminology [Di2].

To construct equilibrium laminations, it will be crucial to deal with equilibrium webs giving no
mass to the subset Js of J whose elements have a graph intersecting the grand orbit of the critical
set of f . This motivates the following definition.
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Definition 2.1. An equilibrium web M is said acritical if M (Js) = 0 where Js is given by
Js := {γ ∈ J : Γγ ∩ (∪m≥0f

−m (∪n≥0f
n (Cf ))) 6= ∅}.

Equilibrium webs will be obtained as limits of discrete measures on O
(
M,Pk

)
. To this purpose

we shall use the following simple tool which somehow plays the role of the classical λ-lemma. We
refer to Lemma A.1 for a more general statement.

Lemma 2.2. Let f : M × Pk → M × Pk be a holomorphic family of endomorphisms of Pk. Let
(Mn)n≥1 be a sequence of Borel probability measures on O

(
M,Pk

)
such that:

1) limn(Mn)λ = µλ for every λ ∈M ,
2) F⋆Mn+1 = Mn or F⋆Mn = Mn for every n ≥ 1,
3) there exists a compact K ⊂ O

(
M,Pk

)
such that F−1(K) ⊂ K and suppMn ⊂ K.

Then any limit of ( 1
n

∑n
l=1 Ml)n is an equilibrium web.

Proof. Let Nn := 1
n

∑n
l=1 Ml. By Assertion 3) (Nn)n≥1 is a sequence of Radon probability

measures on the compact metric space K. Banach-Alaoglu and Riesz-Markov theorems ensure
that there exists a subsequence (Nnk

)k≥1 converging weakly to a Radon probability measure M
on K. By Assertion 2), we have F⋆Nnk

= Nnk
+ Ek where the mass of Ek is less than 2/nk. This

implies that F⋆M = M as measures on K. Let us extend M to a Borel probability measure M̃

on O(M,Pk) by setting M̃(A) := M(A∩K). Let us verify that M̃ is an equilibrium web. We still

have F⋆M̃ = M̃. Indeed, we deduce from F−1(K) ⊂ K:

F⋆M̃ (A) = M
(
F−1(A) ∩ K

)
≥ M

(
F−1(A ∩ K)

)
= M(A ∩ K) = M̃(A)

and the identity follows since F⋆M̃ and M̃ are probability measures. From pλ⋆M̃ = pλ⋆M and

pλ⋆M = limk pλ⋆Nnk
= µλ provided by Assertion 1), we deduce pλ⋆M̃ = µλ. It remains to check

suppM̃ ⊂ J . If γ0 /∈ J then γ0(λ0) /∈ suppµλ0 for some λ0 ∈ M . Let V0 be a neighbourhood of
γ0 in O(M,Pk) such that pλ0(V0) ⊂ Pk \ suppµλ0 . Then

M̃(V0) ≤ M̃
(
p−1
λ0

(pλ0(V0))
)
= pλ0⋆M̃(pλ0(V0)) = µλ0(pλ0(V0)) = 0

implies that γ0 /∈ suppM̃. 2

We now explain how Lemma 2.2 is concretely used to produce equilibrium webs. The proof
relies on the equidistribution of preimages of points, see the articles [FS1, BrDv2, DS1] and on the
equidistribution of repelling cycles, see [BrDv1].

Proposition 2.3. Let f :M × Pk →M × Pk be a holomorphic family of endomorphisms of Pk of
degree d.

1) Assume that M is simply connected and that there exists γ ∈ O
(
M,Pk

)
such that the graph

Γγ does not intersect the post-critical set of f . Then an equilibrium web is given by any

limit of
(

1
n

∑n
i=1

1
dki

∑
Fi·σ=γ δσ

)
n
.

2) Assume that the repelling J-cycles of f move holomorphically over M . Let (ρn,j)1≤j≤Nn

be the elements of J given by the motions of these n-periodic cycles. Then an equilibrium

web is given by any limit of
(

1
dkn

∑Nn

j=1 δρn,j

)
n
.

Proof. 1) The map fn :
(
M × Pk

)
\ f−n (∪1≤p≤nf

p(Cf )) →
(
M × Pk

)
\ (∪1≤p≤nf

p(Cf )) is a cov-

ering of degree dkn. Hence, there exist dkn holomorphic graphs Γσj,n
such that fn

(
Γσj,n

)
= Γγ i.e.
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Fn · σj,n = γ. Let us set Mn := 1
dkn

∑dkn

j=1 δσj,n
. By construction F⋆Mn+1 = Mn and, for every

λ ∈ M , one has (Mn)λ = 1
dkn

∑dkn

j=1 δσj,n(λ) =
∑

fn
λ
(x)=γ(λ) δx → µλ, where the limit comes from

the fact that γ(λ) /∈ ∪p≥1f
p
λ(Cfλ ). The family (σj,n)j,n is normal, by a theorem of Ueda [Ued,

Theorem 2.1], and therefore the closure K of ∪n≥1suppMn is a compact subset of O
(
M,Pk

)
. By

construction F−1(K) ⊂ K. The conclusion immediately follows from Lemma 2.2.

2) Let us set Mn := 1
dkn

∑Nn

j=1 δρj,n . The convergence of (Mn)λ towards µλ follows from the

equidistribution of repelling periodic points with respect to the equilibrium measure, see [BrDv2]
(note that the repelling cycles produced there are J-cycles). The normality of the family (ρj,n)j,n
can be seen by lifting these curves to curves of periodic points of a lift of f to Ck+1. Again, one
concludes by using Lemma 2.2. 2

2.2. Elementary properties. As it will turn out, equilibrium webs given by Proposition 2.3
are acritical and this property, combined with ergodicity, will be crucial to build equilibrium
laminations. This motivates the following result.

Proposition 2.4. Let f : M × Pk → M × Pk be a holomorphic family of endomorphisms of Pk.
If f admits an acritical equilibrium web M0 then f admits an acritical equilibrium web M′

0 which
is ergodic and such that suppM′

0 ⊂ suppM0.

Proof. Let us consider the convex set Pweb (K) of equilibrium webs of f which are supported in
K, where K := supp (M0). Note that F(K) ⊂ K since M0 is F -invariant. The set Pweb (K) is
a compact metric space for the topology of weak convergence of measures. It is actually closed
in the unit ball BC(K)′ where C(K) is the separable Banach space of continuous functions on K
endowed with the norm of uniform convergence.

We will use Choquet decomposition theorem to find extremal points M′ in Pweb (K) for which
M′ (Js) = 0 and then prove the ergodicity of M′ by showing that these points are also extremal
in the set Pinv (K) of F -invariant probability measures on K. Let us denote by Ext (Pweb (K)) the
set of extremal points of the compact metric space Pweb (K). By Choquet theorem, there exists a
probability measure ν0 on Ext (Pweb (K)) such that

M0 =

∫

Ext(Pweb(K))

E dν0 (E) .

Then

0 = M0 (Js) =

∫

Ext(Pweb(K))

E (Js) dν0 (E)

and the set of equilibrium webs E ∈ Ext (Pweb (K)) for which E (Js) = 0 has full ν0-measure.
To conclude the proof we are left to check that any M′ ∈ Ext (Pweb (K)) is extremal in Pinv (K).

Assume that M′ = 1
2M1 +

1
2M2 where Mj ∈ Pinv (K). Then, as M′ is an equilibrium web we

have µλ = pλ⋆ (M′) = 1
2pλ⋆ (M1) +

1
2pλ⋆ (M2) for every λ ∈ M . Since pλ ◦ F = fλ ◦ pλ, the

probability measures pλ⋆ (Mj) are fλ-invariant and therefore the ergodicity of µλ implies that
pλ⋆ (M1) = pλ⋆ (M2) = µλ. This shows that M1 and M2 actually belong to Pweb (K) and the
identity M′ = M1 = M2 then follows from the fact that M′ is extremal in Pweb (K). 2

The following simple dynamical properties of the support of an equilibrium web will be very
useful. We thank R. Dujardin for pointing us this fact.
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Lemma 2.5. Let M be a connected complex manifold and f : M ×Pk →M ×Pk be a holomorphic
family of endomorphisms of Pk which admits an equilibrium web M. Then:

1) the sequence (fpλ(γ(λ)))p≥1 is normal for every γ ∈ suppM,

2) for every (λ0, z0) ∈M × Jλ0 there exists γ ∈ suppM such that z0 = γ(λ0),
3) for every (λ0, z0) ∈ M × Jλ0 such that z0 is n-periodic and repelling for fλ0 , there exists

γ ∈ suppM such that z0 = γ(λ0) and γ(λ) is n-periodic for fλ for every λ ∈M .

Proof. (1) We use fpλ(γ(λ)) = (Fp · γ) (λ) and the fact that M is compactly supported and F -
invariant.

(2) As z0 ∈ Jλ0 and Jλ0 = suppµλ0 = suppMλ0 , there exist (γn)n ⊂ suppM such that
γn(λ0) → z0. Then, since M is compactly supported, we can take for γ any limit of (γn)n.

(3) By the implicit function theorem, there exists a neighbourhood Vλ0 of λ0 and a holomorphic
map w : Vλ0 → Pk such that w(λ0) = z0 and w(λ) is n-periodic for fλ. We will show that
w coincides on Vλ0 with the map γ given by the previous item; the conclusion then follows by
analytic continuation. Our argument is local, so we can choose a chart and work on Ck. Since z0
is repelling, we can shrink Vλ0 and find A > 1, r > 0 such that

(2) ‖w(λ) − fnλ (z)‖ = ‖fnλ (w(λ)) − fnλ (z)‖ ≥ A‖w(λ) − z‖

when λ ∈ Vλ0 and ‖w(λ)− z‖ < r. On the other hand the first item ensures that (fpnλ (γ(λ)))p is a

normal family, hence we can shrink again Vλ0 so that ‖w(λ)− fpnλ (γ(λ))‖ < r for every p ≥ 1 and
λ ∈ Vλ0 . Combining this with Equation (2) we obtain r > ‖w(λ)− fpnλ (γ(λ))‖ ≥ Ap‖w(λ)− γ(λ)‖
for every p ≥ 1 and λ ∈ Vλ0 . This implies w(λ) = γ(λ) on Vλ0 since A > 1. 2

To perform certain computations, we will have to explicitely relate equilibrium webs with posi-
tive horizontal currents (see Lemma 2.8 below). Before doing this, we recall some basic facts about
horizontal currents.

Definition 2.6. Let M be a complex connected manifold. A current R on M ×Ck+1 is horizontal
if suppR ⊂M ×K for some compact subset K ⊂ Ck+1.

Let us assume that R is a closed, positive, horizontal current of bidimension (m,m) onM×Ck+1

where m is the complex dimension of M . Then the slices 〈R, πM , λ〉 exist for Lebesgue-almost
every λ ∈ M and are positive measures on M × Ck+1 supported on {λ} × Ck+1. The following
basic slicing formula holds for every continuous test function ψ on M ×Ck+1 and every continuous
(m,m)-test form ω on M :

(3)

∫

M

〈R, πM , λ〉 ψ ω(λ) = 〈R ∧ π⋆M (ω), ψ〉.

Dinh and Sibony have shown that the slices of such currents do actually exist for every λ ∈M ,
see [DS1, theorem 2.1]. Their basic result is as follows, it will be used in the proof of Lemma A.1.

Theorem 2.7. (Dinh-Sibony) Let M be a m-dimensional complex connected manifold and R
be a closed, positive, horizontal current of bidimension (m,m) on M × Ck+1. Then the following
properties occur:

(1) the slice 〈R, πM , λ〉 exists for every λ ∈M and its mass does not depend on λ ∈M ,
(2) the function λ 7→

∫
Ck+1 ψ(λ, z) 〈R, πM , λ〉 is psh or ≡ −∞ on M for any psh function ψ

defined on a neighborhood of suppR.

Let us now state the announced lemma. Let π : Ck+1 \ {0} → Pk be the canonical projection.
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Lemma 2.8. Let B be a ball in Cm and let f : B × Pk → B × Pk be a holomorphic family of
endomorphisms of Pk. Let K be a compact subset of O

(
B,Pk

)
. Then, after shrinking B, one may

associate to any probability measure N supported on K a positive, horizontal (m,m)-bidimensional

current W̃N on B×Ck+1 such that π⋆〈W̃N , πB , λ〉 = Nλ for every λ ∈ B. Moreover, W̃N depends
continuously on N .

Proof. Let (σi)1≤i≤N be holomorphic sections of π whose domains of definition Ωi cover Pk. Since
K is a normal family, we may shrink B so that for each γ ∈ K there exists at least one 1 ≤ i ≤ N
such that Γγ ⊂ B × Ωi. This allows to define a map

σ : K → O
(
B,Ck+1

)

γ 7→ σ(γ) := σl ◦ γ

where l := min{1 ≤ i ≤ N such that Γγ ⊂ B×Ωi}. Now, for any probability measure N supported
on K we set

W̃N :=
∫
J
[Γσ(γ)] dN (γ).

Then π⋆〈W̃N , πB , λ〉 = Nλ for every λ ∈ B by construction. 2

2.3. Continuity of Julia sets and equilibrium webs. In Section 5, we will want to compare
the holomorphic motions of the measures (µλ)λ∈M with the continuity of their supports Jλ in
the Hausdorff sense. To this purpose, we recall a few definitions. Let Comp⋆

(
Pk

)
be the set of

non-empty compact subsets of Pk endowed with the Hausdorff distance and let Kǫ denote the
ǫ-neighbourhood of K ∈ Comp⋆

(
Pk

)
. A map E :M → Comp⋆

(
Pk

)
is said upper semi continuous

(u.s.c) at λ0 ∈ M if for every ǫ > 0, one has E(λ) ⊂ (E(λ0))ǫ when λ is close enough to λ0. It
is lower semi continuous (l.s.c) at λ0 if for every ǫ > 0, one has E(λ0) ⊂ (E(λ))ǫ when λ is close
enough to λ0. For every A ⊂M × Pk we define (A)λ := A ∩ ({λ} × Pk).

The starting point about continuity of Julia sets stays on the following observations, see also
[DS3, exercises 2.52 and 2.53].

Proposition 2.9. Let f : M × Pk → M × Pk be a holomorphic family of endomorphisms of Pk.
The map λ 7→ Jλ from M to Comp⋆(Pk) is l.s.c. If f admits an equilibrium web M and WM is
the woven current

∫
J [Γγ ] dM(γ), then Jλ ⊂

(
suppWM

)
λ

and the map λ 7→
(
suppWM

)
λ

from M

to Comp⋆(Pk) is u.s.c.

Proof. The lower semi continuity of Jλ is a consequence of the existence of continuous local poten-
tials for µλ. Assume indeed that λ 7→ Jλ is not l.s.c at λ0. Then we may find ǫ > 0 and sequences
λn ∈ M , zn ∈ Jλ0 such that dPk(zn, Jλn

) ≥ ǫ. After taking a subsequence we may assume that
zn → z0 ∈ Jλ0 and B(z0,

ǫ
4 ) ⊂ B(zn,

ǫ
2 ) ⊂ B(z0, ǫ). If ǫ is small enough, the projection π : Ck+1 \

{0} → Pk admits a section σ on B(z0, 2ǫ) and the functions uλ(z) := G(λ, σ(z)) are local potentials
for the equilibrium measures, which means that the restriction of µλ to B(z0, 2ǫ) is the Monge-

Ampère mass (ddczuλ(z))
k
. Observe that, by the continuity of G, the potentials uλn

converge
locally uniformly to uλ0 . This implies that lim infn µλn

(
B(z0,

ǫ
4 )
)
≥ µλ0

(
B(z0,

ǫ
8 )
)
. The expected

contradiction follows: 0 < µλ0

(
B(z0,

ǫ
8 )
)
≤ lim infn µλn

(
B(z0,

ǫ
4 )
)
≤ lim infn µλn

(
B(zn,

ǫ
2 )
)
= 0.

The inclusion Jλ ⊂
(
suppWM

)
λ

follows directly from the fact that Jλ = suppµλ and µλ = Mλ =∫
J δγ(λ) dM(γ). The upper semi continuity of

(
suppWM

)
λ

is an elementary general topological

fact, see [Do, Proposition 2.1]. 2
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It is now easy to see that the existence of an equilibrium web implies that the Julia sets depend
continuously on the parameter.

