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Abstract

We introduce a notion of stability for equilibrium measures in holomorphic families

of endomorphisms of Pk. We characterize the corresponding bifurcations by the strict

subharmonicity of the sum of Lyapunov exponents, by the instability of repelling cycles

or the instability of critical dynamics. Our methods are based on ergodic theory and

on pluripotential theory.
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1 Introduction and results

In the early 1980’s, Mañé, Sad and Sullivan [MSS] and Lyubich [L1, L2] have independently
obtained fundamental results on the stability of holomorphic families (fλ)λ∈M of rational
mappings of the Riemann sphere P1. They discovered that the parameter space M splits
into an open and dense stability locus and its complement, the bifurcation locus. They also
obtained precise informations on the distribution of hyperbolic parameters which lead to
the so-called hyperbolic conjecture asserting that hyperbolic mappings are dense in the
space of degree d rational maps. Thanks to the work of Douady and Hubbard on the
Mandelbrot set, we have a much deeper understanding of these questions for the quadratic
polynomial family.

The finiteness of the critical set, combined with the use of Picard-Montel’s theorem,
plays a crucial role in this theory. In particular, it allows to characterize the stability of
a parameter λ0 ∈ M by the stability of the critical orbits of the map fλ0 or, equivalently,
a bifurcation at λ0 by the existence, after an arbitrarily small perturbation, of a repelling
cycle capturing a critical orbit. The one-dimensional setting also permits, by mean of the
so-called λ-lemma, to build holomorphic motions of Julia sets which conjugate the dynam-
ics on connected components of the stability locus. It should also be stressed that the
bifurcation locus coincides with the closure of the subset of parameters λ ∈ M for which
the map fλ admits an unpersistent neutral cycle.

Bifurcation phenomena in families of Hénon maps of C2 have already been studied by
Bedford, Lyubich and Smillie [BLS] and by Dinh and Sibony [DS5], the sharpest achieve-
ments are due to Dujardin and Lyubich in their recent work on the two dimensional and
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dissipative case [DL]. However, very little was known up to now for families of endo-
morphisms of Pk when k ≥ 2. Since the classical one-dimensional tools, or even their
generalizations to higher dimension, are no longer efficient, one has to adopt a different
view-point. Roughly speaking, our approach consists in considering such families as fibered
dynamical systems f :M×Pk →M×Pk and study them by using ergodic and pluripoten-
tial tools as those developped in the works of Bedford-Lyubich-Smillie, Fornaess-Sibony,
Briend-Duval, Dinh-Sibony on holomorphic dynamics on Pk or Ck (see the survey [DS3]
for precise references). Here M is a connected complex manifold and fλ is the map f(λ, ·),
its algebraic degree is d ≥ 2 and does not depend on λ. The space Hd(P

k) of all degree d
holomorphic endomorphisms of Pk can be identified with the complement of an irreducible
complex hypersurface in some PN . Every submanifold M of Hd(P

k) can be seen as a
holomorphic family f :M × Pk →M × Pk.

Let us recall that, for each λ ∈ M , we have an ergodic dynamical system (Jλ, fλ, µλ)
where µλ is the equilibrium measure of fλ and Jλ its support. The measure µλ is also
known to be the unique maximal entropy measure of fλ. The repelling cycles of fλ are
dense in Jλ and even equidistribute the measure µλ. We shall call Jλ the Julia set of fλ.
Note, however, that Jλ is smaller than the non-normality set of fλ and that some repelling
cycles may belong to the complement of Jλ. The fact that the measure µλ enjoys a poten-
tial interpretation, µλ = (ddcz g(λ, z) + ωFS)

k where g is the Green function of f and ωFS
the Fubini-Study form on Pk, will also play an important role.

One of our main goals was to relate the stability of repelling cycles with that of Julia
sets. However, the lack of λ-lemma lead us to introduce a new notion of stability dealing
with the measures µλ rather than with their supports Jλ. The measures µλ are said to
move holomorphically over M if there exists a compactly supported probability measure
M on the set

J :=
{
γ :M → Pk / γ is holomorphic and γ(λ) ∈ Jλ for every λ ∈M

}

such that

µλ =

∫

J
δγ(λ) dM(γ) for every λ ∈M

(see Definition 2.1). This notion is related to Dinh’s theory of woven currents and somehow
means that the measures µλ are holomorphically glued together. We call measures as M
structural webs of (µλ)λ∈M . They are actually obtained as limits of discrete measures (for
instance on graphs of n-periodic repelling cycles) by mean of a compactness statement
which may be considered as a measurable version of the λ-lemma (see Theorem 2.3).

Like in dimension one, our proofs crucially rely on the links between bifurcations and
instability in the critical dynamics. However, these interactions cannot be detected by a
simple application of Picard-Montel’s theorem. We will actually read them on a formula,
established by Bassanelli and the first author [BB1] (see also Pham’s formula in Theo-
rem 2.11) which involves the sum L(λ) of Lyapunov exponents of µλ and the current of
integration Cf on the critical set Cf taking into account the multiplicities of f :

ddcλL = πM⋆

((
ddcλ,z g(λ, z) + ωFS

)k
∧Cf

)
.

Let us underline that the function L is always p.s.h on M .
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We will now describe more precisely our approach and state our main results.

Definition 1.1 The repelling J-cycles are the repelling cycles which belong to the Julia
set. We say that these cycles move holomorphically over M if, for every period n, there
exists a finite subset {ρn,j , 1 ≤ j ≤ Nn} of J such that {ρn,j(λ), 1 ≤ j ≤ Nn} is precisely
the set of the n periodic J-cycles of fλ for each λ ∈M .

It is known that the holomorphic motion of all the J-repelling cycles over M implies
the pluriharmonicity of the function L on M , see [BB1, Theorem 2.2] or [BDM, Theorem
1.5]. We give in Proposition 3.1 a stronger statement. Namely, we show that ddcλL is
vanishing if the measures µλ move holomorphically and admit a structural web which is a
limit of discrete measures supported on graphs avoiding the critical set of f . This is done
in subsection 3.1. Using the formula for ddcλL we characterize its support by a critical
growth condition. This leads to the following theorem, where | · |U denote the mass of
currents in U × Pk.

Theorem 1.2 Let f : M × Pk → M × Pk be a holomorphic family of endomorphisms of
Pk of degree d ≥ 2. The following properties occur:

(1) if the repelling J-cycles move holomorphically over M then the function L is pluri-
harmonic on M .

(2) A parameter λ0 belongs to suppddcλL if and only if lim infn d
−kn|(fn)∗Cf |U > 0, if

and only if lim supn d
−(k−1)n|(fn)∗Cf |U = +∞ for every neighbourhood U of λ0.

To show that the vanishing of ddcλL is a sufficient condition for stability, we exploit the
interactions with the critical dynamics. This is where the Misiurewicz parameters enter
into the picture.

Definition 1.3 One says that λ0 ∈ M is a Misiurewicz parameter if there exists a holo-
morphic map γ from a neighbourhood of λ0 into Pk such that:

1) γ(λ) ∈ Jλ and is a repelling p0-periodic point of fλ for some p0 ≥ 1,

2) (λ0, γ(λ0)) ∈ fn0(Cf ) for some n0 ≥ 1,

3) the graph Γγ of γ is not contained in fn0(Cf ).

We first prove that the pluriharmonicity of L prevents the apparition of such parame-
ters. To do this, we use again the formula for ddcλL and a dynamical rescaling argument.
This is done in subsection 3.2. To prove that the absence of Misiurewicz parameters implies
the holomorphic motion of the equilibrium measures, we apply our measurable version of
the λ-lemma to sequences of discrete measures on pull-backs by fn of a graph of J-repelling
cycles avoiding the post-critical set of f (see Proposition 2.4). The existence of such a graph
is involved, we obtain it through the construction of thick hyperbolic sets. This is done in
section 4. These results are summarized in the following theorem.
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Theorem 1.4 Let f : M × Pk → M × Pk be a holomorphic family of endomorphisms of
Pk of degree d ≥ 2. Then the following assertions are equivalent:

(A) the function L is pluriharmonic on M .

(B) There are no Misiurewicz parameters in M .

(C) The measures µλ locally move holomorphically and admit a structural web M =
limnMn such that the graph of any γ ∈ ∪nsuppMn avoids the critical set of f .

So far, we do not know if the holomorphic motion of measures implies that of J-repelling
cycles. To answer this question, we investigate how the apparition of Siegel discs may affect
the continuity of λ 7→ Jλ in the Hausdorff topology. The section 5 is mainly devoted to
that study (see in particular Proposition 5.7). We then obtain the following

Theorem 1.5 Let f :M×Pk →M×Pk be a holomorphic family of endomorphisms where
M is a simply connected open subset of the space Hd(P

k) of endomorphisms of Pk of degree
d ≥ 2. Then the following assertions are equivalent :

(A) the J-repelling cycles move holomorphically over M .

(B) The function L is pluriharmonic on M .

(C) The measures µλ move holomorphically over M .

Let us mention that if M is a simply connected complex manifold, the above result
is true for all holomorphic families f : M × P2 → M × P2 and, more generally, for any
family f : M × Pk → M × Pk whose repelling J-cycles are neither persistently resonant
nor persistently undiagonalizable (see Proposition 6.3).

In view of these results, we define the bifurcation locus of a holomorphic family of
endomorphisms of Pk as beeing the support of the closed positive current ddcλL. Moreover,
we say that ddcλL is the bifurcation current of the family and that a family is stable if its
bifurcation locus is empty. This is coherent with the classical one-dimensional definition,
as it was first proved by DeMarco [dM].

It follows from Theorem 1.5 that the bifurcation locus in Hd(P
k) coincides with the

closure of the set of endomorphisms which admit J-repelling cycles which bifurcate either
by giving Siegel periodic cycles or repelling cycles outside the Julia set (see Theorem 6.7).

Let us observe that in his work on the persistence of homoclinic tangencies, Buzzard
[Bu] found open subsets of the space of degree d endomorphisms of P2 (for d large enough)
in which the maps having infinitely many sinks are dense. This lead us to believe that the
bifurcation locus may have a non-empty interior when k ≥ 2. In this direction we show
that the set of parameters λ for which Pk coincides with the closure of the post-critical set
of fλ is dense in any open subset of the bifurcation locus (see Theorem 6.11).

Let us finally mention that in any stable family, all elements are Lattès maps as soon
as one element is a Lattès map (see Theorem 6.9). This follows from the characterization
of such maps by their Lyapunov exponents obtained by Loeb and the authors. It is worth
to emphasize that for rational maps of P1, the classical proof of this fact uses the purely
one-dimensional tool of orbifolds.
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2 Stability and positive currents

2.1 Holomorphic motion of equilibrium measures

In dimension one, the Julia sets of stable holomorphic families of rational maps move holo-
morphically. The existence of these motions follows from the classical λ-lemma which is
not any longer available when k ≥ 2. Our aim here is to introduce a notion of holomorphic
motion of equilibrium measures which, for holomorphic families of endomorphisms of Pk,
is devoted to replace that of holomorphic motion of Julia sets.

Our approach is closely related to the basics of the theory of equilibrium currents
developped by Dinh-Sibony and Pham (see [DS2, section 2.5] and [Ph]), the theory of
horizontal currents of Dinh-Sibony [DS2] and of woven currents of Dinh [Di2]. Some
properties of such currents are discussed in the next subsection.

Let f :M × Pk →M × Pk be a holomorphic family of endomorphisms of Pk of degree
d ≥ 2. We recall that M is a connected complex manifold of dimension m and that
f(λ, z) = (λ, fλ(z)). Let µλ denote the equilibrium measure of fλ and let Jλ denote the
support of µλ, this is the Julia set of fλ. We want here to define a notion of holomorphic
motion for the family (µλ)λ∈M . To this purpose we consider the set

J :=
{
γ ∈ O

(
M,Pk

)
such that γ(λ) ∈ Jλ for every λ ∈M

}
.

In general this set can be empty, but it can also be large like for instance when Jλ = Pk

for every λ ∈ M . In our study, J will always be non empty. Note that J endowed with
the topology of local uniform convergence is a metric space.

For any probability measure M on O
(
M,Pk

)
we define

WM :=

∫
[Γγ ] dM(γ).

This is a current on M × Pk of bidimension (m,m), it is a woven current following Dinh’s
terminology [Di2]. For every λ in M , we also define

Mλ :=

∫
δγ(λ) dM(γ),

this is a probability measure on Pk which is actually equal to pλ⋆M where the mapping
pλ : O

(
M,Pk

)
→ Pk is given by pλ(γ) := γ(λ).

Let F : O
(
M,Pk

)
→ O

(
M,Pk

)
be defined by (F · γ) (λ) := fλ (γ(λ)). We will be

interested in situations where M is an F-invariant and compactly supported probability
measure on J . Note that in that case we have a dynamical system (J ,F ,M).

Definition 2.1 We say that the equilibrium measures µλ move holomorphically over M
(or more briefly (µλ)λ∈M moves holomorphically) if there exists a compactly supported F-
invariant probability measure M on J such that Mλ = µλ for every λ ∈ M . Such a
measure M is called a structural web for (µλ)λ∈M .
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When the equilibrium measures move holomorphically we have the following properties.
We thank R. Dujardin for pointing us this fact.

Lemma 2.2 Let M be a connected complex manifold and f : M × Pk → M × Pk be a
holomorphic family of endomorphisms of Pk whose equilibrium measures (µλ)λ∈M move
holomorphically. Let M be a structural web for (µλ)λ∈M . Then :

1) The sequence
(
fpλ(γ(λ))

)
p≥1

is normal for every γ ∈ suppM.

2) There exists γ ∈ suppM such that z0 = γ(λ0) for every (λ0, z0) ∈M × Jλ0 .

