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CROSSINGS OF SIGNED PERMUTATIONS AND q-EULERIAN NUMBERS OF TYPE B

In this paper we want to study combinatorics of the type B permutations and in particular the join statistics crossings, excedances and the number of negative entries. We generalize most of the results known for type A (i.e. zero negative entries) and use a mix of enumerative, algebraic and bijective techniques. This work has been motivated by permutation tableaux of type B introduced by Lam and Williams, and natural statistics that can be read on these tableaux. We mostly use (pignose) diagrams and labelled Motzkin paths for the combinatorial interpretations of our results.

Introduction

Crossings of permutations are a combinatorial statistic with interesting enumerative properties. They appeared in connection with total positivity in Grassmannians (following Postnikov [START_REF] Postnikov | Total positivity, Grassmannians, and networks[END_REF] and Williams [START_REF] Williams | Enumeration of totally positive Grassmann cells[END_REF]), and stationary probabilities in a partially asymmetric exclusion process (PASEP) model (following Corteel and Williams [START_REF] Corteel | A Markov chain on permutations which projects to the asymmetric exclusion process[END_REF]), and some tableaux called permutation tableaux [START_REF] Williams | Enumeration of totally positive Grassmann cells[END_REF]. In particular they gave rise to an interesting q-analog of Eulerian numbers [START_REF] Williams | Enumeration of totally positive Grassmann cells[END_REF]. The purpose of this article is to study the type B analogue, jointly with some excedance statistics on signed permutations, and more generally flag excedances. This work is motivated by permutation tableaux of type B introduced by Lam and Williams [START_REF] Lam | Total positivity for cominuscule Grassmannians[END_REF], and natural statistics that can be read on these tableaux [START_REF] Corteel | Matrix Ansatz, orthogonal polynomials and permutations[END_REF]. We thus obtain q-Eulerian numbers of type B, or more generally flag q-Eulerian numbers of type B, and investigate their combinatorial properties.

We show that many previous results can be generalized to this type B case. Firstly, we have a natural symmetry property of the q-Eulerian numbers. Whereas there was a rather natural proof in the case of (unsigned) permutations, the proof is much more involved here. We also make a link with another statistic, alignments of permutations. Then, we make use of a method called Matrix Ansatz, as in previous work on (unsigned) permutations and originally related with the PASEP. This has several consequences, in particular we relate our q-Eulerian numbers with combinatorics of weighted Motzkin paths (in the style of Flajolet [START_REF] Flajolet | Combinatorial aspects of continued fractions[END_REF] and Françon and Viennot [START_REF] Françon | Permutations selon leurs pics, creux, doubles montées et double descentes, nombres d'Euler et nombres de Genocchi[END_REF]) and give several bijections with signed permutations, that give other combinatorial interpretations of our q-Eulerian numbers.

The definitions and results are presented in the next section. The next one is quite short and gives a summary of the statistics on signed permutations. Section 4 is the main section and introduces the q-Eulerian numbers of type B and the symmetry property. Section 5 deals with some specific statistics, namely crossings and alignments. Section 6 is on the Matrix Ansatz and different solutions of this Ansatz. Section 7 is a continuation of Section 6 and links our q-Eulerian numbers of type B to the combinatorics or labelled Motzkin paths and suffixes. Section 8 gives an enumerative formula for the q-Eulerian numbers of type B. Most of the times these sections are generalizations of the type A results, but this is not the case for the Section 8, as we could not take into account the number of negative entries. We then conclude by six open problems.

Definitions and results

Let S n denote the set of permutations on [n] = {1, 2, . . . , n}. We will sometimes write a permutation π = π 1 π 2 • • • π n as a sequence π = (π 1 , π 2 , . . . , π n ). For a permutation π = π 1 π 2 • • • π n ∈ S n , a descent of π is an integer i ∈ [n -1] such that π i > π i+1 . A weak excedance of π is an integer i ∈ [n] such that π i ≥ i. We denote by des(π) and wex(π) the number of descents of π and the number of weak excedances of π respectively. For positive integers n and k, the (type A) Eulerian number E n,k is the number of π ∈ S n with des(π) = k -1. It is well known that E n,k is also equal to the number of π ∈ S n with wex(π) = k.

A crossing of a permutation π = π 1 • • • π n is a pair (i, j) with i, j > 0 such that i < j ≤ π i < π j or i > j > π i > π j . We denote by cr(π) the number of crossings of π.

The q-Eulerian number E n,k (q) is defined as follows:

(1) E n,k (q) = π∈Sn wex(π)=k q cr(π) .

Williams [START_REF] Williams | Enumeration of totally positive Grassmann cells[END_REF] showed that E n,k (-1) = n-1 k-1 and E n,k (0) = 1 n n k n k-1 (the Narayana number) and the following symmetry:

(2)

E n,k (q) = E n,n+1-k (q).

We note that Williams [START_REF] Williams | Enumeration of totally positive Grassmann cells[END_REF] first introduced the notion of crossing and alignment of a permutation in the study of totally positive Grassmanian cells. In fact, in [START_REF] Williams | Enumeration of totally positive Grassmann cells[END_REF], Williams defines E n,k (q) using alignments. Corteel [START_REF] Corteel | Crossings and alignments of permutations[END_REF] showed that there is a simple relation between the number of crossings and the number of alignments, which gives the equivalent definition [START_REF] Adin | Descent numbers and major indices for the hyperoctahedral group[END_REF]. Let

A n (y, q) = π∈Sn y wex(π) q cr(π) = n k=0

y k E n,k (q).
Then A n (y, q) has many interesting meanings related to q-Laguerre polynomials, permutations, permutation tableaux, weighted Motzkin paths, and Matrix Ansatz, see [START_REF] Corteel | Matrix Ansatz, lattice paths and rook placements[END_REF]. Josuat-Vergès [START_REF] Josuat-Vergès | Rook placements in Young diagrams and permutation enumeration[END_REF] (see also [START_REF] Corteel | Matrix Ansatz, lattice paths and rook placements[END_REF]) showed that (-1) k y i q i(k+1-i) .

In this paper we prove analogous results for signed permutations and type B Eulerian numbers. In general, some permutations statistics are related with the structure of Coxeter group or Weyl group (such as descents and inversions, see [START_REF] Björner | Combinatorics of Coxeter groups[END_REF]) so that it is natural to examine if some particular permutation statistics can be generalized to other groups. Lam and Williams [START_REF] Lam | Total positivity for cominuscule Grassmannians[END_REF], in their work on the totally positive Grassmanian cells, defined analogues of permutation tableaux for other groups. The type B case was studied in [START_REF] Corteel | Combinatorics on permutation tableaux of type A and type B[END_REF][START_REF] Corteel | Matrix Ansatz, orthogonal polynomials and permutations[END_REF]. In particular, the crossings of signed permutations were defined in [START_REF] Corteel | Matrix Ansatz, orthogonal polynomials and permutations[END_REF]. In this article, we show how this definition give nice q-Eulerian numbers of type B, which are a type B analogue of the E n,k (q) mentioned above.

A

signed permutation of [n] is a sequence π = π 1 π 2 • • • π n = (π 1 , π 2 , . . . , π n ) of integers such that (|π 1 |, |π 2 |, . . . , |π n |) is a permutation of [n] and π i ∈ [±n] := {1, 2, . . . , n, -1, -2, . . . , -n} for all i ∈ [n]. We denote by B n the set of signed permutations of [n]. A type B descent of π = π 1 • • • π n ∈ B n is an integer 0 ≤ i ≤ n -1 satisfying π i > π i+1
, where π 0 = 0. We denote by des B (π) the number of type B descents of π. Let fwex(π) = 2 wex(π) + neg(π), where wex(π) = #{i ∈ [n] : π i ≥ i} and neg(π) is the number of negative integers in π.

A crossing of a signed permutation

π = π 1 • • • π n is a pair (i, j) of positive integers such that • i < j ≤ π i < π j or • -i < j ≤ -π i < π j or • i > j > π i > π j .
We denote by cr(π) the number of crossings of π. The notion of crossing of signed permutations was first considered in [START_REF] Corteel | Matrix Ansatz, orthogonal polynomials and permutations[END_REF]. Now let k and n be integers with 0

≤ k ≤ n. The type B Eulerian number E B n,k
is the number of π ∈ B n with des B (π) = k, see [START_REF] Björner | Combinatorics of Coxeter groups[END_REF]. In Section 3 we show that E B n,k is also equal to the number of π ∈ B n with ⌊fwex(π)/2⌋ = k. For 0 ≤ k ≤ n, we define the type B q-Eulerian number E B n,k (q) as follows:

E B n,k (q) = π∈Bn ⌊fwex(π)/2⌋=k q cr(π) . Theorem 2.1. For any 0 ≤ k ≤ n, we have E B n,k (-1) = n k , E B n,k (0) = n k 2 (the Narayana numbers of type B), E n,k (1) is the type B Eulerian number, and (4) 
E B n,k (q) = E B n,n-k (q).
In Section 5 we consider crossings and alignments of signed permutations and show a simple relation between their numbers, which is an analogous result of Corteel [START_REF] Corteel | Crossings and alignments of permutations[END_REF].