Proposition 2.10. Let f :M × Pk →M × Pk be a holomorphic family of endomorphisms of Pk.
If f admits an equilibrium web then the map λ 7→ Jλ from M to Comp⋆

(
Pk

)
is continuous.

Proof. According to Proposition 2.9, it suffices to show that (suppWM)λ ⊂ Jλ. This follows from
the following lemma. 2

Lemma 2.11. Let f : M × Pk → M × Pk be a holomorphic family of endomorphisms of Pk.
Assume that f admits an equilibrium web M. If z0 /∈ Jλ0 then there exist ǫ > 0 and r0 > 0 such
that M{γ ∈ J : Γγ ∩ [B(λ0, ǫ)×B(z0, r0)] 6= ∅} = 0. Moreover µλ (B(z0, r0)) = 0 for every
λ ∈ B(λ0, ǫ).

Proof. Pick r0 > 0 such that µλ0 (B(z0, 2r0)) = 0. As suppM is a normal family, there exists
ǫ > 0 such that for any γ ∈ suppM:

Γγ ∩ [B(λ0, ǫ)×B(z0, r0)] 6= ∅ ⇒ γ(λ) ∈ B(z0, 2r0) for any λ ∈ B(λ0, ǫ).

Let α := M{γ ∈ J : Γγ ∩ [B(λ0, ǫ)×B(z0, r0)] 6= ∅}. Then, for any λ ∈ B(λ0, ǫ), we have

α ≤ M{γ ∈ J : γ(λ) ∈ B(z0, 2r0)} = µλ (B(z0, 2r0)) .

Applying this to λ0 yields α = 0 as desired. For every λ ∈ B(λ0, ǫ) we have µλ (B(z0, r0)) =
M{γ ∈ J : γ(λ) ∈ B(z0, r0)} ≤ α = 0. This completes the proof. 2

3. Stability and the sum of Lyapunov exponents

In this section we establish (A) ⇒ (B) ⇔ (E) of Theorem 1.1 and prove Theorem 1.6 and
Corollary 1.7. Formulas relating the critical dynamics with the sum of Lyapunov exponents are
at the heart of our approach. For a polynomial P of degree d, Przytycki [Prz] proved that the
Lyapunov exponent of the equilibrium measure satisfies

L(P ) =
∑

c∈CP

GP (c) + log d

where GP (z) = limn d
−n log+ |Pn(z)| is the dynamical Green function of P . This formula was

generalized by DeMarco [dM] for the Lyapunov exponent L(f) of a rational map f . In several
complex variables, Bedford-Jonsson [BJ] established an analogous formula for the sum of the
Lyapunov exponents of polynomials mappings. We use here an extended formula for holomorphic
endomorphisms of Pk obtained by Bassanelli-Berteloot, see [BB1, Theorem 4.1].

3.1. Formulas for the sum of Lyapunov exponents. To deal with this kind of formulas, the
right framework is that of equilibrium currents for holomorphic families of d-homogeneous non-
degenerate maps. It has been introduced by Pham [Pha] in the more general context of polynomial
like mappings (see also the lecture notes by Dinh and Sibony [DS2, section 2.5]).

Definition 3.1. Let F :M ×Ck+1 → M ×Ck+1 be a holomorphic family of d-homogeneous non-
degenerate maps where M is some m-dimensional complex connected manifold. Let E be a closed,
positive, horizontal current of bidimension (m,m) on M ×Ck+1. We say that E is an equilibrium
current for F if the slice 〈E , πM , λ〉 is equal to the equilibrium measure of Fλ for every λ ∈M .
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Equilibrium currents always exist, one may dynamically produce them and they do not detect bi-
furcations. For instance, Pham proved that the sequence of smooth forms

(
1

d(k+1)nF
n⋆

(
π⋆
Ck+1θ

) )
n

converges to such a current for any smooth probability measure θ on Ck+1. Note that such currents
are not unique when k > 1.

It is also possible to define equilibrium currents for families of endomorphisms of Pk by means
of Green functions. Let us briefly recall their construction. Consider a holomorphic family f :
M × Pk →M × Pk which admits a lift F :M × Ck+1 →M × Ck+1. The sequence

Gn(λ, z̃) :=
1

dn
log ‖Fnλ (z̃)‖

converges locally uniformly on M ×Ck+1 \ {0} to a function G which we call the Green function of
F . The function G is psh and Hölder continuous, see [BB1, section 1.2]. Let π : Ck+1 \ {0} → Pk

be the canonical projection and ωFS be the Fubini-Study form on Pk. The functions Gn induce
functions gn :M×Pk → R by setting gn(λ, z) := Gn(λ, z̃)−log ‖ z̃ ‖, for every z̃ satisfying π(z̃) = z.
We have:

1

d
f⋆

(
ddcλ,z gn + ωFS

)
= ddcλ,z gn+1 + ωFS .

We define similarly g(λ, z) := limn gn(λ, z), which is equal to G(λ, z̃)− log ‖ z̃ ‖, and set

EGreen :=
(
ddcλ,z g + ωFS

)k
.

This is a current of bidimension (m,m) and, since slicing commutes with the operators d, dc, the
measure 〈EGreen, πM , λ〉 is equal to the equilibrium measure of fλ for every λ ∈ M . The current
EGreen will play an important role in our study (see Proposition 3.7). We call it the Green equili-
brum current of f .

Before stating the results of this subsection, we fix a few notations. Let us set D := (k+1)(d−1).
The line bundle OPk(D) over Pk is seen as the quotient of

(
Ck+1 \ {0}

)
× C by the relation

(z̃, x) ≡ (uz̃, uDx) for every u ∈ C⋆ and its elements are denoted by [z̃, x]. We endow OPk(D) with
the canonical metric

‖[z̃, x]‖0 := e−D·log ‖z̃‖|x|

or, for any λ ∈M , with the metric

‖[z̃, x]‖λ := e−D·G(λ,z̃)|x|.

Let us set JF (λ, z̃) := det dz̃Fλ. Then we obtain a family of holomorphic sections of OPk(D) by
setting, for every z̃ ∈ Ck+1 \ {0}:

JsF (λ, π(z̃)) := [z̃, JF (λ, z̃)].

Observe that

‖JsF (λ, π(z̃)) ‖λ = e−D·G(λ,z̃)|JF (λ, z̃)|.(4)

The current Cf := ddcλ,z log ‖J
s
F (λ, z) ‖0 is the current of integration on Cf taking account the

topological multiplicities of f , its bidimension is equal to (κ, κ) where κ := k +m− 1.
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Theorem 3.2. (Bassanelli-Berteloot) Let f : M × Pk → M × Pk be a holomorphic family of
endomorphisms of Pk. Let L(λ) be the sum of the Lyapunov exponents of µλ. Then

ddcλL = πM⋆ (EGreen ∧Cf ) .

We end this subsection by explaining how Pham [Pha] obtained a more general formula. His
result holds for any equilibrium current of any family of polynomial-like maps, we state it in the
special case of non-degenerate homogeneous maps for sake of simplicity. Let us recall that for
such a family F , the function log |JF (λ, z̃)| is psh on M × Ck+1. Moreover, the sum of Lyapunov
exponents of Fλ with respect to its equilibrium measure νλ is given by

∫
Ck+1 log |JF (λ, z̃)| dνλ(z̃)

and is equal to L(λ) + log d where L(λ) is the sum of Lyapunov exponents of (fλ, µλ).

Theorem 3.3. (Pham) Let F :M×Ck+1 →M×Ck+1 be a holomorphic family of non-degenerate
d-homogeneous maps and let E be an equilibrium current for F . Then:

(1) the current log |JF | · E has locally finite mass,

(2) ddcλL = πM⋆

(
E ∧ ddcλ,z̃ log |JF |

)
.

To prove that ddcλL vanishes when repelling J-cycles move holomorphically (subsection 3.2), we
shall actually need the following formula for ddcλL whose proof follows Pham’s arguments.

Proposition 3.4. Let B be an open ball in Cm and let f : B × Pk → B × Pk be a holomorphic
family of endomorphisms of Pk. Assume that f admits an equilibrium web M. Then

ddcλL = πB⋆
(
W̃M ∧ ddcλ,z log ‖J

s
F (λ, π(z̃)) ‖λ

)

where W̃M is the (m,m)-bidimensional current on M × Ck+1 associated to M by Lemma 2.8.

Proof. We first check that for every λ ∈ B we have
∫

Ck+1

log ‖JsF (λ, π(z̃)) ‖λ 〈W̃M, πB , λ〉 = L(λ) + log d.(5)

Indeed, since π⋆〈W̃M, πB, λ〉 = µλ, we get
∫

Ck+1

log ‖JsF (λ, π(z̃)) ‖λ 〈W̃M, πB , λ〉 =

∫

Pk

log ‖JsF (λ, z) ‖λ µλ.

On the other hand, by Formula (4) and since Gλ identically vanishes on the support of the equi-
librium measure νλ of Fλ and π⋆νλ = µλ, we have

∫

Pk

log ‖JsF (λ, z) ‖λ µλ =

∫

Ck+1

log ‖JsF (λ, π(z̃)) ‖λ νλ

=

∫

Ck+1

log |JF (λ, z̃)| νλ = L(λ) + log d,

and the identity (5) follows.
Pham proved that u · R has locally finite mass for every psh function u and every horizontal

current R as soon as
∫
Ck+1 u(λ, ·) 〈R, πB , λ〉 6= −∞ for some λ ∈ M , see [Pha, theorem A.2]. It

thus follows from (5) that the current log ‖JsF (λ, π(z̃)) ‖λ · W̃M is well defined and that its ddcλ,z̃
is equal to W̃M ∧ ddcλ,z̃ log ‖J

s
F (λ, π(z̃)) ‖λ.
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We conclude by simple computation which relies on integration by parts (to make it rigourous
one should approximate log ‖JsF (λ, π(z̃)) ‖λ by smooth functions). Let ϕ be a (m− 1,m− 1) test
form on B. Then

〈πB⋆
(
W̃M ∧ ddcλ,z̃ log ‖J

s
F (λ, π(z̃)) ‖λ

)
, ϕ〉 = 〈 log ‖JsF (λ, π(z̃)) ‖λ · W̃M , ddcλ,z̃ (π

⋆
Bϕ) 〉

= 〈 W̃M ∧ π⋆B (ddcλϕ) , log ‖J
s
F (λ, π(z̃)) ‖λ 〉.

By the basic slicing formula (3) and the identity (5), this is equal to
∫

B

(
〈W̃M, πB, λ〉 log ‖J

s
F (λ, π(z̃)) ‖λ

)
ddcλϕ =

∫

B

Lddcλϕ = 〈ddcλL,ϕ〉.

This completes the proof. 2

3.2. Repelling cycles do not move holomorphically on supp ddcλL. The following proposition
will be used in subsection 3.5 to prove (A) ⇒ (B) of Theorem 1.1, namely that ddcλL = 0 on M if
the repelling J-cycles move holomorphically.

Proposition 3.5. Let f : M × Pk → M × Pk be a holomorphic family of endomorphisms of Pk

which admits an equilibrium web M which is given by M = limnMn where Γγ ∩ Cf = ∅ for any
γ ∈ ∪nsuppMn. Then ddcλL = 0 on M .

The fact that the holomorphic motion of the repelling J-cycles over M imply the pluriharmonic-
ity of L on M was proved in [BB1, Theorem 2.2] or [BDM, Theorem 1.5]. Proposition 3.5 actually
provides a more general result. The proof needs the following technical lemma.

Lemma 3.6. Let B be an open ball in Cm and let f : B×Pk → B×Pk be a holomorphic family of
endomorphisms of Pk. Let Z be a codimension 1 analytic subset of B× Pk which does not contain
any fiber {λ} × Pk. Assume that there exists an equilibrium web satisfying M = limnMn, where
Γγ ∩ Z = ∅ for every γ ∈ ∪nsuppMn and every n ≥ n0. Let B′ be a relatively compact ball in B.
Then, after shrinking B, there exist A > 0 and 0 < a < 1 such that

M{γ ∈ J : Γγ|B′ ∩ Zǫ 6= ∅} ≤ Aǫa

for every sufficently small ǫ > 0, where Zǫ is the ǫ-neighbourhood of Z.

Proof. We can assume that both B and B′ are centered at some λ0. After maybe shrink-
ing B we may find a finite collection (Ωi, hi)1≤i≤N where the Ωi are open and cover B × Pk,
the functions hi are holomorphic and bounded by 1 on Ωi and Z ∩ Ωi = {hi = 0} for any
1 ≤ i ≤ N . If ǫ is small enough, we may also assume that Zǫ ∩ Ωi ⊂ {|hi| < C1ǫ} and, by
Łojasiewicz inequality, that {|hi| < ǫ} ⊂ ZC2ǫτ for some constants C1, C2, τ > 0. Similarly, one
has Zǫ ∩

(
{λ0} × Pk

)
⊂

(
Z ∩

(
{λ0} × Pk

))
C3ǫτ0

for some constants C3, τ0 > 0.

Since M has compact support in J , we may shrink B again so that for any γ ∈ suppM there
exists at least one 1 ≤ i ≤ N such that Γγ ⊂ Ωi. We shall use the following claim.

Claim: there exists 0 < α ≤ 1 such that supB′ |φ| ≤ |φ(t0)|α for every t0 ∈ B′ and for every
holomorphic function φ : B → D∗.

Let γ ∈ suppM such that Γγ ∩ Z = ∅ and Γγ|B′ ∩ Zǫ 6= ∅. Applying the Claim to hi ◦ γ with
Γγ ⊂ Ωi we obtain that Γγ|B′ ⊂ ZC4ǫτα for some constant C4 > 0.
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On the other hand, by our assumption on the approximation by Mn, Hurwitz lemma implies that
either Γγ ⊂ Z or Γγ ∩ Z = ∅ for any γ ∈ suppM. We thus have

M{γ ∈ J : Γγ|B′ ∩ Zǫ 6= ∅} ≤ M{γ ∈ J : Γγ|B′ ⊂ ZC4ǫτα} ≤

M{γ ∈ J : (λ0, γ(λ0)) ∈ ZC4ǫτα} = µλ0

(
ZC4ǫτα ∩

(
{λ0} × Pk

))
≤

µλ0

[(
Z ∩

(
{λ0} × Pk

))
C3(C4ǫατ)τ0

]
≤ Aǫa

where the last estimate is due to the fact that µλ0 has Hölder-continuous local potentials and
Z ∩

(
{λ0} × Pk

)
is a proper analytic subset of Pk.

It remains to prove the Claim. Let G := {ϕ ∈ O(B,H) : ϕ(s) = −1 for some s ∈ B′} where
H := {ℜz < 0} is the left half plane. Then G is compact for the topology of local uniform conver-
gence, and thus the quantity (−α) := supϕ∈G sups∈B′ ℜϕ(s) satisfies −1 ≤ −α < 0. Let t0 ∈ B′

and φ : B → D∗ be holomorphic. After a rotation in D∗ we may assume that |φ(t0)| = φ(t0) ∈]0, 1[.
Let ϕ : B → H be the lift of φ by the exponential map, which satisfies ϕ(t0) = logφ(t0) ∈]−∞, 0[.
Then ϕ0(t) := −ϕ(t) : ϕ(t0) belongs to G and thus ℜ(ϕ0) ≤ −α on B′. This is the desired estimate
since |φ| = eℜϕ ≤ eα logφ(t0) = |φ(t0)|α. 2

Proof of Proposition 3.5: The problem is local and we may therefore take for M a ball
B ⊂ Cm and assume that f : B × Pk → B × Pk admits a lifted family F : B × Ck+1 → B × Ck+1

of d-homogeneous non-degenerate maps. We will apply Lemma 3.6 with Z = Cf . Let B′ be any
relatively compact ball contained in B.

After shrinking B we may use Lemma 2.8 and associate to M the following horizontal curent
on B × Ck+1

W̃M =

∫

J

[Γσ(γ)] dM(γ).

According to Proposition 3.4, one has

ddcλL = πB⋆
(
W̃M ∧ ddcλ,z̃ log ‖J

s
F (λ, π(z̃)) ‖λ

)
.

