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Abstract. In this paper we want to study combinatorics of the type B per-
mutations and in particular the join statistics crossings, excedances and the
number of negative entries. We generalize most of the results known for type
A (i.e. zero negative entries) and use a mix of enumerative, algebraic and
bijective techniques. This work has been motivated by permutation tableaux
of type B introduced by Lam and Williams, and natural statistics that can
be read on these tableaux. We mostly use (pignose) diagrams and labelled
Motzkin paths for the combinatorial interpretations of our results.

1. Introduction

Crossings of permutations are a combinatorial statistic with interesting enumer-
ative properties. They appeared in connection with total positivity in Grassman-
nians (following Postnikov [24] and Williams [31]), and stationary probabilities in
a partially asymmetric exclusion process (PASEP) model (following Corteel and
Williams [10]), and some tableaux called permutation tableaux [31]. In particular
they gave rise to an interesting q-analog of Eulerian numbers [31]. The purpose
of this article is to study the type B analogue, jointly with some excedance sta-
tistics on signed permutations, and more generally flag excedances. This work is
motivated by permutation tableaux of type B introduced by Lam and Williams
[21], and natural statistics that can be read on these tableaux [7]. We thus obtain
q-Eulerian numbers of type B, or more generally flag q-Eulerian numbers of type
B, and investigate their combinatorial properties.

We show that many previous results can be generalized to this type B case.
Firstly, we have a natural symmetry property of the q-Eulerian numbers. Whereas
there was a rather natural proof in the case of (unsigned) permutations, the proof
is much more involved here. We also make a link with another statistic, alignments
of permutations. Then, we make use of a method called Matrix Ansatz, as in
previous work on (unsigned) permutations and originally related with the PASEP.
This has several consequences, in particular we relate our q-Eulerian numbers with
combinatorics of weighted Motzkin paths (in the style of Flajolet [12] and Françon
and Viennot [15]) and give several bijections with signed permutations, that give
other combinatorial interpretations of our q-Eulerian numbers.

The definitions and results are presented in the next section. The next one is
quite short and gives a summary of the statistics on signed permutations. Sec-
tion 4 is the main section and introduces the q-Eulerian numbers of type B and the
symmetry property. Section 5 deals with some specific statistics, namely crossings
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and alignments. Section 6 is on the Matrix Ansatz and different solutions of this
Ansatz. Section 7 is a continuation of Section 6 and links our q-Eulerian numbers
of type B to the combinatorics or labelled Motzkin paths and suffixes. Section 8
gives an enumerative formula for the q-Eulerian numbers of type B. Most of the
times these sections are generalizations of the type A results, but this is not the
case for the Section 8, as we could not take into account the number of negative
entries. We then conclude by six open problems.

2. Definitions and results

Let Sn denote the set of permutations on [n] = {1, 2, . . . , n}. We will sometimes
write a permutation π = π1π2 · · ·πn as a sequence π = (π1, π2, . . . , πn). For a
permutation π = π1π2 · · ·πn ∈ Sn, a descent of π is an integer i ∈ [n − 1] such
that πi > πi+1. A weak excedance of π is an integer i ∈ [n] such that πi ≥ i. We
denote by des(π) and wex(π) the number of descents of π and the number of weak
excedances of π respectively. For positive integers n and k, the (type A) Eulerian
number En,k is the number of π ∈ Sn with des(π) = k − 1. It is well known that
En,k is also equal to the number of π ∈ Sn with wex(π) = k.

A crossing of a permutation π = π1 · · ·πn is a pair (i, j) with i, j > 0 such that
i < j ≤ πi < πj or i > j > πi > πj . We denote by cr(π) the number of crossings of
π.

The q-Eulerian number En,k(q) is defined as follows:

(1) En,k(q) =
∑

π∈Sn

wex(π)=k

qcr(π).

Williams [31] showed that En,k(−1) =
(
n−1
k−1

)
and En,k(0) = 1

n

(
n
k

)(
n

k−1

)
(the

Narayana number) and the following symmetry:

(2) En,k(q) = En,n+1−k(q).

We note that Williams [31] first introduced the notion of crossing and alignment
of a permutation in the study of totally positive Grassmanian cells. In fact, in
[31], Williams defines En,k(q) using alignments. Corteel [6] showed that there is
a simple relation between the number of crossings and the number of alignments,
which gives the equivalent definition (1).

Let

An(y, q) =
∑

π∈Sn

ywex(π)qcr(π) =

n∑

k=0

ykEn,k(q).

Then An(y, q) has many interesting meanings related to q-Laguerre polynomials,
permutations, permutation tableaux, weighted Motzkin paths, and Matrix Ansatz,
see [8]. Josuat-Vergès [17] (see also [8]) showed that

(3) An(y, q) =

n−k∑

j=0

yj
((

n
j

)(
n

j+k

)
−
(

n
j−1

)(
n

j+k+1

))
k∑

i=0

(−1)kyiqi(k+1−i).

In this paper we prove analogous results for signed permutations and type B
Eulerian numbers. In general, some permutations statistics are related with the
structure of Coxeter group or Weyl group (such as descents and inversions, see [4])
so that it is natural to examine if some particular permutation statistics can be
generalized to other groups. Lam and Williams [21], in their work on the totally
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positive Grassmanian cells, defined analogues of permutation tableaux for other
groups. The type B case was studied in [9, 7]. In particular, the crossings of signed
permutations were defined in [7]. In this article, we show how this definition give
nice q-Eulerian numbers of type B, which are a type B analogue of the En,k(q)
mentioned above.

A signed permutation of [n] is a sequence π = π1π2 · · ·πn = (π1, π2, . . . , πn) of
integers such that (|π1|, |π2|, . . . , |πn|) is a permutation of [n] and πi ∈ [±n] :=
{1, 2, . . . , n,−1,−2, . . . ,−n} for all i ∈ [n]. We denote by Bn the set of signed
permutations of [n].

A type B descent of π = π1 · · ·πn ∈ Bn is an integer 0 ≤ i ≤ n − 1 satisfying
πi > πi+1, where π0 = 0. We denote by desB(π) the number of type B descents
of π. Let fwex(π) = 2wex(π) + neg(π), where wex(π) = #{i ∈ [n] : πi ≥ i} and
neg(π) is the number of negative integers in π.

A crossing of a signed permutation π = π1 · · ·πn is a pair (i, j) of positive integers
such that

• i < j ≤ πi < πj or
• −i < j ≤ −πi < πj or
• i > j > πi > πj .

We denote by cr(π) the number of crossings of π. The notion of crossing of signed
permutations was first considered in [7].

Now let k and n be integers with 0 ≤ k ≤ n. The type B Eulerian number EB
n,k

is the number of π ∈ Bn with desB(π) = k, see [4]. In Section 3 we show that EB
n,k

is also equal to the number of π ∈ Bn with ⌊fwex(π)/2⌋ = k. For 0 ≤ k ≤ n, we
define the type B q-Eulerian number EB

n,k(q) as follows:

EB
n,k(q) =

∑

π∈Bn

⌊fwex(π)/2⌋=k

qcr(π).

Theorem 2.1. For any 0 ≤ k ≤ n, we have EB
n,k(−1) =

(
n
k

)
, EB

n,k(0) =
(
n
k

)2
(the

Narayana numbers of type B), En,k(1) is the type B Eulerian number, and

(4) EB
n,k(q) = EB

n,n−k(q).

In Section 5 we consider crossings and alignments of signed permutations and
show a simple relation between their numbers, which is an analogous result of
Corteel [6].

Let

(5) Bn(y, t, q) =
∑

π∈Bn

yfwex(π)tneg(π)qcr(π), Bn,k(t, q) =
∑

π∈Bn

fwex(π)=k

tneg(π)qcr(π).

For example, B0(y, t, q) = 1, B1(y, t, q) = y2 + yt, and B2(y, t, q) = y4 +
(2t + tq)y3 + (t2q + t2 + 1)y2 + ty. When t = 0, we have Bn(y, 0, q) = An(y, q),
Bn,2k+1(0, q) = 0, and Bn,2k(0, q) = En,k(q). Note also that

(6) EB
n,k(q) = Bn,2k(1, q) +Bn,2k+1(1, q).

Corteel et al. [7] showed that Bn(1, t, q) is a generating function for type B
permutation tableaux. These tableaux were introduced by Lam and Williams [21].
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Their proof works for Bn(y, t, q) and we have

Bn(y, t, q) =
∑

T∈PT B(n)

y2 row(T )+diag(T )tdiag(T )qso(T ),

where row(T ) is the number of rows, diag(T ) is the number of ones in the diagonal,
and so(T ) is the number of superfluous ones, see [7] for the details. Using permu-
tation tableaux Corteel et al. [7] showed the following theorem. Again, they only
considered Bn(1, t, q), but their proof works for Bn(y, t, q).

Theorem 2.2. (Matrix Ansatz [7, Proposition 2]) Let D and E be matrices, 〈W |
a row vector, and |V 〉 a column vector, such that:

DE = qED +D + E, D|V 〉 = |V 〉, 〈W |E = yt〈W |D.(7)

Then we have:

Bn(y, t, q) = 〈W |(y2D + E)n|V 〉.