Let (5) B n (y, t, q) = π∈Bn y fwex(π) t neg(π) q cr(π) , B n,k (t, q) = π∈Bn fwex(π)=k t neg(π) q cr(π) .
For example, B 0 (y, t, q) = 1, B 1 (y, t, q) = y 2 + yt, and B 2 (y, t, q) = y 4 + (2t + tq)y 3 + (t 2 q + t 2 + 1)y 2 + ty. When t = 0, we have B n (y, 0, q) = A n (y, q), B n,2k+1 (0, q) = 0, and B n,2k (0, q) = E n,k (q). Note also that

(6) E B n,k (q) = B n,2k (1, q) + B n,2k+1 (1, q).
Corteel et al. [START_REF] Corteel | Matrix Ansatz, orthogonal polynomials and permutations[END_REF] showed that B n (1, t, q) is a generating function for type B permutation tableaux. These tableaux were introduced by Lam and Williams [START_REF] Lam | Total positivity for cominuscule Grassmannians[END_REF].

Their proof works for B n (y, t, q) and we have

B n (y, t, q) = T ∈PT B (n)
y 2 row(T )+diag(T ) t diag(T ) q so(T ) , where row(T ) is the number of rows, diag(T ) is the number of ones in the diagonal, and so(T ) is the number of superfluous ones, see [START_REF] Corteel | Matrix Ansatz, orthogonal polynomials and permutations[END_REF] for the details. Using permutation tableaux Corteel et al. [START_REF] Corteel | Matrix Ansatz, orthogonal polynomials and permutations[END_REF] showed the following theorem. Again, they only considered B n (1, t, q), but their proof works for B n (y, t, q). Theorem 2.2. (Matrix Ansatz [7, Proposition 2]) Let D and E be matrices, W | a row vector, and |V a column vector, such that:

DE = qED + D + E, D|V = |V , W |E = yt W |D. ( 7 
)
Then we have:

B n (y, t, q) = W |(y 2 D + E) n |V .
This can be seen as an abstract rule to compute B n (y, t, q), but it is also useful to have explicitly D, E, W | and |V satisfying the relations (i.e. solutions of the Matrix Ansatz), see [START_REF] Corteel | Matrix Ansatz, orthogonal polynomials and permutations[END_REF]. We will give two such solutions in Section 6.

This Matrix Ansatz and its solutions have several consequences. Firstly, we will show (see Theorem 6.2) a simple recursion for the quantity B n (y, q) involving q-derivatives. Secondly, we will show (see Theorem 6.1) that the generating function B n (y, t, q)z n has a nice continued fraction expansion. This is the kind of continued fraction (called J-fraction) that are related with moments of orthogonal polynomials [START_REF] Viennot | Une théorie combinatoire des polynômes orthogonaux[END_REF].

We will show in Section 7 that the two kinds of paths are in bijection with signed permutations, using variants of classical bijections of Françon and Viennot [START_REF] Françon | Permutations selon leurs pics, creux, doubles montées et double descentes, nombres d'Euler et nombres de Genocchi[END_REF], Foata and Zeilberger [START_REF] Foata | Denert's permutation statistic is indeed Euler-Mahonian[END_REF]. We obtain two other interpretations of B n (y, t, q) where y follows a descent statistic and q a pattern statistic. Once again, this is a type B analog of results on permutation tableaux and permutations [START_REF] Corteel | Bijections for permutation tableaux[END_REF][START_REF] Steingrímsson | Permutation tableaux and permutation patterns[END_REF].

At last but not least, we will give (see Theorem 8.1) an exact formula for B n (y, 1, q). It is the analogue of the formula for B n (y, 0, q) in (3), and is obtained from the continued fraction. This will be given in Section 8, and the proof uses techniques developed in [START_REF] Josuat-Vergès | Touchard-Riordan formulas, T-fractions, and Jacobi's triple product identity[END_REF].

Statistics of signed permutations

Let π = π 1 • • • π n ∈ B n .
There are various statistics on signed permutations [START_REF] Adin | Descent numbers and major indices for the hyperoctahedral group[END_REF][START_REF] Björner | Combinatorics of Coxeter groups[END_REF][START_REF] Foata | Signed words and permutations, V; a sextuple distribution[END_REF]:

wex(π) = #{i ∈ [n] : π i ≥ i}, exc(π) = #{i ∈ [n] : π i > i}, des(π) = #{i ∈ [n -1] : π i > π i+1 }, des B (π) = #{i ∈ [n -1] ∪ {0} : π i > π i+1 }, where π 0 = 0, neg(π) = #{i ∈ [n] : π i < 0}, fwex(π) = 2 wex(π) + neg(π), fexc(π) = 2 exc(π) + neg(π), fdes(π) = des(π) + des B (π).
It is well known [27, 1.4

.3 Proposition] that #{π ∈ S n : wex(π) = k} = #{π ∈ S n : des(π) = k -1} (8) = #{π ∈ S n : exc(π) = k -1}. ( 9 
)
We will find a similar relation between fwex, fexc, and fdes. We need the following result of Foata and Han. Lemma 3.1. [13, Section 9] There is a bijection ψ : B n → B n such that fexc(π) = fdes(ψ(π)).

For π = π 1 • • • π n ∈ B n , we define -π ∈ B n by (-π) i = -(π i ).
We also define π t ∈ B n to be the signed permutation such that π t i = ǫ • j if and only π j = ǫ • i for ǫ ∈ {1, -1} and i, j ∈ [n]. In other words, if M (π) is the signed permutation matrix of π, then M (-π) = -M (π) and M (π t ) = M (π) t . Here, the signed permutation matrix M (π) is the n × n matrix whose (i, j)-entry is 1 if π i = j, -1 if π i = -j, and 0 otherwise. The following lemma is easy to prove. Lemma 3.2. For π ∈ B n , we have

fdes(π) + fdes(-π) = 2n -1, fwex(π) + fexc(π t ) = 2n.
The following is a type B analog of (8).

Proposition 3.3. We have Proof. By Lemmas 3.1 and 3.2, we have

#{π ∈ B n : fwex(π) = k} = #{π ∈ B n : fdes(π) = k -1} = #{π ∈ B n : fexc(π) = k -1}, (10) 
#{π ∈ B n : fwex(π) = k} = #{π ∈ B n : fexc(π) = 2n -k} = #{π ∈ B n : fdes(π) = 2n -k} = #{π ∈ B n : fdes(π) = 2n -1 -(2n -k)} = #{π ∈ B n : fdes(π) = k -1} = #{π ∈ B n : fexc(π) = k -1}.
Equation [START_REF] Corteel | Bijections for permutation tableaux[END_REF] follows from Equation [START_REF] Corteel | A Markov chain on permutations which projects to the asymmetric exclusion process[END_REF] and the fact that des B (π) = ⌊(fdes(π) + 1)/2⌋ .

q-Eulerian numbers of type B and the symmetry property

The main purpose of this section is to prove (4), which is the symmetry E B n,k (q) = E B n,n-k (q) of type B Eulerian numbers. Observe that by (6) the identity B n,k (1, q) = B n,2n+1-k (1, q) implies (4). However, for general t, we have For instance, B 1,1 (t, q) = t and B 1,2 (t, q) = 1. There is a way to fix this discrepancy. Let B * n,k (t, q) = π∈Bn fwex(π)=k t neg(π)+χ(π1>0) q cr(π) , where χ(π 1 > 0) is 1 if π 1 > 0 and 0 otherwise. We will prove the following symmetry by a combinatorial argument:

B n,k (t, q) = B n,2n+1-k (t, q).
Theorem 4.1. For 1 ≤ k ≤ 2n, we have B * n,k (t, q) = B * n,2n+1-k (t, q). In particular, when t = 1, we have B n,k (1, q) = B n,2n+1-k (1, q).
In order to prove Theorem 4.1 we introduce a diagram representing a signed permutation.

4.1. Pignose diagrams. Given a set U of 2n distinct integers, an ordered matching on U is a set of ordered pairs (i, j) of integers such that each integer in U appears exactly once. For an ordered matching M on U containing 2n integers a 1 < a 2 < • • • < a 2n , we define the standardization st(M ) of M to be the ordered matching on [2n] obtained from M by replacing a i with i for each i ∈ [2n]. For example, if M = {(2, 6), [START_REF] Comtet | Advanced combinatorics[END_REF][START_REF] Aval | Tree-like tableaux[END_REF], [START_REF] Corteel | Combinatorics on permutation tableaux of type A and type B[END_REF][START_REF] Björner | Combinatorics of Coxeter groups[END_REF], [START_REF] Corteel | Matrix Ansatz, orthogonal polynomials and permutations[END_REF][START_REF] Corteel | Matrix Ansatz, lattice paths and rook placements[END_REF]}, then st(M ) is the ordered matching {(1, 5), (4, 2), [START_REF] Corteel | Matrix Ansatz, lattice paths and rook placements[END_REF][START_REF] Aval | Tree-like tableaux[END_REF], (6, 7)} on [START_REF] Corteel | Matrix Ansatz, lattice paths and rook placements[END_REF].