Using ‖JsF (λ, π(z̃)) ‖λ = e−D·G(λ,z̃)|JF (λ, z̃)| (see Formula (4)), and the fact that the functions L
and G are psh, we obtain

0 ≤ ddcλL = πB⋆
(
W̃M ∧ ddcλ,z̃ log |JF |

)
−DπB⋆

(
W̃M ∧ ddcλ,z̃G

)

≤ πB⋆
(
W̃M ∧ ddcλ,z̃ log |JF |

)
.

Hence it suffices to show that the current log |JF | W̃M restricted to B′ × Ck+1 is ddcλ,z̃ closed.

For ǫ < 1 we set logǫ := χǫ◦ log where χǫ is a convex, smooth, increasing function on R such that
χǫ(x) = x if x ≥ log ǫ and χǫ(−∞) = 2 log ǫ. Then logǫ |JF | is a decreasing family (when ǫ → 0)

of smooth psh functions which converges to log |JF |. As limǫ→0 logǫ |JF | W̃M = log |JF | W̃M we

will actually deal with logǫ |JF | W̃M.
To this purpose we set Uǫ := {|JF | < ǫ}, SM,ǫ := {γ ∈ suppM : Γσ(γ)|B′ ∩Uǫ 6= ∅} and decompose

W̃M as:

W̃M = W̃M,ǫ + W̃ ⋆
M,ǫ
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where W̃M,ǫ :=
∫
J
[Γσ(γ)]1SM,ǫ

dM(γ) and W̃ ⋆
M,ǫ := W̃M − W̃M,ǫ. Then

logǫ |JF | W̃M = logǫ |JF | W̃M,ǫ + logǫ |JF | W̃
⋆
M,ǫ

and, by construction, the current logǫ |JF | W̃
⋆
M,ǫ|B′×Ck+1 is ddcλ,z̃-closed since logǫ |JF | = log |JF |

is pluriharmonic on the graphs Γγ which do not intersect Uǫ. It thus remains to check that

limǫ logǫ |JF | W̃M,ǫ = 0. This follows from the estimate

‖ logǫ |JF | W̃M,ǫ‖ . | log ǫ|M (SM,ǫ) . ǫa| log ǫ|

where the last inequality is obtained by observing that there exist b, β > 0 such that SM,ǫ ⊂ {γ ∈
J : Γγ|B′ ∩ (Cf )bǫβ 6= ∅} and applying Lemma 3.6. 2

3.3. Misiurewicz parameters belong to supp ddcλL. We establish here the following result.

Proposition 3.7. Let f : M × Pk → M × Pk be a holomorphic family of endomorphisms of Pk.
Then the Misiurewicz parameters belong to the support of ddcλL.

Proof. If λ0 ∈ M is a Misiurewicz parameter then, by definition, there exists a holomorphic map
γ from a neighbourhood of λ0 into Pk such that:

1) γ(λ) ∈ Jλ and is a repelling p0-periodic point of fλ for some p0 ≥ 1,
2) (λ0, γ(λ0)) ∈ fn0(Cf ) for some n0 ≥ 1,
3) the graph Γγ of γ is not contained in fn0(Cf ).

Without loss of generality we may assume that p0 = 1 and that M is a disc Dρ ⊂ C centered
at λ0 = 0 with radius ρ. Moreover, conjugating by (λ, z) 7→ (λ, Tγ(λ)(z)) where Tγ(λ) is a suitable

family of linear automorphisms of Pk ensures that γ is constant equal to z1 := γ(0). Let us denote
by Br a ball centered at z1 and of radius r. Taking ρ and r sufficiently small finally allows us to
suppose that:

(i) f is injective and uniformly expanding on Dρ ×Br: there exists K > 1 such that

∀(λ, z) ∈ Dρ ×Br, dPk (f(λ, z), f(λ, z1)) ≥ KdPk(z, z1)

(ii) (λ, z1) ∈ fn0(Cf ) ⇔ λ = 0.

The fact that γ(λ) ∈ Jλ is crucial but will only be used at the very end of the proof.

We have to show that 〈ddcλL, 1Dǫ
〉 > 0 for some 0 < ǫ < ρ. To this purpose, we will use

the formula ddcλL = (πDρ
)⋆

((
ddcλ,zg + ω

)k
∧Cf

)
given by Theorem 3.2, where ω := ωFS .

Let (gn)n be a sequence of smooth functions on Pk which converges uniformly to g and satis-
fies 1

df
⋆(ddcλ,zgn + ω) = ddcλ,zgn+1 + ω (see subsection 3.1). We shall proceed in three steps.

First step: 〈ddcλL, 1Dǫ
〉 ≥ d−n0k〈[fn0(Cf )] ∧

(
ddcλ,zg + ω

)k
, 1Dǫ×Br

〉.

Pick (0, z0) ∈ Cf such that fn0(0, z0) = (0, z1). After reducing ǫ and r, we may find a neigh-
bourhood U of (0, z0) such that the map fn0 : U → Dǫ×Br is proper. According to Theorem 3.2,
we have

〈ddcλL, 1Dǫ
〉 = 〈

(
ddcλ,zg + ω

)k
∧Cf , 1Dǫ

◦ πDρ
〉 ≥ 〈

(
ddcλ,zg + ω

)k
∧ [Cf ], 1U 〉.
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Using the smooth approximations gn, we get

〈
(
ddcλ,zg + ω

)k
∧ [Cf ], 1U 〉 = lim

n
〈
(
ddcλ,zgn+n0 + ω

)k
∧ [Cf ], 1U 〉

= lim
n
d−n0k〈1U · [Cf ], (f

n0)⋆
(
ddcλ,zgn + ω

)k
〉

= lim
n
d−n0k〈(fn0)⋆ (1U · [Cf ]) ,

(
ddcλ,zgn + ω

)k
〉.

Now, as fn0 : U → Dǫ × Br is proper, one has (fn0)⋆ (1U [Cf ]) ≥ 1Dǫ×Br
[fn0(Cf )] which, since

ddcλ,zgn + ω is positive, yields

〈ddcλL, 1Dǫ
〉 ≥ lim

n
d−n0k〈1Dǫ×Br

[fn0(Cf )],
(
ddcλ,zgn + ω

)k
〉

≥ lim
n
d−n0k〈

(
ddcλ,zgn + ω

)k
∧ [fn0(Cf )], 1Dǫ×Br

〉.

The desired estimate follows by uniform convergence of gn to g.

Second step: Let A0 := 1Dǫ×Br
[fn0(Cf )] and Ap+1 := 1Dǫ×Br

f⋆(Ap). Then

‖Ap ∧
(
ddcλ,zg + ω

)k
‖ = dpk‖

(
1Dǫ×Br

◦ fp
)
A0 ∧

(
ddcλ,zg + ω

)k
‖

≤ dpk‖A0 ∧
(
ddcλ,zg + ω

)k
‖.

We use again the smooth approximations gn. Then:

‖Ap+1 ∧
(
ddcλ,zgn + ω

)k
‖ = 〈1Dǫ×Br

f⋆(Ap),
(
ddcλ,zgn + ω

)k
〉

= 〈Ap, f
⋆
(
1Dǫ×Br

(
ddcλ,zgn + ω

)k)
〉

= dk〈Ap, 1Dǫ×Br
◦ f

(
ddcλ,zgn+1 + ω

)k
〉

= dk〈Ap ∧
(
ddcλ,zgn+1 + ω

)k
, 1Dǫ×Br

◦ f〉

= dk‖
(
1Dǫ×Br

◦ f
)
Ap ∧

(
ddcλ,zgn+1 + ω

)k
‖.

Taking the limits when n tends to infinity yields the conclusion.

Third step: 〈ddcλL, 1Dǫ
〉 > 0.

By combining the two former steps, one gets:

d(p+n0)k〈ddcλL, 1Dǫ
〉 ≥ ‖Ap ∧

(
ddcλ,zg + ω

)k
‖.(6)

By (i) and (ii), f is uniformly expanding on Dρ ×Br and (suppA0) ∩ (Dρ × {z1}) = {(0, z1)}.
Thus suppAp ⊂ Dǫp × Br for some ǫp → 0. Let us momentarily admit that there exists m > 0
such that

(7) Ap → m [{0} ×Br].

We then deduce from (6) that, for p large enough, one has:

d(p+n0)k〈ddcλL, 1Dǫ
〉 ≥

m

2

∥∥∥[{0} ×Br] ∧
(
ddcλ,zg + ω

)k∥∥∥ .
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We conclude by using the fact that z1 ∈ J0: the right hand side is equal to

m

2

∫

Br

(ddczg(0, z) + ω)
k
=
m

2
µ0(Br) > 0.

To complete the proof it remains to establish (7). Let us denote V := Dρ × Br and V ′ := f(V ).
By assumption f : V → V ′ is a biholomorphism whose inverse will be denoted by h : V ′ → V .
According to (i), V ⊂ V ′ and (h|V )

p
converges to (λ, z) 7→ (λ, z1). We now use (ii). After shrinking

ρ and r, we may find a Weierstrass polynomial

ψ(λ, z) := λm + αm−1(z)λ
m−1 + · · ·+ α0(z)

such that αj(z1) = 0 for 0 ≤ j ≤ m− 1 and fn0 (Cf ) ∩ (Dρ ×Br) = {ψ = 0}. Observe now that
A0 = 1V dd

c
λ,z log |ψ| and that

A1 = 1V f⋆A0 = 1V h
⋆A0 = 1V (1V ◦ h)ddcλ,z log |ψ ◦ h| = 1V dd

c
λ,z log |ψ ◦ h|,

where the last equality comes from h(V ) ⊂ V . Similarly we have Ap = 1V dd
c
λ,z log |ψ ◦ (h|V )

p |

and the conclusion follows since ψ ◦ (h|V )
p
(λ, z) → λm. 2

3.4. Misiurewicz parameters are dense in supp ddcλL. We start with the following proposition;
the statement is local since it is based on holomorphic motion of hyperbolic sets.

Proposition 3.8. Let f : B × Pk → B × Pk be a holomorphic family of endomorphisms of Pk

where B is a ball centered at the origin in Cm. If there is no Misiurewicz parameter in B then,
after shrinking B, there exists γ ∈ J such that Γγ does not intersect the post-critical set of f .

Every hyperbolic set admits a holomorphic motion which preserves repelling cycles (see subsec-
tion A.2). We need a more precise result concerning the size of such sets and the position of their
motions with respect to Julia sets. Here Br denotes a ball centered at the origin in Cm and of
radius r.

Theorem 3.9. Let f : B × Pk → B × Pk be a holomorphic family of endomorphisms of Pk.
There exist an integer N , a compact hyperbolic set E0 ⊂ J0 for fN0 and a holomorphic motion
h : Br × E0 → Pk for some 0 < r < 1 such that:

(1) the repelling periodic points of fN0 are dense in E0 and E0 is not contained in the post-
critical set of fN0 ,

(2) hλ(z) ∈ Jλ for every λ ∈ Br and every z ∈ E0,
(3) if z is periodic repelling for fN0 then hλ(z) is periodic repelling for fNλ .

The proof of this result requires a few tools. To create hyperbolic sets, we use a classical device
based on the following proposition which is a consequence of [BrDv1] (see also [BDM]). For any
endomorphism f0 of Pk and every A ⊂ Pk, n ≥ 1 and ρ > 0, we denote by Cn(A, ρ) the set of
inverse branches gi of fn0 defined on A and satisfying gi(A) ⊂ A and Lip gi ≤ ρ.

Proposition 3.10. Let f0 be an endomorphism of Pk of degree d. For every ρ > 0 there exist a
closed ball A ⊂ Pk centered on Jf0 and α > 0 such that CardCn(A, ρ) ≥ αdkn.

To control the size of hyperbolic sets, we use an entropy argument. Our key tool is the following
result which is due to Briend-Duval [BrDv2], de Thélin [dT] and Dinh [Di3] (see also [DS3] Corollary
1.117).



18 F. BERTELOOT, F. BIANCHI, AND C. DUPONT

Theorem 3.11. Let g be an endomorphism of Pk of degree d. Let κ be an ergodic g-invariant
measure with entropy hκ > (k − 1) log d. Then κ gives no mass to analytic subsets of dimension
≤ k − 1 and the support of κ is included in the Julia set of g.

Proof of Theorem 3.9: Let ρ < 1 and A be a closed ball provided by Proposition 3.10. Let
us fix N large enough such that N ′ := CardCN (A, ρ) > d(k−1)N . We denote by g1, . . . , gN ′ the
elements of CN (A, ρ). Let E0 := ∩k≥1Ek, where

Ek :=
{
gi1 ◦ . . . ◦ gik(A) : (i1, . . . , ik) ∈ {1, . . . , N ′}k

}
.

Let Σ := {1, . . . , N ′}N
∗

endowed with the product metric and z be a fixed point in A ∩ J0, for
instance the center of A. The map ω : Σ → E0 defined by (i1, i2, . . .) 7→ limk→∞ gi1 ◦ . . . ◦ gik(z)
is a homeomorphism satisfying fN ◦ω = ω ◦ s, where s is the left shift acting on Σ. We take for κ
the image by ω of the uniform product measure on Σ: this is a fN -invariant ergodic measure with
entropy hκ = logN ′ > (k − 1) log dn, with support E0.

By construction E0 ⊂ Jf0 . Indeed, E0 = { limk→∞ gi1 ◦ . . . ◦ gik(z) : (i1, i2, . . .) ∈ Σ } and Jf0
is a closed fN0 -invariant set. Also, repelling cycles of fN0 are dense in E0. According to Theorem
3.11, E0 = suppκ is not contained in the countable union of analytic subsets ∪n≥1f

n
0 (Cf0). The

set E0 is hyperbolic for fN0 since |(dfN0 )−1|−1 > 1
ρ > 1 on E0 and thus there exists a holomorphic

motion h : Br × E0 → Pk which preserves repelling cycles (see Theorem A.4). It remains to show
hλ(E0) ⊂ Jfλ . For that purpose we use the fact that hλ : E0 → Pk is a continuous injective
mapping satisfying hλ ◦ fN0 = fNλ ◦ hλ on E0. Then (hλ)∗κ is a fNλ -invariant ergodic measure
whose support coincides with hλ(E0) and whose metric entropy equals hκ. Theorem 3.11 yields
hλ(E0) ⊂ Jfλ as desired. 2

We now use Theorem 3.9 to establish Proposition 3.8.

Proof of Proposition 3.8: Since fNλ and fλ have same equilibrium measures and post-
critical sets, we may assume that N = 1. Let E0 ⊂ J0 and r ∈]0, 1] provided by Theorem 3.9. Let
us fix z ∈ E0 \ ∪n≥1f

n
0 (Cf0 ) (see item 1).

Let us set γ(λ) := hλ(z). By item 2 we have γ ∈ J . Let us show that

Γγ ∩
(
∪n≥1 f

n(Cf )
)
= ∅.(8)

Assume to the contrary that there exists n0 ≥ 1 such that Γγ ∩ fn0(Cf ) 6= ∅. Note that
γ(0) /∈ fn0 (Cf ). By item 1, there exists a sequence (zp)p ⊂ E0 of f0-periodic repelling points
which converges to z. Items 2 and 3 assert that hλ(zp) ∈ Jλ and hλ(zp) is a fλ-periodic re-
pelling point for every λ ∈ Br. As h is continuous, λ 7→ hλ(zp) converges locally uniformly to
λ 7→ hλ(z) = γ(λ). Hence, for p large enough, the graph {(λ, hλ(zp)) λ ∈ Br} is not contained in
fn0(Cf ) (consider the parameter λ = 0) and, by Hurwitz’s lemma, there exists λp ∈ Br such that
(λp, hλp

(zp)) ∈ fn0(Cf ). The parameters λp are Misiurewicz, contradicting our assumption. 2

We can now prove Theorem 1.6 which, in particular, says that Misiurewicz parameters are dense
in the support of ddcL.