3) For every (λ0, z0) ∈ M × Jλ0 such that z0 is n-periodic and repelling for fλ0 , there
exists γ ∈ suppM such that z0 = γ(λ0) and γ(λ) is n-periodic for fλ for every
λ ∈M .

Proof: (1) This follows from fpλ(γ(λ)) = (Fp · γ) (λ) and the fact that M is compactly
supported and F-invariant.

(2) As z0 ∈ Jλ0 and Jλ0 = suppµλ0 = suppMλ0 , there exist (γl)l ⊂ suppM such that
γl(λ0) → z0. Then, since M is compactly supported, we can take for γ any limit of (γl)l.

(3) By the implicit function theorem, there exists a neighbourhood Vλ0 of λ0 and a
holomorphic map w : Vλ0 → Pk such that w(λ0) = z0 and w(λ) is n-periodic for fλ. We
will show that w coincides on Vλ0 with the map γ given by the previous item, the conclusion
then follows by analytic continuation. Our argument is local, so we can choose a chart and
work on Ck. Since z0 is repelling, we can shrink Vλ0 and find A > 1, r > 0 such that

‖w(λ) − fnλ (z)‖ = ‖fnλ (w(λ)) − fnλ (z)‖ ≥ A‖w(λ) − z‖ (1)

when λ ∈ Vλ0 and ‖w(λ) − z‖ < r. On the other hand the first item ensures that(
fpnλ (γ(λ))

)
p
is a normal family, hence we can shrink again Vλ0 so that ‖w(λ)−fpnλ (γ(λ))‖ <

r for every p ≥ 1 and λ ∈ Vλ0 . Combining this with (1) we obtain r > ‖w(λ)−fpnλ (γ(λ))‖ ≥
Ap‖w(λ) − γ(λ)‖ for every p ≥ 1 and λ ∈ Vλ0 . This implies w(λ) = γ(λ) on Vλ0 since
A > 1. ✷

Structural webs will be obtained as limits of discrete measures on O
(
M,Pk

)
. Our basic

result in this direction is the following.

Theorem 2.3 Let f :M×Pk →M×Pk be a holomorphic family of endomorphisms of Pk.
Let µλ be the equilibrium measure of fλ. Assume that there exists a sequence of probability
measures (Mn)n≥1 on O

(
M,Pk

)
such that

1) limn(Mn)λ = µλ for every λ ∈M .

2) F⋆Mn+1 = Mn or F⋆Mn = Mn for every n ≥ 1.

3) There exists a compact subset K of O
(
M,Pk

)
such that supp Mn ⊂ K for every

n ≥ 1.

Then (µλ)λ∈M move holomorphically and any limit of ( 1
n

∑n
l=1Ml)n is a structural web.
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Since it is based on properties of equilibrium currents, the proof will be given in the
next subsection. To end this subsection, we explain how Theorem 2.3 is concretely used to
produce structural webs. The proof relies on the equidistribution of preimages of points,
see the articles [FS1, BD2, DS1] and on the equidistribution of repelling cycles, see [BD1].

Proposition 2.4 Let f : M × Pk → M × Pk be a holomorphic family of degree d endo-
morphisms of Pk.

1) Assume that M is simply connected and that there exists γ ∈ O
(
M,Pk

)
such that

the graph Γγ does not intersect the post-critical set of f . Then the equilibrium mea-
sures (µλ)λ∈M move holomorphically and a structural web is given by any limit of(

1
n

∑n
i=1

1
dki

∑
F i·σ=γ δσ

)
n
.

2) Assume that the repelling J-cycles of f move holomorphically over M and let (ρn,j)1≤j≤Nn

be the elements of J given by the motions of these n-periodic cycles. Then the equi-
librium measures (µλ)λ∈M move holomorphically and a structural web is given by any

limit of
(

1
dkn

∑Nn

j=1 δρn,j

)
n
.

Proof: 1) The map fn :
(
M × Pk

)
\ f−n (∪1≤p≤nf

p(Cf )) →
(
M × Pk

)
\ (∪1≤p≤nf

p(Cf ))
is a covering of degree dkn. Hence, there exist dkn holomorphic graphs Γσj,n such that

fn
(
Γσj,n

)
= Γγ i.e. Fn · σj,n = γ. Let us set Mn := 1

dkn

∑dkn

j=1 δσj,n . By construc-

tion F⋆Mn+1 = Mn and, for every λ ∈ M , one has (Mn)λ = 1
dkn

∑dkn

j=1 δσj,n(λ) =∑
fn
λ
(x)=γ(λ) δx → µλ, where the limit comes from the fact that γ(λ) /∈ ∪p≥1f

p
λ(Cfλ).

The family (σj,n)j,n is normal, by a theorem of Ueda [U, Theorem 2.1], and therefore the

supports of Mn are contained in a fixed compact subset of O
(
M,Pk

)
. The conclusion

immediately follows from Theorem 2.3.

2) Let us set Mn := 1
dkn

∑Nn

j=1 δρj,n . The convergence of (Mn)λ towards µλ follows from
the equidistribution of repelling periodic points with respect to the equilibrium measure,
see [BD2] (note that the repelling cycles produced there are J-cycles). The normality of
the family (ρj,n)j,n can be seen by lifting these curves to curves of periodic points of a lift
F of f . Again, one concludes by using Theorem 2.3. ✷

2.2 Horizontal and equilibrium currents

We gather here the properties of equilibrium currents which will allow us to construct
holomorphic motions of equilibrium measures. To start with, we recall some basic facts
about horizontal currents.

Definition 2.5 Let M be a complex connected manifold. A current R on M × Ck+1 is
horizontal if suppR ⊂M ×K for some compact subset K ⊂ Ck+1.

Let us assume that R is a closed, positive, horizontal current of bidimension (m,m)
on M × Ck+1 where m is the complex dimension of M . Then the slices 〈R, πM , λ〉 exist
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for Lebesgue-almost every λ ∈ M and are positive measures on M × Ck+1 supported on
{λ} × Ck+1. The following basic slicing formula holds for every continuous test function
ψ on M × Ck+1 and every continuous (m,m)-test form ω on M :

∫

M

〈R, πM , λ〉 ψ ω(λ) = 〈R ∧ π⋆M(ω), ψ〉. (2)

Dinh and Sibony have shown that the slices of such currents do actually exist for every
λ ∈M , their fundamental result is as follows, see [DS1, theorem 2.1].

Theorem 2.6 (Dinh-Sibony) Let M be a m-dimensional complex connected manifold
and R be a closed, positive, horizontal current of bidimension (m,m) on M ×Ck+1. Then
the following properties occur.

1. The slice 〈R, πM , λ〉 exists for every λ ∈M and its mass does not depend on λ ∈M .

2. The function λ 7→
∫
Ck+1 ψ(λ, z) 〈R, πM , λ〉 is psh or ≡ −∞ on M for any psh

function ψ defined on a neighborhood of suppR.

The following corollary is inspired by [Ph, Proposition 2.1], one can find a more general
version in [DS4, remark 2.2.6]. We shall need it to prove Theorem 2.3, namely to produce
holomorphic motions of equilibrium measures from motions of approximating discrete mea-
sures.

Corollary 2.7 Let M be as above and (Rn)n be a sequence of closed, positive, horizon-
tal current of bidimension (m,m) on M × Ck+1. Assume that limnRn = R and that
suppRn ⊂M ×K for some compact subset K of Ck+1. Then, after taking a subsequence,
we have limn〈Rn, πM , λ〉 = 〈R, πM , λ〉 for almost every λ ∈M .

Proof: Let ψ be a test function on Ck+1 which will be considered as a function on
M × Ck+1. For every λ ∈M , we set

uψ,n(λ) := 〈Rn, πM , λ〉ψ , uψ(λ) := 〈R, πM , λ〉ψ.

According to Theorem 2.6, the slice masses cn := |〈Rn, πM , λ〉| and c := |〈R, πM , λ〉| do
not depend on λ ∈ M . Given a (m,m)-test form ω on M , the basic slicing formula (2)
gives

lim
n

∫

M

uψ,n(λ) ω(λ) = lim
n
〈Rn ∧ π

⋆
M (ω), ψ〉 = 〈R ∧ π⋆M (ω), ψ〉 =

∫

M

uψ(λ) ω(λ). (3)

Applying (3) with ψ ≡ 1 on K, we get c = limn cn and thus C := supn cn is finite.
Taking C < +∞ into account, one sees by using Slutsky’s lemma and a diagonal argument
that it suffices to prove that

uψ,n → uψ in L1
loc(M) for every test function ψ.
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Let us first prove it when ψ is a smooth psh function. By Theorem 2.6, (uψ,n)n is a sequence
of psh functions, which is locally uniformly bounded on M since |uψ,n| ≤ cn supK |ψ| ≤
C supK |ψ|. As such sequences are relatively compact for the L1

loc topology, it suffices to
show that uψ is the unique cluster point of (uψ,n)n. Assume that uψ,nk

→ v in L1
loc(M).

According to (3), we have
∫
M
uψ ω =

∫
M
v ω for every (m,m)-test form ω on M . Hence

v and uψ coincide in L1
loc(M), as desired. This remains true when ψ is any smooth test

function on Ck+1, as one sees by writing it as a difference of two smooth psh functions:
ψ = (ψ +A‖z‖2)−A‖z‖2 with A large enough. ✷

Let us now define equilibrium currents for holomorphic families of d-homogeneous non-
degenerate maps. Such currents always exist, they have been introduced by Pham [Ph] in
the more general context of polynomial like mappings (see also the lecture notes by Dinh
and Sibony [DS2, section 2.5]).

Definition 2.8 Let F :M×Ck+1 →M×Ck+1 be a holomorphic family of d-homogeneous
non-degenerate maps where M is some m-dimensional complex connected manifold. Let E
be a closed, positive, horizontal current of bidimension (m,m) on M ×Ck+1. We say that
E is an equilibrium current for F if the slice 〈E , πM , λ〉 is equal to the equilibrium measure
of Fλ for every λ ∈M .

One may dynamically produce equilibrium currents. For instance, Pham proved that
the sequence of smooth forms

(
1

d(k+1)nF
n⋆

(
π⋆
Ck+1θ

) )
n

converges to such a current for any

smooth probability measure θ on Ck+1.

It is also possible to define equilibrium currents for families of endomorphisms of Pk by
mean of Green functions. Let us briefly recall their construction. Consider a holomorphic
family f :M×Pk →M×Pk which admits a lift F :M×Ck+1 →M×Ck+1. The sequence

Gn(λ, z̃) :=
1

dn
log ‖Fnλ (z̃)‖

converges locally uniformly on M × Ck+1 \ {0} to a function G which we call the Green
function of F . The function G is psh and Hölder continuous, see [BB1, section 1.2]. Let
π : Ck+1\{0} → Pk be the canonical projection, ωFS be the Fubini-Study form on Pk. The
functions Gn induce functions gn :M × Pk → R by setting gn(λ, z) := Gn(λ, z̃)− log ‖ z̃ ‖,
for every z̃ satisfying π(z̃) = z. We have the

1

d
f⋆

(
ddcλ,z gn + ωFS

)
= ddcλ,z gn+1 + ωFS.

We define similarly g(λ, z) := limn gn(λ, z), which is equal to G(λ, z̃)− log ‖ z̃ ‖, and set

EGreen :=
(
ddcλ,z g + ωFS

)k
.

This is a current of bidimension (m,m) and, since slicing commutes with the operators d,
dc and with restriction, the measure 〈EGreen, πM , λ〉 is equal to the equilibrium measure
of fλ for every λ ∈ M . The current EGreen will play an important role in our study (see
Proposition 3.3), we call it the Green equilibrum current of f .

We end this subsection by proving Theorem 2.3. The following lemma allows to exploit
the properties of horizontal currents in M × Ck+1.
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Lemma 2.9 Let B be a ball in Cm and let f : B × Pk → B × Pk be a holomorphic family
of endomorphisms of Pk. Let K be a compact subset of O

(
B,Pk

)
. Then, after shrinking

B, one may associate to any probability measure N supported on K a positive, horizontal
(m,m)-bidimensional current W̃N on B × Ck+1 such that π⋆〈W̃N , πB , λ〉 = Nλ for every

λ ∈ B. Moreover, W̃N depends continuously on N .

Proof: Let (σi)1≤i≤N be holomorphic sections of π whose domains of definition Ωi cover
Pk. Since K is a normal family, we may shrink B so that for each γ ∈ K there exists at
least one 1 ≤ i ≤ N such that Γγ ⊂ B × Ωi. This allows to define a map

σ : K → O
(
B,Ck+1

)

γ 7→ σ(γ) := σl ◦ γ

where l := min{1 ≤ i ≤ N such that Γγ ⊂ B × Ωi}. Now, for any probability measure N
supported on K we set

W̃N :=
∫
J [Γσ(γ)] dN (γ).

Then π⋆〈W̃N , πB , λ〉 = Nλ for every λ ∈ B by construction. ✷

Proof of Theorem 2.3: Let us set Vn := 1
n

∑n
l=1Ml where Mn satisfies the as-

sumptions of Theorem 2.3. By the second and the third of these assumptions, every limit
V of (Vn)n is clearly F-invariant and supported in K. By the first one, (Vn)λ → µλ for
every λ ∈M . Let us show that Vλ = µλ for every λ ∈M . We may assume that Vn → V.

The problem being local, we may replace M by any ball B in Cm. Note that for any
test function φ on Pk, the functions λ 7→ 〈Vλ, φ〉 and λ 7→ 〈µλ, φ〉 are both continuous.
This follows easily from the facts that V is supported on K which is an equicontinuous

family and that µλ = π⋆

(
ddcλ,z̃GF (λ, z̃)

)k+1
where GF is the Green function of F which

is continuous on B ×Ck+1. Thus it suffices to show that Vλ = µλ for almost every λ ∈ B.