This can be seen as an abstract rule to compute Bn(y, t, q), but it is also useful
to have explicitly D, E, 〈W | and |V 〉 satisfying the relations (i.e. solutions of the
Matrix Ansatz), see [7]. We will give two such solutions in Section 6.

This Matrix Ansatz and its solutions have several consequences. Firstly, we
will show (see Theorem 6.2) a simple recursion for the quantity Bn(y, q) involving
q-derivatives. Secondly, we will show (see Theorem 6.1) that the generating func-
tion

∑
Bn(y, t, q)z

n has a nice continued fraction expansion. This is the kind of
continued fraction (called J-fraction) that are related with moments of orthogonal
polynomials [29].

We will show in Section 7 that the two kinds of paths are in bijection with
signed permutations, using variants of classical bijections of Françon and Viennot
[15], Foata and Zeilberger [14]. We obtain two other interpretations of Bn(y, t, q)
where y follows a descent statistic and q a pattern statistic. Once again, this is a
type B analog of results on permutation tableaux and permutations [11, 28].

At last but not least, we will give (see Theorem 8.1) an exact formula for
Bn(y, 1, q). It is the analogue of the formula for Bn(y, 0, q) in (3), and is obtained
from the continued fraction. This will be given in Section 8, and the proof uses
techniques developed in [18].

3. Statistics of signed permutations

Let π = π1 · · ·πn ∈ Bn. There are various statistics on signed permutations
[1, 4, 13]:

wex(π) = #{i ∈ [n] : πi ≥ i},

exc(π) = #{i ∈ [n] : πi > i},

des(π) = #{i ∈ [n− 1] : πi > πi+1},

desB(π) = #{i ∈ [n− 1] ∪ {0} : πi > πi+1}, where π0 = 0,

neg(π) = #{i ∈ [n] : πi < 0},

fwex(π) = 2wex(π) + neg(π),

fexc(π) = 2 exc(π) + neg(π),

fdes(π) = des(π) + desB(π).
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It is well known [27, 1.4.3 Proposition] that

#{π ∈ Sn : wex(π) = k} = #{π ∈ Sn : des(π) = k − 1}(8)

= #{π ∈ Sn : exc(π) = k − 1}.(9)

We will find a similar relation between fwex, fexc, and fdes. We need the following
result of Foata and Han.

Lemma 3.1. [13, Section 9] There is a bijection ψ : Bn → Bn such that fexc(π) =
fdes(ψ(π)).

For π = π1 · · ·πn ∈ Bn, we define −π ∈ Bn by (−π)i = −(πi). We also define
πt ∈ Bn to be the signed permutation such that πt

i = ǫ · j if and only πj = ǫ · i for
ǫ ∈ {1,−1} and i, j ∈ [n]. In other words, ifM(π) is the signed permutation matrix
of π, then M(−π) = −M(π) and M(πt) = M(π)t. Here, the signed permutation
matrix M(π) is the n × n matrix whose (i, j)-entry is 1 if πi = j, −1 if πi = −j,
and 0 otherwise. The following lemma is easy to prove.

Lemma 3.2. For π ∈ Bn, we have

fdes(π) + fdes(−π) = 2n− 1, fwex(π) + fexc(πt) = 2n.

The following is a type B analog of (8).

Proposition 3.3. We have

#{π ∈ Bn : fwex(π) = k} = #{π ∈ Bn : fdes(π) = k − 1}

= #{π ∈ Bn : fexc(π) = k − 1},
(10)

and

(11) #{π ∈ Bn : desB(π) = k} = #{π ∈ Bn : ⌊fwex(π)/2⌋ = k}.

Proof. By Lemmas 3.1 and 3.2, we have

#{π ∈ Bn : fwex(π) = k} = #{π ∈ Bn : fexc(π) = 2n− k}

= #{π ∈ Bn : fdes(π) = 2n− k}

= #{π ∈ Bn : fdes(π) = 2n− 1− (2n− k)}

= #{π ∈ Bn : fdes(π) = k − 1}

= #{π ∈ Bn : fexc(π) = k − 1}.

Equation (11) follows from Equation (10) and the fact that

desB(π) = ⌊(fdes(π) + 1)/2⌋ .

�

4. q-Eulerian numbers of type B and the symmetry property

The main purpose of this section is to prove (4), which is the symmetry EB
n,k(q) =

EB
n,n−k(q) of typeB Eulerian numbers. Observe that by (6) the identity Bn,k(1, q) =

Bn,2n+1−k(1, q) implies (4). However, for general t, we have

Bn,k(t, q) 6= Bn,2n+1−k(t, q).
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1 2 3 4 5 6 7 8

Figure 1. The diagram of the ordered matching {(1, 5), (4, 2), (8, 3), (6, 7)}.

For instance, B1,1(t, q) = t and B1,2(t, q) = 1. There is a way to fix this discrepancy.
Let

B∗
n,k(t, q) =

∑

π∈Bn

fwex(π)=k

tneg(π)+χ(π1>0)qcr(π),

where χ(π1 > 0) is 1 if π1 > 0 and 0 otherwise. We will prove the following
symmetry by a combinatorial argument:

Theorem 4.1. For 1 ≤ k ≤ 2n, we have

B∗
n,k(t, q) = B∗

n,2n+1−k(t, q).

In particular, when t = 1, we have Bn,k(1, q) = Bn,2n+1−k(1, q).

In order to prove Theorem 4.1 we introduce a diagram representing a signed
permutation.

4.1. Pignose diagrams. Given a set U of 2n distinct integers, an ordered match-
ing on U is a set of ordered pairs (i, j) of integers such that each integer in U
appears exactly once. For an ordered matching M on U containing 2n integers
a1 < a2 < · · · < a2n, we define the standardization st(M) of M to be the ordered
matching on [2n] obtained from M by replacing ai with i for each i ∈ [2n]. For
example, if M = {(2, 6), (5, 3), (9, 4), (7, 8)}, then st(M) is the ordered matching
{(1, 5), (4, 2), (8, 3), (6, 7)} on [8].

We represent an ordered matching M on U as follows. Arrange the integers in
U on a horizontal line in increasing order. For each pair (i, j) ∈ M , connect i and
j with an upper arc if i < j, and with a lower arc if i > j, see Figure 1.

A crossing of an ordered matching M is a set of two intersecting arcs, i.e.
(i1, j1), (i2, j2) satisfying i1 < i2 < j1 < j2 or j2 < j1 < i2 < i1. We denote
by cr(M) the number of crossings of M .

For π = π1 · · ·πn ∈ Bn, the pignose diagram of π is defined as follows. First
we arrange 2n vertices in a horizontal line where the (2i − 1)th vertex and the
2ith vertex are enclosed by an ellipse labeled with i which we call the ith pignose.
The left vertex and the right vertex in a pignose are called the first vertex and
the second vertex respectively. For each i ∈ [n], we connect the first vertex of the
ith pignose and the second vertex of the πith pignose with an arc in the following
way. If πi > 0, then draw an arc above the horizontal line if πi ≥ i and below the
horizontal line if πi < i. If πi < 0, then we draw an arc starting from the first vertex
of the ith pignose below the horizontal line to the second vertex of the πith pignose
above the horizontal line like a spiral oriented clockwise. We draw these spiral arcs
so that these are not crossing each other below the horizontal line. See Figure 2.
We note that essentially the notion of the pignose diagram for permutations was
first considered in [23].

For π ∈ Bn, one can easily check that
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1 2 3 4 5 6 7

Figure 2. The pignose diagram of π = (4,−6, 1,−5,−3, 7, 2).

• cr(π) is the number of unordered pairs of two arcs crossing each other in
the pignose diagram of π,

• fwex(π) is twice the number of upper arcs plus the number of spiral arcs,
or equivalently, the number of vertices with a half arc above the horizontal
line,

• neg(π) is the number of spiral arcs.

Since Sn is contained in Bn, the pignose diagram for π ∈ Sn is also defined. Note
that the pignose diagram of π ∈ Sn can be considered as an ordered matching on
[2n] by removing the ellipses enclosing two vertices and labeling the 2n vertices with
1, 2 . . . , 2n from left to right. We call an ordered matching that can be obtained
in this way a pignose matching. Not all ordered matchings are pignose matchings.
In order to determine whether a given ordered matching is a pignose matching we
need some definitions.

For an ordered matching M on [2n] and an integer i ∈ [2n] we say that

• i has a half arc of type b if i is the left vertex of an upper arc in the
diagram of M .

• i has a half arc of type b if i is the right vertex of a lower arc in the diagram
of M .

• i has a half arc of type b if i is the right vertex of an upper arc in the
diagram of M .

• i has a half arc of type b if i is the left vertex of a lower arc in the diagram
of M .

One can easily prove the following proposition.

Proposition 4.2. An ordered matching M on [2n] is a pignose matching if and
only if in the representation of M each odd integer has a half arc of type b or b ,
and each even integer has a half arc of type b or b .