Proof of Theorem 1.6: By Proposition 3.7 there are no Misiurewicz parameters in M if
ddcλL ≡ 0 on M and thus (a) ⇒ (b). If there are no Misiurewicz parameters in M then, by
Propositions 3.8 and 2.3, for any parameter λ one an find an open open ball B centered at λ such
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that the restriction f |B×Pk admits an equilibrium web M = limnMn satisfying Γγ ∩ Cf = ∅ for
any γ ∈ ∪nsuppMn. Thus (b) ⇒ (c). Finally, (c) ⇒ (a) follows from Proposition 3.5. 2

3.5. Proofs of part of Theorem 1.1 and Corollary 1.7. Let f : M × Pk → M × Pk be a
holomorphic family of endomorphisms of Pk. We first establish the implication (A) ⇒ (B) in
Theorem 1.1. If the repelling J-cycles of f move holomorphically then, using the second assertion
of Proposition 2.3, one gets an equilibrium web M of (µλ)λ∈M such that M = limnMn and
Γγ ∩Cf = ∅ for any γ ∈ ∪nsuppMn. By Proposition 3.5, this implies that ddcλL ≡ 0 on M . This
justifies (A) ⇒ (B). The following proposition is in the spirit of the proposition 1.26 of [DS3]
concerning the Julia set of a single endomorphism of Pk, it implies the equivalence (B) ⇔ (E).

Proposition 3.12. Let B be an open ball in Cm and let f : B × Pk → B × Pk be a holomorphic
family of endomorphisms of Pk of degree d. We endow B × Pk with the metric ddcλ|λ|

2 + ωFS and
denote | · |U the mass of currents in U × Pk. The following properties are equivalent.

(1) λ0 ∈ supp ddcλL.
(2) |EGreen ∧Cf |U > 0 for every neighbourhood U of λ0.
(3) lim infn d

−kn|(fn)∗Cf |U > 0 for every neighbourhood U of λ0.

(4) lim supn d
−(k−1)n|(fn)∗Cf |U = +∞ for every neighbourhood U of λ0.

Proof. The equivalence between 1. and 2. follows from Theorem 3.2, which asserts that ddcλL =
πB⋆ (EGreen ∧Cf ). The equivalence between 2. 3. and 4. come from Lemma 3.13 here below. 2

Lemma 3.13. There exists α = α(k,m) > 0 such that, for every compact subset U ⊂M :

|(fn)∗Cf |U = α dkn|EGreen ∧Cf |U +O(d(k−1)n).

Proof. Let us set κ := k +m− 1. Then

|(fn)∗Cf |U =

∫

U×Pk

(fn)∗Cf ∧ [ωFS + ddcλ|λ|
2]κ =

∫

U×Pk

Cf ∧ (fn)∗[ωFS + ddcλ|λ|
2]κ.

Using ωk+1
FS = 0, we obtain [ωFS + ddcλ|λ|

2]κ =
∑k

j=0 αj ω
j
FS ∧ (ddcλ|λ|

2)κ−j , where the αj ’s are
positive numbers. Since πM ◦ f = πM , we obtain

(fn)∗[ωFS + ddcλ|λ|
2]κ =

k∑

j=0

αj

(
(fn)∗ωjFS

)
∧ (ddcλ|λ|

2)κ−j .

Let T := ddcλ,zg + ωFS so that T k = EGreen. Using f∗T = dT we get (fn)∗(ωjFS) = (dnT −

ddcλ,zg ◦ f
n)j . Now, using the fact that g is bounded, by extracting the k-th term of the preceding

sum we obtain:

(fn)∗[ωFS + ddcλ|λ|
2]κ = αk d

kn T k ∧ (ddcλ|λ|
2)m−1 +O(d(k−1)n).

We set α := αk. This completes the proof of the lemma. 2

Proof of Corollary 1.7: By assumption, for every n ≥ 1 we have subsets Rn := {ρn,j : 1 ≤
j ≤ Nn} of J such that the ρn,j(λ) are repelling n-periodic points of fλ for every λ ∈ M . Note
that limn d

−knNn = 1. We define a sequence (Mn)n of F -invariant discrete probability measures

on J by setting Mn := 1
Nn

∑Nn

j=1 δρn,j(λ). According to the second assertion of Proposition 2.3,

(Mn)n converges to an equilibrium web M after taking a subsequence. Moreover, there exists a
compact subset K of J such that K ⊂ F (K) and suppMn ⊂ K for every n ≥ 1.
Let us now prove that M (Js) = 0. By the implication (A) ⇒ (B) of Theorem 1.1 we have
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ddcL = 0 and then Theorem 1.6 implies that M does not contain Misiurewicz parameters. We can
now see that for every k ∈ N and every γ ∈ suppM one has:

Γγ ∩ f
k(Cf ) 6= ∅ ⇒ Γγ ⊂ fk(Cf ).

Indeed, if this were not the case, by Hurwitz theorem, we could find some γ′ ∈ ∪nsuppMn such
that Γγ ∩ fk(Cf ) 6= ∅ and Γγ is not contained in fk(Cf ). When k = 0 this is clearly impossible
since γ′(λ) is a repelling cycle of fλ and when k ≥ 1, this is impossible because M does not contain
Misiurewicz parameter.
So, fixing any λ0 ∈M , we get

M
(
{γ ∈ J : Γγ ∩

(
∪k≥0f

k(Cf )
)
6= ∅}

)
= M

(
{γ ∈ J : Γγ ⊂

(
∪k≥0f

k(Cf )
)
}
)
≤

M
(
{γ ∈ J : (λ0, γ(λ0)) ∈

(
∪k≥0f

k(Cf )
)
}
)
= µλ0

(
∪k≥0f

k
λ0
(Cfλ0

)
)
= 0

where the two last equalities come from pλ0⋆ (M) = µλ0 and the fact that µλ0 does not charge
pluripolar sets in Pk. The estimate M (Js) = 0 follows from the F -invariance of M. Finally,
Proposition 2.4 shows that there exists an ergodic equilibrium web M0 such that M0 (Js) = 0. 2

4. From equilibrium webs to equilibrium laminations

Our goal here is to establish the implication (A) ⇒ (D) in Theorem 1.1. We prove the following
more precise result.

Theorem 4.1. Let M be a simply connected complex manifold and f : M × Pk → M × Pk be a
holomorphic family of endomorphisms of Pk of degree d ≥ 2. If the repelling J-cycles of f move
holomorphically over M or if f admits an acritical and ergodic equilibrium web then there exists an
equilibrium lamination L for f . Moreover, f admits a unique equilibrium web M and M (L) = 1.

Given an acritical and ergodic equilibrium web M of f , our strategy will consist in first proving
that the iterated inverse branches in (J ,F ,M) are exponentially contracting and then exploit
this property to extract an equilibrium lamination out of the support of M. By totally different
methods, Berger and Dujardin ([BeDu]) have recently build measurable holomorphic motions in
the context of polynomial automorphisms of C2.

4.1. On the rate of contraction of iterated inverse branches in (J ,F ,M). We explain
here how certain stochastic properties of the system (J ,F ,M) allow to control the rate of con-
traction of the iterated inverse branches of F (see Proposition 4.2). Let us stress that the material
presented in this subsection is not original. We simply adapt to the context of (J ,F ,M) the tools
which have been first introduced in [BrDv1] by Briend-Duval for the case of a single holomorphic
endomorphism of Pk. New arguments however will be inroduced in subsection 4.2.

Since all our statements here are local we may assume that the parameter space M is an open
subset of Cm which we endow with the euclidean norm.

To study the inverse branches of the map F , it is convenient to transform the system (J ,F ,M)
into an injective one. This is possible using a classical construction called the natural extension
which we now describe (we refer to [CFS] page 240 for more details).

Recall that K := suppM is a compact subset of J and that M (Js) = 0. Setting X := K \ Js,
it is not difficult to check that the map F : X → X is onto. We may therefore construct the

natural extension
(
X̂ , F̂ ,M̂

)
of the system (X ,F ,M) in the following way. An element of X̂
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is a bi-infinite sequence γ̂ := (· · · , γ−j , γ−j+1, · · · , γ−1, γ0, γ1, · · · ) of elements γj ∈ X such that

F(γ−j) = γ−j+1 and one defines the map F̂ : X̂ → X̂ by setting

F̂(γ̂) := (· · · F(γj),F(γ−j+1) · · · ).

The map F̂ corresponds to the shift operator and is clearly bijective. There exists a unique

measure M̂ on X̂ such that

(πj)⋆

(
M̂

)
= M

for any projection πj : X̂ → X̂ given by πj(γ̂) = γ−j . The ergodicity of M implies the ergodicity

of M̂. We have thus obtained an invertible and ergodic dynamical system
(
X̂ , F̂ ,M̂

)
.

For every γ ∈ J whose graph Γγ does not meet the critical set of f , we denote by fγ the
injective map which is induced by f on some neighbourhood of Γγ and by f−1

γ the inverse branch

of fγ which is defined on some neighbourhood of ΓF(γ). Thus, given γ̂ ∈ X̂ and n ∈ N we may

define the iterated inverse branch f−n
γ̂ of f along γ̂ and of depth n by

f−n
γ̂ := f−1

γ−n
◦ · · · ◦ f−1

γ−2
◦ f−1

γ−1
.

Let us stress that f−n
γ̂ is defined on a neighbourhood of Γγ0 with values in a neighbourhood

of Γγ−n
. Moreover, since only a finite number of components of the grand critical orbit of f are

involved for defining f−n
γ̂ , we may always shrink the parameter space M to some Ω ⋐ M so that

the domain of definition of f−n
γ̂ for a fixed γ̂ contains a tubular neighbourhood of Γγ0 ∩

(
Ω× Pk

)

of the form
TΩ(γ0, η) := {(λ, z) ∈ Ω× Pk : dPk(z, γ0(λ)) < η}.

Our goal is to control the size of f−n
γ̂ (TU0(γ0, η̂p(γ̂))) for suitable η̂p(γ̂) > 0 and U0 ⊂ M . We

will now explain how this boils down to estimating some kind of Lyapunov exponent. This requires
however to first introduce a few more notations.

To start we need to fix sets of holomorphic charts with bounded distorsions on Pk. For any
τ > 0, there exists a covering Pk = ∪Ni=1Vi by open sets and a collection of holomorphic maps

ψi : Vi ×BCk(0, R0) → Pk

such that ψi,x := ψi(x, ·) is a chart of Pk satisfying ψi,x(0) = x and

e−τ/2|z − z′| ≤ dPk (ψi,x(z), ψi,x(z
′)) ≤ eτ/2|z − z′|(9)

for every (x, z) ∈ Vi ×BCk(0, R0) and every 1 ≤ i ≤ N .

We will now use these holomorphic charts to express the restrictions of fn on suitable neighbour-
hoods of graphs Γγ . Let us fix λ0 in M . Since the family K = suppM is locally equicontinuous,
there exists a relatively compact open ball W0 centered at λ0 in M such that:

∀γ ∈ K, ∃i ∈ {1, 2, · · · , N} such that γ(λ) ∈ Vi for all λ ∈W0.

For all γ ∈ K we set

i(γ) := inf{1 ≤ i ≤ N : γ(λ) ∈ Vi for all λ ∈W0}.

Then, for every n ≥ 1 there exists Rn ∈]0, R0] such that the maps Fnγ(λ) given by

Fnγ(λ) :=
(
ψi(Fn(γ)),Fn(γ)(λ)

)−1
◦ fnλ ◦ ψi(γ),γ(λ)(10)
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are well defined and holomorphic on on a fixed neighbourhood of W0×BCk(0, Rn) for every γ ∈ K.
This follows immediately from the uniform continuity of fn on W0 × Pk.

As Fnγ(λ) is locally invertible at the origin when γ /∈ Js, we may now define functions un on

X ×W0 by setting
un(γ, λ) := log ‖(DFnγ(λ)(0))

−1‖.

Let us stress that (DFnγ(λ)(0))
−1 depends holomorphically on λ ∈W0.

From now on we consider three open balls U0 ⋐ V0 ⋐W0 centered at λ0 in M . Let us introduce

the function rn on X and ûn on X̂ by setting

rn(γ) := e−2 supλ∈U0
un(γ,λ) and ûn(γ̂) := sup

λ∈U0

un(γ0, λ) = −
1

2n
log rn(γ0).(11)

We may now state the announced result.

Proposition 4.2. Let f :M × Pk →M × Pk be a holomorphic family of endomorphisms of Pk of
degree d ≥ 2 which admits an acritical and ergodic equilibrium web M. Assume that the functions

ûn are M̂-integrable and that limn
1
n

∫
X̂
ûn dM̂ = L for some L ≤ − 1

2 log d.

Then there exist p ≥ 1, a Borel subset Ŷ ⊂ X̂ such that M̂(Ŷ) = 1, a measurable function

η̂p : Ŷ →]0, 1] and a constant A > 0 which satisfy the following properties.

For every γ̂ ∈ Ŷ and every n ∈ pN⋆ the iterated inverse branch f−n
γ̂ is defined on the tubular

neighbourhood TU0(γ0, η̂p(γ̂)) of Γγ0 ∩ (U0 × Pk) and

f−n
γ̂ (TU0(γ0, η̂p(γ̂))) ⊂ TU0(γ−n, e

−nA).

Moreover, the map f−n
γ̂ is Lipschitz with Lip f−n

γ̂ ≤ l̂p(γ̂)e
−nA where l̂p(γ̂) ≥ 1.

The proof of Proposition 4.2 follows Briend-Duval [BrDv1] and is given in the Appendix.

4.2. Estimating a Lyapunov exponent. The main result of this subsection is as follows; it
asserts that the assumptions of Proposition 4.2 are satisfied.

Proposition 4.3. Let f :M × Pk →M × Pk be a holomorphic family of endomorphisms of Pk of
degree d ≥ 2 which admits an acritical and ergodic equilibrium web M. Then the functions ûn are

M̂-integrable, there exists a constant L ≤ − 1
2 log d such that

lim
n

1

n

∫

X̂

ûn dM̂ = L

and limn
1
n ûn(γ̂) = L for M̂-almost every γ̂ ∈ X .

Note that the constant L may be considered as a bound for a Lyapunov exponent of the system
(J ,F ,M). The combination of Propositions 4.2 and 4.3 will allow us to prove Theorem 4.1.

We keep here the assumptions and the notations introduced in the previous subsection. In the
next Lemma, we list some basic properties of the functions un and ûn.

Lemma 4.4. Let U0 ⋐ V0 ⋐ W0 be open balls centered at λ0 in M . Let χ1(λ) be the smallest
Lyapunov exponent of the system (Jλ, fλ, µλ). The functions un and ûn satisfy the following
properties.
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1) un(γ, ·) is psh on W0 for every γ ∈ X .

2) The sequence (ûn)n is subadditive on X̂ i.e. ûm+n ≤ ûn + ûm ◦ F̂n.
3) For any fixed λ ∈ W0, we have limn

1
nun(γ, λ) = −χ1(λ) for M-almost every γ ∈ X .

4) For M-almost every γ ∈ X we have limn
1
nun(γ, λ) = −χ1(λ) for Lebesgue-almost every

λ ∈ W0.

Proof. 1) When γ ∈ X is fixed the function un(γ, ·) is clearly continuous on W0 and un(γ, λ) =
sup‖e‖=1 log ‖(DF

n
γ(λ)(0))

−1 · e‖. To see that un(γ, ·) is psh it thus suffices to recall that λ 7→

log ‖(DFnγ(λ)(0))
−1 · e‖ is psh for each unit vector e ∈ Ck.

2) Let γ ∈ X and m,n ≥ 1. It follows immediately from (10) that
(
DFm+n

γ(λ) (0)
)−1

=
(
DFnγ(λ)(0)

)−1

◦
(
DFmFn(γ)(λ)(0)

)−1

∀λ ∈ W0.(12)

Thus, if γ̂ ∈ X̂ we have

ûm+n(γ̂) ≤ log sup
λ∈U0

(‖(DFnγ0(λ)(0))
−1‖ ‖(DFmFn(γ0)(λ)

(0))−1‖)

≤ log sup
λ∈U0

‖(DFnγ0(λ)(0))
−1‖+ log sup

λ∈U0

‖(DFmFn(γ0)(λ)
(0))−1‖ = ûn(γ̂) + ûm(F̂

n(γ̂)).

3) By Oseledec Theorem, the subset Jλ,1 of Jλ \ Cfλ defined by

Jλ,1 := {x ∈ Jλ \ Cfλ : limn
1
n log ‖(Dfnλ )

−1
x ‖ = −χ1(λ)}

has full µλ measure. As pλ⋆ (M) = µλ, this implies that γ(λ) ∈ Jλ,1 for M-almost every γ in X .
Then the assertion follows, using (9).