We now use Lemma 2.9 and associate horizontal currents W̃Vn and W̃V to Vn and V.
As W̃Vn converges towards W̃V as currents, it follows from Corollary 2.7 that (Vn)λ → Vλ
for almost every λ ∈ B, which implies that Vλ = µλ for almost every λ ∈ B.

It remains to check that V is supported on J . We have to show that if γ0 ∈ O
(
M,Pk

)

and γ0(λ0) /∈ Jλ0 for some parameter λ0 then γ0 does not belong to the support of V. Let
U0 be a neighbourhood of γ(λ0) such that µλ0(U0) = 0 and let V0 be a neighbourhood
of γ0 in O

(
M,Pk

)
such that {γ(λ0) / γ ∈ V0} ⊂ U0. Then 0 = µλ0(U0) ≥ V(V0) since

µλ0 = Vλ0 . ✷

2.3 Some fundamental formulas

In [dM], DeMarco proved a formula relating the Lyapunov exponent L(f) of a rational
map f with a specific critical data. For a polynomial P of degree d, her formula boils
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down to the famous Przytycki’s formula, see [Pr]:

L(P ) =
∑

c∈CP

GP (c) + log d.

Here GP stands for the dynamical Green function of P : GP := limn d
−n log+ |Pn(z)|.

Bassanelli-Berteloot have obtained a similar formula for the sum of Lyapunov exponents
of holomorphic endomorphisms of Pk, see [BB1, Theorem 4.1].

For holomorphic families (fλ)λ, it turns out that the identities between currents ob-
tained by applying ddcλ to such formulas enlight bifurcation phenomena (see the survey
[Be] or the lecture notes [DS3]). In dimension one, the current ddcλL detects the existence
of unpersistent neutral cycles while ddcλ

∑
c(λ)∈CPλ

GPλ
(c(λ)) detects the activity of criti-

cal points. In particular, as shown by DeMarco, the support of ddcλL coincides with the
bifurcation locus. For holomorphic families of endomorphisms of Pk the identity provided
by Theorem 2.10 here below plays a crucial role in our proof (see section 3.2).

Let us set D := (k+1)(d− 1). The line bundle OPk(D) over Pk is seen as the quotient
of

(
Ck+1 \ {0}

)
× C by the relation (z̃, x) ≡ (uz̃, uDx) for every u ∈ C⋆ and its elements

are denoted by [z̃, x]. We may endow OPk(D) with the canonical metric

‖[z̃, x]‖0 := e−D log ‖z̃‖|x|

or, for any λ ∈M , with the metric

‖[z̃, x]‖λ := e−DG(λ,z̃)|x|.

Let f :M × Pk →M × Pk be a holomorphic family of endomorphisms of Pk which admits
a lifted family F : M × Ck+1 → M × Ck+1. Let us set JF (λ, z̃) := det dz̃Fλ. Then we
obtain a family of holomorphic sections of OPk(D) by setting for every z̃ ∈ Ck+1 \ {0}:

JsF (λ, π(z̃)) = [z̃, JF (λ, z̃)].

The current Cf := ddcλ,z log ‖J
s
F (λ, z) ‖0 is the current of integration on Cf taking account

the topological multiplicities of f , its bidimension is equal to (κ, κ) where κ := k+m− 1.
The Green equilibrium current EGreen = (ddcλ,zg + ωFS)

k was defined in subsection 2.2.

Theorem 2.10 (Bassanelli-Berteloot) Let f : M × Pk → M × Pk be a holomorphic
family of endomorphisms of Pk. Let L(λ) be the sum of the Lyapunov exponents of µλ.
Then

ddcλL = πM⋆ (EGreen ∧Cf ) .

We end this subsection by explaining how Pham [Ph] obtained a more general formula
by a rather direct and simple argument. His result holds for any equilibrium current
of any family of polynomial-like maps, we state it in the special case of non-degenerate
homogeneous maps for sake of simplicity. Let us recall that for such a family F , the
function log |JF (λ, z̃)| is psh on M ×Ck+1. Moreover, the sum of the Lyapunov exponents
of Fλ with respect to its equilibrium measure νλ is given by

∫
Ck+1 log |JF (λ, z̃)| dνλ(z̃) and

is equal to L(λ)+log d where L(λ) is the sum of the Lyapunov exponents of fλ with respect
to µλ.

11



Theorem 2.11 (Pham) Let F : M × Ck+1 → M × Ck+1 be a holomorphic family of
non-degenerate d-homogeneous maps and let E be an equilibrium current for F . Then:

1. The current log |JF | · E has locally finite mass.

2. ddcλL = πM⋆

(
E ∧ ddcλ,z̃ log |JF |

)
.

We shall actually need the following formula for ddcλL when (µλ)λ move holomorphi-
cally. The proof follows Pham’s arguments.

Proposition 2.12 Let B be an open ball in Cm and let f : B × Pk → B × Pk be a
holomorphic family of endomorphisms of Pk. Assume that (µλ)λ move holomorphically
and let M be a structural web. Then

ddcλL = πB⋆
(
W̃M ∧ ddcλ,z log ‖J

s
F (λ, π(z̃)) ‖λ

)

where W̃M is the (m,m)-bidimensional current on M × Ck+1 associated to M by Lemma
2.9.

Proof: We first check that for every λ ∈ B we have
∫

Ck+1

log ‖JsF (λ, π(z̃)) ‖λ 〈W̃M, πB , λ〉 = L(λ) + log d. (4)

Indeed, since π⋆〈W̃M, πB , λ〉 = µλ, we get
∫

Ck+1

log ‖JsF (λ, π(z̃)) ‖λ 〈W̃M, πB , λ〉 =

∫

Pk

log ‖JsF (λ, z) ‖λ µλ.

On the other hand, since Gλ identically vanishes on the support of the equilibrium measure
νλ of Fλ and since π⋆νλ = µλ, we have

∫

Pk

log ‖JsF (λ, z) ‖λ µλ =

∫

Ck+1

log ‖JsF (λ, π(z̃)) ‖λ νλ

=

∫

Ck+1

log |JF (λ, z̃)| νλ = L(λ) + log d,

and the identity (4) follows.
Pham proved that u · R has locally finite mass for every psh function u and every

horizontal current R as soon as
∫
Ck+1 u 〈R, πB , λ〉 6= −∞ for some λ ∈M , see [Ph, theorem

A.2]. It thus follows from (4) that the current log ‖JsF (λ, π(z̃)) ‖λ · W̃M is well defined and
that its ddcλ,z̃ is equal to W̃M ∧ ddcλ,z̃ log ‖J

s
F (λ, π(z̃)) ‖λ.

The remainder is a simple computation which relies on integration by parts (to make
it rigourous one should approximate log ‖JsF (λ, π(z̃)) ‖λ by smooth functions). Let ϕ be a
(m− 1,m− 1) test form on B. Then

〈πB⋆
(
W̃M ∧ ddcλ,z̃ log ‖J

s
F (λ, π(z̃)) ‖λ

)
, ϕ〉 = 〈 log ‖JsF (λ, π(z̃)) ‖λ · W̃M , ddcλ,z̃ (π

⋆
Bϕ) 〉

= 〈 W̃M ∧ π⋆B (ddcλϕ) , log ‖J
s
F (λ, π(z̃)) ‖λ 〉.

12



By the basic slicing formula (2) and the identity (4), this is equal to
∫

B

(
〈W̃M, πB , λ〉 log ‖J

s
F (λ, π(z̃)) ‖λ

)
ddcλϕ =

∫

B

Lddcλϕ = 〈ddcλL,ϕ〉.

This completes the proof of the Proposition 2.12. ✷

3 The main properties of the current dd
c
λL

3.1 Repelling cycles do not move holomorphically on supp dd
c
λL

Our aim is to establish the first assertion of Theorem 1.2, precisely that ddcλL = 0 on M if
the repelling J-cycles move holomorphically. We actually prove here a quite more general
result.

Proposition 3.1 Let f : M × Pk → M × Pk be a holomorphic family of degree d ≥
2 endomorphisms of Pk whose equilibrium measures µλ move holomorphically over M .
Assume that a structural web M of (µλ)λ∈M is given by M = limnMn where Γγ ∩Cf = ∅
for any γ ∈ ∪nsuppMn. Then ddcλL = 0 on M .

Note that, according to the second assertion of Proposition 2.4, the assumptions of
Proposition 3.1 are satisfied when the repelling J-cycles move holomorphically. The proof
needs the following technical lemma, it will be also useful to show Proposition 6.10.

Lemma 3.2 Let B be an open ball in Cm and let f : B × Pk → B × Pk be a holomorphic
family of endomorphisms of Pk. Let Z be a codimension 1 analytic subset of B×Pk which
does not contain any fiber {λ} × Pk. Assume that µλ move holomorphically and that there
exists a structural web satisfying M = limnMn, where Γγ ∩ Z = ∅ for γ ∈ ∪nsuppMn

and n ≥ n0. Let B′ be a relatively compact ball in B.
Then, after shrinking B, there exist A > 0 and 0 < a < 1 such that

M{γ ∈ J / Γγ|B′
∩ Zǫ 6= ∅} ≤ Aǫa

for every sufficently small ǫ > 0, where Zǫ is the ǫ-neighbourhood of Z.

Proof: We can assume that both B and B′ are centered at some λ0. After maybe shrink-
ing B we may find a finite collection (Ωi, hi)1≤i≤N where the Ωi are open and cover B×Pk,
the functions hi are holomorphic and bounded by 1 on Ωi and Z ∩ Ωi = {hi = 0} for any
1 ≤ i ≤ N . If ǫ is small enough, we may also assume that Zǫ ∩ Ωi ⊂ {|hi| < C1ǫ} and, by
Lojasiewicz inequality, that {|hi| < ǫ} ⊂ ZC2ǫτ for some constants C1, C2, τ > 0. Similarly,
one has Zǫ ∩

(
{λ0} × Pk

)
⊂

(
Z ∩

(
{λ0} × Pk

))
C3ǫ

τ0
for some constants C3, τ0 > 0.

Since M has compact support in J , we may shrink B again so that for any γ ∈ suppM
there exists at least one 1 ≤ i ≤ N such that Γγ ⊂ Ωi. We shall use the following

Claim: there exists 0 < α ≤ 1 such that supB′ |φ| ≤ |φ(t0)|
α for every t0 ∈ B′ and for

every holomorphic function φ : B → D∗.
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Let γ ∈ suppM such that Γγ ∩Z = ∅ and Γγ|B′
∩Zǫ 6= ∅. Applying the claim to hi ◦ γ

with Γγ ⊂ Ωi we obtain that Γγ|B′
⊂ ZC4ǫτα for some constant C4 > 0.

On the other hand, by our assumption on the approximation by Mn, Hurwitz lemma
implies that either Γγ ⊂ Z or Γγ ∩ Z = ∅ for any γ ∈ suppM. We thus have

M{γ ∈ J / Γγ|B′
∩ Zǫ 6= ∅} ≤ M{γ ∈ J / Γγ|B′

⊂ ZC4ǫτα} ≤

M{γ ∈ J / (λ0, γ(λ0)) ∈ ZC4ǫτα} = µλ0

(
ZC4ǫτα ∩

(
{λ0} × Pk

))
≤

µλ0

[(
Z ∩

(
{λ0} × Pk

))
C3(C4ǫατ )τ0

]
≤ Aǫa

where the last estimate is due to the fact that µλ0 has Hölder-continuous local potentials
and Z ∩

(
{λ0} × Pk

)
is a proper analytic subset of Pk.

It remains to prove the claim. Let G := {ϕ ∈ O(B,H) / ϕ(s) = −1 for some s ∈ B′}
where H := {ℜz < 0} is the left half plane. Then G is compact for the topology of
local uniform convergence, and thus the quantity (−α) := supϕ∈G sups∈B′ ℜϕ(s) satisfies
−1 ≤ −α < 0. Let t0 ∈ B′ and φ : B → D∗ be holomorphic. After a rotation in D∗ we
may assume that |φ(t0)| = φ(t0) ∈]0, 1]. Let ϕ : B → H be the lift of φ by the exponential
map, which satisfies ϕ(t0) = log φ(t0) ∈]−∞, 0[. Then ϕ0(t) := −ϕ(t)/ϕ(t0) belongs to G
and thus ℜ(ϕ0) ≤ −α on B′. This is the desired estimate since |φ| = eℜϕ ≤ eα log φ(t0) =
|φ(t0)|

α. ✷

Proof of Proposition 3.1: The problem is local and we may therefore take for
M a ball B ⊂ Cm and assume that f : B × Pk → B × Pk admits a lifted familly
F : B×Ck+1 → B×Ck+1 of d-homogeneous non-degenerate maps. We will apply Lemma
3.2 with Z = Cf . Let B′ be any relatively compact ball contained in B.

After shrinking B we may use Lemma 2.9 and associate to M a current of the form

W̃M =

∫

J
[Γσ(γ)] dM(γ).

According to Proposition 2.12, one has

ddcλL = πB⋆
(
W̃M ∧ ddcλ,z̃ log ‖J

s
F (λ, π(z̃)) ‖λ

)
.

Using ‖JsF (λ, π(z̃)) ‖λ = e−DG(λ,z̃)|JF (λ, z̃)| as defined in subsection 2.3, and the fact that
functions L and G are psh, we obtain

0 ≤ ddcλL = πB⋆
(
W̃M ∧ ddcλ,z̃ log |JF |

)
−DπB⋆

(
W̃M ∧ ddcλ,z̃G

)
≤ πB⋆

(
W̃M ∧ ddcλ,z̃ log |JF |

)

hence it suffices to show that the current log |JF | W̃M restricted to B′×Ck+1 is ddcλ,z̃ closed.