We represent an ordered matching M on U as follows. Arrange the integers in U on a horizontal line in increasing order. For each pair (i, j) ∈ M , connect i and j with an upper arc if i < j, and with a lower arc if i > j, see Figure 1.

A crossing of an ordered matching M is a set of two intersecting arcs, i.e. (i 1 , j 1 ), (i 2 , j 2 ) satisfying i 1 < i 2 < j 1 < j 2 or j 2 < j 1 < i 2 < i 1 . We denote by cr(M ) the number of crossings of M .

For

π = π 1 • • • π n ∈ B n
, the pignose diagram of π is defined as follows. First we arrange 2n vertices in a horizontal line where the (2i -1)th vertex and the 2ith vertex are enclosed by an ellipse labeled with i which we call the ith pignose. The left vertex and the right vertex in a pignose are called the first vertex and the second vertex respectively. For each i ∈ [n], we connect the first vertex of the ith pignose and the second vertex of the π i th pignose with an arc in the following way. If π i > 0, then draw an arc above the horizontal line if π i ≥ i and below the horizontal line if π i < i. If π i < 0, then we draw an arc starting from the first vertex of the ith pignose below the horizontal line to the second vertex of the π i th pignose above the horizontal line like a spiral oriented clockwise. We draw these spiral arcs so that these are not crossing each other below the horizontal line. See Figure 2. We note that essentially the notion of the pignose diagram for permutations was first considered in [START_REF] De Médicis | Moments des q-polynômes de Laguerre et la bijection de Foata-Zeilberger[END_REF].

For π ∈ B n , one can easily check that • cr(π) is the number of unordered pairs of two arcs crossing each other in the pignose diagram of π, • fwex(π) is twice the number of upper arcs plus the number of spiral arcs, or equivalently, the number of vertices with a half arc above the horizontal line, • neg(π) is the number of spiral arcs. Since S n is contained in B n , the pignose diagram for π ∈ S n is also defined. Note that the pignose diagram of π ∈ S n can be considered as an ordered matching on [2n] by removing the ellipses enclosing two vertices and labeling the 2n vertices with 1, 2 . . . , 2n from left to right. We call an ordered matching that can be obtained in this way a pignose matching. Not all ordered matchings are pignose matchings. In order to determine whether a given ordered matching is a pignose matching we need some definitions.

For an ordered matching M on [2n] and an integer i ∈ [2n] we say that • i has a half arc of type if i is the left vertex of an upper arc in the diagram of M .

• i has a half arc of type if i is the right vertex of a lower arc in the diagram of M . • i has a half arc of type if i is the right vertex of an upper arc in the diagram of M .

• i has a half arc of type if i is the left vertex of a lower arc in the diagram of M . One can easily prove the following proposition. 

k ∈ [n], the number of integers i ∈ [n] with i ≤ k ≤ π i is equal to the number of integers i ∈ [n] with π i < k < i plus 1.
See Figure 3 for the pictorial meaning.

Proof. Consider the pignose diagram of π with a vertical line dividing the pignose of k in the middle. Let x (resp. y) be the number of lower (resp. upper) arcs intersecting with the vertical line. Let a, b, c, d be, respectively, the number of half arcs to the left of the vertical line of types , , and . 

} x + 1 } x
B + n = {π ∈ B n : π 1 > 0}, B - n = {π ∈ B n : π 1 < 0}, B + n,k (t, q) = π∈B + n fwex(π)=k t neg(π) q cr(π) , B - n,k (t, q) = π∈B - n fwex(π)=k t neg(π) q cr(π) . Then (12) B * n,k (t, q) = tB + n,k (t, q) + B - n,k (t, q).
In this subsection we will prove the following proposition.

Proposition 4.4. There is a bijection

φ : B + n → B - n such that cr(φ(π)) = cr(π), neg(φ(π)) = neg(π) + 1, fwex(φ(π)) = 2n + 1 -fwex(π). ( 13 
)
Thus, q). Note that Theorem 4.1 follows from ( 12) and [START_REF] Foata | Denert's permutation statistic is indeed Euler-Mahonian[END_REF]. In order to prove Proposition 4.4 we need some definitions and lemmas.

(14) tB + n,k (t, q) = B - n,2n+1-k (t, q), B - n,k (t, q) = tB + n,2n+1-k (t,
Given an ordered matching M on [2n], we define ρ(M ) to be the ordered matching st(M ′ ) where M ′ is the ordered matching on {2, 3, . . . , 2n+ 1} obtained from M by replacing 1 with 2n+1. In other words, ρ(M ) is obtained from M by moving the first vertex to the end and reflecting the arc adjacent to this vertex, see Figure 4.

} x } x 1 i n ⇒ } x } x 1 i n Figure 5. The change of crossings from M to ρ(M ).
We denote Proof. Note that ρ (2) (M ) is a pignose matching. Thus it suffices to prove for k = 1 and k = 2.

ρ (k) = k ρ • • • • • ρ.
Considering M as a pignose diagram of a permutation in S n , assume that 1 is connected to i. By Lemma 4.3, if we draw a vertical line between the two vertices in the ith pignose, the number, say x, of upper arcs above i except (1, i) is equal to the number of lower arcs below i. Therefore, when we go from M to ρ(M ), we lose x crossings and obtain new x crossings as shown in Figure 5.

This proves the assertion for k = 1.

To prove for k = 2 we define the following. Given an ordered matching N , let N be the ordered matching obtained by reflecting N along the horizontal line. It is easy to see that cr(N ) = cr(N ) and ρ(N ) = ρ(N ). Moreover if N is a pignose matching then so is ρ(N ). Thus we have [START_REF] Françon | Permutations selon leurs pics, creux, doubles montées et double descentes, nombres d'Euler et nombres de Genocchi[END_REF] cr ρ (2) 

(M ) = cr ρ (2) (M ) = cr ρ ρ(M )
Since ρ(M ) is a pignose matching, using the assertion for k = 1, we obtain that (15) is equal to cr ρ(M ) = cr (ρ(M )) = cr (M ) .

Thus cr ρ (2) (M ) = cr (M ) and we are done.

For an ordered matching M on [2n] we define M r to be the ordered matching obtained from M by replacing i with 2n + 1i for each i ∈ [2n]. Pictorially M r is obtained from M by taking a 180 • rotation. Proof. Note that ρ (2) (M ) is a pignose matching. Thus it suffices to prove that (ρ(M )) r is a pignose matching, which easily follows from Proposition 4.2.

For π ∈ B n , let π -= (-π 1 )π 2 • • • π n .
Lemma 4.7. The map π → π -is a bijection from B + n to B - n . Moreover, we have cr(π) = cr(π -), neg(π) = neg(π -) -1, and fwex(π) = fwex(π -) + 1. Proof. This is an immediate consequence of the following observation: if π ∈ B + n , the pignose diagram of π -is obtained from the pignose diagram of π by changing the upper arc adjacent to 1 to a spiral arc as shown in Figure 6. Now we are ready to define the map φ :

B + n → B - n in Proposition 4.4. Suppose π ∈ B +
n and neg(π) = m. We make the pignose diagram of π to be a pignose matching on [2m + 2n] by dividing each spiral arc into one upper arc and one lower arc so that the left endpoint of the upper arc is to the left of the left endpoint of the lower arc, see Figure 7.

Let M be the pignose matching obtained in this way, and let N = ρ (2m+1) (M ) r . By Lemma 4.6, N is also a pignose matching on [2m + 2n] and cr(M ) = cr(N ). It is straightforward to check that N satisfies the following properties.

(1) For each i ∈ [2m], the ith vertex is connected to the jth vertex for some j > 2m.

(2) The first m lower arcs do not cross each other.

(3) The (2m + 1)st vertex has an upper half arcs. (4) The number of upper half arcs adjacent to the last 2n vertices is 2n + 2k.

By the first and the second properties, we can make N to be the pignose diagram of a signed permutation, say σ ∈ B n , by identifying the (2i -1)th vertex and the (2i)th vertex for each i ∈ [m]. Then neg(π) = neg(σ). By the third property, we have σ ∈ B + n , and by the fourth property, we have fwex(σ) = 2n + 2k. We define φ(π) to be σ -. Clearly φ is a bijection from B + n to B - n . By Lemma 4.7, φ satisfies (13). This finishes the proof of Proposition 4.4. See Figure 8 for an example.

ρ (5) (M ) = 1 2 3 4 ρ (5) (M ) r = σ = 1 2 3 4 σ -= 1 2 3 4
Figure 8. Computing ρ (5) (M ), ρ (5) (M ) r , σ, and σ -, where

π = (3, -4, -2, 1) ∈ B + 4
and M is the diagram on the right in Figure 7.

or or or

Figure 9. An alignment is an unordered pair of arcs which look like one of the four configurations.