4) Let us denote by L the Lebesgue measure on M . Let E be the measurable subset of X ×W0

given by

E := {(γ, λ) ∈ X ×W0 : lim
n

1

n
un(γ, λ) = −χ1(λ)}.

For every λ ∈W0 and every γ ∈ X we set

Eλ := {γ ∈ X : (γ, λ) ∈ E} and Eγ := {λ ∈ W0 : (γ, λ) ∈ E}.

We have to show that L(Eγ) = L(W0) for M-almost every γ ∈ X . This immediately follows from
Tonelli’s theorem: ∫

X

L(Eγ) dM(γ) =

∫

W0

M(Eλ) dL(λ) = L(W0)

since, according to the above third assertion, M(Eλ) = 1 for every λ ∈W0. 2

Our strategy is to transfer the estimates known for the system (Jλ0 , fλ0 , µλ0) to the system
(X ,F ,M). This is possible because the graphs Γγ for γ ∈ X must approach the critical set Cf
locally uniformly, a phenomenon which simply relies on the compactness of the closure of X and
the following basic property (see the Claim in subsection 3.2).

Fact There exist 0 < α ≤ 1 such that supV0
|ϕ| ≤ |ϕ(λ)|α for every λ ∈ V0 and every holomor-

phic function ϕ :W0 → C such that 0 < |ϕ| < 1.
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More specifically, the key uniformity property we need is given by the next lemma. In our
proofs, we shall denote the smallest singular value of an invertible linear map L of Ck by δ(L). Let
us recall that δ(L) = ‖L−1‖−1 and that δ(L)k ≤ |detL| ≤ δ(L)‖L‖k−1.

Lemma 4.5. Let U0,V0,W0 be as in Lemma 4.4. Then there exist α > 0 and c > 0 such that
1
nun(γ, λ) ≤

k
α

1
nun(γ, λ

′
0) + log c for every n ≥ 1, every γ ∈ X and every (λ′0, λ) ∈ V0 × V0.

Proof. By the compactness of X and V0, we get c1 := supγ∈X ,λ∈V0
‖DFnγ(λ)(0)‖

k−1 < +∞ and

thus |det(DF 1
γ(λ)(0))| ≤ c1δ(DFγ(λ)(0)) for every λ ∈ V0 and every γ ∈ X .

Then, as detDFnγ(λ)(0) =
∏n−1
j=0 detDFFj(γ)(0) and

∏n−1
j=0 δ(DFFj(γ)(0)) ≤ δ(DFnγ(λ)(0)) we get

|detDFnγ(λ)(0)| ≤ cn1 δ(DF
n
γ(λ)(0)); ∀γ ∈ X , ∀λ ∈ V0.(13)

Let us set c2 := supλ∈W0,γ∈X |detDFγ(λ)(0)|. When γ ∈ X , the holomorphic function ϕ(λ) :=
1
cn2

detDFnγ(λ)(0) is non vanishing and its modulus is bounded by 1 on W0. Applying the above

stated Fact to ϕ, we get 0 < α ≤ 1 (which only depends on V0 and W0) such that:

sup
λ∈V0

|detDFnγ(λ)(0)| ≤ c
n(1−α)
2 |detDFnγ(λ)(0)|

α; ∀n ≥ 1, ∀γ ∈ X , ∀λ ∈ V0.(14)

Using successively (14) and (13) we get for any λ, λ′0 ∈ V0
[
δ(DFnγ(λ′

0)
(0))

]k
≤ |detDFnγ(λ′

0)
(0))| ≤ c

n(1−α)
2 |detDFnγ(λ)(0)|

α ≤ c
n(1−α)
2 cnα1

[
δ(DFnγ(λ)(0))

]α
.

Then, applying log and multiplying by −1
n we get

k
1

n
un(γ, λ

′
0) ≥ α

1

n
un(γ, λ)− α(log c1 +

1− α

α
log c2)

which is the desired estimate with c := c1c
(1−α)/α
2 . 2

The next Lemma gathers the properties of (un)n which will be crucial to end the proof.

Lemma 4.6. Let U0,V0,W0 be as in Lemma 4.4. Then the following properties occur.

1) The sequence ( 1nun)n is uniformly bounded from below on X × V0.

2) The sequence
(
1
nun(γ, ·)

)
n

is uniformly bounded on V0 for M-almost every γ ∈ X .

3) The functions ûn are M̂-integrable.

Proof. 1) Using the properties of the smallest singular value we have

1

n
un(γ, λ) = −

1

n
log δ

(
DFnγ(λ)(0)

)
≥ −

1

nk
log |det

(
DFnγ(λ)(0)

)
|

= −
1

k


 1

n

n−1∑

j=0

log |detDFFj(γ)(λ)(0)|




and the assertion follows immediately from the definition and the continuity of Fγ(λ).

2) We have just seen that 1
nun(γ, ·) is uniformly bounded from below on V0. By the fourth as-

sertion of Lemma 4.4, for M-almost every γ ∈ X there exists λγ ∈ V0 such that limn
1
nun(γ, λγ) =

−χ1(λγ). On the other hand, by Lemma 4.5, we have 1
nun(γ, λ) ≤

k
α

1
nun(γ, λγ) + log c for every
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n ∈ N and every λ ∈ V0 and thus 1
nun(γ, ·) is uniformly bounded from above on V0.

3) By the above first assertion, we know that ûn is bounded from below. It thus suffices to show

that
∫
ûn(γ̂) dM̂(γ̂) < +∞. By Lemma 4.5 we have

∫
ûn(γ̂) dM̂(γ̂) ≤ n log c+

k

α

∫
un((π0(γ̂), λ0) dM̂(γ̂) = n log c+

k

α

∫
un(γ, λ0) dM(γ)

= n log c+
k

α

∫
log ‖(DFnγ(λ0)

(0))−1‖ dM(γ) = n log c−
k

α

∫
log δ(DFnγ(λ0)

(0)) dM(γ).

Using (13), we thus get
∫
ûn(γ̂) dM̂(γ̂) ≤ −

k

α

∫
log |det(DFnγ(λ0)

(0))| dM(γ) +
kn

α
log c1 + n log c

= −
k

α

∫
log |det(Dfnλ0

)γ(λ0)| dM(γ) + Cn = −
k

α

∫
log |det(Dfnλ0

)x| (dpλ0⋆M)(x) + Cn,

the conclusion follows from the integrability of log |det(Dfnλ0
)x| for pλ0⋆M = µλ0 , see [DS3]. 2

We are now ready to establish the main result of this subsection.

Proof of Proposition 4.3: We will apply Kingman subadditive ergodic theorem (see [Arn])

to the sequence (ûn)n. This is possible since the system (X̂ , F̂ ,M̂) is ergodic, the sequence (ûn)n
is subadditive (second assertion of Lemma 4.4) and û1 ∈ L1(M̂) (last assertion of Lemma 4.6).

According to this theorem, there exists L ∈ R such that limn
1
n ûn(γ̂) = L for M̂-almost every

γ̂ ∈ X̂ and limn
1
n

∫
X̂
ûn dM̂ = L. It remains to show that L ≤ − 1

2 log d.

Taking into account the fourth assertion of Lemma 4.4 and the second assertion of Lemma 4.6,
we may thus pick γ̂ ∈ χ̂ such that:

i) limn
1
n ûn(γ̂) = L,

ii) 1
nun(γ0, ·) is uniformly bounded on V0,

iii) limn
1
nun(γ0, λ) = −χ1(λ) for Lebesgue-almost every λ ∈ V0.

Assuming that L > − log d
2 , we will reach a contradiction with the fact that χ1(λ) ≥ log d

2 for
all λ (see [BrDv1] or [DS3]). Recalling that ûn(γ̂) = supλ∈U0

un(γ0, λ), there exist λnk
∈ U0 and

ǫ > 0 such that λnk
→ λ′0 ∈ U0 and 1

nk
unk

(γ0, λnk
) ≥ − log d

2 + ǫ. We may pick r > 0 such that

B(λnk
, r) ⊂ V0 for all k ∈ N. Then, by the subharmonicity of unk

(γ0, ·) on V0 (first assertion of
Lemma 4.4) we get:

− log d

2
+ ǫ ≤

unk
(γ0, λnk

)

nk
≤

1

|B(λnk
, r)|

∫

B(λnk
,r)

unk
(γ0, λ)

nk

which, by Lebesgue dominated convergence theorem, yields

− log d

2
+ ǫ ≤

1

|B(λ′0, r)|

∫

B(λ′
0,r)

−χ1(λ)

and contradicts the fact that χ1(λ) ≥
log d
2 for every λ. 2
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4.3. Proof of Theorem 4.1. According to Corollary 1.7, we only need to consider the case where
f admits an acritical and ergodic equilibrium web M0. Let K0 := suppM0.

Consider the set

L+ := {γ ∈ K0 \ Js : ∀γ′ ∈ K0, ∀k ∈ N,ΓFk(γ) ∩ Γγ′ 6= ∅ ⇒ Fk(γ) = γ′}

and assume that

M0

(
{γ ∈ K0 : ∃k ∈ N, ∃γ′ ∈ K0 s.t. ΓFk(γ) ∩ Γγ′ 6= ∅ and Fk(γ) 6= γ′}

)
= 0.(15)

By construction we have M0 (L+) = 1 and L+ satisfies the following properties:

1) L+ ⊂ J \ Js,
2) F (L+) ⊂ L+,
3) ∀γ, γ′ ∈ L+ : Γγ ∩ Γγ′ 6= ∅ ⇒ γ = γ′.

The set L := ∪m≥0F−m (L+) satisfies the same properties and moreover F : L → L is dk-to-1,
the existence of an equilibrium lamination L will thus follow from (15).

To prove (15), it is sufficent to show that for any fixed k ∈ N and any λ0 ∈ M there exists a
neighbourhood U0 of λ0 such that

M0

(
{γ ∈ K0 : ∃γ′ ∈ K0 s.t. ΓFk(γ) ∩ Γγ′ ∩

(
U0 × Pk

)
6= ∅ and Fk(γ) 6= γ′}

)
= 0.(16)

To this purpose, we shall work with the natural extension
(
X̂ , F̂ ,M̂0

)
of the system (X ,F ,M0)

and apply Proposition 4.2. We recall that, according to Proposition 4.3, all the assumptions of
Proposition 4.2 are satisfied. Let U0 be a neighbourhood of λ0 given by that proposition; we may
assume that U0 is simply connected and that U0 ⋐M . We recall that X ⊂ K0.

For any B ⊂ U0, we define the ramification functions RB by setting

RB(γ) := sup
γ′∈K0:Γγ′|B∩Γγ|B 6=∅

sup
B
dPk (γ(λ), γ′(λ)) , ∀γ ∈ J .

Let Ŷǫ := {γ̂ ∈ Ŷ : RU0(γk) > ǫ}, it then suffices to prove that M̂0

(
Ŷǫ

)
= 0 for every ǫ > 0 as it

follows from the following observation:

M0

(
{γ ∈ K0 : ∃γ′ ∈ K0 s.t. Γγk ∩ Γγ′ ∩

(
U0 × Pk

)
6= ∅ and γk 6= γ′}

)

= M0 ({γ ∈ K0 : RU0(γk) > 0}) = M0 ({γ ∈ X : RU0(γk) > 0})

= M̂0

(
{γ̂ ∈ Ŷ : RU0(γk) > 0}

)
= M̂0

(
∪s∈N∗ Ŷ 1

s

)
.

Let us proceed by contradiction and assume that M̂0

(
Ŷǫ

)
> 0 for some ǫ > 0. Owing to the

equicontinuity of X (we recall that X ⊂ suppM0) we may cover U0 with finitely many open sets
Bi ⊂ U0, say with 1 ≤ i ≤ N , such that

∀γ, γ′ ∈ X , ∀λ1 ∈ Bi : γ(λ1) = γ′(λ1) ⇒ sup
λ∈Bi

d (γ(λ), γ′(λ)) < ǫ.(17)

As RU0(γ) = 0 when max1≤i≤N RBi
(γ) = 0 (by analyticity we have γ = γ′ on U0 if γ = γ′ on

some Bi), there exists 1 ≤ j ≤ N and α > 0 such that:

M̂0

(
{γ̂ ∈ Ŷ : η̂p(γ̂k) > ǫ and RBj

(γk) > α}
)
> 0.
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Let us set Ŷǫ,j,α := {γ̂ ∈ Ŷ : η̂p(γ̂k) > ǫ and RBj
(γk) > α}. Let p be given by Proposition 4.2,

applying Poincaré recurrence theorem to F̂−p, we find γ̂ ∈ Ŷǫ,j,α and an increasing sequence of

integers (nq)q with nq ∈ pN such that F̂−nq (γ̂) ∈ Ŷǫ,j,α for every q ∈ N. In particular γ̂ ∈ Ŷǫ and
RBj

(γk−nq
) > α for every q ∈ N. We will reach a contradiction by establishing that

lim
m→+∞

RBi
(γk−mp) = 0, ∀i ∈ {1, · · · , N}, ∀γ̂ ∈ Ŷǫ.(18)

To this purpose we shall use Proposition 4.2 to show that RBi
(γk−n) ≤ e−nA when n ∈ pN and

γ̂ ∈ Ŷǫ. Let γ′ ∈ K0 such that γ′(λ1) = γk−n(λ1) for some λ1 ∈ Bi. Then (Fnγ′)(λ1) = γk(λ1)
and thus, according to (17), supλ∈Bi

d ((Fnγ′)(λ), γk(λ)) < ǫ < η̂p(γ̂k). This means that

ΓFnγ′ ∩
(
Bi × Pk

)
⊂ TBi

(γk, η̂p(γ̂k)) .(19)

Now, by Proposition 4.2, the inverse branch f−n
γ̂k

of fn is defined on the tube TU0 (γk, η̂p(γ̂k)) and

maps it biholomorphically into TU0

(
γk−n, e

−nA
)
. As Bi ⊂ U0, this yields:

f−n
γ̂k

(TBi
(γk, η̂p(γ̂k))) ⊂ TBi

(
γk−n, e

−nA
)
.(20)

By construction we have f−n
γ̂k

(Γγk) = Γγk−n
and thus f−n

γ̂k
((Fnγ′)(λ1)) = f−n

γ̂k
(γk(λ1)) = γk−n(λ1) =

γ′(λ1). This implies that f−n
γ̂k

(ΓFnγ′) = Γγ′ which in turns, by (19) and (20), implies that

supλ∈Bi
dPk(γ′(λ), γk−n(λ) ≤ e−nA. Then (18) follows and (16) is proved.

We finally prove the uniqueness assertion. Let us fix λ ∈ M and, for any Borel subset A of J ,
let us set Aλ := {γ(λ) : γ ∈ A}. Then, as A ⊂ p−1

λ (Aλ) we have

µλ(Aλ) = (pλ⋆M)(Aλ) = M
(
p−1
λ (Aλ)

)
≥ M(A)

for every equilibrium web M of f . On the other hand, it follows from (16) applied for k = 0 that

µλ(Aλ) = M0

(
p−1
λ (Aλ)

)
= M0(A).

We thus have M0(A) ≥ M(A) for any borelian subset A of J and this implies that the measures
M and M0 must coincide since both are probability measures on J . 2

5. Siegel discs and bifurcations

As it is well known, the Julia sets of any holomorphic family of rational maps of P1 depends
continuously on the parameter for the Hausdorff topology if and only if the family is stable. It is
worth emphasizing that discontinuities can be explained by the appearance of Siegel discs, see [Do].
We investigate this in higher dimension and, as a consequence, show that the existence of virtually
repelling Siegel periodic points in the Julia set (see Definitions 5.1 and 5.2) is an obstruction to
the existence of an equilibrium web. We finally exploit this fact to end the proof of Theorem 1.1.