For ǫ < 1 we set logǫ := χǫ ◦ log where χǫ is a convex, smooth, increasing function
on R such that χǫ(x) = x if x ≥ log ǫ and χǫ(−∞) = 2 log ǫ. Then logǫ |JF | is a decreas-
ing family (with respect to ǫ) of smooth psh functions which converges to log |JF |. As

14



limǫ→0 logǫ |JF | W̃M = log |JF | W̃M we will actually deal with logǫ |JF | W̃M.
To this purpose we set Uǫ := {|JF | < ǫ}, SM,ǫ := {γ ∈ suppM / Γσ(γ)|B′

∩ Uǫ 6= ∅} and

decompose W̃M as follows:
W̃M = W̃M,ǫ + W̃ ⋆

M,ǫ

where W̃M,ǫ :=
∫
J [Γσ(γ)]1SM,ǫ

dM(γ) and W̃ ⋆
M,ǫ := W̃M − W̃M,ǫ. Then

logǫ |JF | W̃M = logǫ |JF | W̃M,ǫ + logǫ |JF | W̃
⋆
M,ǫ

and, by construction, the current logǫ |JF | W̃
⋆
M,ǫ|B′×Ck+1 is ddcλ,z̃-closed since logǫ |JF | =

log |JF | is pluriharmonic on the graphs Γγ which do not intersect Uǫ. It thus remains to
check that limǫ logǫ |JF | W̃M,ǫ = 0. This follows from the following estimate

‖ logǫ |JF | W̃M,ǫ‖ . | log ǫ|M (SM,ǫ) . ǫa| log ǫ|

where the last inequality is obtained by observing that there exist b, β > 0 such that
SM,ǫ ⊂ {γ ∈ J / Γγ|B′

∩ (Cf )bǫβ 6= ∅} and applying Lemma 3.2. ✷

3.2 Misiurewicz parameters belong to supp dd
c
λL

Proposition 3.3 Let f : M × Pk → M × Pk be a holomorphic family of endomorphisms
of Pk. Then the Misiurewicz parameters belong to the support of ddcλL.

Proof: If λ0 ∈M is a Misiurewicz parameter then, by definition, there exists a holomor-
phic map γ from a neighbourhood of λ0 into Pk such that:

1) γ(λ) ∈ Jλ and is a repelling p0-periodic point of fλ for some p0 ≥ 1,

2) (λ0, γ(λ0)) ∈ fn0(Cf ) for some n0 ≥ 1,

3) the graph Γγ of γ is not contained in fn0(Cf ).

To simplify notations we assume that p0 = 1. We may also assume that M is a disc
Dρ ⊂ C centered at λ0 = 0 with radius ρ. Moreover, conjugating by a suitable "translation"
(λ, z) 7→ (λ, Tγ(λ)(z)) ensures that γ is constant equal to z1 := γ(0). Let us denote by Br a
ball centered at z1 and of radius r. Taking ρ and r small finally allows us to suppose that

(i) f is injective and uniformly expanding on Dρ ×Br: there exists K > 1 such that

∀(λ, z) ∈ Dρ ×Br, dPk (f(λ, z), f(λ, z1)) ≥ KdPk(z, z1)

(ii) ∀λ ∈ Dρ, (λ, z1) ∈ fn0(Cf ) ⇔ λ = 0.

The fact that γ(λ) ∈ Jλ is crucial but will only be used at the very end of the proof.

We have to show that 〈ddcλL, 1Dǫ〉 > 0 for every 0 < ǫ < ρ. To this purpose, we

will use the formula ddcλL = (πDρ)⋆

((
ddcλ,zg + ω

)k
∧Cf

)
given by Theorem 2.10, where
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ω := ωFS. Let (gn)n be a sequence of smooth functions on Pk which converges uniformly
to g and satisfies 1

d
f⋆(ddcλ,zgn+ω) = ddcλ,zgn+1 +ω (see subsection 2.2). We shall proceed

in three steps.

First step: 〈ddcλL, 1Dǫ〉 ≥ d−n0k〈[fn0(Cf )] ∧
(
ddcλ,zg + ω

)k
, 1Dǫ×Br〉.

Pick (0, z0) ∈ Cf such that fn0(0, z0) = (0, z1). After reducing ǫ and r, we may find a
neighbourhood U of (0, z0) such that the map fn0 : U → Dǫ ×Br is proper. According to
Theorem 2.10, we have

〈ddcλL, 1Dǫ〉 = 〈
(
ddcλ,zg + ω

)k
∧Cf , 1Dǫ ◦ πDρ〉 ≥ 〈

(
ddcλ,zg + ω

)k
∧ [Cf ], 1U 〉.

Using the smooth approximations gn, we get

〈
(
ddcλ,zg + ω

)k
∧ [Cf ], 1U 〉 = lim

n
〈
(
ddcλ,zgn+n0 + ω

)k
∧ [Cf ], 1U 〉

= lim
n
d−n0k〈1U · [Cf ], f

n0⋆
(
ddcλ,zgn + ω

)k
〉

= lim
n
d−n0k〈(fn0)⋆ (1U · [Cf ]) ,

(
ddcλ,zgn + ω

)k
〉.

Now, as fn0 : U → Dǫ × Br is proper, one has (fn0)⋆ (1U [Cf ]) ≥ 1Dǫ×Br [f
n0(Cf )] which,

since ddcλ,zgn + ω is positive, yields

〈ddcλL, 1Dǫ〉 ≥ lim
n
d−n0k〈1Dǫ×Br [f

n0(Cf )],
(
ddcλ,zgn + ω

)k
〉

≥ lim
n
d−n0k〈

(
ddcλ,zgn + ω

)k
∧ [fn0(Cf )], 1Dǫ×Br〉.

The desired estimate follows by uniform convergence of gn to g.

Second step: Let A0 := 1Dǫ×Br [f
n0(Cf )] and Ap+1 := 1Dǫ×Brf⋆(Ap). Then

‖Ap∧
(
ddcλ,zg + ω

)k
‖ = dpk‖

(
1Dǫ×Br ◦f

p
)
A0∧

(
ddcλ,zg + ω

)k
‖ ≤ dpk‖A0∧

(
ddcλ,zg + ω

)k
‖.

We use again the smooth approximations gn. Then:

‖Ap+1 ∧
(
ddcλ,zgn + ω

)k
‖ = 〈1Dǫ×Brf⋆(Ap),

(
ddcλ,zgn + ω

)k
〉

= 〈Ap, f
⋆
(
1Dǫ×Br

(
ddcλ,zgn + ω

)k)
〉

= dk〈Ap, 1Dǫ×Br ◦ f
(
ddcλ,zgn+1 + ω

)k
〉

= dk〈Ap ∧
(
ddcλ,zgn+1 + ω

)k
, 1Dǫ×Br ◦ f〉

= dk‖
(
1Dǫ×Br ◦ f

)
Ap ∧

(
ddcλ,zgn+1 + ω

)k
‖

Taking the limits when n tends to infinity yields the conclusion.
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Third step: 〈ddcλL, 1Dǫ〉 > 0.

By combining the two former steps, one gets:

d(p+n0)k〈ddcλL, 1Dǫ〉 ≥ ‖Ap ∧
(
ddcλ,zg + ω

)k
‖. (5)

By (i) and (ii), f is uniformly expanding on Dρ × Br and (suppA0) ∩ (Dρ × {z1}) =
{(0, z1)}. Thus suppAp ⊂ Dǫp ×Br for some ǫp → 0. Let us momentarily admit that there
exists m > 0 such that

Ap → m [{0} ×Br]. (6)

We then deduce from (5) that, for p large enough, one has:

d(p+n0)k〈ddcλL, 1Dǫ〉 ≥
m

2
‖[{0} ×Br] ∧

(
ddcλ,zg + ω

)k
‖.

We conclude by using the fact that z1 ∈ J0: the right hand side is equal to

m

2

∫

Br

(ddczg(0, z) + ω)k =
m

2
µ0(Br) > 0.

To complete the proof of Proposition 3.3 it remains to establish (6). Let us denote V :=
Dρ×Br and V ′ := f(V ). By assumption f : V → V ′ is a biholomorphism whose inverse will
be denoted h : V ′ → V . According to (i), V ⊂ V ′ and (h|V )

p converges to (λ, z) 7→ (λ, z1).
We now use (ii). After shrinking ρ and r, we may find a Weierstrass polynomial

ψ(λ, z) := λm + αm−1(z)λ
m−1 + · · ·+ α0(z)

such that αj(z1) = 0 for 0 ≤ j ≤ m − 1 and fn0 (Cf ) ∩ (Dρ ×Br) = {ψ = 0}. Observe
now that A0 = 1V dd

c
λ,z log |ψ| and that

A1 = 1V f⋆A0 = 1V h
⋆A0 = 1V (1V ◦ h)ddcλ,z log |ψ ◦ h| = 1V dd

c
λ,z log |ψ ◦ h|,

where the last equality comes from h(V ) ⊂ V . Similarly we have Ap = 1V dd
c
λ,z log |ψ ◦

(h|V )
p | and the conclusion follows from ψ ◦ (h|V )

p (λ, z) → λm. ✷

4 A construction of Misiurewicz parameters

The main goal of this section is to show that Misiurewicz parameters appear when the
holomorphic motion of µλ fails. The basic idea is as follows. Assume that a graph Γ
obtained by the holomorphic motion of a repelling J-cycle stays in Julia sets and is not
contained in the post-critical set, then, according to Proposition 2.4, either the equilibrium
measures move holomorphically or the preimages of Γ by Fn must meet the critical set
and thus produce a Misiurewicz parameter.

The technical difficulty is to find such a graph of repelling J-cycles. We will obtain it
from the holomorphic motion of some sufficently thick hyperbolic set whose existence is
interesting for itself. This is detailed in the first subsection while the second one is devoted
to hyperbolic sets and their holomorphic motions.

17



4.1 Thick hyperbolic sets and Misiurewicz parameters

We prove the following proposition, the statement is local since it is based on holomorphic
motion of hyperbolic sets.

Proposition 4.1 Let f : B × Pk → B × Pk be a holomorphic family of endomorphisms of
Pk where B is a ball centered at the origin in Cm. If B does not contain any Misiurewicz
parameter then, after shrinking B, there exists γ ∈ J such that Γγ∩PCf = ∅. In particular
the equilibrium measures µλ move holomorphically over B.

Let us recall a few definitions concerning holomorphic motions of hyperbolic sets.

Definition 4.2 Let f : B × Pk → B × Pk be a holomorphic family of endomorphisms of
Pk where B is a ball centered at the origin in Cm. Let E0 be some f0-invariant subset of
Pk. A holomorphic motion of E0 over Bρ ⊂ B is a continuous map h : Bρ×E0 → Pk such
that :

1. λ 7→ hλ(z) is holomorphic on Bρ for every z ∈ E0.

2. z 7→ hλ(z) is injective on E0 for every λ ∈ Bρ.

3. hλ ◦ f0 = fλ ◦ hλ on E0 for every λ ∈ Bρ.

One says that E0 is a hyperbolic set for f0 if it is f0-invariant and if there exists K > 1
such that |(df0)

−1|−1 ≥ K on E0.

We will show in Theorem 4.6 below that every hyperbolic set admits a holomorphic
motion which preserves repelling cycles. We need a more precise result concerning the size
of such sets and the position of their motions with respect to Julia sets.

Theorem 4.3 Let f : B × Pk → B × Pk be a holomorphic family of endomorphisms of
Pk. There exist an integer N , a compact hyperbolic set E0 ⊂ J0 for fN0 and a holomorphic
motion h : Br × E0 → Pk for some 0 < r < 1 such that :

1. The repelling periodic points of fN0 are dense in E0 and E0 is not contained in the
post-critical set of fN0 .

2. hλ(z) ∈ Jλ for every λ ∈ Br and every z ∈ E0.

3. If z is periodic repelling for fN0 then hλ(z) is periodic repelling for fNλ .

Proof Proposition 4.1: We use Theorem 4.3. Since fNλ and fλ have same equi-
librium measures and post-critical sets, we may assume that N = 1. Let E0 ⊂ J0 and
r ∈]0, 1] provided by Theorem 4.3. Let us fix z ∈ E0 \ ∪n≥1f

n
0 (Cf0) (see item 1).

Let Γz denote the graph of λ 7→ hλ(z). We want to show that

Γz ∩
(
∪n≥1 f

n(Cf )
)
= ∅. (7)

Assume to the contrary that there exists n0 ≥ 1 such that Γz ∩ f
n0(Cf ) 6= ∅. By item

1, there exists a sequence (zp)p ⊂ E0 of f0-periodic repelling points which converges to z.
Items 2 and 3 assert that hλ(zp) ∈ Jλ and hλ(zp) is a fλ-periodic repelling point for every
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λ ∈ Br. As h is continuous, λ 7→ hλ(zp) converges locally uniformly to λ 7→ hλ(z). Hence,
for p large enough, the graph Γzp is not contained in fn0(Cf ) (consider the parameter λ = 0)
and, by Hurwitz’s lemma, there exists λp ∈ Br such that (λp, hλp(zp)) ∈ fn0(Cf ). The
parameters λp are Misiurewicz and this contradicts our assumption. By (7) and the first
assertion of Proposition 2.4 we get that the measures µλ move holomorphically over Br. ✷

The remainder of the subsection is devoted to the proof of Theorem 4.3. To control
the size of hyperbolic sets, we use an entropy argument. Our key tool is the following
result which is due to Briend-Duval [BD2], de Thélin [dT] and Dinh [Di3] (see also [DS3])
Corollary 1.117).

Theorem 4.4 Let g be an endomorphism of Pk of degree d. Let κ be an ergodic g-invariant
measure with entropy hκ > (k − 1) log d. Then κ gives no mass to analytic subsets of
dimension ≤ k − 1 and the support of κ is included in the Julia set of g.

To create hyperbolic sets, we use a classical device. For that purpose we need the
following Proposition which is a consequence of [BD1] (see also [BDM]). For any endo-
morphism f0 of Pk and every A ⊂ Pk, n ≥ 1 and ρ > 0, we denote by Cn(A, ρ) the set of
inverse branches gn of fn0 defined on A and satisfying gn(A) ⊂ A and Lip gn ≤ ρ.

