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Abstract. In this paper, we introduce and study the persistent approxima-
tion property for quantitative K-theory of filtered C∗-algebras. In the case
of crossed product C∗-algebras, the persistent approximation property follows
from the Baum-Connes conjecture with coefficients. We also discuss some
applications of the quantitative K-theory to the Novikov conjecture.
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0. Introduction

The idea of quantitative operator K-theory was first introduced in [14] to study
the Novikov conjecture for groups with finite asymptotic dimension. In [8], the au-
thors introduced a general quantitativeK-theory for filtered C∗-algebras. Examples
of filtered C∗-algebras include group C∗-algebras, crossed product C∗-algebras, Roe
algebras, foliation C∗-algebras and finitely generated C∗-algebras. For a C∗-algebra
A with a filtration, the K-theory of A, K∗(A) is the limit of the quantitative K-
theory groupsKǫ,r

∗ (A) when r goes to infinity. The crucial point is that quantitative
K-theory is often more computable using certain controlled exact sequences (e.g.
see [14] and [8]). The study of K-theory for the Roe algebra can be reduced to that
of quantitative K-theory for the Roe algebra associated to finite metric spaces,
which in essence is a finite dimensional linear algebra problem.

The main purpose of this paper is to introduce and study the persistent ap-
proximation property for quantitative K-theory of filtered C∗-algebras. Roughly
speaking, the persistent approximation property means that the convergence of
Kǫ,r

∗ (A) to K∗(A) is uniform. More precisely, we say that the filtered C∗-algebra
A has persistent approximation property if for each ε in (0, 1/4) and r > 0, there
exists r′ > r and ε′ in [ε, 1.4) such that an element from Kǫ,r

∗ (A) is zero in K∗(A)

if and only if it is zero in Kǫ′,r′

∗ (A). The main motivation to study the persis-
tent approximation property is that it provides an effective way of approximating
K-theory with quantitative K-theory. In the case of crossed product C∗-algebras,
the Baum-Connes conjecture with coefficients provides many examples that sat-
isfy the persistent approximation property. It turns out that this property provides
geometrical obstruction for the Baum-Connes conjecture. In order to study this ob-
struction in full generality, we consider the persistence approximation property for
filtered C∗-algebra A⊗K(ℓ2(Σ)), where A is a C∗-algebra and Σ is a discrete metric
space with bounded geometry. For this purpose, we introduce a bunch of quan-
titative local assembly maps valued in the quantitative K-theory for A⊗K(ℓ2(Σ))
and we set quantitative statements, analogue in this geometric setting to the quan-
titative statements of [8, Section 6.2] for the quantitative Baum-Connes assembly
maps. We also show that if these statements hold uniformly for the family of finite
subsets of a discrete metric space Σ with bounded geometry, the coarse Baum-
Connes conjecture for Σ is satisfies. In particular, in the case of a finitely generated
group Γ provided with the metric arising from any word length, then these uniform
statements for finite metric subsets of Γ implies the Novikov conjecture for Γ on
homotopy invariance of higher signatures. We point out that in this case, these
statements reduce to finite dimension problems in linear algebra and analysis.

The paper is organized as follows. In section 1, we review the main results of
[8] concerning quantitative K-theory. In section 2, we introduce the persistence



PERSISTENCE APPROXIMATION PROPERTY AND CONTROLLED OPERATOR K-TH. 3

approximation property. We prove that if Γ is a finitely generated group that sat-
isfies the Baum-Connes conjecture with coefficients and which admits a cocompact
universal example for proper actions, then for any Γ-C∗-algebra A, the reduced
crossed product A ⋊r Γ satisfies the persistence approximation property. In the
special case of the action of the group Γ on C0(Γ) by translation, we get a canon-
ical identification between C0(Γ) ⋊ Γ and K(ℓ2(Σ)) that preserves the filtration
structure. Hence, the persistence approximation property can be stated in a com-
pletely geometrical way. This leads us to consider this property for the algebra
A⊗K(ℓ2(Σ)), where A is a C∗-algebra and Σ is a proper discrete metric space, with
filtration structure induced by the metric of Σ. In section 3, following the idea of
the Baum-Connes conjecture, we construct in order to compute the quantitative

K-theory groups for A⊗K(ℓ2(Σ)) a bunch of quantitative assembly maps νε,r,dΣ,A,∗. If
view of the proof of the persistence approximation property in the crossed product
algebras case, we introduce a geometrical assembly map ν∞Σ,A,∗ (which plays the

role of the Baum-Connes assembly map with relevant coefficients). Following the
route of [10], we show that the target of these geometric assembly maps is indeed
the K-theory of the crossed product algebra of an appropriate C∗-algebra AC0(Σ)

by the groupoid GΣ associated in [10] to the coarse structure of Σ. In section 4, we
study the Baum-Connes assembly map for the pair (GΣ,AC0(Σ)) and we show that
the bijectivity of the geometric assembly maps ν∞Σ,A,∗ is equivalent to the Baum-

Connes conjecture for (GΣ,AC0(Σ)). We set in the geometric setting the analogue
of the quantitative statements of [8, Section 6.2] for the quantitative Baum-Connes
assembly maps and we prove that these statements holds when Σ coarsely embeds
into a Hilbert space. We then apply this results to the persistent approximation
property for A⊗K(ℓ2(Σ)). In particular, we prove it when Σ coarsely embeds into
a Hilbert space, under an assumption of coarse uniform contractibility. This con-
dition is the analogue in the geometric setting of the existence of a cocompact
universal example for proper actions and is satisfied for instance for Gromov hy-
perbolic discrete metric spaces. In section 5, we show that for a discrete metric
space with bounded geometry, if the quantitative statements of section 4 for ν∞F,A,∗

holds uniformly when F runs through finite subsets of Σ, then Σ satisfies the coarse
Baum-Connes conjecture.