5.1. Siegel discs as obstructions to stability. We define a notion of Siegel disc for endo-
morphisms of Pk and investigate how they behave with respect to Julia sets. In this subsection,
we endow Ck with the norm ‖z‖ := supi |zi| and set 1 ≤ q ≤ k − 1. We write z =: (z′, z′′)
where z′ := (z1, · · ·, zk−q) ∈ Ck−q and z′′ := (zk−q+1, · · ·, zk) ∈ Cq. We also set k′ := k − q,

eiθ0 := (eiθ0,k′+1 , · · · eiθ0,k) and eiθ0 · z′′ := (eiθ0,k′+1zk′+1, · · · , eiθ0,kzk).
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Definition 5.1. Let f0 be a holomorphic endomorphism of Pk. One says that z0 ∈ Pk is a Siegel
fixed point for f0 if f0 is holomorphically linearizable at z0 and its differential at z0 is of the form(
A0z

′, eiθ0 · z′′
)

where A0 is an expanding linear map on Ck
′

and π, θ0,k′+1, · · · , θ0,k are linearly

independant over Q. In other words, there exists a local holomorphic chart ψ0 : BR → Pk such
that ψ0(0) = z0 and

ψ−1
0 ◦ f0 ◦ ψ0 =

(
A0z

′, eiθ0 · z′′
)

where θ0 and A0 are as above. Any set of the form ψ0 ({0′} ×Bρ) where ρ < R and Bρ is a ball
centered at the origin in Cq is called a local Siegel q-disc of f0 centered at z0.

Let us consider a holomorphic family f of endomorphisms of Pk. If f0 admits a Siegel fixed point
z0 then, by the implicit function theorem, there exists a unique holomorphic map z(λ) defined on
some neighbourhood of 0 in M such that z(0) = z0 and z(λ) is fixed by fλ. Moreover, there exist
holomorphic functions wj(λ) such that wj(0) = eiθ0,j and wj(λ) is an eigenvalue of dz(λ)fλ for
k′ + 1 ≤ j ≤ k. In this context, we coin the following definition.

Definition 5.2. The Siegel fixed point z0 is called virtually repelling if there exist a holomorphic
disc σ : ∆ǫ0 → M and positive constants cj such that σ(0) = 0 and |wj ◦ σ(t)| = 1 + cjt for
k′ + 1 ≤ j ≤ k and −t0 < t < t0. If, moreover, z ◦ σ(t) ∈ Jσ(t) for −t0 < t < t0 the Siegel fixed
point z0 is called virtually J-repelling.

Let us observe that if Jλ is continuous at λ0 and if fλ0 has a virtually repelling Siegel periodic
point outside Jλ0 , then λ0 must be accumulated by parameters λ for which fλ has periodic repelling
points outside Jλ. Examples of such repelling points have been given by Hubbard-Papadopol [HP,
section 6, example 2] and Fornaess-Sibony [FS2, section 4.1]. The following proposition discusses
the position of Siegel discs with respect to Julia sets. Note that the second item will only be used
in Remark 5.8.

Proposition 5.3. Let f : M × Pk → M × Pk be a holomorphic family of endomorphisms of Pk

such that fλ0 admits a virtually repelling Siegel fixed point z0.

1) If f admits an equilibrum web then every local Siegel q-disc centered at z0 is contained in
Pk \ Jλ0 . In particular z0 /∈ Jλ0 .

2) When q = 1, if z0 ∈ Jλ0 and if λ 7→ Jλ is continuous at λ0 then any local Siegel q-disc
centered at z0 is contained in Jλ0 .

The first item of the preceding proposition immediately yields the following result.

Corollary 5.4. Let f : M × Pk →M × Pk be a holomorphic family of endomorphisms of Pk. Let
U0 be any neighbourhood of λ0 in M . If the restriction of f to U0 × Pk admits an equilibrium web
then fλ0 has no virtually repelling Siegel periodic point in Jλ0 .

The proof of Proposition 5.3 relies on the following technical lemma.

Lemma 5.5. Let g : ∆r0 ×BR → ∆r0 ×BR′ be a holomorphic map such that g(λ, z) = (λ, gλ(z)),

gλ(0) = 0 and g0(z) =
(
A−1

0 · z′, e−iθ0 · z′′
)

where A0 is an expanding linear map on Ck
′

. Assume

that
∂gλ,j

∂zi
(0) = 0 for k′ + 1 ≤ j ≤ k and i 6= j. Assume moreover that there exists |u0| = 1, t0 > 0

and cj > 0 such that |
∂gtu0 ,j

∂zj
(0)| = 1+ cjt for k′ + 1 ≤ j ≤ k and −t0 < t < t0. Then, after taking

R smaller, the following properties occur.

1) There exists arbitrarily small λ such that ‖gλ(z)‖ ≤ α0‖z‖ on BR with 0 < α0 < 1.
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2) Assume k′ = k − 1. For any 0 < ρ < R1 < R2 < R, there exists arbitrarily small λ
such that, for every a ∈ BR1 which does not belong to the local stable manifold Sλ of gλ,
there exists n0 such that gn0

λ (a) ∈ {‖z′‖ < ρ} × {R1 < ‖z′′‖ < R2} and gkλ(a) ∈ BR1 for
0 ≤ k ≤ n0 − 1.

Proof. We may write gλ := (gλ,j)1≤j≤k on the form

gλ,j =

k′∑

i=1

(aij + λµij(λ) + λqij(λ, z)) zi + λ

k∑

i=k′+1

sij(λ, z)zi for 1 ≤ j ≤ k′

gλ,j =
(
eiθj + λµjj(λ) + λqjj(λ, z)

)
zj + λ

∑

i6=j

sij(λ, z)zi for k′ + 1 ≤ j ≤ k

where µij , qij and sij are holomorphic on ∆ǫ0 × BR and satisfy qij(λ, 0) = qjj(λ, 0) = 0. By
assumption, we also have sij(λ, 0) = 0 for k′ + 1 ≤ j ≤ k and i 6= j.
By shrinking ǫ0 and R, there exists 0 < α1 < 1 such that

sup
1≤j≤k′

|gλ,j(z)| ≤ α1‖z‖ on ∆ǫ0 ×BR.(21)

Let us set λt := tu0 where −t0 < t < t0 and Qjt(z) := eiθj + λtµjj(λt) + λtqjj(λt, z) and
Rjt(z) := |λt|

∑
i6=j |sij(λt, z)| for k′ + 1 ≤ j ≤ k. Then, by our assumptions and after taking R

smaller, we have

|Qjt(z)| ≤ 1 +
cjt

2
for − t0 < t < 0 and z ∈ BR(22)

Rjt(z) ≤
cj |t|

4
for − t0 < t < t0 and z ∈ BR(23)

1 +
cjt

2
≤ |Qjt(z)| ≤ 1 + 2cjt for 0 < t < t0 and z ∈ BR.(24)

It follows from (22) and (23) that |gλt,j(z)| ≤ (1 +
tcj
4 )‖z‖ for k′ + 1 ≤ j ≤ k, −t0 < t < 0 and

z ∈ BR. This and (21) yields the first assertion of the lemma.

Let us now establish the second one. Fix 0 < t < t0 so small that (1 +
9tcj
4 )R1 < R2 for

k′ + 1 ≤ j ≤ k. Let a ∈ BR1 be outside the local stable manifold of gλt
. Assume that one cannot

find n0 such that gkλt
(a) ∈ BR1 for 0 ≤ k ≤ n0 − 1 and gn0

λt
(a) ∈ {‖z′‖ < ρ} × {‖z′′‖ > R1}. Then,

according to (21), the sequence an := gnλt
(a) is well defined and ‖a′n‖ → 0. From (23) and (24) one

gets |an+1,j| ≥ (1 +
cjt
2 )|an,j | −

tcj
4 ‖a′n‖. As (an,j)n is bounded and ‖a′n‖ → 0, this implies that

an tends to the origin and contradicts the fact that a does not belong to the local stable manifold
of gλt

. Thus n0 exists and it remains to check that ‖a′′n0
‖ < R2. From (23) and (24) one gets

|an0,j | ≤ (1 + 2cjt)|an0−1,j |+
tcj
4 ‖a′n0−1‖ ≤ (1 +

9tcj
4 )R1 < R2. 2

Proof of Proposition 5.3: We may assume that M = ∆ǫ0 and λ0 = 0 so that z0 is a
virtually repelling Siegel fixed point of f0. Thus there exists a biholomorphism ψ0 : BR → ψ0 (BR)
such that ψ0(0) = z0 and ψ−1

0 ◦ f0 ◦ ψ0 =
(
A0 · z

′, eiθ0 · z′′
)

where A0 is linear and expanding on

Ck
′

and π, θ0,k′+1, · · · , θ0,k are linearly independant over Q.

The mapping ψ−1
0 ◦ f−1

λ ◦ ψ0 is well defined on ∆ǫ0 × BR after taking R and ǫ0 smaller. Since

the eiθ0,j are pairwise distinct for k′ + 1 ≤ j ≤ k, we may find q linearly independant vectors
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vk′+1(λ), · · · , vk(λ) in Ck and q scalars wk′+1(λ), · · · , wk(λ) which depend holomorphically on
λ ∈ ∆ǫ0 and such that

dψ−1
0 (z(λ))

(
ψ−1
0 ◦ f−1

λ ◦ ψ0

)
(vj(λ)) = wj(λ)vj(λ) for k′ + 1 ≤ j ≤ k.(25)

Using basis like (v1, · · · , vk′ , vk′+1(λ), · · · , vk(λ)) we may perform change of coordinates of the
form (λ,A(λ, z)) where A(λ, ·) is affine on Ck which, conjugate by ψ0, yield biholomorphisms
ψλ : BR → ψλ (BR) such that gλ := ψ−1

λ ◦ f−1
λ ◦ ψλ satisfies the assumptions of Lemma 5.5. The

condition
∂gλ,j

∂zi
(0) = 0 indeed follows from (25) and the condition |

∂gtu0,j

∂zj
(0)| = 1+cjt follows from

the fact that z0 is virtually repelling. To simplify, we shall denote Jλ the set ψ−1
λ (Jλ ∩ ψλ(BR)).

1) We proceed by contradiction and assume that (0′, z′′0 ) ∈ J0 for 0 < ‖z′′0‖ < r < R. According
to Lemma 2.5, there exists a holomorphic map γ : ∆ǫ0 → Pk such that ψ−1

0 ◦ γ(0) = (0′, z′′0 ) and

(Fn · γ)n is normal on ∆ǫ0 . We may assume that γ̃(λ) := ψ−1
λ (γ(λ)) is well defined on ∆ǫ0 . Since

ψ−1
0 ◦ fn0 ◦ ψ0 (γ̃(0)) = (0′, einθ0 · z′′0 ) and (Fn · γ)n is normal, after reducing ǫ0, we may suppose

that

‖ψ−1
λ ◦ fnλ ◦ ψλ (γ̃(λ)) ‖ ≤ r on ∆ǫ0 for n ≥ 1.(26)

Let us recall that gλ = ψ−1
λ ◦ f−1

λ ◦ ψλ. By Lemma 5.5, there exists λk → 0 and 0 < αk < 1 such
that ‖gλk

(z)‖ ≤ αk‖z‖ on BR. We may thus find a sequence nk → ∞ such that

‖gnk

λk
(z)‖ ≤

1

k
‖z‖ on Br.(27)

From (26) and (27) one gets

‖γ̃(λk)‖ = ‖gnk

λk
◦ ψ−1

λk
◦ fnk

λk
◦ ψλk

(γ̃(λk)) ‖ ≤
r

k
(28)

which is impossible since limk ‖γ̃(λk)‖ = ‖z′′0‖ > 0.
So far we have shown that the punctured q-disc {0′} × {0 < ‖z′′‖ < R} is contained in Jc0 . Since
J0 is totally invariant and g0 =

(
A−1

0 · z′, e−iθ0 · z′′
)

where A0 is linear and expanding, this implies
that BR \ {z ∈ BR : z′′ = 0} ⊂ Jc0 . Finally, as µ0 does not give mass to analytic sets, we get
BR ⊂ Jc0 .

2) We have to show that (0′, z0k) ∈ J0 if 0 < |z0k| < R. Assume, to the contrary, that
(0′, z0k) /∈ J0 for some 0 < |z0k| < R. Then one may pick a neighbourhood V0 of (0′, z0k) such that
V0 ⊂ (J0)

c
and which is of the form

V0 := {‖z′‖ < ρ} × {R1 < |zk| < R2 and | arg zk − arg z0k| < η}.

Let us now denote by Tρ,R1,R2 the tube

Tρ,R1,R2 := {‖z′‖ < ρ} × {R1 < |zk| < R2}.

Since A0 is contracting and θ0/π irrational, for any z ∈ Tρ,R1,R2 there exists an integer n such that
gn0 (z) ∈ V0. By the invariance of Julia sets we thus have Tρ,R1,R2 ⊂ (J0)

c. Let us shrink the tube
Tρ,R1,R2 . By assumption, Jλ is u.s.c at 0 and therefore

Tρ,R1,R2 ⊂ (Jλ)
c

when λ is close enough to 0.

On the other hand, according to the second assertion of Lemma 5.5, we may find parameters λ
which are arbitrarily close to 0 and such that BR1 \Sλ ⊂ ∪n (gnλ)

−1 Tρ,R1,R2 where Sλ denotes the
stable manifold of gλ. As µλ gives no mass to analytic sets, this and the inclusion Tρ,R1,R2 ⊂ (Jλ)

c
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implies the existence of a sequence of parameters λk → 0 such that BR1 ⊂ (Jλk
)
c
. This contradicts

the lower semi continuity of Jλ at 0 since 0 /∈ (Jλk
)R1

2
but 0 ∈ J0 by our assumption. 2

5.2. End of the proof of Theorem 1.1. In order to obtain Theorem 1.1, it essentially remains
to investigate if the repelling J-cycles of f move holomorphically when f admits an equilibrum
web. To this purpose we shall use Corollary 5.4 and show how a Siegel disc may appear when a
repelling J-cycle fails to move holomorphically.

Proposition 5.6. Let f :M ×Pk →M ×Pk be a holomorphic family. If f admits an equilibrium
web then all repelling J-cycles of f which are neither persistently resonant nor persistently undi-
agonalizable move holomorphically. When k = 2, all repelling J-cycles of f move holomorphically.

Let us recall that a periodic point is said to be resonant if its multipliers w1, · · · , wk satisfy a
relation of the form wm1

1 · · ·wmk

k −wj = 0 where the mj are integers and m1 + · · ·+mk ≥ 2. Note

that when wj = eiθj for 1 ≤ j ≤ n and n ≤ k then the absence of resonances forces π, θ1, · · · , θn
to be linearly independant over Q.

We shall use the following Lemma.

Lemma 5.7. Let w1, · · · , wk : D(0, R) → C be holomorphic functions. Assume that wj(0) 6= 0
and that there exists λn → 0 such that min1≤j≤k |wj(λn)| > 1. Assume moreover that there exists
1 ≤ N ≤ k such that

- |wj(0)| = 1 and w′
j(0) 6= 0 for 1 ≤ j ≤ N ,

- |wj(0)| 6= 1 for N + 1 ≤ j ≤ k.
Then, after renumbering, there exist an integer 1 ≤ q ≤ k, a disc D(λ0, r) ⊂ D(0, R) and a

partition D(λ0, r) = D+(λ0, r) ∪C ∪D−(λ0, r) where C is a real analytic arc through λ0 and D+

and D− are open connected subsets of D such that

(1) |wj | > 1 on D+(λ0, r), |wj | = 1 on C and |wj | < 1 on D−(λ0, r) for k − q + 1 ≤ j ≤ k,
(2) |wj | > 1 on D(λ0, r) for 1 ≤ j ≤ k − q if q ≤ k − 1.

Proof. In the sequel we allow to shrink R without specifying it. Let us set Cj := {|wj | = 1} and
U+
j := {|wj | > 1}, U−

j := {|wj | < 1}. Since we can assume that w′
j(0) 6= 0 when {|wj | = 1} 6= ∅

the subset Cj is either empty or a real-analytic arc through 0 in D(0, R). In particular we have

Cj = Cl if Cj ∩ Cl is strictly bigger than {0}.

Let us set U+ := ∩kj=1U
+
j . By assumption, 0 ∈ U+ and therefore U+ is a non-empty open

subset of D(0, R). It is clear that ∂U+ ⊂ ∂D(0, R) ∪
(
∪kj=1Cj

)
. On the other hand, we can not

have ∂U+ ⊂ {0} ∪ ∂D(0, R) since otherwise U+ = D(0, R) \ {0} and the subharmonic function
ψ(λ) := max1≤j≤k |wj(λ)|−1 would violate the maximum principle (recall that ψ(0) ≥ 1). We may

thus pick λ0 6= 0 such that λ0 ∈ Cj0 ∩ ∂U+ for some 1 ≤ j0 ≤ k. Observe that λ0 /∈ U−
i for

1 ≤ i ≤ k.
If Ci 6= Cj0 for some 1 ≤ i ≤ k then λ0 /∈ Ci and thus λ0 ∈ U+

i . After renumbering we may
therefore find 1 ≤ q ≤ k − 1 such that

λ0 ∈ Ck−q+1 = Ck−q+2 = · · · = Ck := C and λ0 ∈ U+
1 ∩ · · · ∩ U+

k−q.