Proposition 4.5 Let f0 be an endomorphism of Pk of degree d. For every ρ > 0 there
exist a closed ball A ⊂ Pk centered on Jf0 and α > 0 such that CardCn(A, ρ) ≥ αdkn for n
large.

Proof: Let O := {ẑ := (zn)n∈Z , zn+1 = f0(zn)} be the set of orbits and let s be
the left shift acting on O. Let p(ẑ) := z0 and µ̂ be the unique s-invariant probability
measure satisfying µ̂(p−1(B)) = µ(B). The measure µ̂ is mixing since µ is mixing. Let
X := {ẑ ∈ O , zn /∈ C , ∀n ∈ Z} where C is the critical set of f0. This subset has full
µ̂-mesure since µ(C) = 0. For every ẑ ∈ X we denote f−n0,ẑ the inverse branch of fn0 sending
z0 to z−n. Let λ1 be the smallest Lyapunov exponent of µ. According to [BD1], for every
ǫ > 0 there exist Ĥ ⊂ X of positive µ̂-measure, r0 > 0 and n0 ≥ 1 such that: for every
ẑ ∈ Ĥ and n ≥ n0,

f−n0,ẑ is well defined on Bz0(r0) and Lip f−n0,ẑ ≤ e−nλ1+nǫ on Bz0(r0).

Let (Bi)1≤i≤m be a covering of Jf0 by closed balls of radius r < r0/2. Let (Bγ
i )1≤i≤m be

the concentric balls of radius r+γ < r0/2. Setting B̂i := p−1(Bi), let us fix i0 ∈ {1, . . . ,m}

satisfying µ̂(Ĥ ∩ B̂i0) > 0. It remains to verify that A := Bγ is convenient, with B :=

Bi0 . Let C ′
n be the collection of inverse branches f−n0,ẑ with ẑ ∈ Ĥ ∩ B̂γ and satisfying

f−n0,ẑ (B
γ)∩B 6= ∅. One can verify that C ′

n ⊂ Cn(B
γ , ρ). Let us estimate the cardinality of

C ′
n. The mixing property of µ̂ yields for n large

10−1µ̂(B̂ ∩ Ĥ)µ̂(B̂) ≤ µ̂
(
s−n(B̂ ∩ Ĥ) ∩ B̂

)
≤ µ

(
∪C′

n
f−n0,ẑ (B

γ)
)
. (8)

Since f⋆0µ = dkµ the right hand side is less than CardC ′
n · µ(B

γ)/dkn. ✷
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Proof of Theorem 4.3: Let ρ < 1 and A be a closed ball provided by proposition
4.5. Let us fix N large enough such that CardCN (A, ρ) > d(k−1)N . We denote by g1, . . . , gM
the elements of CN (A, ρ), let us recall that gi : A→ A. Let E0 := ∩k≥1Ek, where

Ek :=
{
gi1 ◦ . . . ◦ gik(A) , (i1, . . . , ik) ∈ {1, . . . , N ′}k

}
.

Let Σ := {1, . . . , N ′}N
∗

endowed with the product metric and z be a fixed point in A∩ J0,
for instance the center of A. The map ω : Σ → E0 defined by (i1, i2, . . .) 7→ limk→∞ gi1 ◦
. . . ◦ gik(z) is a homeomorphism satisfying fN ◦ ω = ω ◦ s, where s is the left shift acting
on Σ. We take for κ the image by ω of the uniform product measure on Σ: this is a
fN -invariant ergodic measure with entropy hκ = logN ′ > (k − 1) log dn, with support E0.

By construction E0 ⊂ Jf0 . Indeed, E0 = { limk→∞ gi1 ◦ . . . ◦ gik(z) , (i1, i2, . . .) ∈ Σ }
and Jf0 is a closed fN0 -invariant set. Also, repelling cycles of fN0 are dense in E0. According
to Theorem 4.4, E0 = suppκ is not contained in the countable union of analytic subsets
∪n≥1f

n
0 (Cf0). The set E0 is hyperbolic for fN0 since |(dfN0 )−1|−1 > 1

ρ
> 1 on E0 and thus

there exists a holomorphic motion h : Br × E0 → Pk which preserves repelling cycles (see
Theorem 4.6 below). It remains to show hλ(E0) ⊂ Jfλ . For that purpose we use the fact
that hλ : E0 → Pk is a continuous injective mapping satisfying hλ ◦ fN0 = fNλ ◦ hλ on E0.
Then (hλ)∗κ is a fNλ -invariant ergodic measure whose support coincides with hλ(E0) and
whose metric entropy equals hκ. Theorem 4.4 yields hλ(E0) ⊂ Jfλ as desired. ✷

4.2 Hyperbolic sets and holomorphic motions

This subsection is devoted to theorem 4.6, used to prove theorem 4.3 above. The arguments
are classical, we refer to [dMvS, chapter 3, section 2.d] for the one dimensional case. To
simplify the exposition we assume that the dilation is larger than 3 on the hyperbolic set.

Theorem 4.6 Let f : B × Pk → B × Pk be a holomorphic family of endomorphisms of
Pk. Let E0 ⊂ Pk such that |(df0)

−1|−1 ≥ K > 3 on E0. Then there exists a holomorphic
motion h : Bρ × E0 → Pk which preserves repelling cycles.

Proof: Let ϕ(z) := infλ∈Bρ
|(dzfλ)

−1|−1, with the convention |(dzfλ)
−1|−1 = 0 if z ∈ Cfλ .

This is a continuous function on Pk. By taking a smaller ρ, we may assume that

ϕ ≥ K ′ > 3 on a τ -neighbourhood (E0)τ . (9)

We shall mainly use the lower estimate on E0 itself, the lower bound on its τ -neighbourhood
appears at the end of the proof. Let δ = δ(ρ) := min{(1 + supλ∈Bρ

‖ fλ ‖C2)−1, τ}.

Lemma 4.7 For every (λ, z) ∈ Bρ × E0,

1. dPk(fλ(z), fλ(w)) ≥ (K ′ − 1)dPk(z, w) for every w ∈ B̄(z, δ),

2. fλ(B(z, cδ)) ⊃ B(fλ(z), cδ) for every 0 ≤ c ≤ 1,

3. if gλ,z : B(fλ(z), δ) → B(z, δ) is the inverse map of fλ, then Lip gλ,z ≤ (K ′ − 1)−1.
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Proof: Items 2 and 3 follows from item 1 (use Jordan’s theorem and K ′ > 3 for the
second one). So let us prove item 1. We work in local coordinates. For (λ, z) ∈ Bρ × E0

and w ∈ B̄(z, δ) we have

|IdCk − (dzfλ)
−1 ◦ dwfλ| ≤ |(dzfλ)

−1| · |dzfλ − dwfλ|

≤ |(dzfλ)
−1| · |z − w| · δ−1 ≤ 1/K ′.

That implies Lip (Id− (dzfλ)
−1 ◦ fλ) ≤ 1/K ′ on B̄(z, δ), which gives in turn

|(dzfλ)
−1(fλ(z) − fλ(w))| ≥ (1− 1/K ′)|z − w|

for every w ∈ B̄(z, δ). Hence |fλ(z)− fλ(w)| ≥ (K ′ − 1)|z − w| as desired. ✷

Lemma 4.8 For every (λ, z) ∈ Bρ × E0, we have B(fλ(z), δ) ⊃ B(f0(z), δ/2) and the
inverse map gλ,z : B (fλ(z), δ) → B(z, δ) given by Lemma 4.7 satisfies the following prop-
erties:

1. gλ,z is well defined on B(f0(z), δ/2),

2. it satisfies Lip gλ,z ≤ (K ′ − 1)−1 on B(f0(z), δ/2),

3. gλ,z(B(f0(z), δ/2)) ⊂ B(z, δ/2).

Proof: Let Q := max { ‖ dλfλ(z) ‖ , (λ, z) ∈ Bρ × E0 }. As δ is a continuous function of
ρ and δ(0) > 0, we may assume δ ≥ 2Qρ by taking ρ small enough. For every λ ∈ Bρ and
z ∈ E0, d(fλ(z), f0(z)) ≤ Qρ ≤ δ/2. That yields B(fλ(z), δ) ⊃ B(f0(z), δ/2). Items 1 and
2 are obvious from lemma 4.7. For item 3, we use gλ,z(B(f0(z), δ/2)) ⊂ gλ,z(B(fλ(z), δ)),
which is included in B(z, δ/2) by using lemma 4.7(3) and K ′ > 3. ✷

Let us end the proof of theorem 4.6. For (λ, z) ∈ Bρ × E0 we set zn := fn0 (z) and

gnλ,z := gλ,z ◦ . . . ◦ gλ,zn−1 .

This is an inverse branch of fnλ . Since z1, · · · , zn−1 ∈ E0, lemma 4.8 yields by induction

gnλ,z : B(zn, δ/2) → B(z, δ/2) and Lip gnλ,z ≤ (K ′ − 1)−n on B(zn, δ/2).

For (λ, z) ∈ Bρ × E0 let us define

hn(λ, z) := gnλ,z ◦ f
n
0 (z) = gnλ,z(zn).

The map hn is continuous in (λ, z), holomorphic in λ and hn(λ, z) ∈ B(z, δ/2). Moreover

fλ ◦ hn(λ, z) = hn−1(λ, f0(z)). (10)

The sequence (hn)n is uniformly Cauchy on Bρ × E0. Indeed hn+1(λ, z) − hn(λ, z) =
gnλ,z ◦ gλ,zn(zn+1) − gnλ,z(zn) and we get ‖hn+1 − hn ‖Bρ×E0

≤ (δ/2) · (K ′ − 1)−n since
gλ,zn(zn+1) ∈ B(zn, δ/2) by Lemma 4.8(3). We define hλ(z) for (λ, z) ∈ Bρ × E0 by

hλ(z) := lim
n
hn(λ, z) = lim

n
gnλ,z ◦ f

n
0 (z).
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The map h is continuous in (λ, z), holomorphic in λ and hλ(z) ∈ B̄(z, δ/2). It also follows
from (10) that

fλ ◦ hλ = hλ ◦ f0. (11)

Let us now check that hλ is injective. Assume hλ(z) = hλ(z
′). Iterating (11) yields

hλ(f
n
0 (z)) = hλ(f

n
0 (z

′)). As hλ(w) ∈ B̄(w, δ/2) for w ∈ E0, we get d(fn0 (z), f
n
0 (z

′)) ≤ δ.
Then, since d(fn0 (z), f

n
0 (z

′)) ≥ (K ′ − 1)nd(z, z′) by Lemma 4.7(1), we must have z = z′.
Finally, hλ preserves cycles (see (10)) and any periodic hλ(z) must be repelling since
hλ(z) ∈ B̄(z, δ/2) ⊂ (E0)τ and |(dfλ)

−1|−1 > 3 on (E0)τ (see (9)). This completes the
proof of theorem 4.6. ✷

5 Siegel discs and Hausdorff continuity of Julia sets

As it is well known, the Julia sets of any holomorphic family of rational maps of P1 depends
continuously on the parameter for the Hausdorff topology if and only if the family is stable.
It is worth emphasize that certain semi-continuity properties are always satisfied and that
discontinuities might be explained by the appearance of Siegel discs, see [Do]. We will
investigate this in higher dimension and from the point of view of equilibrium currents. As
a by-product, we will see that the existence of virtually repelling Siegel periodic points in
the Julia set (see Definitions 5.5 and 5.6) is an obstruction to the holomorphic motion of
equilibrium measures. This fact will play a crucial role in the proof of Theorem 1.5.

5.1 Semi-continuity properties

Let Comp⋆
(
Pk

)
be the set of non-empty compact subsets of Pk endowed with the Haus-

dorff distance and let Kǫ denote the ǫ-neighbourhood of K ∈ Comp⋆
(
Pk

)
. A map

E : M → Comp⋆
(
Pk

)
is said upper-semi-continuous (u.s.c) at λ0 ∈ M if for every ǫ > 0,

one has E(λ) ⊂ (E(λ0))ǫ when λ is close enough to λ0. It is lower-semi-continuous (l.s.c)
at λ0 if for every ǫ > 0, one has E(λ0) ⊂ (E(λ))ǫ when λ is close enough to λ0. For every
A ⊂M × Pk we define (A)λ := A ∩ ({λ} × Pk).

Our starting point is the following observations, see also [DS3, exercises 2.52 and 2.53].

Proposition 5.1 Let f : M × Pk → M × Pk be a holomorphic family of endomorphisms
of Pk whose equilibrium measures µλ move holomorphically. Let M be a structural web
and let WM be the woven current

∫
J [Γγ ] dM(γ). Then Jλ ⊂

(
suppWM

)
λ

and the maps

λ 7→ Jλ and λ 7→
(
suppWM

)
λ

from M to Comp⋆(Pk) are respectively l.s.c and u.s.c.