The following lemma was first observed by de Médicis and Viennot [23, Lemme 3.1
Cas b.4]. For reader’s convenience we include a proof as well.

Lemma 4.3. For π ∈ Sn and an integer k ∈ [n], the number of integers i ∈ [n]
with i ≤ k ≤ πi is equal to the number of integers i ∈ [n] with πi < k < i plus 1.
See Figure 3 for the pictorial meaning.

Proof. Consider the pignose diagram of π with a vertical line dividing the pignose
of k in the middle. Let x (resp. y) be the number of lower (resp. upper) arcs
intersecting with the vertical line. Let a, b, c, d be, respectively, the number of half
arcs to the left of the vertical line of types b , b , b and b .
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} x+ 1

} x

Figure 3. In the pignose diagram of π ∈ Sn if we draw a vertical
line dividing the kth pignose in the middle, then the number of
upper arcs intersecting with this line is equal to the number of
lower arcs intersecting with this line plus 1.

1 2 3 4 5 6 7 8
ρ

−→
1 2 3 4 5 6 7 8

Figure 4. If M = {(1, 5), (4, 2), (8, 3), (6, 7)} (on the left),
then M ′ = {(9, 5), (4, 2), (8, 3), (6, 7)} and ρ(M) = st(M ′) =
{(8, 4), (3, 1), (7, 2), (5, 6)} (on the right).

For each pignose, the first vertex has a half edge of the first or the second
type and the second vertex has a half edge of the third or the fourth type. Thus
a+ b = c+ d+ 1. Since x = a− c and y = d− b, we are done. �

4.2. Proof of Theorem 4.1. Let

B+
n = {π ∈ Bn : π1 > 0}, B−

n = {π ∈ Bn : π1 < 0},

B+
n,k(t, q) =

∑

π∈B+
n

fwex(π)=k

tneg(π)qcr(π), B−
n,k(t, q) =

∑

π∈B−

n

fwex(π)=k

tneg(π)qcr(π).

Then

(12) B∗
n,k(t, q) = tB+

n,k(t, q) +B−
n,k(t, q).

In this subsection we will prove the following proposition.

Proposition 4.4. There is a bijection φ : B+
n → B−

n such that

cr(φ(π)) = cr(π), neg(φ(π)) = neg(π) + 1,

fwex(φ(π)) = 2n+ 1− fwex(π).
(13)

Thus,

(14) tB+
n,k(t, q) = B−

n,2n+1−k(t, q), B−
n,k(t, q) = tB+

n,2n+1−k(t, q).

Note that Theorem 4.1 follows from (12) and (14). In order to prove Proposi-
tion 4.4 we need some definitions and lemmas.

Given an ordered matching M on [2n], we define ρ(M) to be the ordered match-
ing st(M ′) whereM ′ is the ordered matching on {2, 3, . . . , 2n+1} obtained fromM
by replacing 1 with 2n+1. In other words, ρ(M) is obtained fromM by moving the
first vertex to the end and reflecting the arc adjacent to this vertex, see Figure 4.
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} x

} x

1 i n
⇒

} x

} x

1 i n

Figure 5. The change of crossings from M to ρ(M).

We denote ρ(k) =

k
︷ ︸︸ ︷
ρ ◦ · · · ◦ ρ.

Lemma 4.5. Let M be a pignose matching on [2n]. Then ρ(k)(M) has the same
number of crossings as M for all positive integers k.

Proof. Note that ρ(2)(M) is a pignose matching. Thus it suffices to prove for k = 1
and k = 2.

Considering M as a pignose diagram of a permutation in Sn, assume that 1 is
connected to i. By Lemma 4.3, if we draw a vertical line between the two vertices
in the ith pignose, the number, say x, of upper arcs above i except (1, i) is equal
to the number of lower arcs below i. Therefore, when we go from M to ρ(M), we
lose x crossings and obtain new x crossings as shown in Figure 5.

This proves the assertion for k = 1.
To prove for k = 2 we define the following. Given an ordered matching N , let

N be the ordered matching obtained by reflecting N along the horizontal line. It
is easy to see that cr(N) = cr(N) and ρ(N) = ρ(N). Moreover if N is a pignose

matching then so is ρ(N). Thus we have

(15) cr
(

ρ(2)(M)
)

= cr
(

ρ(2)(M)
)

= cr
(

ρ
(

ρ(M)
))

Since ρ(M) is a pignose matching, using the assertion for k = 1, we obtain that
(15) is equal to

cr
(

ρ(M)
)

= cr (ρ(M)) = cr (M) .

Thus cr
(
ρ(2)(M)

)
= cr (M) and we are done. �

For an ordered matching M on [2n] we define M r to be the ordered matching
obtained from M by replacing i with 2n+1− i for each i ∈ [2n]. Pictorially M r is
obtained from M by taking a 180◦ rotation.

Lemma 4.6. Let M be a pignose matching on [2n]. Then N = (ρ(2k+1)(M))r is
also a pignose matching and cr(M) = cr(N).

Proof. Note that ρ(2)(M) is a pignose matching. Thus it suffices to prove that
(ρ(M))r is a pignose matching, which easily follows from Proposition 4.2. �

For π ∈ Bn, let π
− = (−π1)π2 · · ·πn.

Lemma 4.7. The map π 7→ π− is a bijection from B+
n to B−

n . Moreover, we have
cr(π) = cr(π−), neg(π) = neg(π−)− 1, and fwex(π) = fwex(π−) + 1.
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1
⇒

1

Figure 6. The map π 7→ π− simply changes the upper arc adja-
cent to 1 to a spiral arc.

1 2 3 4

⇒
1 2 3 4

Figure 7. Chaning the signed permutation π = (3,−4,−2, 1) ∈
B+

4 with neg(π) = 2 to the signed permutation in B6.

Proof. This is an immediate consequence of the following observation: if π ∈ B+
n ,

the pignose diagram of π− is obtained from the pignose diagram of π by changing
the upper arc adjacent to 1 to a spiral arc as shown in Figure 6.

�

Now we are ready to define the map φ : B+
n → B−

n in Proposition 4.4. Suppose
π ∈ B+

n and neg(π) = m. We make the pignose diagram of π to be a pignose
matching on [2m+2n] by dividing each spiral arc into one upper arc and one lower
arc so that the left endpoint of the upper arc is to the left of the left endpoint of
the lower arc, see Figure 7.

LetM be the pignose matching obtained in this way, and letN =
(
ρ(2m+1)(M)

)
r

.
By Lemma 4.6, N is also a pignose matching on [2m+ 2n] and cr(M) = cr(N). It
is straightforward to check that N satisfies the following properties.

(1) For each i ∈ [2m], the ith vertex is connected to the jth vertex for some
j > 2m.

(2) The first m lower arcs do not cross each other.
(3) The (2m+ 1)st vertex has an upper half arcs.
(4) The number of upper half arcs adjacent to the last 2n vertices is 2n+2−k.

By the first and the second properties, we can make N to be the pignose diagram
of a signed permutation, say σ ∈ Bn, by identifying the (2i − 1)th vertex and the
(2i)th vertex for each i ∈ [m]. Then neg(π) = neg(σ). By the third property, we
have σ ∈ B+

n , and by the fourth property, we have fwex(σ) = 2n+2−k. We define
φ(π) to be σ−. Clearly φ is a bijection from B+

n to B−
n . By Lemma 4.7, φ satisfies

(13). This finishes the proof of Proposition 4.4. See Figure 8 for an example.
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ρ(5)(M) =
1 2 3 4

(
ρ(5)(M)

)
r

=

σ =
1 2 3 4

σ− =
1 2 3 4

Figure 8. Computing ρ(5)(M),
(
ρ(5)(M)

)
r

, σ, and σ−, where

π = (3,−4,−2, 1) ∈ B+
4 and M is the diagram on the right in

Figure 7.

or or or

Figure 9. An alignment is an unordered pair of arcs which look
like one of the four configurations.

5. Crossings and alignments

For a permutation σ ∈ Sn, an alignment is a pair (i, j) of integers i, j ∈ [n]
satifying one of the following: i < j < πj < πi, πi < πj < j < i, i < πi < πj < j,
and πi < i < j < πj , see Figure 9.

Let al(σ) denote the number of alignments of σ. The following proposition was
first proved by the first author [6] using rather technical calculations. Here we
provide another proof which is more combinatorial.

Proposition 5.1. If σ ∈ Sn has k weak excedances, then

cr(σ) + al(σ) = (k − 1)(n− k).

Proof. Since wex(π) = k, we have k upper arcs and n− k lower arcs in the pignose
diagram of π.

Let A be the set of pairs (U,L) of an upper arc U and a lower arc L. Then there
are k(n − k) elements in A. We define the subsets A1, A2 and A3 of A as follows:
for U = (i, πi) and L = (j, πj) we have

• (U,L) ∈ A1 if and only if i < πi < πj < j or πj < j < i < πi,
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or for A1

or for A2

or for A3

Figure 10. The relative locations of a pair of arcs in A1, A2 and A3.