For r > 0 sufficently small we have D(λ0, r) ⊂ ∩k−q1 U+
i and D(λ0, r) \ C has two connected com-

ponents Ω1 and Ω2. For each k − q + 1 ≤ i ≤ k, one has Ω1 ⊂ U+
i and Ω2 ⊂ U−

i or Ω1 ⊂ U−
i and

Ω2 ⊂ U+
i . Assume for instance that Ω1 ⊂ U+

k−q+1. Then, since λ0 ∈ ∂U+, we must have Ω1 ⊂ U+
i
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and Ω2 ⊂ U−
i for every k − q + 1 ≤ i ≤ k and we set D(λ0, r)

+ := Ω1 and D(λ0, r)
− := Ω2. 2

Proof of Proposition 5.6: Let λ0 ∈ M . Assume that z0 belongs to some p-periodic repelling
J-cycle of fλ0 which is not persistently resonant and not persistently undiagonalizable. It suffices
to show that the map γ : M → Pk, which is the element of J given by Lemma 2.5, enjoys the
property that γ(λ) ∈ Jλ is repelling for every λ ∈M . Let us observe that γ(λ) is not persistently
resonant and not persistently undiagonalizable for any λ ∈M .

Since M is connected, we have to show that the subset {λ ∈ M : γ(λ) is repelling } is closed
in M . Assume, to the contrary, that this is not true. Then, for arbitrarily small ǫ0, one finds a
new holomorphic map γ0 : Bǫ0 → Pk such that γ0(λ) ∈ Jλ is fixed by fpλ for all λ ∈ Bǫ0 and γ0(0)
is not repelling but γ0(λ0) is repelling for some λ0 ∈ Bǫ0 . Our aim below is to find λ′0 ∈ Bǫ0 such
that γ(λ′0) is a virtually repelling Siegel fixed point of fpλ′

0
. Corollary 5.4 then yields a contradiction.

Reducing ǫ0 allows to use charts and replace Pk by Ck. Let us denote w1(λ), · · · , wk(λ) the

eigenvalues of A(λ) := (fpλ)
′
(γ(λ)). There exists a proper analytic subset Z of Bǫ0 such that

w1, · · · , wk are holomorphic on Bǫ0 \ Z. For every n ∈ N we define a function ωn on Bǫ0 \ Z:

ωn(λ) := min2≤|m|≤n , 1≤j≤k |w1(λ)
m1 · · ·wk(λ)mk − wj(λ)|

where |m| := m1 + · · · +mk for any m := (m1, · · · ,mk) ∈ Nk. Since the cycle γ0(λ) is not per-
sistently resonant the functions logωn are not identically equal to −∞. Moreover, after shrinking
ǫ0, we have logωn(λ) ≤ logω2(λ) ≤ C < +∞ on Bǫ0 \Z and therefore logωn extends to some psh
function on Bǫ0 . We now define a function B on Bǫ0 by setting

B(λ) :=
∑+∞

n=0
1
2n logω2n+1(λ).

The interest of this function is that, according to Brjuno’s theorem (see [Br]), fpλ is holomor-
phically linearizable at γ(λ) if B(λ) > −∞ and A(λ) is diagonalizable. Let us show that B is

psh on Bǫ0 . Since B(λ)− 2C =
∑+∞
n=0

1
2n (logω2n+1(λ)− C) is a decreasing limit of psh functions,

the function B is either psh or identically equal to −∞ on Bǫ0 . Moreover, as γ(λ0) is a repelling
cycle there exists n0 ≥ 1 such that logω2n = logω2n0 on a neighbourhood V0 of λ0 for n ≥ n0.
We deduce that B =

∑n0

n=0
1
2n logω2n+1(λ) + 1

2n0
logω2n0+1 on V0, this function is therefore not

identically equal to −∞ since γ0(λ) is not persistently resonant.

Let us denote by ∆ǫ0 the disc in C obtained by intersecting Bǫ0 with the complex line through
0 and λ0. We may move a little bit λ0 so that B is subharmonic on ∆ǫ0 , the set Z ∩∆ǫ0 is discrete
and γ0(λ) is not persistently undiagonalizable on ∆ǫ0 . In particular, there exists a discrete subset
Z0 of ∆ǫ0 such that on ∆ǫ0 \ Z0, the cycle γ0(λ) is diagonalizable and the functions w1, · · · , wk
are either constant or holomorphic, non-vanishing and with non-vanishing derivatives.

Let us set

∀λ ∈ ∆ǫ0 \ Z0 , ϕ(λ) := min (|w1(λ)|, · · · , |wk(λ)|) .

This extends to a continuous function on ∆ǫ0 . Moreover ϕ(0) ≤ 1 and ϕ(λ0) > 1, in particular
ϕ is not constant. We claim that there exists λ1 ∈ ∆ǫ0 \ Z0 such that ϕ(λ1) < 1. Indeed, if
ϕ ≥ 1 on ∆ǫ0 \ Z0, then ϕ ≥ 1 on ∆ǫ0 and therefore the subharmonic function ψ := ϕ−1 violates
the maximum principle (indeed ψ ≤ 1 = ψ(0) and this function is not constant). Considering a

continuous path connecting λ0 to λ1 in ∆ǫ0 \ Z0, one finds λ2 ∈ ∆ǫ0 \ Z0 and λ̃k → λ2 such that
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ϕ(λ2) = 1 and ϕ(λ̃k) > 1. Let us pick a small disc D(λ2, R) contained in ∆ǫ0 \ Z0. Then (after
renumbering) the functions w1, · · · , wk satisfy the assumptions of Lemma 5.7 on D(λ2, R). Let q
be the integer and C be the real analytic arc in D(λ2, R) which are given by this Lemma. Since
|wj | < 1 on D−(λ2, R) for k − q + 1 ≤ j ≤ k and γ(λ) ∈ Jλ, we must have 1 ≤ q ≤ k − 1.

Since B is subharmonic on ∆ǫ0 , there exists λ′0 ∈ C such that B(λ′0) > −∞. Since λ′0 ∈
D(λ2, R) ⊂ ∆ǫ0 \ Z0, the periodic point γ(λ′0) is diagonalizable and then, according to Brjuno’s
theorem, it is holomorphically linearizable. Thus γ(λ′0) is a Siegel fixed point of fpλ′

0
and, since

λ′0 ∈ C, Lemma 5.7 shows that it is virtually repelling as desired. Let us finally explain why we do
not need any assumption on the repelling J-cycle in dimension k = 2. In that case, the periodic
points γ(λ) for λ ∈ C are diagonalizable and not persistently resonant since one and only one
of their two multipliers have modulus 1 and, moreover, is not constant. We thus see that B is
subharmonic on ∆ǫ0 and we can find again some λ′0 ∈ C such that γ(λ′0) is a virtually repelling
Siegel fixed point of fpλ′

0
. 2

It would be interesting to know if the continuity of the map λ 7→ Jλ on some open subset of
the parameter space is equivalent to the existence of an equilibrium web. This is true when k = 1,
the following remark summarizes the consequences of the above results on this question in higher
dimension.

Remark 5.8. According to Proposition 5.3 and the proof of Proposition 5.6, when k = 2 the
Hausdorff continuity of λ 7→ Jλ would imply the holomorphic stability if we would know that a
local Siegel disc centered at some virtually repelling Siegel periodic point cannot be contained in the
Julia set.

To deduce Theorem 1.1 from Proposition 5.6, we shall use the following Lemma whose proof is
left to the reader.

Lemma 5.9. Let f : B × Pk → B × Pk be a holomorphic family where B is an open ball of
the space Hd(P

k) of degree d holomorphic endomorphisms of Pk. Then every repelling J-cycle is
neither persistently resonant nor persistently undiagonalizable.

Proof of Theorem 1.1: In subsection 3.5 we saw that (A) ⇒ (B) ⇔ (E). Theorem 1.6
yields (B) ⇒ (C′), where (C′) is the assertion : "the restriction fB×Pk admits an equilibrium web
for any sufficently small ball B". Assume now that (C′) is satisfied. Combining Lemma 5.9 and
Proposition 5.6 one sees that, when M satisfies the assumptions of Theorem 1.1, the repelling
J-cycles locally move holomorphically. This implies that the set

{(λ, z) ∈M × Pk : z belongs to some n-periodic and repelling J-cycle of fλ}

is an unramified cover of M . As M is simply-connected, we thus get that the repelling J-cycles
move holomorphically over M , hence (C′) ⇒ (C). Finally proposition 5.6 yields (C) ⇒ (A), and
therefore the properties (A), (B) and (C) are equivalent. If (D) is satisfied then by definition any
element γ of the equilibrium lamination belongs to J and satisfies Γγ ∩ PCf = ∅. Then the first
assertion of Proposition 2.3 shows that f admits an equilibrium web. We thus have (D) ⇒ (C).
Finally, since by Theorem 4.1 (A) ⇒ (D), the proof of Theorem 1.1 is completed. 2

6. Bifurcation loci

In view of Theorem 1.1, we define the bifurcation locus and current as follows.
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Definition 6.1. Let f : M × Pk → M × Pk be a holomorphic family of endomorphisms of Pk of
degree d ≥ 2. Let L(λ) be the sum of Lyapunov exponents of fλ with respect to its equilibrium
measure. The closed positive current ddcλL is called bifurcation current of the family, its support
is the bifurcation locus of the family.

We will exploit here our results to get some informations on these loci.

6.1. On the interior of bifurcation loci. In his work on the persistence of homoclinic tangen-
cies, Buzzard [Bu] found open subsets of the space of degree d endomorphisms of P2 (for d large
enough) in which the maps having infinitely many sinks are dense. This lead us to believe that
the bifurcation locus may have a non-empty interior when k ≥ 2. We investigate here the relations
between the presence of open subsets in the support of ddcλL and the existence of parameters for
which the postcritical set is dense in Pk.

Let f :M × Pk →M × Pk be a holomorphic family of endomorphisms of Pk. Let C denote the
critical set of f and let Cλ denote the critical set of fλ. We set

C+ := ∪n≥1fn(C) and C+
λ := ∪n≥1fnλ (Cλ) for every λ ∈M.

We define (C+)λ :=
(
{λ} × Pk

)
∩C+, observe that {λ}×C+

λ ⊂ (C+)λ. Our aim is to show that if

supp ddcλL contains an open subset Ω ⊂ M , then {λ ∈ Ω : C+
λ = Pk} contains a Gδ-dense subset

of Ω. This will prove Theorem 1.8.

As a consequence we recover the fundamental result of Mañé, Sad and Sullivan [MSS] on the
density of stable parameters for holomorphic families of rational maps. For such families the
bifurcation locus is known to coincide with supp ddcλL ([dM]).

Corollary 6.2. Let f : M × P1 → M × P1 be a holomorphic family of rational maps. Then
supp ddcλL has empty interior.

Proof. Every λ0 ∈ supp ddcλL can be approximated by parameters λ for which fλ has an attracting
basin, see [B, section 4.3.1], which is an open condition in M . On the other hand, as the critical

set is finite, the set C+
λ can not be equal to P1 when fλ has an attracting basin. According to

Theorem 1.8, this implies that supp ddcλL has empty interior. 2

Remark 6.3. We raise the question, for k ≥ 2, of the existence of holomorphic families for which
supp ddcλL has non empty interior. Note that Theorem 1.8 could be useful for finding families for
which supp ddcλL has empty interior.

The proof of Theorem 1.8 relies on a Baire’s category argument based on the continuity prop-

erties of λ 7→ C+
λ and λ 7→ (C+)λ. The notion of semi continuity with respect to the Hausdorff

topology has been discussed in subsection 2.3. We have the following properties, the upper semi
continuity can be found in [Do, Proposition 2.1], we give the argument for sake of completeness.

Lemma 6.4. The maps λ 7→ (C+)λ and λ 7→ C+
λ from M to Comp⋆

(
Pk

)
are respectively upper

and lower semi continuous.

Proof. By definition {(λ, z) ∈M × Pk , z ∈ (C+)λ} is equal to C+, hence is closed in M × Pk. In

particular, for every λ0 ∈M and ǫ > 0, the set F := {(λ, z) ∈ C+ , dPk(z, (C+)λ0) ≥ ǫ} is a closed

subset of C+. Let us show that πM (F ) is closed in M . Indeed, if λn ∈ πM (F ) converges to λ ∈M
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one may pick zn ∈ (C+)λn
such that dPk(zn, (C+)λ0) ≥ ǫ and (zn)n converges to some z ∈ Pk after

taking a subsequence. Then (λn, zn) ∈ C+ converges to (λ, z) ∈ C+ satisfying dPk(z, (C+)λ0) ≥ ǫ
and thus λ ∈ πM (F ) as desired. Since λ0 /∈ πM (F ) it follows that M \ πM (F ) contains an open

ball B centered at λ0 such that dPk(z, (C+)λ0) < ǫ for every z ∈ (C+)λ with λ ∈ B. This proves
the upper semi continuity.

Let us now prove the lower semi continuity of the map λ 7→ C+
λ . Assume to the contrary that it

is not l.s.c at λ0 ∈M . Then there exist ǫ > 0, a sequence (λn)n converging to λ0 and a sequence

(zn)n in C+
λ0

such that dPk(zn, C
+
λn

) ≥ ǫ. After taking a subsequence (zn)n converges to z0 ∈ C+
λ0

.

Pick ξ0 ∈ Cλ0 and p0 ≥ 1 such that dPk(z0, f
p0
λ0
(ξ0)) <

ǫ
4 . Let also ξn ∈ Cλn

such that ξn → ξ0.

Then dPk(zn, C
+
λn

) ≤ dPk(zn, f
p0
λn
(ξn)) <

ǫ
2 for n large, contradicting dPk(zn, C

+
λn

) ≥ ǫ. 2

Lemma 6.4 allows us to prove:

Proposition 6.5. Let f : M × Pk → M × Pk be a holomorphic family of endomorphisms of Pk.
If λ0 ∈ supp ddcλL then (C+)λ0 = Pk.

Proof. Assume that B(z0, r)∩ (C+)λ0 = ∅ and let us show that λ0 /∈ supp ddcλL. Since λ 7→ (C+)λ
is upper semi continuous we deduce that B(z0,

r
2 ) ∩ (C+)λ = ∅ when λ is sufficently close to λ0.

In particular, the constant graph Γ0 := {(λ, z0) : λ ∈ B(λ0, ǫ)} does not meet ∪n≥1f
n(C) for ǫ

small enough. By the first assertion of Proposition 2.3 and Proposition 3.5, we get ddcλL = 0 on
B(λ0, ǫ). 2

Proof of theorem 1.8 : The lower semi continuity of λ 7→ C+
λ implies that

I(B) := {λ ∈M : C+
λ ∩B 6= ∅}

is an open subset of M for every open ball B ⊂ Pk. Now let Ω be an open subset of M which is
contained in the bifurcation locus. Let us show that I(B) is dense in Ω. We may assume that Ω is a

ball in Cm. Let λ0 ∈ Ω and ǫ > 0. Since λ0 ∈ supp ddcλL, Proposition 6.5 implies that (C+)λ0∩B =
B. Thus

(
∪n≥1 f

n(C)
)
∩
(
B(λ0, ǫ)×B

)
6= ∅ and there exists (λ1, z1) ∈ fn1(C) ∩

(
B(λ0, ǫ)×B

)
.

This shows that λ1 ∈ I(B) ∩ B(λ0, ǫ) and thus I(B) is open and dense in Ω. Now consider a
countable collection Bi := B(ζi, ri) of balls in Pk whose centers are dense in Pk and whose radii
tend to 0. According to Baire’s theorem M ′ := ∩i≥1I(Bi) is a dense Gδ-subset of Ω. We also have

C+
λ = Pk for every λ ∈M ′. 2

6.2. Remarkable elements in bifurcation loci. Theorem 1.1 and the proof of Proposition 5.6
immediately yield the following result.