Proof: The inclusion Jλ ⊂
(
suppWM

)
λ

follows directly from the fact that Jλ = suppµλ
and µλ = Mλ =

∫
J δγ(λ) dM(γ). The upper-semi-continuity of

(
suppWM

)
λ

is an elemen-
tary general topological fact (see [Do, Proposition 2.1], or the proof of lemma 6.14 below).
The lower-semi-continuity of Jλ is a consequence of the existence of continuous local po-
tentials for µλ. Assume indeed that λ 7→ Jλ is not l.s.c at λ0. Then we may find ǫ > 0
and sequences λn ∈ M , zn ∈ Jλ0 such that d(zn, Jλn) ≥ ǫ. After taking a subsequence we
may assume that zn → z0 ∈ Jλ0 and B(z0,

ǫ
4) ⊂ B(zn,

ǫ
2) ⊂ B(z0, ǫ). If ǫ is small enough,
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the projection π : Ck+1 \ {0} → Pk admits a section σ on B(z0, 2ǫ) and the functions
uλ(z) := G(λ, σ(z)) are local potentials for the equilibrium measures which means that
the restriction of µλ to B(z0, 2ǫ) is the Monge-Ampère mass (ddczuλ(z))

k. Observe that,
by the continuity of G, the potentials uλn converges locally uniformly to uλ0 . This implies
that lim infn µλn

(
B(z0,

ǫ
4)
)
≥ µλ0

(
B(z0,

ǫ
8)
)
. It is now easy to obtain the expected contra-

diction : 0 < µλ0
(
B(z0,

ǫ
8)
)
≤ lim infn µλn

(
B(z0,

ǫ
4 )
)
≤ lim infn µλn

(
B(zn,

ǫ
2)
)
= 0. ✷

Remark 5.2 Arguing like in the above Proposition one may show that for a holomorphic
family of degree d non-degenerate homogeneous maps F : M × Ck+1 → M × Ck+1 with
equilibrium current E, one has JFλ

⊂ (supp E)λ and the maps λ 7→ JFλ
and λ 7→ (suppE)λ

are respectively l.s.c and u.s.c. Here JFλ
is the support of the equilibrium measure of Fλ.

We now prove that the existence of a holomorphic motion of equilibrium measures
implies that the Julia sets depend continuously on the parameter.

Proposition 5.3 Let f : M × Pk → M × Pk be a holomorphic family of endomorphisms
of Pk. If the equilibrium measure µλ move holomorphically then the map λ 7→ Jλ from M
to Comp⋆

(
Pk

)
is continuous.

Proof: According to Proposition 5.1, it suffices to show that (suppWM)λ ⊂ Jλ. This
follows from the following lemma. ✷

Lemma 5.4 Let f :M ×Pk →M ×Pk be a holomorphic family of endomorphisms of Pk.
Assume that µλ move holomorphically and let M be a structural web. If z0 /∈ Jλ0 then
there exist ǫ > 0 and r0 > 0 such that

M{γ ∈ J / Γγ ∩ [B(λ0, ǫ)×B(z0, r0)] 6= ∅} = 0.

Moreover µλ (B(z0, r0)) = 0 for every λ ∈ B(λ0, ǫ).

Proof: Pick r0 > 0 such that µλ0 (B(z0, 2r0)) = 0. As suppM is a normal family, there
exists ǫ > 0 such that for any γ in suppM:

Γγ ∩ [B(λ0, ǫ)×B(z0, r0)] 6= ∅ ⇒ γ(λ) ∈ B(z0, 2r0) for any λ ∈ B(λ0, ǫ).

Let α := M{γ ∈ J / Γγ ∩ [B(λ0, ǫ)×B(z0, r0)] 6= ∅}. Then, for any λ ∈ B(λ0, ǫ), we have

α ≤ M{γ ∈ J / γ(λ) ∈ B(z0, 2r0)} = µλ (B(z0, 2r0)) .

Applying this to λ0 yields α = 0 as desired. For every λ ∈ B(λ0, ǫ) we have µλ (B(z0, r0)) =
M{γ ∈ J / γ(λ) ∈ B(z0, r0)} ≤ α = 0. This completes the proof of the lemma. ✷
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5.2 Siegel discs, discontinuities of Jλ and bifurcations

We define a notion of Siegel disc for endomorphisms of Pk and investigate how they behave
with respect to Julia sets. In this subsection, we endow Ck with the norm ‖z‖ := supi |zi|
and set 1 ≤ q ≤ k − 1. We write z =: (z′, z′′) where z′ := (z1, · · ·, zk−q) ∈ Ck−q and
z′′ := (zk−q+1, · · ·, zk) ∈ Cq. We also set k′ := k − q, eiθ0 := (eiθ0,k′+1 , · · · eiθ0,k) and
eiθ0 · z′′ := (eiθ0,k′+1zk′+1, · · · , e

iθ0,kzk).

Definition 5.5 Let f0 be a holomorphic endomorphism of Pk. One says that z0 ∈ Pk

is a Siegel fixed point for f0 if f0 is linearizable at z0 and its differential at z0 is of the
form

(
A0z

′, eiθ0 · z′′
)

where A0 is an expanding linear map on Ck
′

and π, θ0,k′+1, · · · , θ0,k
are linearly independant over Q. In other words, there exists a local holomorphic chart
ψ0 : BR → Pk such that ψ0(0) = z0 and

ψ−1
0 ◦ f0 ◦ ψ0 =

(
A0z

′, eiθ0 · z′′
)

where θ0 and A0 are as above. Any set of the form ψ0 ({0
′} ×Bρ) where ρ < R and Bρ is

a ball centered at the origin in Cq is called a local Siegel q-disc of f0 centered at z0.

Let us consider a holomorphic family f of endomorphisms of Pk. If f0 admits a Siegel
fixed point z0 then, by the implicit function theorem, there exists a unique holomorphic
map z(λ) defined on some neighbourhood of 0 in M such that z(0) = z0 and z(λ) is fixed
by fλ. Moreover, there exists holomorphic functions wj(λ) such that wj(0) = eiθ0,j and
wj(λ) is an eigenvalue of dz(λ)fλ for k′ + 1 ≤ j ≤ k. In this context, we coin the following
definition.

Definition 5.6 The Siegel fixed point z0 is called virtually repelling if there exists a holo-
morphic disc σ : ∆ǫ0 → M and positive constants cj such that σ(0) = 0 and |wj ◦ σ(t)| =
1+ cjt for k′ + 1 ≤ j ≤ k and −t0 < t < t0. If, moreover, z ◦ σ(t) ∈ Jσ(t) for −t0 < t < t0
the Siegel fixed point z0 is called virtually J-repelling

Let us observe that if Jλ is continuous at λ0 and if fλ0 has a virtually repelling Siegel
periodic point outside Jλ0 , then λ0 must be accumulated by parameters λ for which fλ has
periodic repelling points outside Jλ. Examples of such repelling points have been given
by Hubbard-Papadopol [HP, section 6, example 2] and Fornaess-Sibony [FS2, section 4.1].
The following proposition studies the case when the Siegel periodic point belongs to Jλ0 .

Proposition 5.7 Let f : M × Pk → M × Pk be a holomorphic family of endomorphisms
of Pk such that fλ0 admits a virtually repelling Siegel fixed point z0.

1) If µλ move holomorphically then every local Siegel q-disc centered at z0 is contained
in Pk \ Jλ0 .

2) When q = 1, if z0 ∈ Jλ0 and if λ 7→ Jλ is continuous at λ0 then any local Siegel
q-disc centered at z0 is contained in Jλ0 .

The first item of the preceding proposition immediately yields:

Corollary 5.8 Let f : M × Pk → M × Pk be a holomorphic family of endomorphisms
of Pk. If fλ0 has a virtually repelling Siegel periodic point in Jλ0 then µλ does not move
holomorphically near λ0.
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The proof of Proposition 5.7 relies on the following technical lemma.

Lemma 5.9 Let g : ∆r0 × BR → ∆r0 × BR′ be a holomorphic map such that g(λ, z) =
(λ, gλ(z)), gλ(0) = 0 and g0(z) =

(
A−1

0 · z′, e−iθ0 · z′′
)

where A0 is an expanding linear map

on Ck
′

. Assume that
∂gλ,j
∂zi

(0) = 0 for k′ + 1 ≤ j ≤ k and i 6= j. Assume moreover that

there exists |u0| = 1, t0 > 0 and cj > 0 such that |
∂gtu0,j
∂zj

(0)| = 1 + cjt for k′ + 1 ≤ j ≤ k

and −t0 < t < t0. Then, after taking R smaller, the following properties occur.

1) There exists arbitrarily small λ such that ‖gλ(z)‖ ≤ α0‖z‖ on BR with 0 < α0 < 1.

2) For any 0 < ρ < R1 < R2 < R, there exists arbitrarily small λ such that, for
every a ∈ BR1 which does not belong to the local stable manifold Sλ of gλ, there
exists n0 such that gn0

λ (a) ∈ {‖z′‖ < ρ} × {R1 < ‖z′′‖ < R2} and gkλ(a) ∈ BR1 for
0 ≤ k ≤ n0 − 1.

Proof: We may write gλ := (gλ,j)1≤j≤k on the form

gλ,j =
k′∑

i=1

(aij + λµij(λ) + λqij(λ, z)) zi + λ
k∑

i=k′+1

sij(λ, z)zi for 1 ≤ j ≤ k′

gλ,j =
(
eiθj + λµjj(λ) + λqjj(λ, z)

)
zj + λ

∑

i 6=j

sij(λ, z)zi for k′ + 1 ≤ j ≤ k

where µij , qij and sij are holomorphic on ∆ǫ0 × BR and satisfy qij(λ, 0) = qjj(λ, 0) = 0.
By assumption, we also have sij(λ, 0) = 0 for k′ + 1 ≤ j ≤ k and i 6= j.
By shrinking ǫ0 and R, there exists 0 < α1 < 1 such that

sup
1≤j≤k′

|gλ,j(z)| ≤ α1‖z‖ on ∆ǫ0 ×BR. (12)

Let us set λt := tu0 where −t0 < t < t0 and Qjt(z) := eiθj + λtµjj(λt) + λtqjj(λt, z)
and Rjt(z) := |λt|

∑
i 6=j |sij(λt, z)| for k′ +1 ≤ j ≤ k. Then, by our assumptions and after

taking R smaller, we have

|Qjt(z)| ≤ 1 +
cjt

2
for − t0 < t < 0 and z ∈ BR (13)

Rjt(z) ≤
cj |t|

4
for − t0 < t < t0 and z ∈ BR (14)

1 +
cjt

2
≤ |Qjt(z)| ≤ 1 + 2cjt for 0 < t < t0 and z ∈ BR. (15)

It follows from (13) and (14) that |gλt,j(z)| ≤ (1 +
tcj
4 )‖z‖ for k′ + 1 ≤ j ≤ k, −t0 < t < 0

and z ∈ BR. This and (12) yields the first assertion of the lemma.
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Let us now establish the second one. Fix 0 < t < t0 so small that (1+ 9tcj
4 )R1 < R2 for

k′ + 1 ≤ j ≤ k. Let a ∈ BR1 be outside the local stable manifold of gλt . Assume that one
cannot find n0 such that gkλt(a) ∈ BR1 for 0 ≤ k ≤ n0−1 and gn0

λt
(a) ∈ {‖z′‖ < ρ}×{‖z′′‖ >

R1}. Then, according to (12), the sequence an := gnλt(a) is well defined and ‖a′n‖ → 0.

From (14) and (15) one gets |an+1,j | ≥ (1 +
cjt

2 )|an,j | −
tcj
4 ‖a′n‖. As (an,j)n is bounded

and ‖a′n‖ → 0, this implies that an tends to the origin and contradicts the fact that a
does not belong to the local stable manifold of gλt . Thus n0 exists and it remains to check
that ‖a′′n0

‖ < R2. From (14) and (15) one gets |an0,j| ≤ (1 + 2cjt)|an0−1,j|+
tcj
4 ‖a′n0−1‖ ≤

(1 +
9tcj
4 )R1 < R2. ✷

Proof of Proposition 5.7: We may assume that M = ∆ǫ0 and λ0 = 0 so that
z0 is a virtually repelling Siegel fixed point of f0. Thus there exists a biholomorphism
ψ0 : BR → ψ0 (BR) such that ψ0(0) = z0 and ψ−1

0 ◦ f0 ◦ ψ0 =
(
A0 · z

′, eiθ0 · z′′
)

where A0

is linear and expanding on Ck
′

and π, θ0,k′+1, · · · , θ0,k are linearly independant over Q.
The mapping ψ−1

0 ◦f−1
λ ◦ψ0 is well defined on ∆ǫ0×BR after taking R and ǫ0 smaller. Since

the eiθ0,j are pairwise distinct for k′+1 ≤ j ≤ k, we may find q linearly independant vectors
vk′+1(λ), · · · , vk(λ) in Ck and q scalars wk′+1(λ), · · · , wk(λ) which depend holomorphically
on λ ∈ ∆ǫ0 and such that

d
ψ−1
0 (z(λ))

(
ψ−1
0 ◦ f−1

λ ◦ ψ0

)
(vj(λ)) = wj(λ)vj(λ) for k′ + 1 ≤ j ≤ k. (16)

Using basis like (v1, · · · , vk′ , vk′+1(λ), · · · , vk(λ)) we may perform change of coordinates of
the form (λ,A(λ, z)) where A(λ, ·) is affine on Ck which, conjugate by ψ0, yield biholo-
morphisms ψλ : BR → ψλ (BR) such that gλ := ψ−1

λ ◦ f−1
λ ◦ ψλ satisfies the assumptions

of Lemma 5.9. The condition ∂gλ,j
∂zi

(0) = 0 indeed follows from (16) and the condition

|
∂gtu0,j
∂zj

(0)| = 1 + cjt follows from the fact that z0 is virtually repelling. To simplify, we

shall denote Jλ the set ψ−1
λ (Jλ ∩ ψλ(BR)).

1) We proceed by contradiction and assume that (0′, z′′0 ) ∈ J0 for 0 < ‖z′′0‖ < r <
R. According to Lemma 2.2, there exists a holomorphic map γ : ∆ǫ0 → Pk such that
ψ−1
0 ◦ γ(0) = (0′, z′′0 ) and (Fn · γ)n is normal on ∆ǫ0 (we recall that Fn · γ(λ) = fnλ (γ(λ))).