Crossings and alignments

For a permutation σ ∈ S n , an alignment is a pair (i, j) of integers i, j ∈ [n] satifying one of the following: i < j < π j < π i , π i < π j < j < i, i < π i < π j < j, and π i < i < j < π j , see Figure 9.

Let al(σ) denote the number of alignments of σ. The following proposition was first proved by the first author [START_REF] Corteel | Crossings and alignments of permutations[END_REF] using rather technical calculations. Here we provide another proof which is more combinatorial. Let A be the set of pairs (U, L) of an upper arc U and a lower arc L. Then there are k(nk) elements in A. We define the subsets A 1 , A 2 and A 3 of A as follows: for U = (i, π i ) and L = (j, π j ) we have 

• (U, L) ∈ A 1 if and only if i < π i < π j < j or π j < j < i < π i ,
π i or π i Figure 11
. The relative locations of U = (i, π i ) and U ′ = (j, π j ).

Here U is the arc whose right endpoint is the second vertex of the π i th pignose and U ′ is the other arc.

i or i

Figure 12. The relative locations of L = (i, π i ) and L ′ = (j, π j ).

Here L is the arc whose right endpoint is the first vertex of the ith pignose and L ′ is the other arc.

• (U, L) ∈ A 2 if and only if i < π j < π i < j or π j < i < π i < j,

• (U, L) ∈ A 3 if and only if π j < i < j < π i or i < π j < j < π i .

See Figure 10.

Observe that A = A 1 ⊎ A 2 ⊎ A 3 . Fix an upper arc U = (i, π i ). Note that the right endpoint of U is the second vertex of the π i th pignose. Then by Lemma 4.3, the number of elements (U, L) ∈ A 2 is equal to the number of pairs (U, U ′ ) of upper arcs where U ′ = (j, π j ) satisfying i < j < π i < π j or j < i ≤ π i < π j , see Figure 11. Now fix a lower arc L = (i, π i ). Note that the right endpoint of L is the first vertex of the ith pignose. Again by Lemma 4.3, the number of elements (U, L) ∈ A 3 is one more than the number of pairs (L, L ′ ) of lower arcs where L ′ = (j, π j ) satisfying π i < π j < i < j or π j < π i < i < j, see Figure 12.

Observe that a crossing or an alignment is either an element in A 1 , or a pair of arcs as shown in Figures 11 and12. Since we have nk lower arcs, the number of pairs of arcs in Figure 12 is

|A 3 | -(n -k).
Thus the total number of crossings and alignments is equal to

|A 1 | + |A 2 | + (|A 3 | -(n -k)) = k(n -k) -(n -k) = (k -1)(n -k).
Now we define another representation of a signed permutation. Note that a signed permutation π = π 1 • • • π n ∈ B n can be considered as a bijection on [±n] = {1, 2, . . . , n, -1, -2, . . . , -n} with π(i) = π i and π(-i) = -π i for i ∈ [n]. The pignose labeled by i is called positive if i > 0, and negative otherwise. The first vertex and the second vertex of a positive pignose are, respectively, the left vertex and the right vertex of the pignose. The first vertex and the second vertex of a negative pignose are, respectively, the right vertex and the left vertex of the pignose. For each i ∈ [±n], we connect the first vertex of the pignose labeled with i and the second vertex of the pignose labeled with π(i) with an arc in the following way. If π i > 0, draw an arc above the horizontal line if π(i) ≥ i, and below the horizontal line if π(i) < i. See Figure 13 for an example.
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The following lemma can be shown by the same argument in the proof of Lemma 4.3.

Lemma 5.2. Let π ∈ B n and k ∈ [n].
In the full pignose diagram of π if we draw a vertical line dividing the pignose labeled -k (resp. k) in the middle, then the number of upper arcs intersecting with this line is equal to the number of lower arcs intersecting with this line minus 1 (resp. plus 1) as shown in Figure 14.

We define alignments of a signed permutation similarly. An alignment of π ∈ B n is a pair (i, j) of integers i, j ∈ [±n] satifying one of the following: i < j < π(j) < π(i), π(i) < π(j) < j < i, i < π(i) < π(j) < j, and π(i) < i < j < π(j). In other words, an alignment of π ∈ B n is an unordered pair of arcs in the full pignose diagram of π whose relative locations are as shown in Figure 9. We denote by al(π) the number of alignments of π.

Note that the number of two arcs intersecting with each other in the full pignose diagram of π ∈ B n is equal to 2 cr(π). Now we can prove a type B analog of Proposition 5.1.

Proposition 5.3. For π ∈ B n with fwex(π) = k, we have

2 cr(π) + al(π) = n 2 -2n + k.
Proof. Since the number of positive upper half arcs is equal to fwex(π) = k, the number of positive lower half arcs is equal to 2nk.

Let A be the set of pairs (U, L) of an upper arc U and a lower arc L. Since we have n upper arcs and n lower arcs in total, there are n 2 elements in A. Using Lemma 5.2 and the same argument as in the proof of Proposition 5.1, one can easily see that 2 cr(π) + al(π) = n 2ab, where a is the number of upper arcs whose right endpoint is the first vertex of a negative pignose, and b is the number of lower arcs whose right endpoint is the first vertex of a positive pignose. By the symmetry of the full pignose diagram, a is equal to the number of lower arcs whose left endpoint is the second vertex of a positive pignose. Thus a + b is the number of positive half arcs, which is 2nk, and we obtain the desired formula.

Two solutions of the Matrix Ansatz

If some matrices D, E, a row vector W | and a column vector |V are given explicitly, it is straightforward to check whether they satisfy the Matrix Ansatz:

DE = qED + D + E, D|V = |V , W |E = yt W |D. ( 16 
)
But it is not obvious how to find such matrices and vectors. We provide two solutions in the form of semi-infinite tridiagonal matrices, i.e. the index set is N and D = (D i,j ) i,j∈N , E = (E i,j ) i,j∈N are such that D i,j = E i,j = 0 if |j -i| > 1.

They can be obtained using the following observation: if X and Y are matrices such that XY -qY X = I (where I is the identity), then D = X(I + Y ) and

E = Y X(I + Y ) satisfy DE -qED = X(I + Y )Y X(I + Y ) -qY X(I + Y )X(I + Y ) = (XY + XY Y -qY X -qY XY )X(I + Y ) = (I + Y )X(I + Y ) = D + E.
Then we can look for W | (respectively, |V ) as a left (respectively, right) eigenvector of ytD -E (respectively, D).

6.1. Solution 1. Let X = (X i,j ) i,j≥0 and Y = (Y i,j ) i,j≥0 where X i,i+1 = [i + 1] q and X i,j = 0 otherwise, Y i+1,i = 1, Y i,i = tyq i and Y i,j = 0 otherwise, and W | = (1, 0, 0, . . .), |V = (1, 0, 0, . . .) t . We can check that XY -qY X = I, and that D = X(I + Y ) and E = Y X(I + Y ) together with W | and |V provide a solution of [START_REF] Corteel | Matrix Ansatz, orthogonal polynomials and permutations[END_REF]. The coefficients are:

D i,i = [i + 1] q , D i,i+1 = (1 + ytq i+1 )[i + 1] q , D i,j = 0 otherwise, (17) 
and

E i,i = [i] q + ytq i ([i] q + [i + 1] q ), E i,i+1 = ytq i (1 + ytq i+1 )[i + 1] q , E i+1,i = [i + 1] q , E i,j = 0 otherwise.
Note that W | and |V are such that the quantity

B n (y, t, q) = W |(y 2 D + E) n |V .
is the coefficient ((y 2 D + E) n ) 0,0 of the matrix (y 2 D + E) n . It is possible to see y 2 D + E as a transfer matrix, see [START_REF] Stanley | Enumerative Combinatorics[END_REF]Section 4.7]. This is a general method used in the enumeration of "walks", i.e. finite sequences of vertices in a graph where two successive elements are related by an edge, see loc. cit. for details. This method shows that B n (y, t, q) is the weighted generating function of walks in N of n steps, starting at 0, ending at 0, and each step being either i → i + 1 (with weight

y 2 D i,i+1 + E i,i+1 ), i → i (with weight y 2 D i,i + E i,i ), or i → i -1 (with weight y 2 D i,i-1 + E i,i-1 ).
Note that these kind of walks in N are clearly in bijection with Motzkin paths (see the next section for more on the combinatorics of these paths). By the standard methods of Flajolet [START_REF] Flajolet | Combinatorial aspects of continued fractions[END_REF], this gives a continued fraction for the generating function. We use the notation a1 b1 -

a2 b2 -• • • = (a 1 /(b 1 -(a 2 /(b 2 -. . . )))) for continued fractions. Theorem 6.1. Let γ h = y 2 [h + 1] q + [h] q + ytq h ([h] q + [h + 1] q ) for h ≥ 0 and λ h = y[h] 2 q (y + tq h-1 )(1 + ytq h ) for h ≥ 1, then we have: n≥0 B n (y, t, q)z n = 1 1 -γ 0 z - λ 1 z 2 1 -γ 1 z - λ 2 z 2 1 -γ 2 z - • • • .
Proof. This essentially follows the above discussion about the transfer matrix method and Motzkin paths. It suffices to check