πi
or

πi

Figure 11. The relative locations of U = (i, πi) and U
′ = (j, πj).

Here U is the arc whose right endpoint is the second vertex of the
πith pignose and U ′ is the other arc.

i
or

i

Figure 12. The relative locations of L = (i, πi) and L
′ = (j, πj).

Here L is the arc whose right endpoint is the first vertex of the ith
pignose and L′ is the other arc.

• (U,L) ∈ A2 if and only if i < πj < πi < j or πj < i < πi < j,
• (U,L) ∈ A3 if and only if πj < i < j < πi or i < πj < j < πi.

See Figure 10.
Observe that A = A1 ⊎ A2 ⊎ A3. Fix an upper arc U = (i, πi). Note that the

right endpoint of U is the second vertex of the πith pignose. Then by Lemma 4.3,
the number of elements (U,L) ∈ A2 is equal to the number of pairs (U,U ′) of upper
arcs where U ′ = (j, πj) satisfying i < j < πi < πj or j < i ≤ πi < πj , see Figure 11.

Now fix a lower arc L = (i, πi). Note that the right endpoint of L is the first
vertex of the ith pignose. Again by Lemma 4.3, the number of elements (U,L) ∈ A3

is one more than the number of pairs (L,L′) of lower arcs where L′ = (j, πj)
satisfying πi < πj < i < j or πj < πi < i < j, see Figure 12.

Observe that a crossing or an alignment is either an element in A1, or a pair of
arcs as shown in Figures 11 and 12. Since we have n− k lower arcs, the number of
pairs of arcs in Figure 12 is |A3| − (n− k). Thus the total number of crossings and
alignments is equal to

|A1|+ |A2|+ (|A3| − (n− k)) = k(n− k)− (n− k) = (k − 1)(n− k).

�

Now we define another representation of a signed permutation. Note that a
signed permutation π = π1 · · ·πn ∈ Bn can be considered as a bijection on [±n] =
{1, 2, . . . , n,−1,−2, . . . ,−n} with π(i) = πi and π(−i) = −πi for i ∈ [n].
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1 2 3 4 5 6 7

−1−2−3−4−5−6−7

Figure 13. The full pignose diagram of π = [4,−6, 1,−5,−3, 7, 2].

} y

} y + 1

−k

} x+ 1

} x

k

Figure 14. The number of upper and lower arcs crossing a vertical
line dividing a pignose in a full pignose diagram.

We define the full pignose diagram of π ∈ Bn as follows. First we arrange 2n
pignoses in a horizontal line which are labeled with −n,−(n−1), . . . ,−1, 1, 2, . . . , n.
The pignose labeled by i is called positive if i > 0, and negative otherwise. The
first vertex and the second vertex of a positive pignose are, respectively, the left
vertex and the right vertex of the pignose. The first vertex and the second vertex
of a negative pignose are, respectively, the right vertex and the left vertex of the
pignose. For each i ∈ [±n], we connect the first vertex of the pignose labeled with i
and the second vertex of the pignose labeled with π(i) with an arc in the following
way. If πi > 0, draw an arc above the horizontal line if π(i) ≥ i, and below the
horizontal line if π(i) < i. See Figure 13 for an example.

The following lemma can be shown by the same argument in the proof of
Lemma 4.3.

Lemma 5.2. Let π ∈ Bn and k ∈ [n]. In the full pignose diagram of π if we
draw a vertical line dividing the pignose labeled −k (resp. k) in the middle, then
the number of upper arcs intersecting with this line is equal to the number of lower
arcs intersecting with this line minus 1 (resp. plus 1) as shown in Figure 14.

We define alignments of a signed permutation similarly. An alignment of π ∈ Bn

is a pair (i, j) of integers i, j ∈ [±n] satifying one of the following: i < j < π(j) <
π(i), π(i) < π(j) < j < i, i < π(i) < π(j) < j, and π(i) < i < j < π(j). In
other words, an alignment of π ∈ Bn is an unordered pair of arcs in the full pignose
diagram of π whose relative locations are as shown in Figure 9. We denote by al(π)
the number of alignments of π.
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Note that the number of two arcs intersecting with each other in the full pignose
diagram of π ∈ Bn is equal to 2 cr(π).

Now we can prove a type B analog of Proposition 5.1.

Proposition 5.3. For π ∈ Bn with fwex(π) = k, we have

2 cr(π) + al(π) = n2 − 2n+ k.

Proof. Since the number of positive upper half arcs is equal to fwex(π) = k, the
number of positive lower half arcs is equal to 2n− k.

Let A be the set of pairs (U,L) of an upper arc U and a lower arc L. Since
we have n upper arcs and n lower arcs in total, there are n2 elements in A. Using
Lemma 5.2 and the same argument as in the proof of Proposition 5.1, one can easily
see that

2 cr(π) + al(π) = n2 − a− b,

where a is the number of upper arcs whose right endpoint is the first vertex of a
negative pignose, and b is the number of lower arcs whose right endpoint is the
first vertex of a positive pignose. By the symmetry of the full pignose diagram, a
is equal to the number of lower arcs whose left endpoint is the second vertex of a
positive pignose. Thus a + b is the number of positive half arcs, which is 2n − k,
and we obtain the desired formula. �

6. Two solutions of the Matrix Ansatz

If some matrices D, E, a row vector 〈W | and a column vector |V 〉 are given
explicitly, it is straightforward to check whether they satisfy the Matrix Ansatz:

DE = qED +D + E, D|V 〉 = |V 〉, 〈W |E = yt〈W |D.(16)

But it is not obvious how to find such matrices and vectors. We provide two
solutions in the form of semi-infinite tridiagonal matrices, i.e. the index set is N

and D = (Di,j)i,j∈N, E = (Ei,j)i,j∈N are such that Di,j = Ei,j = 0 if |j − i| > 1.
They can be obtained using the following observation: if X and Y are matrices

such that XY − qY X = I (where I is the identity), then D = X(I + Y ) and
E = Y X(I + Y ) satisfy

DE − qED = X(I + Y )Y X(I + Y )− qY X(I + Y )X(I + Y )

= (XY +XY Y − qY X − qY XY )X(I + Y )

= (I + Y )X(I + Y ) = D + E.

Then we can look for 〈W | (respectively, |V 〉) as a left (respectively, right) eigenvec-
tor of ytD − E (respectively, D).

6.1. Solution 1. Let X = (Xi,j)i,j≥0 and Y = (Yi,j)i,j≥0 where

Xi,i+1 = [i+ 1]q and Xi,j = 0 otherwise,

Yi+1,i = 1, Yi,i = tyqi and Yi,j = 0 otherwise,

and
〈W | = (1, 0, 0, . . .), |V 〉 = (1, 0, 0, . . .)t.

We can check that XY − qY X = I, and that D = X(I + Y ) and E = Y X(I + Y )
together with 〈W | and |V 〉 provide a solution of (7). The coefficients are:

Di,i = [i+ 1]q, Di,i+1 = (1 + ytqi+1)[i + 1]q, Di,j = 0 otherwise,(17)
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and

Ei,i = [i]q + ytqi([i]q + [i + 1]q), Ei,i+1 = ytqi(1 + ytqi+1)[i+ 1]q,

Ei+1,i = [i+ 1]q, Ei,j = 0 otherwise.

Note that 〈W | and |V 〉 are such that the quantity

Bn(y, t, q) = 〈W |(y2D + E)n|V 〉.

is the coefficient ((y2D + E)n)0,0 of the matrix (y2D + E)n. It is possible to see
y2D + E as a transfer matrix, see [27, Section 4.7]. This is a general method used
in the enumeration of “walks”, i.e. finite sequences of vertices in a graph where
two successive elements are related by an edge, see loc. cit. for details. This
method shows that Bn(y, t, q) is the weighted generating function of walks in N of
n steps, starting at 0, ending at 0, and each step being either i→ i+1 (with weight
y2Di,i+1 + Ei,i+1), i → i (with weight y2Di,i + Ei,i), or i → i − 1 (with weight
y2Di,i−1 + Ei,i−1).

Note that these kind of walks in N are clearly in bijection with Motzkin paths (see
the next section for more on the combinatorics of these paths). By the standard
methods of Flajolet [12], this gives a continued fraction for the generating func-
tion. We use the notation a1

b1 −
a2

b2 − · · · = (a1/(b1 − (a2/(b2 − . . . )))) for continued
fractions.

Theorem 6.1. Let γh = y2[h + 1]q + [h]q + ytqh([h]q + [h + 1]q) for h ≥ 0 and
λh = y[h]2q(y + tqh−1)(1 + ytqh) for h ≥ 1, then we have:

∑

n≥0

Bn(y, t, q)z
n =

1

1− γ0z −

λ1z
2

1− γ1z −

λ2z
2

1− γ2z −
· · · .