We may assume that γ̃(λ) := ψ−1
λ (γ(λ)) is well defined on ∆ǫ0 . Since ψ−1

0 ◦fn0 ◦ψ0 (γ̃(0)) =
(0′, einθ0 · z′′0 ) and (Fn · γ)n is normal, after reducing ǫ0, we may suppose that

‖ψ−1
λ ◦ fnλ ◦ ψλ (γ̃(λ)) ‖ ≤ r on ∆ǫ0 for n ≥ 1. (17)

Let us recall that gλ = ψ−1
λ ◦f−1

λ ◦ψλ. By Lemma 5.9, there exists λk → 0 and 0 < αk < 1
such that ‖gλk(z)‖ ≤ αk‖z‖ on BR. We may thus find a sequence nk → ∞ such that

‖gnk

λk
(z)‖ ≤

1

k
‖z‖ on Br. (18)

From (17) and (18) one gets

‖γ̃(λk)‖ = ‖gnk

λk
◦ ψ−1

λk
◦ fnk

λk
◦ ψλk (γ̃(λk)) ‖ ≤

r

k
(19)

which is impossible since limk ‖γ̃(λk)‖ = ‖z′′0‖ > 0.
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So far we have shown that the punctured q-disc {0′} × {0 < ‖z′′‖ < R} is contained
in Jc0 . Since J0 is totally invariant and g0 =

(
A−1

0 · z′, e−iθ0 · z′′
)

where A0 is linear and
expanding, this implies that BR \ {z ∈ BR / z′′ = 0} ⊂ Jc0 . Finally, as µ0 does not give
mass to analytic sets, we get BR ⊂ Jc0 .

2) We have to show that (0′, z0k) ∈ J0 if 0 < |z0k| < R. Assume, to the contrary, that
(0′, z0k) /∈ J0 for some 0 < |z0k| < R. Then one may pick a neighbourhood V0 of (0′, z0k)
such that V0 ⊂ (J0)

c and which is of the form

V0 := {‖z′‖ < ρ} × {R1 < |zk| < R2 and | arg zk − arg z0k| < η}.

Let us now denote by Tρ,R1,R2 the tube

Tρ,R1,R2 := {‖z′‖ < ρ} × {R1 < |zk| < R2}.

Since A0 is contracting and θ0/π irrational, for any z ∈ Tρ,R1,R2 there exists an integer n
such that gn0 (z) ∈ V0. By the invariance of Julia sets we thus have Tρ,R1,R2 ⊂ (J0)

c. Let
us shrink the tube Tρ,R1,R2 . By assumption, Jλ is u.s.c at 0 and therefore

Tρ,R1,R2 ⊂ (Jλ)
c when λ is close enough to 0.

On the other hand, according to the second assertion of Lemma 5.9, we may find parame-
ters λ which are arbitrarily close to 0 and such that BR1 \ Sλ ⊂ ∪n (g

n
λ)

−1 Tρ,R1,R2 where
Sλ denotes the stable manifold of gλ. As µλ gives no mass to analytic sets, this and the
inclusion Tρ,R1,R2 ⊂ (Jλ)

c implies the existence of a sequence of parameters λk → 0 such
that BR1 ⊂ (Jλk)

c. This contradicts the lower semi-continuity of Jλ at 0 since 0 /∈ (Jλk)R1
2

but 0 ∈ J0 by our assumption. ✷

6 Proofs of the main theorems and further results

6.1 Critical growth and the support of dd
c
λL

We obtain the following proposition in the spirit of the proposition 1.26 of [DS3] concerning
the Julia set of a single endomorphism of Pk.

Proposition 6.1 Let B be an open ball in Cm and let f : B×Pk → B×Pk be a holomorphic
family of endomorphisms of Pk of degree d. We endow B×Pk with the metric ddcλ|λ|

2+ωFS
and denote | · |U the mass of currents in U × Pk. The following properties are equivalent.

1. λ0 ∈ suppddcλL.

2. |EGreen ∧Cf |U > 0 for every neighborhood U of λ0.

3. lim infn d
−kn|(fn)∗Cf |U > 0 for every neighborhood U of λ0.

4. lim supn d
−(k−1)n|(fn)∗Cf |U = +∞ for every neighborhood U of λ0.

Proof: Items 1. and 2. are equivalent by theorem 2.10, which asserts that ddcλL =
πB⋆ (EGreen ∧Cf ). The equivalences between 2. 3. and 4. come from lemma 6.2. ✷
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Lemma 6.2 There exists α = α(k,m) > 0 such that for every compact subset U ⊂M :

|(fn)∗Cf |U = α dkn|EGreen ∧Cf |U +O(d(k−1)n).

Proof: Let us set κ := k +m− 1. Then

|(fn)∗Cf |U =

∫

U×Pk

(fn)∗Cf ∧ [ωFS + ddcλ|λ|
2]κ =

∫

U×Pk

Cf ∧ (fn)∗[ωFS + ddcλ|λ|
2]κ.

Using ωk+1
FS = 0, we obtain [ωFS + ddcλ|λ|

2]κ =
∑k

j=0 αj ω
j
FS ∧ (ddcλ|λ|

2)κ−j, where the αj’s
are positive numbers. Since πM ◦ f = πM , we obtain

(fn)∗[ωFS + ddcλ|λ|
2]κ =

k∑

j=0

αj

(
(fn)∗ωjFS

)
∧ (ddcλ|λ|

2)κ−j .

Let T := ddcλ,zg + ωFS so that T k = EGreen. Using f∗T = dT we get (fn)∗(ωjFS) =

(dnT − ddcλ,zg ◦ f
n)j. Now, using the fact that g is bounded, we obtain by extracting the

k-th term of the preceding sum:

(fn)∗[ωFS + ddcλ|λ|
2]κ = αk d

kn T k ∧ (ddcλ|λ|
2)m−1 +O(d(k−1)n).

We set α := αk. That completes the proof of the lemma. ✷

6.2 Proofs of the main results

Let f :M × Pk →M × Pk be a holomorphic family of endomorphisms of Pk.

Proof of Theorem 1.2: (1) If the repelling J-cycles of f move holomorphically then,
using the second assertion of Proposition 2.4, one gets a structural web M of (µλ)λ∈M such
that M = limnMn and Γγ ∩ Cf = ∅ for any γ ∈ ∪nsuppMn. By Proposition 3.1, this
implies that ddcλL ≡ 0 on M . (2) This assertion is given by Proposition 6.1. ✷

Proof of Theorem 1.4: By Proposition 3.3 there are no Misiurewicz parameters in
M if ddcλL ≡ 0 on M and thus (A) ⇒ (B). If there are no Misiurewicz parameters in M
then, by Proposition 4.1, any parameter admits an open neighbourhood on which the equi-
librium measures µλ move holomorphically and admits a structural web M = limnMn

such that Γγ ∩ Cf = ∅ for any γ ∈ ∪nsuppMn. This implies (B) ⇒ (C). Finally,
(C) ⇒ (A) follows from Proposition 3.1. ✷

In order to obtain Theorem 1.5, it remains to investigate if the repelling J-cycles of f
move holomorphically when the equilibrium measures µλ move holomorphically. To this
purpose we shall use the result of Section 5 and show how a Siegel disc may appear when
a repelling J-cycle fails to move holomorphically.

Proposition 6.3 Let M be a connected complex manifold and let f :M×Pk →M×Pk be a
holomorphic family. If the equilibrium measures µλ move holomorphically then all repelling
J-cycles of f which are neither persistently resonant nor persistently undiagonalizable move
holomorphically. When k = 2, all repelling J-cycles of f move holomorphically.
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Let us recall that a periodic point is said to be resonant if its multipliers w1, · · · , wk
satisfy a relation of the form wm1

1 · · ·wmk

k − wj = 0 where the mj are integers and
m1 + · · · + mk ≥ 2. Note that when wj = eiθj for 1 ≤ j ≤ n and n ≤ k then the
absence of resonances forces π, θ1, · · · , θn to be linearly independant over Q.

We shall use the following Lemma.

Lemma 6.4 Let w1, · · · , wk : D(0, R) → C be holomorphic functions. Assume that
wj(0) 6= 0 and that there exists λk → 0 such that min1≤j≤k |wj(λk)| > 1. Assume moreover
that there exists 1 ≤ N ≤ k such that

- |wj(0)| = 1 and w′
j(0) 6= 0 for 1 ≤ j ≤ N ,

- |wj(0)| 6= 1 for N + 1 ≤ j ≤ k.
Then, after renumbering, there exist a disc D(λ0, r) ⊂ D(0, R), a real analytic arc C

through λ0 and an integer 1 ≤ q ≤ k such that

1. D(λ0, r) = D+(λ0, r) ∪ C ∪D−(λ0, r),

2. |wj | > 1 on D+(λ0, r), |wj | = 1 on C and |wj | < 1 on D−(λ0, r) for k−q+1 ≤ j ≤ k,

3. |wj | > 1 on D(λ0, r) for 1 ≤ j ≤ k − q if q ≤ k − 1.

Proof: In the sequel we allow to shrink R without specifying it. Let us set Cj := {|wj | =
1} and U+

j := {|wj | > 1}, U−
j := {|wj | < 1}. Since w′

j(0) 6= 0 when {|wj | = 1} 6= ∅ the
subset Cj is either empty or a real-analytic arc through 0 in D(0, R). In particular we have

Cj = Cl if Cj ∩ Cl is strictly bigger than {0}.

Let us set U+ := ∩kj=1U
+
j . By assumption, 0 ∈ U+ and therefore U+ is a non-empty open

subset of D(0, R). It is clear that ∂U+ ⊂ ∂D(0, R)∪
(
∪kj=1Cj

)
. On the other hand, we can

not have ∂U+ ⊂ {0} ∪ ∂D(0, R) since otherwise U+ = D(0, R) \ {0} and the subharmonic
function ψ(λ) := max1≤j≤k |wj(λ)|

−1 would violate the maximum principle (recall that
ψ(0) ≥ 1). We may thus pick λ0 6= 0 such that λ0 ∈ Cj0 ∩ ∂U

+ for some 1 ≤ j0 ≤ k.
Observe that λ0 /∈ U

−
i for 1 ≤ i ≤ k.

If Ci 6= Cj0 for some 1 ≤ i ≤ k then λ0 /∈ Ci and thus λ0 ∈ U+
i . After renumbering we

may therefore find 1 ≤ q ≤ k − 1 such that

λ0 ∈ Ck−q+1 = Ck−q+2 = · · · = Ck := C and λ0 ∈ U
+
1 ∩ · · · ∩ U+

k−q.

For r > 0 sufficently small we have D(λ0, r) ⊂ ∩k−q1 U+
i and D(λ0, r)\C has two connected

components Ω1 and Ω2. For each k − q + 1 ≤ i ≤ k, one has Ω1 ⊂ U+
i and Ω2 ⊂ U−

i or
Ω1 ⊂ U−

i and Ω2 ⊂ U+
i . Assume for instance that Ω1 ⊂ U+

k−q+1. Then, since λ0 ∈ ∂U+,

we must have Ω1 ⊂ U+
i and Ω2 ⊂ U−

i for every k − q + 1 ≤ i ≤ k and we may set
D(λ0, r)

+ := Ω1 and D(λ0, r)
− := Ω2. ✷

Proof of Proposition 6.3: Let λ0 ∈ M . Assume that z0 belongs to some p-periodic
repelling J-cycle of fλ0 which is not persistently resonant and not persistently undiagonal-
izable. It suffices to show that the map γ : M → Pk element of J given by Lemma 2.2
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enjoys the property that γ(λ) ∈ Jλ is repelling for every λ ∈M . Let us observe that γ(λ)
is not persistently resonant and not persistently undiagonalizable for any λ ∈M .

Since M is connected, we have to show that the subset {λ ∈M / γ(λ) is repelling } is
closed in M . Assume, to the contrary, that this is not true. Then, for arbitrarily small ǫ0,
one finds a new holomorphic map γ0 : Bǫ0 → Pk such that γ0(λ) ∈ Jλ is fixed by fpλ for
all λ ∈ Bǫ0 and γ0(0) is not repelling but γ0(λ0) is repelling for some λ0 ∈ Bǫ0 . Our aim
below is to find λ′0 ∈ Bǫ0 such that γ(λ′0) is a virtually repelling Siegel fixed point of fp

λ′0
.

Corollary 5.8 then yields a contradiction.

Reducing ǫ0 allows to use charts and replace Pk by Ck. Let us denote w1(λ), · · · , wk(λ)
the eigenvalues of A(λ) :=

(
fpλ

)′
(γ(λ)). There exists a proper analytic subset Z of Bǫ0

such that w1, · · · , wk are holomorphic on Bǫ0 \ Z. For every n ∈ N we define a function
ωn on Bǫ0 \ Z:

ωn(λ) := min2≤|m|≤n , 1≤j≤k |w1(λ)
m1 · · ·wk(λ)

mk −wj(λ)|

where |m| := m1 + · · · + mk for any m := (m1, · · · ,mk) ∈ Nk. Since the cycle γ0(λ) is
not persistently resonant the functions lnωn are not identically equal to −∞. Moreover,
after shrinking ǫ0, we have lnωn(λ) ≤ lnω2(λ) ≤ C < +∞ on Bǫ0 \ Z and therefore lnωn
extends to some p.s.h function on Bǫ0 . We now define a function B on Bǫ0 by setting

B(λ) :=
∑+∞

n=0
1
2n lnω2n+1(λ).

The interest of this function is that, according to Brjuno’s theorem (see [Br]), fpλ is
holomorphically linearizable at γ(λ) if B(λ) > −∞ and A(λ) is diagonalizable. Let us show
that B is p.s.h on Bǫ0 . Since B(λ)−2C =

∑+∞
n=0

1
2n (lnω2n+1(λ)− C) is a decreasing limit of

p.s.h functions, the function B is either p.s.h or identically equal to −∞ on Bǫ0 . Moreover,
as γ(λ0) is a repelling cycle there exists n0 ≥ 1 such that lnω2n = lnω2n0 on a neighbour-
hood V0 of λ0 for n ≥ n0. We deduce that B =

∑n0
n=0

1
2n lnω2n+1(λ) + 1

2n0 lnω2n0+1 on
V0, this function is therefore not identically equal to −∞ since γ0(λ) is not persistently
resonant.