γ h = y 2 D h,h + E h,h and λ h = (y 2 D h-1,h + E h-1,h )E h,h-1 .
In particular, we have n≥0

B n (y, 1, -1)z n = 1 1 -(y + y 2 )z -1-y(y+1)(1-y)z 2 1-(1-y)z = 1 -z + zy 1 -z -y 2 z = 1 + (y + y 2 )z 1 -(1 + y 2 )z .
It is then easy to obtain

B n (y, 1, -1) = 2n k=1 y k n -1 ⌈k/2⌉ -1 .
Using (6), we thus obtain as mentioned in Theorem 2.1 that the value at q = -1 of the q-Eulerian numbers of type B are binomial coefficients:

E B n,k (-1) = [y 2k ]B n (y, 1, -1) + [y 2k+1 ]B n (y, 1, -1) = n -1 k -1 + n -1 k = n k .
6.2. Solution 2. Let X = (X i,j ) i,j≥0 and Y = (Y i,j ) i,j≥0 where X i,i+1 = [i + 1] q and X i,j = 0 otherwise, Y i+1,i = 1 and Y i,j = 0 otherwise, and W | = (1, yt, (yt) 2 , . . .), |V = (1, 0, 0, . . .) t . We can check that XY -qY X = I, and that D = X(I + Y ) and E = Y X(I + Y ) together with W | and |V provide a solution of [START_REF] Corteel | Matrix Ansatz, orthogonal polynomials and permutations[END_REF]. The coefficients are:

D i,i = D i,i+1 = [i + 1] q , D i,j = 0 otherwise, E i,i-1 = E i,i = [i] q , E i,j = 0 otherwise.
Theorem 6.2. We have B 0 = 1, and the recurrence relation:

(18) B n (y, t, q) = (y + t)D q (1 + yt)B n-1 (y, t, q) ,
where D q is the q-derivative with respect to t, which sends t n to [n] q t n-1 .

Proof. Each polynomial P in y, t, and q can be uniquely written k≥0 p k (yt) k where the coefficients p k are functions of y and q (possibly rational function). We can identify the polynomial P with the vector of coefficients v = (p 1 , p 2 , . . . ). More precisely, the correspondence is P = W | • v. Under this identification P ↔ v, we can see that multiplication by yt on polynomials corresponds to the matrix Y acting on vectors, and y -1 D q acting on polynomials corresponds to the matrix X. This means:

W |Y • v = yt W | • v , W | • (Xv) = y -1 D q W | • v .
From the definition of D and E in terms of X and Y , we have y 2 D + E = (y 2 I + Y )X(I + Y ). Then:

B n (y, t, q) = W |(y 2 D + E) n |V = W | (y 2 I + Y )X(I + Y ) n |V = (y + t)D q [(1 + yt) W |(y 2 D + E) n-1 |V ]
and the result follows.

We can also see y 2 D + E as a transfer matrix in this case. This leads to the following definition. Definition 1. A Motzkin suffix of length n and starting height k is a path in N 2 from (0, k) to (n, 0) with steps (1, 1), (1, 0) and (1, -1), respectively denoted ր, → and ց. The Motzkin paths are the particular cases where the starting height is 0. We denote by sh(p) the starting height of the path p. Proposition 6.3. B n (y, t, q) is the weighted generating functions of Motzkin suffixes of length n, where the weight of a path p is the product of (yt) sh(p) , and:

• y 2 [h + 1] q for each step ր from height h to h + 1,

• y 2 [h + 1] q + [h] q for each step → at height h, • [h + 1] q for each step ց from height h + 1 to h.
Proof. Let us write B n (y, t, q) = k≥0 p k (yt) k where the coefficients p k are functions of y and q. From B n (y, t, q) = W |(y 2 D + E) n |V , we see that p k is the coefficient (k, 0) of the matrix (y 2 D + E) n . The transfer matrix method shows that p k is the weighted generating function of walks in N from k to 0, with the following steps: either i → i + 1 (with weight y 2 D i,i+1 + E i,i+1 ), i → i (with weight

y 2 D i,i + E i,i ), or i → i -1 (with weight y 2 D i,i-1 + E i,i-1
). These walks in N are clearly in bijection with Motzkin suffixes, so the result follows.

See the next section for more on the combinatorics of these weighted Motzkin suffixes.

7. Interpretation of B n (y, t, q) via weighted Motzkin paths

We show here that some known bijections from [START_REF] Corteel | Crossings and alignments of permutations[END_REF] can be adapted to the case of signed permutations. In this reference, the first author obtains refinements of two bijections originally given by Françon and Viennot [START_REF] Françon | Permutations selon leurs pics, creux, doubles montées et double descentes, nombres d'Euler et nombres de Genocchi[END_REF], Foata and Zeilberger [START_REF] Foata | Denert's permutation statistic is indeed Euler-Mahonian[END_REF]. In the case of signed permutations, we will see that each of these two bijections has two variants, corresponding to the two kinds of paths obtained in the previous section.

The two variants of the Françon-Viennot bijection give new interpretations of B n (y, t, q) in terms ascent-like and pattern-like statistics in signed permutations. On the other side, the two variants of the Foata-Zeilberger bijection permit to recover the known interpretation as in ( 5) (so we omit details in this case).

7.1. Weighted Motzkin paths. Let M n be the set of weighted Motzkin paths of length n, where each step is either:

• ր from height h to h + 1 with weight q i , 0 ≤ i ≤ h (type 1),

• ր from height h to h + 1 with weight ytq h+1+i , 0 ≤ i ≤ h (type 2),

• → at height h with weight y 2 q i , 0 ≤ i ≤ h (type 3),

• → at height h with weight ytq h+i , 0 ≤ i ≤ h (type 4),

• → at height h with weight q i , 0 ≤ i ≤ h -1 (type 5),

• → at height h with weight ytq h+i , 0 ≤ i ≤ h -1 (type 6),

• ց from height h + 1 to h with weight y 2 q i , 0 ≤ i ≤ h (type 7),

• ց from height h + 1 to h with weight ytq h+i , 0 ≤ i ≤ h (type 8). This set has generating function B n (y, t, q) since the weights correspond to coefficients of y 2 D + E, where we use the first solution of the Matrix Ansatz from the previous section. More precisely, the correspondence is: E h,h-1 → types 1 and 2, D h,h → type 3, E h,h → types 4, 5 and 6, D h,h+1 → type 7, E h,h+1 → type 8. Note that the weight on a step does not always determine its type (compare type 4 and 6), so that we need to think in terms of weighted paths where each step has a label between 1 and 8 to indicate its type.

The Françon-Viennot bijection, first variant.

There is a bijection between S n and weighted Motzkin paths which follows the number of descents and the number of 31-2 patterns in a permutation [START_REF] Corteel | Crossings and alignments of permutations[END_REF]. Let σ ∈ S n , then its image path is obtained by "scanning" the graph of σ from bottom to top, i.e. the ith step is obtained by examining σ -1 (i). In the case of a signed permutation π, we use the representation as in Figure 15: we place a + or ain the square in the ith column and |π i |th row depending on the sign of π(i).

Definition 2. For any σ ∈ S n and 1 ≤ i ≤ n, let 31-2(σ, i) = #{ j : 1 ≤ j < i -1 and π j > π i > π j+1 }, and let 2-31(σ, i) = #{ j : i < j < n and π j > π i > π j+1 }. Let also 31-2(σ) = that π 0 = 0 and π n+1 = n + 1. The bijection is defined in the following way. The path corresponding to π is of length n such that, if j = |π i | and denoting s the jth step, we have:

• If |π i-1 | > |π i | < |π i+1 | and π i > 0, then s is of type 1 with weight q 31-2(|π|,i) . • If |π i-1 | > |π i | < |π i+1 | and π i < 0, then s is of type 2 with weight ytq h+1+31-2(|π|,i) . • If |π i-1 | < |π i | < |π i+1 | and π i > 0, then s is of type 3 with weight y 2 q 31-2(|π|,i) . • If |π i-1 | < |π i | < |π i+1 | and π i < 0, then s is of type 4 with weight ytq h+31-2(|π|,i) . • If |π i-1 | > |π i | > |π i+1 | and π i > 0, then s is of type 5 with weight q 31-2(|π|,i) . • If |π i-1 | > |π i | > |π i+1 | and π i < 0, then s is of type 6 with weight ytq h+31-2(|π|,i) . • If |π i-1 | < |π i | > |π i+1
| and π i > 0, then s is of type 7 with weight y 2 q 31-2(|π|,i) .