Theorem 6.6. A degree d ≥ 2 endomorphism of Pk belongs to the bifurcation locus in Hd(P
k) if

and only if it is accumulated by endomorphisms which admit a virtually J-repelling Siegel periodic
point or a repelling cycle outside the Julia set which becomes a repelling J-cycle after an arbitrarily
small perturbation.

The next theorem shows that isolated Lattès maps belong to the bifurcation locus. We refer to
the articles [Di1], [Du1] for an account on Lattès maps of Pk.

Theorem 6.7. Let f : M × Pk → M × Pk be a holomorphic family of endomorphisms of Pk. If
the family is stable (i.e. ddcλL = 0 on M) and fλ0 is a Lattès map for some λ0 ∈ M then fλ is a
Lattès map for every λ ∈M .
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Proof. By a Theorem of Briend-Duval [BrDv1] we have L ≥ k log d
2 . The articles of Berteloot,

Dupont and Loeb [BL], [BtDp] and [Du2] show that L(λ) = k log d
2 if and only if fλ is a Lattès

map. If the family is stable, then the function L is pluriharmonic on M . By the maximum principle
(applied to the harmonic function −L) we thus have L(λ) = L(λ0) = k log d

2 for all λ ∈M and the
conclusion follows. 2

Appendix A

A.1. A stronger version of Lemma 2.2.

Lemma A.1. Let f :M×Pk →M×Pk be a holomorphic family of endomorphisms of Pk. Assume
that there exists a sequence of Borel probability measures (Mn)n≥1 on O

(
M,Pk

)
such that

1) limn(Mn)λ = µλ for Lebesgue-almost every λ ∈M .
2) F⋆Mn+1 = Mn or F⋆Mn = Mn for every n ≥ 1.
3) There exists a compact subset K of O

(
M,Pk

)
such that supp Mn ⊂ K ⊂ F (K) for every

n ≥ 1.

Then any limit M of ( 1n
∑n
l=1 Ml)n satisfies Mλ = µλ for Lebesgue-almost every λ ∈M .

We shall use the following corollary of Theorem 2.7. It is inspired by [Pha, Proposition 2.1],
one can find a more general version in [DS4, remark 2.2.6].

Lemma A.2. Let (Rn)n be a sequence of closed, positive, horizontal current of bidimension (m,m)
on M × Ck+1. Assume that limnRn = R and that suppRn ⊂ M × K for some compact subset
K of Ck+1. Then, after taking a subsequence, we have limn〈Rn, πM , λ〉 = 〈R, πM , λ〉 for almost
every λ ∈M .

Proof of Lemma A.1 : Let us set Vn := 1
n

∑n
l=1 Ml. We may assume that Vn → V . By

assumption, (Vn)λ → µλ for Lebesgue almost every λ ∈ M . Let us show that Vλ = µλ for every
λ ∈ M . The problem being local, we may replace M by any small ball B in Cm. Let F be a lift
of the family f to M × Ck+1. Note that for any test function φ on Pk, the functions λ 7→ 〈Vλ, φ〉
and λ 7→ 〈µλ, φ〉 are both continuous. This follows easily from the facts that V is supported on
K which is an equicontinuous family of holomorphic maps and that µλ = π⋆(dd

c
λ,z̃GF (λ, z̃))

k+1

where GF is the Green function of F which is continuous on B ×Ck+1. It is thus enough to show
that Vλ = µλ for almost every λ ∈ B.

For that purpose we use Lemma 2.8 to associate horizontal currents W̃Vn
and W̃V to Vn and V .

As W̃Vn
converges towards W̃V as currents, Lemma A.2 implies that (Vn)λ → Vλ for almost every

λ ∈ B, hence Vλ = µλ for almost every λ ∈ B. 2

Proof of Lemma A.2: Let ψ be a test function on Ck+1 which will be considered as a
function on M ×Ck+1. We set uψ,n(λ) := 〈Rn, πM , λ〉ψ , uψ(λ) := 〈R, πM , λ〉ψ for every λ ∈M .
According to Theorem 2.7, the slice masses cn := |〈Rn, πM , λ〉| and c := |〈R, πM , λ〉| do not depend
on λ ∈M . Given a (m,m)-test form ω on M , the basic slicing formula (3) gives

(29) lim
n

∫

M

uψ,n(λ) ω(λ) = lim
n
〈Rn ∧ π⋆M (ω), ψ〉 = 〈R ∧ π⋆M (ω), ψ〉 =

∫

M

uψ(λ) ω(λ).

Applying (29) with ψ ≡ 1 on K, we get c = limn cn and thus C := supn cn is finite. Taking
C < +∞ into account, one sees by using Slutsky’s lemma and a diagonal argument that it suffices
to prove that uψ,n → uψ in L1

loc(M) for every test function ψ. Let us first verify this convergence
when ψ is a smooth psh function. By Theorem 2.7, (uψ,n)n is a sequence of psh functions, which
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is locally uniformly bounded on M since |uψ,n| ≤ cn supK |ψ| ≤ C supK |ψ|. As such sequences are
relatively compact for the L1

loc topology, it suffices to show that uψ is the unique cluster point of
(uψ,n)n. Assume that uψ,nk

→ v in L1
loc(M). According to (29), we have

∫
M
uψ ω =

∫
M
v ω for

every (m,m)-test form ω on M . Hence v and uψ coincide in L1
loc(M), as desired. This remains

true when ψ is any smooth test function on Ck+1, as one sees by writing it as a difference of two
smooth psh functions: ψ = (ψ +A‖z‖2)−A‖z‖2 with A large enough. 2

A.2. Hyperbolic sets and holomorphic motions.

Definition A.3. Let f : B×Pk → B×Pk be a holomorphic family of endomorphisms where B is
a ball centered at the origin in Cm. Let E0 be an f0-invariant subset of Pk. A holomorphic motion
of E0 over Bρ ⊂ B is a continuous map h : Bρ × E0 → Pk such that :

(1) λ 7→ hλ(z) is holomorphic on Bρ for every z ∈ E0.
(2) z 7→ hλ(z) is injective on E0 for every λ ∈ Bρ.
(3) hλ ◦ f0 = fλ ◦ hλ on E0 for every λ ∈ Bρ.

One says that E0 is a hyperbolic set for f0 if it is f0-invariant and if there exists K > 1 such that
|(df0)−1|−1 ≥ K on E0.

Theorem A.4. Let f : B×Pk → B×Pk be a holomorphic family of endomorphisms. Let E0 ⊂ Pk

such that |(df0)−1|−1 ≥ K > 3 on E0. Then there exists a holomorphic motion h : Bρ × E0 → Pk

which preserves repelling cycles.

The proof is based on classical arguments, we refer to [dMvS, chapter 3, section 2.d] for the one
dimensional case. To simplify the exposition we assume that the dilation is larger than 3 on the
hyperbolic set.

Proof. Let ϕ(z) := infλ∈Bρ
|(dzfλ)−1|−1, with the convention |(dzfλ)−1|−1 = 0 if z ∈ Cfλ . This is

a continuous function on Pk. By taking a smaller ρ, we may assume that

(30) ϕ ≥ K ′ > 3 on a τ -neighbourhood (E0)τ .

We shall mainly use the lower estimate on E0 itself, the lower bound on (E0)τ appears at the end
of the proof. Let δ = δ(ρ) := min{(1 + supλ∈Bρ

‖ fλ ‖C2)−1, τ}.

Lemma A.5. For every (λ, z) ∈ Bρ × E0,

(1) dPk(fλ(z), fλ(w)) ≥ (K ′ − 1)dPk(z, w) for every w ∈ B̄(z, δ),
(2) fλ(B(z, cδ)) ⊃ B(fλ(z), cδ) for every 0 ≤ c ≤ 1,
(3) if gλ,z : B(fλ(z), δ) → B(z, δ) is the inverse map of fλ, then Lip gλ,z ≤ (K ′ − 1)−1.

Proof. Assertions 2 and 3 follow from the first one (use Jordan’s theorem and K ′ > 3 for the
second one). So let us prove Assertion 1. We work in local coordinates. For (λ, z) ∈ Bρ × E0 and
w ∈ B̄(z, δ) we have

|IdCk − (dzfλ)
−1 ◦ dwfλ| ≤ |(dzfλ)

−1| · |dzfλ − dwfλ|

≤ |(dzfλ)
−1| · |z − w| · δ−1 ≤ 1/K ′.

That implies Lip (Id− (dzfλ)
−1 ◦ fλ) ≤ 1/K ′ on B̄(z, δ), which gives in turn

|(dzfλ)
−1(fλ(z)− fλ(w))| ≥ (1− 1/K ′)|z − w|

for every w ∈ B̄(z, δ). Hence |fλ(z)− fλ(w)| ≥ (K ′ − 1)|z − w| as desired. 2
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Lemma A.6. For every (λ, z) ∈ Bρ × E0, we have B(fλ(z), δ) ⊃ B(f0(z), δ/2) and the inverse
map gλ,z : B (fλ(z), δ) → B(z, δ) given by Lemma A.5 satisfies:

(1) gλ,z is well defined on B(f0(z), δ/2),
(2) it satisfies Lip gλ,z ≤ (K ′ − 1)−1 on B(f0(z), δ/2),
(3) gλ,z(B(f0(z), δ/2)) ⊂ B(z, δ/2).

Proof. Let Q := max { ‖dλfλ(z) ‖ , (λ, z) ∈ Bρ × E0 }. As δ is a continuous function of ρ and
δ(0) > 0, we may assume δ ≥ 2Qρ by taking ρ small enough. For every λ ∈ Bρ and z ∈ E0,
d(fλ(z), f0(z)) ≤ Qρ ≤ δ/2. That yields B(fλ(z), δ) ⊃ B(f0(z), δ/2). Items 1 and 2 are obvious
from lemma A.5. For item 3, we use gλ,z(B(f0(z), δ/2)) ⊂ gλ,z(B(fλ(z), δ)), which is included in
B(z, δ/2) by using lemma A.5(3) and K ′ > 3. 2

Let us end the proof of theorem A.4. For (λ, z) ∈ Bρ × E0 we set zn := fn0 (z) and

gnλ,z := gλ,z ◦ . . . ◦ gλ,zn−1.

This is an inverse branch of fnλ . Since z1, · · · , zn−1 ∈ E0, lemma A.6 yields by induction

gnλ,z : B(zn, δ/2) → B(z, δ/2) and Lip gnλ,z ≤ (K ′ − 1)−n on B(zn, δ/2).

For (λ, z) ∈ Bρ × E0 let us define

hn(λ, z) := gnλ,z ◦ f
n
0 (z) = gnλ,z(zn).

The map hn is continuous in (λ, z), holomorphic in λ and hn(λ, z) ∈ B(z, δ/2). Moreover

(31) fλ ◦ hn(λ, z) = hn−1(λ, f0(z)).

The sequence (hn)n is uniformly Cauchy on Bρ × E0. Indeed hn+1(λ, z) − hn(λ, z) = gnλ,z ◦

gλ,zn(zn+1) − gnλ,z(zn) and we get ‖hn+1 − hn ‖Bρ×E0
≤ (δ/2) · (K ′ − 1)−n since gλ,zn(zn+1) ∈

B(zn, δ/2) by Lemma A.6(3). We define hλ(z) for (λ, z) ∈ Bρ × E0 by

hλ(z) := lim
n
hn(λ, z) = lim

n
gnλ,z ◦ f

n
0 (z).

The map h is continuous in (λ, z), holomorphic in λ and hλ(z) ∈ B̄(z, δ/2). It also follows from
(31) that

(32) fλ ◦ hλ = hλ ◦ f0.

Let us now check that hλ is injective. Assume hλ(z) = hλ(z
′). Iterating (32) yields hλ(f

n
0 (z)) =

hλ(f
n
0 (z

′)). As hλ(w) ∈ B̄(w, δ/2) for w ∈ E0, we get d(fn0 (z), f
n
0 (z

′)) ≤ δ. Then, since
d(fn0 (z), f

n
0 (z

′)) ≥ (K ′ − 1)nd(z, z′) by Lemma A.5(1), we must have z = z′.
Finally, hλ preserves cycles (see (31)) and any periodic hλ(z) must be repelling since hλ(z) ∈
B̄(z, δ/2) ⊂ (E0)τ and |(dfλ)−1|−1 > 3 on (E0)τ (see (30)). This completes the proof of Theorem
A.4. 2

A.3. Proof of Proposition 4.2. We work with the notations of Section 4. Let τ, ǫ > 0 such that
− log d

2 + τ + 2ǫ < 0. Recall that the distortion of the charts is controlled by τ , see Equation (9).

Let p ≥ 1 and rp(γ) = infλ∈U0 ‖(DF
p
γ(λ)(0))

−1‖−2, see Equation (11). The next lemma shows that

rp measures the size of tubular neighbourhoods of Γγ on which fp is invertible and contracting.

Lemma A.7. For every small ǫ > 0 there exists Cp(ǫ) > 0 such that for any γ ∈ X the map fp

admits an inverse branch (fp)−1
γ on the tube TU0(F

p(γ), Cp(ǫ)rp(γ)) which maps ΓFp(γ)∩(U0×Pk)

to Γγ ∩ (U0 × Pk) and satisfy Lip(fp)−1
γ ≤ eτ+ǫ/3rp(γ)

−1/2 .
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Proof. We use a quantitative version of the inverse mapping theorem, see [BrDv2, Lemme 2].
This version is more precise than Lemma A.5. Let M := supλ∈U0,γ∈X ‖F pγ(λ)‖C2,B(0,Rp)

and let

δp(ǫ) := Rp(1− e−ǫ/3)/M . Then for every (γ, λ) ∈ X × U0:

· (F pγ(λ))
−1 is defined on BCk

(
0, δp(ǫ)‖(DF

p
γ(λ)(0))

−1‖−2
)
,

· Lip(F pγ(λ))
−1 ≤ e

ǫ
3 ‖(DF pγ(λ)(0))

−1‖.

Now we have to consider the distortion due to the charts. Replacing δp(ǫ) by a smaller constant
Cp(ǫ) and recalling that τ controls this distortion, we obtain for every λ ∈M :

· (fp)−1
γ(λ) is defined on BPk

(
fpλ(γ(λ)), Cp(ǫ)‖(DF

p
γ(λ)(0))

−1‖−2
)
,

· Lip(fp)−1
γ(λ) ≤ eτ+

ǫ
3 ‖(DF pγ(λ)(0))

−1‖.

This completes the proof of the Lemma. 2

Let us now prove Proposition 4.2. We recall that ûp(γ̂) = − 1
2 log rp(γ0). By assumption

limn
1
n

∫
X̂
ûn dM̂ = L with L ≤ − log d

2 . Let p ≥ 1 such that 1
p

∫
X̂
ûp dM̂ =: L′ ≤ L + ǫ. By

applying Birkhoff Ergodic Theorem there exists Ŷ ⊂ X̂ such that M̂(Ŷ) = 1 and

∀γ̂ ∈ Ŷ , lim
n

1

n

n∑

j=1

ûp

(
F̂−j(γ̂)

)
=

∫

X̂

ûp dM̂ = pL′.(33)

Since ûp(F̂−n(γ̂)) = − 1
2 log rp(γ−n) we deduce from (33) that limn

1
n log rp(γ−n) = 0. In particular

there exists a measurable function r̂p : Ŷ →]0, 1] such that

Cp(ǫ)rp(γ−n) ≥ r̂p(γ̂)e
−(n−1)ǫ/2.

We also deduce from (33) that there exists l̂p : Ŷ → [1,+∞[ such that
n∏

j=1

(rp(γ−j))
−1/2 ≤ l̂p(γ̂)e

npL′+nǫ/6.

Now, setting η̂p := r̂p/l̂p, one can verify by induction:

· (fp)−nγ̂ is defined on TU0(γ0, η̂p(γ̂)),

· Lip(fp)−nγ̂ ≤ l̂p(γ̂)e
n(pL′+τ+ǫ/2),

· (fp)−nγ̂ [TU0(γ0, η̂p(γ̂))] ⊂ TU0(γ−n, Cp(ǫ)rp(γ−(n+1))).

See [Du, Section 1.1.6] for more details. This completes the proof of Proposition 4.2.
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