Let us denote by ∆ǫ0 the disc in C obtained by intersecting Bǫ0 with the complex line
through 0 and λ0. We may move a little bit λ0 so that B is subharmonic on ∆ǫ0 , the set
Z ∩ ∆ǫ0 is discrete and γ0(λ) is not persistently undiagonalizable on ∆ǫ0 . In particular,
there exists a discrete subset Z0 of ∆ǫ0 such that on ∆ǫ0 \Z0, the cycle γ0(λ) is diagonal-
izable and the functions w1, · · · , wk are either constant or holomorphic, non-vanishing and
with non-vanishing derivatives.

Let us set
∀λ ∈ ∆ǫ0 \ Z0 , ϕ(λ) := min (|w1(λ)|, · · · , |wk(λ)|) .

This extends to a continuous function on ∆ǫ0 . Moreover ϕ(0) ≤ 1 and ϕ(λ0) > 1, in
particular ϕ is not constant. We claim that there exists λ1 ∈ ∆ǫ0 \Z0 such that ϕ(λ1) < 1.
Indeed, if ϕ ≥ 1 on ∆ǫ0 \ Z0, then ϕ ≥ 1 on ∆ǫ0 and therefore the subharmonic function
ψ := ϕ−1 violates the maximum principle (indeed ψ ≤ 1 = ψ(0) and this function is
not constant). Considering a continuous path connecting λ0 to λ1 in ∆ǫ0 \ Z0, one finds
λ2 ∈ ∆ǫ0 \ Z0 and λ̃k → λ2 such that ϕ(λ2) = 1 and ϕ(λ̃k) > 1. Let us pick a small
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disc D(λ2, R) contained in ∆ǫ0 \ Z0. Then (after renumbering) the functions w1, · · · , wk
satisfy the assumptions of Lemma 6.4 on D(λ2, R). Let q be the integer and C be the real
analytic arc in D(λ2, R) which are given by this Lemma. Since |wj | < 1 on D−(λ2, R) for
k − q + 1 ≤ j ≤ k and γ(λ) ∈ Jλ, we must have 1 ≤ q ≤ k − 1.

Since B is subharmonic on ∆ǫ0 , there exists λ′0 ∈ C such that B(λ′0) > −∞. Since
λ′0 ∈ D(λ2, R) ⊂ ∆ǫ0 \ Z0, the periodic point γ(λ′0) is diagonalizable and then, according
to Brjuno’s theorem, it is holomorphically linearizable. Thus γ(λ′0) is a Siegel fixed point
of fp

λ′0
and, since λ′0 ∈ C, Lemma 6.4 shows that it is virtually repelling as desired. Let

us finally explain why we do not need any assumption on the repelling J-cycle in dimen-
sion k = 2. In that case, the periodic points γ(λ) for λ ∈ C are diagonalizable and not
persistently resonant since one and only one of their two multipliers have modulus 1 and,
moreover, is not constant. We thus see that B is subharmonic on ∆ǫ0 and we can find
again some λ′0 ∈ C such that γ(λ′0) is a virtually repelling Siegel fixed point of fp

λ′0
. ✷

To deduce Theorem 1.5 from Proposition 6.3, we shall use the following Lemma whose
proof is left to the reader.

Lemma 6.5 Let f : B × Pk → B × Pk be a holomorphic family where B is an open ball
of the space Hd(P

k) of degree d holomorphic endomorphisms of Pk. Then every repelling
J-cycle is neither persistently resonant nor persistently undiagonalizable.

Proof of Theorem 1.5 : Theorem 1.2 yields (A) ⇒ (B) and Theorem 1.4 yields
(B) ⇒ (C) ⇒ (C ′), where (C ′) is the assertion : "the equilibrium measures (µλ) locally
move holomorphically". Assume now that (C ′) is satisfied. When M is an open ball of
Hd(P

k), the repelling cycles are neither persistently resonant nor persistently undiagonal-
izable, see lemma 6.5. Proposition 6.3 thus shows that, when M satisfies the assumptions
of Theorem 1.5, the repelling J-cycles locally move holomorphically. This implies that

{(λ, z) ∈M × Pk , z is n-periodic and J-repelling for fλ}

is an unramified cover of M . If M is simply-connected, we thus get that the repelling
J-cycles move holomorphically over M , hence (C ′) ⇒ (C). Finally proposition 6.3 yields
(C) ⇒ (A), completing the proof of theorem 1.5. ✷

In view of Theorem 1.5, we may now define the bifurcation locus and current as follows.

Definition 6.6 Let f : M × Pk →M × Pk be a holomorphic family of endomorphisms of
Pk of degree d ≥ 2. Let L(λ) be the sum of Lyapunov exponents of fλ with respect to its
equilibrium measure. The closed positive current ddcλL is called bifurcation current of the
family, its support is the bifurcation locus of the family.

The following result is a consequence of Theorem 1.5 and the proof of Proposition 6.3.

Theorem 6.7 A degree d ≥ 2 endomorphism of Pk belongs to the bifurcation locus in
Hd(P

k) if and only if it is accumulated by endomorphisms which admit a virtually J-
repelling Siegel periodic point or a repelling cycle outside the Julia set which becomes a
repelling J-cycle after an arbitrarily small perturbation.
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It would be interesting to know if the continuity of the map λ 7→ Jλ on some open subset
of the parameter space of a holomorphic family of endomorphisms of Pk is equivalent to the
existence of a holomorphic motion of the equilibrium measures. This is true when k = 1,
the following remark summarizes the consequences of our work on this question in higher
dimension.

Remark 6.8 According to Proposition 5.7 and the proof of Proposition 6.3, when k = 2
the Hausdorff continuity of λ 7→ Jλ would imply the holomorphic stability if we would know
that a local Siegel disc centered at some virtually repelling Siegel periodic point cannot be
contained in the Julia set.

As a consequence of our results, we may prove that Lattès maps belongs to the bifur-
cation locus. We refer to [Di1], [Du1] for an account on Lattès maps of Pk.

Theorem 6.9 Let f : M × Pk → M × Pk be a holomorphic family of endomorphisms of
Pk. If the family is stable (i.e. ddcλL = 0 on M) and fλ0 is a Lattès map for some λ0 ∈M
then fλ is a Lattès map for every λ ∈M .

Proof: By a Theorem of Briend-Duval [BD1] we have L ≥ k × log d
2 . The articles of

Berteloot, Dupont and Loeb [BL], [BDu] and [Du2] show that L(λ) = k × log d
2 if and

only if fλ is a Lattès map. If the family is stable, then the function L is pluriharmonic
on M . By the maximum principle (applied to the harmonic function −L) we thus have
L(λ) = L(λ0) = k × log d

2 for all λ ∈M and the conclusion follows. ✷

Let us end with a remark on the intersection between structural webs and critical sets.

Proposition 6.10 Let f :M × Pk →M × Pk be a holomorphic family of endomorphisms
of Pk. Assume that µλ move holomorphically. Then for every λ0 ∈ M we may find
neighbourhood U0 of λ0 such that the induced familly f : U0 × Pk → U0 × Pk admits a
structural web M for which M{γ / Γγ ∩ PCf 6= ∅} = 0.

Proof: According to Theorem 1.4 there are no Misiurewicz parameters in M . Thus,
using Proposition 4.1, one may find a simply-connected neighbourhood U0 of λ0 and
a holomorphic graph Γγ0 over U0 such that Γγ0 ∩ PCf = ∅ and γ0(λ) ∈ Jλ for every
λ ∈ U0. Then, using the first assertion of Proposition 2.4, one gets a structural web M for
f : U0×Pk → U0×Pk such that M = limnMn and Γγ ∩PCf = ∅ for all γ ∈ ∪nsuppMn.
The conclusion then follows from Lemma 3.2. ✷

6.3 A remark on the interior of bifurcation loci

We investigate the relations between the presence of open subsets in the support of ddcλL
and existence of parameters for which the postcritical set is dense in Pk.

Let f : M × Pk → M × Pk be a holomorphic family of endomorphisms of Pk. Let C
denote the critical set of f and let Cλ denote the critical set of fλ. We set

C+ := ∪n≥1fn(C) and C+
λ := ∪n≥1fnλ (Cλ) for every λ ∈M.
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We define (C+)λ :=
(
{λ} × Pk

)
∩ C+, let us observe that {λ} × C+

λ ⊂ (C+)λ. Our aim is
to prove the following result.

Theorem 6.11 Let f :M × Pk →M × Pk be a holomorphic family of endomorphisms of

Pk. Assume that suppddcλL contains an open subset Ω ⊂ M . Then {λ ∈ Ω , C+
λ = Pk}

contains a Gδ-dense subset of Ω.

As a consequence we recover a fundamental result of Mañé, Sad and Sullivan [MSS]
on the density of stable parameters for holomorphic families of rational maps. For such
families the bifurcation locus is known to coincide with suppddcλL.

Corollary 6.12 Let f : M × P1 → M × P1 be a holomorphic family of rational maps.
Then supp ddcλL has empty interior.

Proof: Every λ0 ∈ suppddcλL can be approximated by parameters λ for which fλ has an
attracting basin, see [Be, section 4.3.1], which is an open condition in M . On the other

hand, as the critical set is finite, the set C+
λ can not be equal to P1 when fλ has an attract-

ing basin. According to Theorem 6.11, this implies that supp ddcλL has empty interior. ✷

Remark 6.13 In the introduction we raised the question for k ≥ 2 of the existence of
holomorphic families for which suppddcλL has non empty interior. Note that Theorem
6.11 could be useful for finding families for which suppddcλL has empty interior.

The proof of Theorem 6.11 relies on a Baire’s category argument based on the semi-
continuity properties of λ 7→ C+

λ or λ 7→ (C+)λ. Let us recall that the notion of semi-
continuity with respect to the Hausdorff topology has been discussed in subsection 5.1. We
have the following properties, the upper semi-continuity can be found in [Do, Proposition
2.1], we give the argument for sake of completeness.

Lemma 6.14 The maps λ 7→ (C+)λ and λ 7→ C+
λ from M to Comp⋆

(
Pk

)
are respectively

upper and lower-semi-continuous.

Proof: Observe that {(λ, z) ∈M×Pk , z ∈ (C+)λ} is equal to C+, hence is closed in M×
Pk. In particular, for every λ0 ∈M and ǫ > 0, the set F := {(λ, z) ∈ C+ , d(z, (C+)λ0) ≥
ǫ} is a closed subset of C+. Let us show that πM (F ) is closed in M . Indeed, if λn ∈ πM(F )
converges to λ ∈ M one may pick zn ∈ (C+)λn such that d(zn, (C+)λ0) ≥ ǫ and (zn)n
converges to some z ∈ Pk after taking a subsequence. Then (λn, zn) ∈ C+ converges to
(λ, z) ∈ C+ satisfying d(z, (C+)λ0) ≥ ǫ and thus λ ∈ πM (F ) as desired. Since λ0 /∈ πM(F )
it follows that M \πM (F ) contains an open ball B centered at λ0 such that d(z, (C+)λ0) < ǫ
for every z ∈ (C+)λ with λ ∈ B. This proves the upper semi-continuity.

Now let us prove the lower semi-continuity of the map λ 7→ C+
λ . Assume to the con-

trary that it is not l.s.c at λ0 ∈ M . Then there exist ǫ > 0, a sequence (λn)n converging

to λ0 and a sequence zn ∈ C+
λ0

such that d(zn, C
+
λn
) ≥ ǫ. After taking a subsequence (zn)n

converges to z0 ∈ C+
λ0

. Pick ξ0 ∈ Cλ0 and p0 ≥ 1 such that d(z0, f
p0
λ0
(ξ0)) <

ǫ
4 . Let also
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ξn ∈ Cλn such that ξn → ξ0. Then d(zn, C
+
λn
) ≤ d(zn, f

p0
λn
(ξn)) <

ǫ
2 for n large, contradict-

ing d(zn, C
+
λn
) ≥ ǫ. ✷

The proof of theorem 6.11 will also rely on the following key fact.

Proposition 6.15 Let f :M × Pk →M × Pk be a holomorphic family of endomorphisms
of Pk. If λ0 ∈ suppddcλL then (C+)λ0 = Pk.

Proof: Assume that B(z0, r) ∩ (C+)λ0 = ∅ and let us show that λ0 /∈ supp ddcλL. Since
λ 7→ (C+)λ is upper-semi-continuous we deduce that B(z0,

r
2) ∩ (C+)λ = ∅ when λ is

sufficently close to λ0. In particular, the constant graph Γ0 := {(λ, z0) / λ ∈ B(λ0, ǫ)}
does not meet ∪n≥1f

n(C) for ǫ small enough. By the first assertion of Proposition 2.4 and
Proposition 3.1, we get ddcλL = 0 on B(λ0, ǫ). ✷

Proof of theorem 6.11 : The lower semi-continuity of λ 7→ C+
λ implies that

I(B) := {λ ∈M / C+
λ ∩B 6= ∅}

is an open subset ofM for every open ball B ⊂ Pk. Now let us show that I(B) is dense in Ω.
Let λ0 ∈ Ω and ǫ > 0. Since λ0 ∈ suppddcλL, Proposition 6.15 implies that (C+)λ0∩B = B.
Thus

(
∪n≥1f

n(C)
)
∩
(
B(λ0, ǫ)×B

)
6= ∅ and there exists (λ1, z1) ∈ fn1(C)∩

(
B(λ0, ǫ)×B

)
.

This shows that λ1 ∈ I(B) ∩B(λ0, ǫ). Now consider a countable collection Bi := B(ζi, ri)
of balls in Pk whose centers are dense in Pk and whose radii tend to 0. According to Baire’s
theorem M ′ := ∩i≥1I(Bi) is a dense Gδ-subset of M . We also have C+

λ = Pk for every
λ ∈M ′. ✷
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