• If |π i-1 | < |π i | > |π i+1
| and π i < 0, then s is of type 8 with weight ytq h+31-2(|π|,i) . In the case where π has no negative entry, this defines a bijection with the paths having steps of types 1, 3, 5, 7 only. This is a result from [START_REF] Corteel | Crossings and alignments of permutations[END_REF], and what we present here is a variant, so we refer to this work for more details. In the case of signed permutations, since each entry can be negated, it is natural that each step of type (1, 3, 5, or 7) has a respective variant (type 2, 4, 6, or 8). So the fact that the map is a bijection can be deduced from the case of unsigned permutations. It is also clear that t follows the number of negative entries of π since there is a factor t only in steps of type 2, 4, 6, and 8.

Let us check what is the statistic followed by y. There is a factor y on each step of type 2,4,6,8 so that this statistic is the sum of neg(π) and other terms coming from the factors y 2 in steps of type 3 and 7. Note that the jth step is of type 3 or 7 if and only if |π i-1 | < π i . This leads us to define an ascent statistic hasc(π) as [START_REF] Josuat-Vergès | Crossings, Motzkin paths, and moments[END_REF] hasc

(π) = 2 × #{ i : 0 ≤ i ≤ n -1 and |π i | < π i+1 } + neg(π).
It remains only to check what is the statistics followed by q. Since there is always a weight q 31-2(|π|,i) on the ith step, this statistic is the sum of 31-2(|π|) and other terms. It remains to take into account the weights q h or q h+1 that appear on each step of type 2,4,6,8. From the properties of the bijection in the unsigned case, we have that the "minimal" height h of the ith step is 31-2(|π|, i) + 2-31(|π|, i), plus 1 in the case where Note that to take into account the factor q on each step of type 2 and 6, we can count i such that 1 ≤ i < n and |π i-1 | > -π i > 0. The statistic we eventually obtain can be rearranged as follows:

|π i-1 | > |π i | > |π i+1 |.
pat(π) = #{ (i, j) : 1 ≤ i < j ≤ n, and |π i | > |π j | > |π i+1 |} + #{ (i, j) : 1 ≤ i, j ≤ n, and |π i | > -π j ≥ |π i+1 |}.
This is a "pattern" statistic that is somewhat similar to the 31-2 statistic of the unsigned case (and indeed, identical if π has only positive entries). Eventually, our first variant of the Françon-Viennot bijection gives the following. Proposition 7.1. With hasc(π) defined as in [START_REF] Josuat-Vergès | Crossings, Motzkin paths, and moments[END_REF], we have:

(20)
B n (y, t, q) = π∈Bn y hasc(π) t neg(π) q pat(π) .

Note that in the case t = 0, we recover the known result [START_REF] Steingrímsson | Permutation tableaux and permutation patterns[END_REF]:

n k=1 y k E n,k (q) = σ∈Sn y asc(σ)+1 q 31-2(σ) (21) 
where asc(σ

) = n -1 -des(σ) = #{i : 1 ≤ i ≤ n -1 and σ i < σ i+1 }.
7.1.2. The Foata-Zeilberger bijection, first variant. In case of unsigned permutations, this bijection follows the number of weak excedances and crossings, see the bijection Ψ F Z in [START_REF] Corteel | Crossings and alignments of permutations[END_REF]. To extend it, we use a representation of a signed permutation as an arrow diagram (this is equivalent to the pignose diagrams used earlier: if σ ∈ S n , we put n dots in a row, and draw an arrow from i to σ(i) which is above the axis if i ≤ σ(i) and below otherwise, see [START_REF] Corteel | Crossings and alignments of permutations[END_REF]). The idea is to draw the arrow diagram of |π| and label an arrow from i to |π(i)| by + ordepending on the sign of π(i), see Figure 16.

+ - + - + 1 2 3 4 5 1 2 3 4 5 (1, y 2 ) (ytq 3 , ytq) 1 y 2 q 1 Figure 16.
The first variant of the Foata-Zeilberger bijection, with π = 3, -4, -

The crossings can be read in this representation as follows. The proof can be done by distinguishing all the possible cases for the signs of i and j for each type of crossing (i, j). We omit details. Proposition 7.2. Each crossing (i, j) in the signed permutation π corresponds to one of the six configurations in Figure 17, where ± means that the label of the arrow can be either + or -, and the dots indicate that there might be an equality of the endpoint of an arrow and the startpoint of the other arrow. For example, let us consider the signed permutation in Figure 16. The dots 1,2,3 (respectively, 1,2,5 and 1,2,3,5) correspond to a crossing as in the first (respectively, second and fourth) configuration of Figure 17. The dots 2,4 are also a crossing as in (the limit case of) the first configuration, and eventually the dots 2,4,5 are a crossing as in (the limit case of) the fifth configuration. So the signed permutation 3, -4, -2, 5, 1 has 5 crossings.

Once we have this new description of the crossings, it is possible to encode the arrow diagram as in Figure 16 by elements in M n . Actually it will be more convenient to see these paths in a slightly different way: each step ր (with weight a) faces a step ց (weight b), but now we think as if the step ց have weight 1 and the facing step ր has weight (a, b). But we still consider the steps → of types 3, 4, 5, 6 as before. Now, the path is obtained from the signed permutation by "scanning" the arrow diagram from right to left, so that after scanning i nodes in the diagram we have built a Motzkin suffix of length i. Suppose that there are h unconnected strands after scanning these i nodes, and accordingly the Motzkin suffix starts at height h. When scanning the following node, we have several possibilities:

• If the ith node is then we add a step ց (with weight 1) to the Motzkin suffix,

• If the ith node is + or + , then we add a step → (type 3) with weight y 2 q i where i counts the number of crossings as in the 5th configuration that appear when adding this ith node to the ones at its right.

• If the ith node is then we add a step → (type 4) with weight yt to the Motzkin suffix, and if it is then we add a step → (type 4) with weight ytq h+i , where i counts the number of crossings as in 3rd configuration that appear when adding this ith node to the ones to its right. Note that h is the number of crossings as in 2nd configuration that appear.

• If the ith node is + , then we add a step step → (type 5) with weight q i where i counts the number of crossings as in the 6th configuration that appear.

• If the ith node is -, then we add a step → (type 6) with weight ytq h+i where i counts the number of crossings as in the 4th configuration that appear. Note that h is the number of crossings as in 1st configuration that appear.

• If the ith node is , then we add a step ր with a weight (a, b) where a and b are as follows (this is similar to the previous cases but here we need to encode information about both the ingoing and outgoing arrow). The possibilities for a are q 0 , . . . , q h-1 , or ytq h , . . . , ytq 2h-1 , such that there is a factor 1 (resp. yt) if the label of the ingoing arrow is + (resp. -), and q counts the crossings of the 6th (resp. 1st and 4th) configuration. The possibilities for b are y 2 q 0 , . . . , y 2 q h-1 , or ytq h-1 , . . . , ytq 2h-2 , such that there is a factor y 2 (resp. yt) if the label of the outgoing arrow is + (resp.

-), and q counts the crossings of the 5th (resp. 2nd and 3rd) configuration.

See Figure 16 for an example. Let i < j, if there is an arrow from i to j with a label + then the ith step gets a weight y 2 , and if there is an arrow from i to j or from j to i with a label -, then the ith step gets a weight yt. It follows that the parameters y and t correspond to fwex(π) and neg(π) in signed permutations. By the design of the bijection, the parameter q corresponds to cr(π). Hence we recover (5). 7.2. Suffixes of weighted Motzkin paths. We can see a signed permutation as a permutation on [±n] or on [2n] with a symmetry property. Then, applying the bijections of the unsigned case gives some weighted Motzkin paths with a vertical symmetry. It is natural to keep only the second half a vertically-symmetric path, and obtain suffixes of Motzkin paths. Definition 3. Let N n be the set of weighted Motzkin suffixes with weights:

• y 2 q i with 0 ≤ i ≤ h, for a step ր at height h to h + 1,

• either y 2 q i with 0 ≤ i ≤ h, or q i with 0 ≤ i ≤ h -1, for a step → at height h, • q i with 0 ≤ i ≤ h, for a step ց at height h + 1 to h.

For any p ∈ N n , let sh(p) be its initial height, and let w(p) be its total weight, i.e. the product of the weight of each step.

Then B n (y, t, q) is the generating function p∈Nn (yt) sh(p) w(p). This is a consequence of Proposition 6.3, the only difference is that instead of a step ր with weight y 2 [h+1] q , we consider h+1 different kind of steps with weight y 2 q 0 , . . . , y 2 q h (and similarly for the other steps). 7.2.1. The Françon-Viennot bijection, second variant. This second variant is a bijection between N n and B n , and it gives a combinatorial model of B n (y, t, q) involving the flag descents, and different from the previous ones. The second bijection is done using the diagram of a signed permutation π ∈ B n as in Figure 18. More precisely, we have a 2n × 2n array, lines and columns are numbered with integers in [±n] in increasing order, and there is a dot at each cell of coordinates (i, π(i))

for i ∈ [±n].
Definition 4. For a signed permutation π, let fneg(π) be the number of positive integers followed by a negative integer in the sequence π(-n), . . . , π(-1), π(1), . . . , π(n). Note that fneg(π) = 0 if and only if π is actually an unsigned permutation. Let The bijection is defined as follows. We take here the convention that π -n-1 = -n -1 and

π n+1 = n + 1. Let j ∈ [n], let i ∈ [±n] such that π i = j, then: • if π i-1 < π i < π i+1 or π i-1 > π i > π i+1 , the jth step is → (i = 2 in the example), • if π i-1 > π i < π i+1 , the jth step is ր (i = 1 in the example), • if π i-1 < π i > π i+1 , the jth step is ց (i = 3, 4, 5 in the example).
And the weight of the ith step is y 2 q 31-2(π,i+n) if π i > π i+1 , q 31-2(π,i+n) otherwise.