Proof. This essentially follows the above discussion about the transfer matrix method
and Motzkin paths. It suffices to check γh = y2Dh,h +Eh,h and λh = (y2Dh−1,h +
Eh−1,h)Eh,h−1. �

In particular, we have

∑

n≥0

Bn(y, 1,−1)zn =
1

1− (y + y2)z − 1−y(y+1)(1−y)z2

1−(1−y)z

=
1− z + zy

1− z − y2z

= 1 +
(y + y2)z

1− (1 + y2)z
.

It is then easy to obtain

Bn(y, 1,−1) =

2n∑

k=1

yk
(

n− 1

⌈k/2⌉ − 1

)

.

Using (6), we thus obtain as mentioned in Theorem 2.1 that the value at q = −1
of the q-Eulerian numbers of type B are binomial coefficients:

EB
n,k(−1) = [y2k]Bn(y, 1,−1) + [y2k+1]Bn(y, 1,−1)

=

(
n− 1

k − 1

)

+

(
n− 1

k

)

=

(
n

k

)

.



16 SYLVIE CORTEEL, MATTHIEU JOSUAT-VERGÈS AND JANG SOO KIM

6.2. Solution 2. Let X = (Xi,j)i,j≥0 and Y = (Yi,j)i,j≥0 where

Xi,i+1 = [i+ 1]q and Xi,j = 0 otherwise, Yi+1,i = 1 and Yi,j = 0 otherwise,

and

〈W | = (1, yt, (yt)2, . . .), |V 〉 = (1, 0, 0, . . .)t.

We can check that XY − qY X = I, and that D = X(I + Y ) and E = Y X(I + Y )
together with 〈W | and |V 〉 provide a solution of (7). The coefficients are:

Di,i = Di,i+1 = [i+ 1]q, Di,j = 0 otherwise,

Ei,i−1 = Ei,i = [i]q, Ei,j = 0 otherwise.

Theorem 6.2. We have B0 = 1, and the recurrence relation:

(18) Bn(y, t, q) = (y + t)Dq

[
(1 + yt)Bn−1(y, t, q)

]
,

where Dq is the q-derivative with respect to t, which sends tn to [n]qt
n−1.

Proof. Each polynomial P in y, t, and q can be uniquely written
∑

k≥0 pk(yt)
k

where the coefficients pk are functions of y and q (possibly rational function). We
can identify the polynomial P with the vector of coefficients v = (p1, p2, . . . ). More
precisely, the correspondence is P = 〈W | · v. Under this identification P ↔ v,
we can see that multiplication by yt on polynomials corresponds to the matrix Y
acting on vectors, and y−1Dq acting on polynomials corresponds to the matrix X .
This means:

(
〈W |Y

)
· v = yt

(
〈W | · v

)
, 〈W | · (Xv) = y−1Dq

[
〈W | · v

]
.

From the definition of D and E in terms of X and Y , we have y2D + E = (y2I +
Y )X(I + Y ). Then:

Bn(y, t, q) = 〈W |(y2D + E)n|V 〉 = 〈W |
(
(y2I + Y )X(I + Y )

)n
|V 〉

= (y + t)Dq[(1 + yt)〈W |(y2D + E)n−1|V 〉]

and the result follows. �

We can also see y2D + E as a transfer matrix in this case. This leads to the
following definition.

Definition 1. A Motzkin suffix of length n and starting height k is a path in N
2

from (0, k) to (n, 0) with steps (1, 1), (1, 0) and (1,−1), respectively denoted ր, →
and ց. The Motzkin paths are the particular cases where the starting height is 0.
We denote by sh(p) the starting height of the path p.

Proposition 6.3. Bn(y, t, q) is the weighted generating functions of Motzkin suf-
fixes of length n, where the weight of a path p is the product of (yt)sh(p), and:

• y2[h+ 1]q for each step ր from height h to h+ 1,
• y2[h+ 1]q + [h]q for each step → at height h,
• [h+ 1]q for each step ց from height h+ 1 to h.

Proof. Let us write Bn(y, t, q) =
∑

k≥0 pk(yt)
k where the coefficients pk are func-

tions of y and q. From Bn(y, t, q) = 〈W |(y2D + E)n|V 〉, we see that pk is the
coefficient (k, 0) of the matrix (y2D + E)n. The transfer matrix method shows
that pk is the weighted generating function of walks in N from k to 0, with the
following steps: either i→ i+1 (with weight y2Di,i+1+Ei,i+1), i→ i (with weight
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y2Di,i + Ei,i), or i → i − 1 (with weight y2Di,i−1 + Ei,i−1). These walks in N are
clearly in bijection with Motzkin suffixes, so the result follows. �

See the next section for more on the combinatorics of these weighted Motzkin
suffixes.

7. Interpretation of Bn(y, t, q) via weighted Motzkin paths

We show here that some known bijections from [6] can be adapted to the case of
signed permutations. In this reference, the first author obtains refinements of two
bijections originally given by Françon and Viennot [15], Foata and Zeilberger [14].
In the case of signed permutations, we will see that each of these two bijections
has two variants, corresponding to the two kinds of paths obtained in the previous
section.

The two variants of the Françon-Viennot bijection give new interpretations of
Bn(y, t, q) in terms ascent-like and pattern-like statistics in signed permutations.
On the other side, the two variants of the Foata-Zeilberger bijection permit to
recover the known interpretation as in (5) (so we omit details in this case).

7.1. Weighted Motzkin paths. Let Mn be the set of weighted Motzkin paths
of length n, where each step is either:

• ր from height h to h+ 1 with weight qi, 0 ≤ i ≤ h (type 1),
• ր from height h to h+ 1 with weight ytqh+1+i, 0 ≤ i ≤ h (type 2),
• → at height h with weight y2qi, 0 ≤ i ≤ h (type 3),
• → at height h with weight ytqh+i, 0 ≤ i ≤ h (type 4),
• → at height h with weight qi, 0 ≤ i ≤ h− 1 (type 5),
• → at height h with weight ytqh+i, 0 ≤ i ≤ h− 1 (type 6),
• ց from height h+ 1 to h with weight y2qi, 0 ≤ i ≤ h (type 7),
• ց from height h+ 1 to h with weight ytqh+i, 0 ≤ i ≤ h (type 8).

This set has generating function Bn(y, t, q) since the weights correspond to coeffi-
cients of y2D + E, where we use the first solution of the Matrix Ansatz from the
previous section. More precisely, the correspondence is: Eh,h−1 → types 1 and 2,
Dh,h → type 3, Eh,h → types 4, 5 and 6, Dh,h+1 → type 7, Eh,h+1 → type 8. Note
that the weight on a step does not always determine its type (compare type 4 and
6), so that we need to think in terms of weighted paths where each step has a label
between 1 and 8 to indicate its type.

7.1.1. The Françon-Viennot bijection, first variant. There is a bijection between Sn

and weighted Motzkin paths which follows the number of descents and the number
of 31-2 patterns in a permutation [6]. Let σ ∈ Sn, then its image path is obtained
by “scanning” the graph of σ from bottom to top, i.e. the ith step is obtained by
examining σ−1(i). In the case of a signed permutation π, we use the representation
as in Figure 15: we place a + or a − in the square in the ith column and |πi|th row
depending on the sign of π(i).

Definition 2. For any σ ∈ Sn and 1 ≤ i ≤ n, let 31-2(σ, i) = #{ j : 1 ≤ j < i −
1 and πj > πi > πj+1}, and let 2-31(σ, i) = #{ j : i < j < n and πj > πi > πj+1}.
Let also 31-2(σ) =

∑n
i=1 31-2(σ, i).

Let π ∈ Bn. We denote by |π| the permutation obtained by removing the
negative signs of π, that is, |π|i = |πi| for i = 1, 2, . . . , n. We take the convention
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+
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4
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1 2 3 4 5 1 2 3 4 5

1

ytq
y2

y2q

ytq

Figure 15. The first variant of the Françon-Viennot bijection,
with the signed permutation π = 3,−5,−2, 4, 1.

that π0 = 0 and πn+1 = n + 1. The bijection is defined in the following way. The
path corresponding to π is of length n such that, if j = |πi| and denoting s the jth
step, we have:

• If |πi−1| > |πi| < |πi+1| and πi > 0, then s is of type 1 with weight
q31-2(|π|,i).

• If |πi−1| > |πi| < |πi+1| and πi < 0, then s is of type 2 with weight
ytqh+1+31-2(|π|,i).

• If |πi−1| < |πi| < |πi+1| and πi > 0, then s is of type 3 with weight
y2q31-2(|π|,i).

• If |πi−1| < |πi| < |πi+1| and πi < 0, then s is of type 4 with weight
ytqh+31-2(|π|,i).

• If |πi−1| > |πi| > |πi+1| and πi > 0, then s is of type 5 with weight
q31-2(|π|,i).

• If |πi−1| > |πi| > |πi+1| and πi < 0, then s is of type 6 with weight
ytqh+31-2(|π|,i).

• If |πi−1| < |πi| > |πi+1| and πi > 0, then s is of type 7 with weight
y2q31-2(|π|,i).

• If |πi−1| < |πi| > |πi+1| and πi < 0, then s is of type 8 with weight
ytqh+31-2(|π|,i).

In the case where π has no negative entry, this defines a bijection with the paths
having steps of types 1, 3, 5, 7 only. This is a result from [6], and what we present
here is a variant, so we refer to this work for more details. In the case of signed
permutations, since each entry can be negated, it is natural that each step of type
(1, 3, 5, or 7) has a respective variant (type 2, 4, 6, or 8). So the fact that the map
is a bijection can be deduced from the case of unsigned permutations. It is also
clear that t follows the number of negative entries of π since there is a factor t only
in steps of type 2, 4, 6, and 8.

Let us check what is the statistic followed by y. There is a factor y on each step
of type 2,4,6,8 so that this statistic is the sum of neg(π) and other terms coming
from the factors y2 in steps of type 3 and 7. Note that the jth step is of type 3 or
7 if and only if |πi−1| < πi. This leads us to define an ascent statistic hasc(π) as

(19) hasc(π) = 2×#{ i : 0 ≤ i ≤ n− 1 and |πi| < πi+1}+ neg(π).

It remains only to check what is the statistics followed by q. Since there is always
a weight q31-2(|π|,i) on the ith step, this statistic is the sum of 31-2(|π|) and other
terms. It remains to take into account the weights qh or qh+1 that appear on each
step of type 2,4,6,8. From the properties of the bijection in the unsigned case, we
have that the “minimal” height h of the ith step is 31-2(|π|, i) + 2-31(|π|, i), plus 1
in the case where |πi−1| > |πi| > |πi+1|. So, apart a factor q on each step of type 2
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and 6, we obtain the statistic

31-2(|π|) +
∑

1≤i≤n
πi<0

(
31-2(|π|, i) + 2-31(|π|, i)

)
.

Note that to take into account the factor q on each step of type 2 and 6, we can
count i such that 1 ≤ i < n and |πi−1| > −πi > 0. The statistic we eventually
obtain can be rearranged as follows:

pat(π) = #{ (i, j) : 1 ≤ i < j ≤ n, and |πi| > |πj | > |πi+1|} +

#{ (i, j) : 1 ≤ i, j ≤ n, and |πi| > −πj ≥ |πi+1|}.

This is a “pattern” statistic that is somewhat similar to the 31-2 statistic of the
unsigned case (and indeed, identical if π has only positive entries). Eventually, our
first variant of the Françon-Viennot bijection gives the following.

Proposition 7.1. With hasc(π) defined as in (19), we have:

(20) Bn(y, t, q) =
∑

π∈Bn

yhasc(π)tneg(π)qpat(π).

Note that in the case t = 0, we recover the known result [28]:

(21)

n∑

k=1

ykEn,k(q) =
∑

σ∈Sn

yasc(σ)+1q31-2(σ)

where asc(σ) = n− 1− des(σ) = #{i : 1 ≤ i ≤ n− 1 and σi < σi+1}.

7.1.2. The Foata-Zeilberger bijection, first variant. In case of unsigned permuta-
tions, this bijection follows the number of weak excedances and crossings, see the
bijection ΨFZ in [6]. To extend it, we use a representation of a signed permutation
as an arrow diagram (this is equivalent to the pignose diagrams used earlier: if
σ ∈ Sn, we put n dots in a row, and draw an arrow from i to σ(i) which is above
the axis if i ≤ σ(i) and below otherwise, see [6]). The idea is to draw the arrow
diagram of |π| and label an arrow from i to |π(i)| by + or − depending on the sign
of π(i), see Figure 16.

b b b b b

+ − +

−

+

1 2 3 4 5

1 2 3 4 5

(1, y2)

(ytq3, ytq) 1
y2q

1

Figure 16. The first variant of the Foata-Zeilberger bijection,
with π = 3,−4,−2, 5, 1.

The crossings can be read in this representation as follows. The proof can be
done by distinguishing all the possible cases for the signs of i and j for each type
of crossing (i, j). We omit details.

Proposition 7.2. Each crossing (i, j) in the signed permutation π corresponds to
one of the six configurations in Figure 17, where ± means that the label of the arrow
can be either + or −, and the dots indicate that there might be an equality of the
endpoint of an arrow and the startpoint of the other arrow.
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±

−

±

−

±

−

±

−

± +

± +

Figure 17. The list of configurations characterizing a crossing in
the arrow diagram of a signed permutation.

For example, let us consider the signed permutation in Figure 16. The dots 1,2,3
(respectively, 1,2,5 and 1,2,3,5) correspond to a crossing as in the first (respectively,
second and fourth) configuration of Figure 17. The dots 2,4 are also a crossing as
in (the limit case of) the first configuration, and eventually the dots 2,4,5 are a
crossing as in (the limit case of) the fifth configuration. So the signed permutation
3,−4,−2, 5, 1 has 5 crossings.

Once we have this new description of the crossings, it is possible to encode
the arrow diagram as in Figure 16 by elements in Mn. Actually it will be more
convenient to see these paths in a slightly different way: each step ր (with weight
a) faces a step ց (weight b), but now we think as if the step ց have weight 1 and
the facing step ր has weight (a, b). But we still consider the steps → of types 3,
4, 5, 6 as before.

Now, the path is obtained from the signed permutation by “scanning” the arrow
diagram from right to left, so that after scanning i nodes in the diagram we have
built a Motzkin suffix of length i. Suppose that there are h unconnected strands
after scanning these i nodes, and accordingly the Motzkin suffix starts at height h.
When scanning the following node, we have several possibilities:

• If the ith node is b then we add a step ց (with weight 1) to the Motzkin
suffix,

• If the ith node is b
+

or b
+
, then we add a step → (type 3) with weight

y2qi where i counts the number of crossings as in the 5th configuration that
appear when adding this ith node to the ones at its right.

• If the ith node is b
−

then we add a step → (type 4) with weight yt to the

Motzkin suffix, and if it is b
−

then we add a step → (type 4) with weight
ytqh+i, where i counts the number of crossings as in 3rd configuration that
appear when adding this ith node to the ones to its right. Note that h is
the number of crossings as in 2nd configuration that appear.

• If the ith node is b

+
, then we add a step step → (type 5) with weight

qi where i counts the number of crossings as in the 6th configuration that
appear.

• If the ith node is b

−
, then we add a step → (type 6) with weight ytqh+i

where i counts the number of crossings as in the 4th configuration that
appear. Note that h is the number of crossings as in 1st configuration that
appear.

• If the ith node is b , then we add a step ր with a weight (a, b) where a
and b are as follows (this is similar to the previous cases but here we need
to encode information about both the ingoing and outgoing arrow). The
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possibilities for a are q0, . . . , qh−1, or ytqh, . . . , ytq2h−1, such that there is
a factor 1 (resp. yt) if the label of the ingoing arrow is + (resp. −), and
q counts the crossings of the 6th (resp. 1st and 4th) configuration. The
possibilities for b are y2q0, . . . , y2qh−1, or ytqh−1, . . . , ytq2h−2, such that
there is a factor y2 (resp. yt) if the label of the outgoing arrow is + (resp.
−), and q counts the crossings of the 5th (resp. 2nd and 3rd) configuration.

See Figure 16 for an example. Let i < j, if there is an arrow from i to j with a
label + then the ith step gets a weight y2, and if there is an arrow from i to j or
from j to i with a label −, then the ith step gets a weight yt. It follows that the
parameters y and t correspond to fwex(π) and neg(π) in signed permutations. By
the design of the bijection, the parameter q corresponds to cr(π). Hence we recover
(5).

7.2. Suffixes of weighted Motzkin paths. We can see a signed permutation as
a permutation on [±n] or on [2n] with a symmetry property. Then, applying the
bijections of the unsigned case gives some weighted Motzkin paths with a vertical
symmetry. It is natural to keep only the second half a vertically-symmetric path,
and obtain suffixes of Motzkin paths.

Definition 3. Let Nn be the set of weighted Motzkin suffixes with weights:

• y2qi with 0 ≤ i ≤ h, for a step ր at height h to h+ 1,
• either y2qi with 0 ≤ i ≤ h, or qi with 0 ≤ i ≤ h− 1, for a step → at height
h,

• qi with 0 ≤ i ≤ h, for a step ց at height h+ 1 to h.

For any p ∈ Nn, let sh(p) be its initial height, and let w(p) be its total weight, i.e.
the product of the weight of each step.

Then Bn(y, t, q) is the generating function
∑

p∈Nn
(yt)sh(p) w(p). This is a con-

sequence of Proposition 6.3, the only difference is that instead of a step ր with
weight y2[h+1]q, we consider h+1 different kind of steps with weight y2q0, . . . , y2qh

(and similarly for the other steps).

7.2.1. The Françon-Viennot bijection, second variant. This second variant is a bi-
jection between Nn and Bn, and it gives a combinatorial model of Bn(y, t, q) involv-
ing the flag descents, and different from the previous ones. The second bijection
is done using the diagram of a signed permutation π ∈ Bn as in Figure 18. More
precisely, we have a 2n× 2n array, lines and columns are numbered with integers
in [±n] in increasing order, and there is a dot at each cell of coordinates (i, π(i))
for i ∈ [±n].