The properties of the Françon-Viennot bijection from [START_REF] Corteel | Crossings and alignments of permutations[END_REF] show that, denoting p the image of π under this bijection, we have:

(yt) sh(p) w(p) = y 2n-fdes(π) t fneg(π) q 31-2 + (π) .

Let us denote fasc(π) = 2n -1fdes(π), which can be interpreted as an ascent statistic. Indeed, in the sequence -π n , . . . , -π 1 , π 1 , . . . , π n , fdes(π) (resp. fasc(π)) is the number of integers followed by a smaller (resp. greater) integer. So the bijection proves:

Proposition 7.3. For n ≥ 1, (22) 
B n (y, t, q) = π∈Bn y fasc(π)+1 t fneg(π) q 31-2 + (π) .

Note that once again, we recover (21) in the case t = 0. 7.2.2. The Foata-Zeilberger bijection, second variant. Let π ∈ B n , we use here the arrow diagram as in Figure 19 where the dots are labeled by -n, . . . , -1, 1, . . . , n and there is an arrow from i to π(i) above the axis if i ≤ π(i) and below otherwise (this is equivalent to the full pignose diagram used in Section 5 where each pignose collapses to a single dot). The path p ∈ N n is as follows. If at the ith node in the diagram (where 1 ≤ i ≤ n), there is an arrow arriving from the left and an arrow going to the left, then the ith step is ց. If there is an arrow going to the right and arriving from the right, then it is a step ր. In all other cases it is a step →. Then, for each arrow going from i to j with 0 < i < j, we give a weight y 2 to the ith step in the path; for each crossing i < j ≤ π(i) < π(j) with j > 0 we give a weight q to the jth step; and for each crossing i > j > π(i) > π(j) with j > 0 we give a weight q to the jth step. See Figure 19 for example.

So, ( 23) is a simpler formula, but [START_REF] Postnikov | Total positivity, Grassmannians, and networks[END_REF] is the one which is conveniently proved, using results from [START_REF] Josuat-Vergès | Touchard-Riordan formulas, T-fractions, and Jacobi's triple product identity[END_REF]. The theorem follows from the two lemmas below (and a third lemma is needed to prove the second lemma). The first lemma was essentially present in [START_REF] Josuat-Vergès | Crossings, Motzkin paths, and moments[END_REF]. Lemma 8.2. Suppose that two sequences (b n ) n≥0 and (c n ) n≥0 are such that:

(25) n≥0 b n z n = 1 1 -γ 0 z - λ 1 z 2 1 -γ 1 z - λ 2 z 2 1 -γ 2 z - • • • and n≥0 c n z n = 1 (1 + z)(1 + y 2 z) -γ 0 z - λ 1 z 2 (1 + z)(1 + y 2 z) -γ 1 z - λ 2 z 2 (1 + z)(1 + y 2 z) -γ 2 z - • • • . (26) 
Then we have:

b n = n k=0   n-k j=0 y 2j n j n j+k -n j-1 n j+k+1   c k .
Proof. Let f (z) and g(z) respectively denote the generating functions of (b n ) n≥0 and (c n ) n≥0 as in Equations ( 25) and [START_REF] Shin | The symmetric and unimodal expansion of Eulerian polynomials via continued fractions[END_REF]. Divide by (1+z)(1+y 2 z) the numerator and denominator of each fraction in [START_REF] Shin | The symmetric and unimodal expansion of Eulerian polynomials via continued fractions[END_REF], this gives an equivalence of continued fractions so that:

zg(z) = z (1+z)(1+y 2 z) f z (1+z)(1+y 2 z) . It follows that (27) zf (z) = C(z)g(C(z))
where C(z) is the compositional inverse of z (1+z)(1+y 2 z) . It remains to show that ( 28)

C(z) k+1 = n≥0   n-k j=0 y 2j n j n j+k -n j-1 n j+k+1   z n+1 .
Indeed, the lemma follows from taking the coefficient of z n+1 in both sides of [START_REF] Stanley | Enumerative Combinatorics[END_REF] and using [START_REF] Steingrímsson | Permutation tableaux and permutation patterns[END_REF] to simplify the right-hand side. Showing (28) can be conveniently done using Lagrange inversion. For example, with [5, p.148, Theorem A], we obtain

[z n+1 ]C(z) k+1 = k + 1 n + 1 [z n-k ] (1 + z)(1 + y 2 z) n+1 = k + 1 n + 1 n-k j=0 y 2j n + 1 j n + 1 n -k -j ,
and it is straightforward to check that

k+1 n+1 n+1 j n+1 n-k-j = n j n j+k -n j-1 n j+k+1 . This completes the proof. hence it is equal to (34) 1 1 -yz + d 1 z 1-yz - d 1 d 2 z 1-yz 2 1 -yz + (d 2 + d 3 ) z 1-yz - d 3 d 4 z 1-yz 2 1 -yz + (d 4 + d 5 ) z 1-yz - • • • .
This can be shown to be equal to the right-hand side of (33), using the combinatorics of weighted Schröder paths. A Schröder path (of length 2n) is a path from (0, 0) to (2n, 0) in N 2 with steps (1, 1), (1, -1) and (2, 0), respectively denoted by ր, ց, -→. We set that each step -→ has a weight y, each step ր from height h -1 to h has weight -d h . Then by standard methods, the weighted generating function of all Schröder paths is the continued fraction in the right-hand side of (33). By counting differently, we can obtain (34). The idea is to split each Schröder path into some subpaths, by putting a splitting point each time the path arrives at even height. This way, we can see a Schröder path as an ordered sequence of: The rules according to which these subsequences can be put together are conveniently encoded in a continued fraction so that we obtain exactly (34). More precisely, let F h be the generating function of Schröder paths from height 2h to 2h and staying at height ≥ 2h -1. Note that when h = 0, we recover the generating function of Schröder paths, because d 0 = 0 implies that the paths reaching height -1 have weight 0. We have: Let us examine the case q = 0 in the formula [START_REF] De Médicis | Moments des q-polynômes de Laguerre et la bijection de Foata-Zeilberger[END_REF]. We obtain: The alternating sum of binomial coefficients is itself a binomial coefficient, and we obtain:

B n (y, 1, 0) = 2n i=1 y i n ⌊i/2⌋ n -1 ⌈i/2⌉ -1 .
We thus obtain, as mentioned in Theorem 2.1, that the value at q = 0 of the q-Eulerian numbers of type B are the Narayana numbers of type B: 

E B n,k ( 

Open problems

We conclude this paper by a few open problems.

Problem 1. Since the introduction of permutation tableaux in [START_REF] Williams | Enumeration of totally positive Grassmann cells[END_REF][START_REF] Steingrímsson | Permutation tableaux and permutation patterns[END_REF], several variants have been defined [START_REF] Aval | Dyck tableaux[END_REF][START_REF] Aval | Tree-like tableaux[END_REF][START_REF] Viennot | Alternative tableaux and partially asymmetric exclusion process[END_REF]. A nice feature of these variants is that the permutation statistics arise naturally, from a recursive construction of the tableaux via an insertion algorithm [START_REF] Aval | Tree-like tableaux[END_REF] . The type B version of these tableaux can be defined with the condition of being conjugate-symmetric. A natural question is to check whether the insertion algorithm can be used to recover some of our results.

Problem 2. One key feature of our new q-Eulerian polynomials of type B is their symmetry, i.e. we have B * n,k (t, q) = B * n,2n+1-k (t, q). We prove this symmetry using the pignose diagram of a signed permutation. It would be interesting to show this symmetry using the permutation tableaux of type B. Problem 3. We have defined alignments in Section 5 and showed that for a signed permutation π with fwex(π) = k, we have 2 cr(π) + al(π) = n 2 -2n + k. A similar identity exists for the type A, see Proposition 5.1, and can be shown on permutations or directly on permutation tableaux. It would be elegant to show our identity directly on the permutation tableaux of type B. Problem 4. A notion that is closely related to alignments and in some sense dual to the crossing, is the one of nesting [START_REF] Corteel | Crossings and alignments of permutations[END_REF]. When we introduce a parameter p counting the number of crossings in permutations, there are continued fractions containing p, q-integers rather than the q-integers, see [START_REF] Corteel | Crossings and alignments of permutations[END_REF][START_REF] Shin | The symmetric and unimodal expansion of Eulerian polynomials via continued fractions[END_REF]. A definition of nestings in signed permutations have been given by Hamdi [START_REF] Hamdi | Symmetric Distribution of Crossings and Nestings in Permutations of Type B[END_REF]. It would be interesting to check if our results can be generalized to take into account these nestings.