Definition 4. For a signed permutation π, let fneg(π) be the number of pos-
itive integers followed by a negative integer in the sequence π(−n), . . . , π(−1),
π(1), . . . , π(n). Note that fneg(π) = 0 if and only if π is actually an unsigned
permutation. Let

31-2+(π) =
∑

1≤i≤2n
π̃(i)>n

31-2(π̃, i)

where π̃ ∈ S2n is the permutation corresponding to π via the order-preserving
identification [±n] → [2n].
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•
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•

-5
-4
-3
-2
-1
1
2
3
4
5

-5 -4 -3 -2 -1 1 2 3 4 5

1 2 3 4 5

y2q2
y2

q

q

1

Figure 18. The second variant of the Françon-Viennot bijection,
with π = 3,−5,−2, 4, 1.

The bijection is defined as follows. We take here the convention that π−n−1 =
−n− 1 and πn+1 = n+ 1. Let j ∈ [n], let i ∈ [±n] such that πi = j, then:

• if πi−1 < πi < πi+1 or πi−1 > πi > πi+1, the jth step is → (i = 2 in the
example),

• if πi−1 > πi < πi+1, the jth step is ր (i = 1 in the example),
• if πi−1 < πi > πi+1, the jth step is ց (i = 3, 4, 5 in the example).

And the weight of the ith step is y2q31-2(π̃,i+n) if πi > πi+1, q
31-2(π̃,i+n) otherwise.

The properties of the Françon-Viennot bijection from [6] show that, denoting p
the image of π under this bijection, we have:

(yt)sh(p) w(p) = y2n−fdes(π)tfneg(π)q31-2
+(π).

Let us denote fasc(π) = 2n − 1 − fdes(π), which can be interpreted as an ascent
statistic. Indeed, in the sequence −πn, . . . ,−π1, π1, . . . , πn, fdes(π) (resp. fasc(π))
is the number of integers followed by a smaller (resp. greater) integer. So the
bijection proves:

Proposition 7.3. For n ≥ 1,

(22) Bn(y, t, q) =
∑

π∈Bn

yfasc(π)+1tfneg(π)q31-2
+(π).

Note that once again, we recover (21) in the case t = 0.

7.2.2. The Foata-Zeilberger bijection, second variant. Let π ∈ Bn, we use here the
arrow diagram as in Figure 19 where the dots are labeled by −n, . . . ,−1, 1, . . . , n
and there is an arrow from i to π(i) above the axis if i ≤ π(i) and below otherwise
(this is equivalent to the full pignose diagram used in Section 5 where each pignose
collapses to a single dot). The path p ∈ Nn is as follows. If at the ith node in the
diagram (where 1 ≤ i ≤ n), there is an arrow arriving from the left and an arrow
going to the left, then the ith step is ց. If there is an arrow going to the right and
arriving from the right, then it is a step ր. In all other cases it is a step →. Then,
for each arrow going from i to j with 0 < i < j, we give a weight y2 to the ith step
in the path; for each crossing i < j ≤ π(i) < π(j) with j > 0 we give a weight q to
the jth step; and for each crossing i > j > π(i) > π(j) with j > 0 we give a weight
q to the jth step. See Figure 19 for example.
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b b b b b b b b b b
q
y2q

1
q

1

Figure 19. The second variant of the Foata-Zeilberger bijection
in the case of π = −5, 4, 2,−3, 1.

The number of arrows that join a positive integer to a negative one is neg(π).
From the construction, this is also the initial height of the path we have built.
So giving a weight (yt)sh(p) to the path p ensures that y and t respectively follow
fwex(π) and neg(π). Also from the definition of the bijection, q counts the number
of crossings. Hence we recover (5). We do not give more details since this bijection
does not give new statistics on signed permutations.

8. Formula for Bn(y, 1, q)

In this section, we prove a formula for Bn(y, 1, q). The formula itself is somewhat
similar to the one for Bn(y, 0, q) in Equation (3). The result for Bn(y, 0, q) was
proved in [17], but the present proof for Bn(y, 1, q) is different.

Theorem 8.1.

Bn(y, 1, q) =
1

(1 − q)n

n∑

j=0

(−1)j

(
2n−2j
∑

i=0

yi
(

n

j + ⌈ i
2⌉

)(
n

⌊ i
2⌋

))

×

(
2j
∑

ℓ=0

yℓq
ℓ(2j−ℓ+1)

2

)

.

(23)

Or, equivalently:

Bn(y, 1, q) =
1

(1 − q)n

n∑

k=0

(
n−k∑

i=0

y2i
((

n
i

)(
n

i+k

)
−
(

n
i−1

)(
n

i+k+1

))
)

×

k∑

j=0

yk−j(−1)j
2j
∑

ℓ=0

yℓq
ℓ(2j−ℓ+1)

2 .

(24)

We can obtain (23) from (24) by simplifying a summation as follows. Let Pj =
∑2j

ℓ=0 y
ℓq

ℓ(2j−ℓ+1)
2 , then the right-hand side of (24) is

1

(1− q)n

n∑

j=0

(−1)jPj

n∑

k=j

(
n−k∑

i=0

yk−j+2i
((

n
i

)(
n

i+k

)
−
(

n
i−1

)(
n

i+k+1

))
)

=
1

(1 − q)n

n∑

j=0

(−1)jPj

2n−2j
∑

m=0

ym
⌊m/2⌋
∑

i=0

((
n
i

)(
n

m+j−i

)
−
(

n
i−1

)(
n

m+j−i+1

))

.

Here we have introduced the new index m = 2i+k− j, and the condition k− j ≥ 0
gives the condition m ≥ 2i, i.e. i ≤ ⌊m/2⌋. But the i-sum in the latter formula is
actually telescopic and only the term

(
n
i

)(
n

m+j−i

)
with i = ⌊m/2⌋ remains. Using

the fact that m− ⌊m/2⌋ = ⌈m/2⌉, we obtain (23).
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So, (23) is a simpler formula, but (24) is the one which is conveniently proved,
using results from [18]. The theorem follows from the two lemmas below (and a
third lemma is needed to prove the second lemma). The first lemma was essentially
present in [19].

Lemma 8.2. Suppose that two sequences (bn)n≥0 and (cn)n≥0 are such that:

(25)
∑

n≥0

bnz
n =

1

1− γ0z −

λ1z
2

1− γ1z −

λ2z
2

1− γ2z −
· · ·

and

∑

n≥0

cnz
n =

1

(1 + z)(1 + y2z)− γ0z −

λ1z
2

(1 + z)(1 + y2z)− γ1z −

λ2z
2

(1 + z)(1 + y2z)− γ2z −
· · · .

(26)

Then we have:

bn =

n∑

k=0





n−k∑

j=0

y2j
((

n
j

)(
n

j+k

)
−
(

n
j−1

)(
n

j+k+1

))



 ck.

Proof. Let f(z) and g(z) respectively denote the generating functions of (bn)n≥0

and (cn)n≥0 as in Equations (25) and (26). Divide by (1+z)(1+y2z) the numerator
and denominator of each fraction in (26), this gives an equivalence of continued
fractions so that:

zg(z) = z
(1+z)(1+y2z)f

(
z

(1+z)(1+y2z)

)

.

It follows that

(27) zf(z) = C(z)g(C(z))

where C(z) is the compositional inverse of z
(1+z)(1+y2z) . It remains to show that

(28) C(z)k+1 =
∑

n≥0





n−k∑

j=0

y2j
((

n
j

)(
n

j+k

)
−
(

n
j−1

)(
n

j+k+1

))



 zn+1.

Indeed, the lemma follows from taking the coefficient of zn+1 in both sides of (27)
and using (28) to simplify the right-hand side. Showing (28) can be conveniently
done using Lagrange inversion. For example, with [5, p.148, Theorem A], we obtain

[zn+1]C(z)k+1 =
k + 1

n+ 1
[zn−k]

(
(1 + z)(1 + y2z)

)n+1

=
k + 1

n+ 1

n−k∑

j=0

y2j
(
n+ 1

j

)(
n+ 1

n− k − j

)

,

and it is straightforward to check that

k+1
n+1

(
n+1
j

)(
n+1

n−k−j

)
=
(
n
j

)(
n

j+k

)
−
(

n
j−1

)(
n

j+k+1

)
.

This completes the proof. �
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We can apply this lemma with bn = (1 − q)nBn(y, 1, q). The continued frac-
tion expansion of

∑
bnz

n is immediately obtained from the one of
∑
Bn(y, t, q)z

n

obtained in Theorem 6.1. More precisely, it is exactly Equation (25) with the values

γh = y2(1− qh+1) + (1− qh) + yqh(2− qh+1 − qh),

λh = y(1− qh)2(y + qh−1)(1 + yqh).
(29)

The theorem is now a consequence of another lemma which gives the value of ck.

Lemma 8.3. With γh and λh as in (29), we have:

1

(1 + z)(1 + y2z)− γ0z −

λ1z
2

(1 + z)(1 + y2z)− γ1z −

λ2z
2

(1 + z)(1 + y2z)− γ2z −

· · ·

=
∑

k≥0

z
k

k∑

j=0

y
k−j(−1)j

2j∑

i=0

y
i
q
i(2j−i+1)/2

.

Proof. After multiplying by 1− yz, this is equivalent to

1− yz

(1 + z)(1 + y2z)− γ0z −

λ1z
2

(1 + z)(1 + y2z)− γ1z −

λ2z
2

(1 + z)(1 + y2z)− γ2z −

· · ·

=
∑

j≥0

(−z)j
2j∑

i=0

y
i
q
i(2j−i+1)/2

.

(30)

A continued fraction expansion of the right-hand side is obtained in the work of
the second and third authors [18]. More precisely, the substitution (z, y, q) 7→

(−yz, yq
1
2 , q

1
2 ) in [18, Theorem 7.1] gives

∑

j≥0

(−z)j
2j
∑

i=0

yiqi(2j−i+1)/2 =
1

1− yz +

d1z

1− yz +

d2z

1− yz +

d3z

1− yz +
· · ·(31)

where d2h+1 = (1 + yqh+1)(y + qh) and d2h = y(1− qh)2. It is immediate to check
the relations

λh = d2h−1d2h, γh = (1 + y)2 − d2h − d2h+1(32)

(with the convention d0 = 0). It remains to identify the left-hand side of (30) with
the right-hand side of (31). The end of the proof follows from the lemma below. �

Lemma 8.4. Let (γh)h≥0, (λh)h≥1 and (dh)h≥0 be three sequences satisfying (32)
with d0 = 0. Then we have:

1− yz

(1 + z)(1 + y2z)− γ0z −

λ1z
2

(1 + z)(1 + y2z)− γ1z −

λ2z
2

(1 + z)(1 + y2z)− γ2z −

· · ·

=
1

1− yz +

d1z

1− yz +

d2z

1− yz +

d3z

1− yz +
· · · .

(33)

Proof. In the left-hand side, divide the numerator and denominator of each fraction
by 1− yz. Using that

(1 + z)(1 + y2z)

1− yz
= 1− yz +

z(1 + y)2

1− yz
,

the left-hand side of (33) is

1

1− yz + ((1 + y)2 − γ0)
z

1−yz −

λ1
(

z
1−yz

)2

1− yz + ((1 + y)2 − γ1)
z

1−yz −
· · · ,
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hence it is equal to

(34)
1

1− yz + d1
z

1−yz −

d1d2
(

z
1−yz

)2

1− yz + (d2 + d3)
z

1−yz −

d3d4
(

z
1−yz

)2

1− yz + (d4 + d5)
z

1−yz −
· · · .

This can be shown to be equal to the right-hand side of (33), using the combinatorics
of weighted Schröder paths. A Schröder path (of length 2n) is a path from (0, 0)
to (2n, 0) in N

2 with steps (1, 1), (1,−1) and (2, 0), respectively denoted by ր, ց,
−→. We set that each step −→ has a weight y, each step ր from height h− 1 to
h has weight −dh. Then by standard methods, the weighted generating function
of all Schröder paths is the continued fraction in the right-hand side of (33). By
counting differently, we can obtain (34). The idea is to split each Schröder path
into some subpaths, by putting a splitting point each time the path arrives at even
height. This way, we can see a Schröder path as an ordered sequence of:

• A subsequence ր−→ . . . −→ց starting at height 2h whose generating
function is −d2h+1

z
1−yz .

• A subsequence ց−→ . . . −→ր starting at height 2h whose generating
function is −d2h

z
1−yz .

• A subsequence ր−→ . . . −→ր starting at height 2h whose generating
function is d2h+1d2h+2

z
1−yz .

• A subsequence ց−→ . . . −→ց starting at height 2h whose generating
function is z

1−yz .

• A step −→ at height 2h whose generating function is yz.

The rules according to which these subsequences can be put together are con-
veniently encoded in a continued fraction so that we obtain exactly (34). More
precisely, let Fh be the generating function of Schröder paths from height 2h to 2h
and staying at height ≥ 2h− 1. Note that when h = 0, we recover the generating
function of Schröder paths, because d0 = 0 implies that the paths reaching height
−1 have weight 0. We have:

(35) Fh =
1

1− yz + (d2h + d2h+1)
z

1+yz − d2h+1d2h+2(
z

1−yz )
2Fh+1

.

Indeed, we can see a Schröder paths from height 2h to 2h and staying at height
≥ 2h− 1 as an ordered sequence of:

• steps −→ at height 2h whose generating function is yz,
• subsequences ր−→ . . . −→ց starting at height 2h whose generating func-
tion is −d2h+1

z
1−yz ,

• subsequences ց−→ . . . −→ր starting at height 2h whose generating func-
tion is −d2h

z
1−yz ,

• subsequences ր−→ . . . −→ր P ց−→ . . . −→ց where P is a path from
height 2h+2 to 2h+2 staying above height 2h+1 whose generating function
is d2h+1d2h+2(

z
1−yz )

2Fh+1.

Hence we obtain (35). Using (35) for successive values of h, we obtain that F0 is
the continued fraction in (34). This completes the proof. �
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Let us examine the case q = 0 in the formula (23). We obtain:

Bn(y, 1, 0) =

n∑

k=0

(−1)k
2n−2k∑

i=0

yi
(

n
k+⌈i/2⌉

)(
n

⌊i/2⌋

)

=

2n∑

i=0

yi
(

n
⌊i/2⌋

)
⌊n− i

2 ⌋∑

k=0

(−1)k
(

n
k+⌊i/2⌋

)
.

The alternating sum of binomial coefficients is itself a binomial coefficient, and we
obtain:

Bn(y, 1, 0) =

2n∑

i=1

yi
(

n

⌊i/2⌋

)(
n− 1

⌈i/2⌉ − 1

)

.

We thus obtain, as mentioned in Theorem 2.1, that the value at q = 0 of the
q-Eulerian numbers of type B are the Narayana numbers of type B:

EB
n,k(0) = [y2k]Bn(y, 1, 0) + [y2k+1]Bn(y, 1, 0)

=
(
n
k

)(
n−1
k−1

)
+
(
n
k

)(
n−1
k

)
=
(
n
k

)2
.

Remark 1. One can prove the identity EB
n,k(0) =

(
n
k

)2
bijectively as follows. Con-

sidering π ∈ Bn as a permutation on [±n] = {±1,±2, . . . ,±n}, define f(π) to be
the partition of [±n] obtained by making cycles of π into blocks. It is not difficult
to show that the map f is a bijection from the set of π ∈ Bn with cr(π) = 0 to
the set of type B noncrossing partitions of [±n] such that if ⌊fwex(π)/2⌋ = k then

f(π) has 2k nonzero blocks. It is well known that
(
n
k

)2
is the number of type B

noncrossing partitions of [±n] with 2k nonzero blocks, see [25].

9. Open problems

We conclude this paper by a few open problems.

Problem 1. Since the introduction of permutation tableaux in [31, 28], several
variants have been defined [2, 3, 30]. A nice feature of these variants is that the
permutation statistics arise naturally, from a recursive construction of the tableaux
via an insertion algorithm [3] . The type B version of these tableaux can be defined
with the condition of being conjugate-symmetric. A natural question is to check
whether the insertion algorithm can be used to recover some of our results.

Problem 2. One key feature of our new q-Eulerian polynomials of type B is their
symmetry, i.e. we have B∗

n,k(t, q) = B∗
n,2n+1−k(t, q). We prove this symmetry using

the pignose diagram of a signed permutation. It would be interesting to show this
symmetry using the permutation tableaux of type B.

Problem 3. We have defined alignments in Section 5 and showed that for a signed
permutation π with fwex(π) = k, we have 2 cr(π) + al(π) = n2 − 2n+ k. A similar
identity exists for the type A, see Proposition 5.1, and can be shown on permuta-
tions or directly on permutation tableaux. It would be elegant to show our identity
directly on the permutation tableaux of type B.
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Problem 4. A notion that is closely related to alignments and in some sense dual
to the crossing, is the one of nesting [6]. When we introduce a parameter p counting
the number of crossings in permutations, there are continued fractions containing
p, q-integers rather than the q-integers, see [6, 26]. A definition of nestings in signed
permutations have been given by Hamdi [16]. It would be interesting to check if
our results can be generalized to take into account these nestings.

Problem 5. In the last section, we have obtained a formula for Bn(y, 1, q). We can
ask if there is a more general formula for Bn(y, t, q), but it seems that the present
methods do not generalize in this case.

Problem 6. Recently Kim and Stanton [20] gave a combinatorial proof of the
formula (3) for Bn(y, 0, q), which is a generating function for type A permutation
tableaux. It is worth asking whether this combinatorial approach can be generalized
for Bn(y, 1, q) and possibly Bn(y, t, q).
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