Problem 5. In the last section, we have obtained a formula for B n (y, 1, q). We can ask if there is a more general formula for B n (y, t, q), but it seems that the present methods do not generalize in this case. Problem 6. Recently Kim and Stanton [START_REF] Kim | Moments of Askey Wilson polynomials[END_REF] gave a combinatorial proof of the formula (3) for B n (y, 0, q), which is a generating function for type A permutation tableaux. It is worth asking whether this combinatorial approach can be generalized for B n (y, 1, q) and possibly B n (y, t, q).
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 11 #{π ∈ B n : des B (π) = k} = #{π ∈ B n : ⌊fwex(π)/2⌋ = k}.
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 81 Figure 1. The diagram of the ordered matching {(1, 5), (4, 2), (8, 3), (6, 7)}.

Figure 2 .

 2 Figure 2. The pignose diagram of π = (4, -6, 1, -5, -3, 7, 2).

Proposition 4 . 2 .

 42 An ordered matching M on [2n] is a pignose matching if and only if in the representation of M each odd integer has a half arc of type or , and each even integer has a half arc of type or . The following lemma was first observed by de Médicis and Viennot [23, Lemme 3.1 Cas b.4]. For reader's convenience we include a proof as well.

Lemma 4 . 3 .

 43 For π ∈ S n and an integer

Figure 3 .

 3 Figure 3. In the pignose diagram of π ∈ S n if we draw a vertical line dividing the kth pignose in the middle, then the number of upper arcs intersecting with this line is equal to the number of lower arcs intersecting with this line plus 1.

Figure 4 . 4 . 2 .

 442 Figure 4. If M = {(1, 5), (4, 2), (8, 3), (6, 7)} (on the left), then M ′ = {(9, 5), (4, 2), (8, 3), (6, 7)} and ρ(M ) = st(M ′ ) = {(8, 4), (3, 1), (7, 2), (5, 6)} (on the right).

Lemma 4 . 5 .

 45 Let M be a pignose matching on [2n]. Then ρ (k) (M ) has the same number of crossings as M for all positive integers k.

Lemma 4 . 6 .

 46 Let M be a pignose matching on [2n]. Then N = (ρ (2k+1) (M )) r is also a pignose matching and cr(M ) = cr(N ).

1 ⇒ 1 Figure 6 .Figure 7 .

 1167 Figure 6. The map π → π -simply changes the upper arc adjacent to 1 to a spiral arc.

Proposition 5 . 1 .

 51 If σ ∈ S n has k weak excedances, then cr(σ) + al(σ) = (k -1)(nk).

Proof.

  Since wex(π) = k, we have k upper arcs and nk lower arcs in the pignose diagram of π.

or for A 1 or for A 2 or for A 3 Figure 10 .

 12310 Figure 10. The relative locations of a pair of arcs in A 1 , A 2 and A 3 .

Figure 13 .

 13 Figure 13. The full pignose diagram of π = [4, -6, 1, -5, -3, 7, 2].

Figure 14 .

 14 Figure 14. The number of upper and lower arcs crossing a vertical line dividing a pignose in a full pignose diagram.

n i=1 31 - 2 Figure 15 .

 31215 Figure 15. The first variant of the Françon-Viennot bijection, with the signed permutation π = 3, -5, -2, 4, 1.

  So, apart a factor q on each step of type 2 and 6, we obtain the statistic 31-2(|π|) + 1≤i≤n πi<0 31-2(|π|, i) + 2-31(|π|, i) .

Figure 17 .

 17 Figure 17. The list of configurations characterizing a crossing in the arrow diagram of a signed permutation.

31- 2 +y 2 q 2 y 2 q q 1 Figure 18 .

 2118 Figure 18. The second variant of the Françon-Viennot bijection, with π = 3, -5, -2, 4, 1.
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  A subsequence ր-→ . . . -→ց starting at height 2h whose generating function is -d 2h+1 z 1-yz . • A subsequence ց-→ . . . -→ր starting at height 2h whose generating function is -d 2h z 1-yz . • A subsequence ր-→ . . . -→ր starting at height 2h whose generating function is d 2h+1 d 2h+2 z 1-yz . • A subsequence ց-→ . . . -→ց starting at height 2h whose generating function is z 1-yz . • A step -→ at height 2h whose generating function is yz.

1 -

 1 yz + (d 2h + d 2h+1 ) z 1+yzd 2h+1 d 2h+2 ( z 1-yz ) 2 F h+1.Indeed, we can see a Schröder paths from height 2h to 2h and staying at height ≥ 2h -1 as an ordered sequence of:• steps -→ at height 2h whose generating function is yz,• subsequences ր-→ . . . -→ց starting at height 2h whose generating function is -d 2h+1 z 1-yz , • subsequences ց-→ . . . -→ր starting at height 2h whose generating function is -d 2h z 1-yz , • subsequences ր-→ . . . -→ր P ց-→ . . . -→ց where P is a path from height 2h+2 to 2h+2 staying above height 2h+1 whose generating function is d 2h+1 d 2h+2 ( z 1-yz ) 2 F h+1 . Hence we obtain (35). Using (35) for successive values of h, we obtain that F 0 is the continued fraction in (34). This completes the proof.

Remark 1 .

 1 0) = [y 2k ]B n (y, 1, 0) + [y 2k+1 ]B n (y, 1One can prove the identity E B n,k (0) = n k 2 bijectively as follows. Considering π ∈ B n as a permutation on [±n] = {±1, ±2, . . . , ±n}, define f (π) to be the partition of [±n] obtained by making cycles of π into blocks. It is not difficult to show that the map f is a bijection from the set of π ∈ B n with cr(π) = 0 to the set of type B noncrossing partitions of [±n] such that if ⌊fwex(π)/2⌋ = k then f (π) has 2k nonzero blocks. It is well known that n k 2 is the number of type B noncrossing partitions of [±n] with 2k nonzero blocks, see [25].
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The number of arrows that join a positive integer to a negative one is neg(π). From the construction, this is also the initial height of the path we have built. So giving a weight (yt) sh(p) to the path p ensures that y and t respectively follow fwex(π) and neg(π). Also from the definition of the bijection, q counts the number of crossings. Hence we recover [START_REF] Comtet | Advanced combinatorics[END_REF]. We do not give more details since this bijection does not give new statistics on signed permutations. 8. Formula for B n (y, 1, q)

In this section, we prove a formula for B n (y, 1, q). The formula itself is somewhat similar to the one for B n (y, 0, q) in Equation [START_REF] Aval | Tree-like tableaux[END_REF]. The result for B n (y, 0, q) was proved in [START_REF] Josuat-Vergès | Rook placements in Young diagrams and permutation enumeration[END_REF], but the present proof for B n (y, 1, q) is different.

Or, equivalently:

We can obtain ( 23) from ( 24) by simplifying a summation as follows. Let

, then the right-hand side of ( 24) is

.

Here we have introduced the new index m = 2i + kj, and the condition kj ≥ 0 gives the condition m ≥ 2i, i.e. i ≤ ⌊m/2⌋. But the i-sum in the latter formula is actually telescopic and only the term n i n m+j-i with i = ⌊m/2⌋ remains. Using the fact that m -⌊m/2⌋ = ⌈m/2⌉, we obtain [START_REF] De Médicis | Moments des q-polynômes de Laguerre et la bijection de Foata-Zeilberger[END_REF].

We can apply this lemma with b n = (1q) n B n (y, 1, q). The continued fraction expansion of b n z n is immediately obtained from the one of B n (y, t, q)z n obtained in Theorem 6.1. More precisely, it is exactly Equation ( 25) with the values

The theorem is now a consequence of another lemma which gives the value of c k . Lemma 8.3. With γ h and λ h as in (29), we have:

Proof. After multiplying by 1yz, this is equivalent to

A continued fraction expansion of the right-hand side is obtained in the work of the second and third authors [START_REF] Josuat-Vergès | Touchard-Riordan formulas, T-fractions, and Jacobi's triple product identity[END_REF]. More precisely, the substitution (z, y, q) → (-yz, yq

where d 2h+1 = (1 + yq h+1 )(y + q h ) and d 2h = y(1q h ) 2 . It is immediate to check the relations

(with the convention d 0 = 0). It remains to identify the left-hand side of [START_REF] Viennot | Alternative tableaux and partially asymmetric exclusion process[END_REF] with the right-hand side of [START_REF] Williams | Enumeration of totally positive Grassmann cells[END_REF]. The end of the proof follows from the lemma below. Lemma 8.4. Let (γ h ) h≥0 , (λ h ) h≥1 and (d h ) h≥0 be three sequences satisfying (32) with d 0 = 0. Then we have:

Proof. In the left-hand side, divide the numerator and denominator of each fraction by 1yz. Using that