1. Survey on quantitative K-theory

We gather this section with the main results of [8] concerning quantitative K-
theory and that we shall use throughout this paper. Quantitative K-theory was
introduced to describe propagation phenomena in higher index theory for non-
compact spaces. More generally, we use the framework of filtered C∗-algebras to
model the concept of propagation.

Definition 1.1. A filtered C∗-algebra A is a C∗-algebra equipped with a family
(Ar)r>0 of closed linear subspaces indexed by positive numbers such that:

• Ar ⊂ Ar′ if r 6 r′;
• Ar is stable by involution;
• Ar ·Ar′ ⊂ Ar+r′ ;

• the subalgebra
⋃

r>0

Ar is dense in A.
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If A is unital, we also require that the identity 1 is an element of Ar for every
positive number r. The elements of Ar are said to have propagation r.

Let A and A′ be respectively C∗-algebras filtered by (Ar)r>0 and (A′
r)r>0. A

homomorphism of C∗ -algebras φ : A−→A′ is a filtered homomorphism (or a
homomorphism of filtered C∗-algebras) if φ(Ar) ⊂ A′

r for any positive number
r.

If A is not unital, let us denote by A+ its unitarization, i.e

A+ = {(x, λ); x ∈ A , λ ∈ C}

with the product
(x, λ)(x′, λ′) = (xx′ + λx′ + λ′x)

for all (x, λ) and (x′, λ′) in A+. Then A+ is filtered with

A+
r = {(x, λ); x ∈ A+

r , λ ∈ C}.

We also define ρA : A+ → C; (x, λ) 7→ λ.

1.1. Definition of quantitative K-theory. Let A be a unital filtered C∗-algebra.
For any positive numbers r and ε, we call

• an element u in A a ε-r-unitary if u belongs to Ar, ‖u∗ · u − 1‖ < ε and
‖u · u∗− 1‖ < ε. The set of ε-r-unitaries on A will be denoted by Uε,r(A).
• an element p in A a ε-r-projection if p belongs to Ar, p = p∗ and ‖p2−p‖ <
ε. The set of ε-r-projections on A will be denoted by Pε,r(A).

Notice that a ε-r-unitary is invertible, and that if p is an ε-r-projection in A, then
it has a spectral gap around 1/2 and then gives rise by functional calculus to a
projection κ0(p) in A such that ‖p− κ0(p)‖ < 2ε.

For any n integer, we set Uε,r
n (A) = Uε,r(Mn(A)) and Pε,r

n (A) = Pε,r(Mn(A)).
For any unital filtered C∗-algebra A, any positive numbers ε and r and any positive
integer n, we consider inclusions

Pε,r
n (A) →֒ Pε,r

n+1(A); p 7→

(
p 0
0 0

)

and

Uε,r
n (A) →֒ Uε,r

n+1(A); u 7→

(
u 0
0 1

)
.

This allows us to define
Uε,r

∞ (A) =
⋃

n∈N

Uε,r
n (A)

and
Pε,r
∞ (A) =

⋃

n∈N

Pε,r
n (A).

For a unital filtered C∗-algebra A, we define the following equivalence relations
on Pε,r

∞ (A) × N and on Uε,r
∞ (A):

• if p and q are elements of Pε,r
∞ (A), l and l′ are positive integers, (p, l) ∼

(q, l′) if there exists a positive integer k and an element h of Pε,r
∞ (A[0, 1])

such that h(0) = diag(p, Ik+l′ ) and h(1) = diag(q, Ik+l).
• if u and v are elements of Uε,r

∞ (A), u ∼ v if there exists an element h
of U3ε,2r

∞ (A[0, 1]) such that h(0) = u and h(1) = v. Notice that we have
changed slightly the definition of [8], in order to make K1ε, r(A) into group
(see [8, Remark 1.15]).
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If p is an element of Pε,r
∞ (A) and l is an integer, we denote by [p, l]ε,r the equiv-

alence class of (p, l) modulo ∼ and if u is an element of Uε,r
∞ (A) we denote by [u]ε,r

its equivalence class modulo ∼.

Definition 1.2. Let r and ε be positive numbers with ε < 1/4. We define:

(i) Kε,r
0 (A) = Pε,r

∞ (A) × N/ ∼ for A unital and

Kε,r
0 (A) = {[p, l]ε,r ∈ Pε,r(A+)× N/ ∼ such that rankκ0(ρA(p)) = l}

for A non unital (κ0(ρA(p)) being the spectral projection associated to
ρA(p));

(ii) Kε,r
1 (A) = Uε,r

∞ (A+)/ ∼, with A = A+ if A is already unital.

Then Kε,r
0 (A) turns to be an abelian group [8, Lemma 1.15] where

[p, l]ε,r + [p′, l′]ε,r = [diag(p, p′), l + l′]ε,r

for any [p, l]ε,r and [p′, l′]ε,r in Kε,r
0 (A). According to [8, Remark 1.15], Kε,r

1 (A) is
equipped with a structure of abelian group such that

[u]ε,r + [u′]ε,r = [diag(u, v)]ε,r,

for any [u]ε,r and [u′]ε,r in Kε,r
1 (A).

Recall from [8, corollaries 1.20 and 1.21] that for any positive numbers r and ε
with ε < 1/4, then

Kε,r
0 (C)→ Z; [p, l]ε,r 7→ rankκ0(p)− l

is an isomorphism and Kε,r
1 (C) = {0}.

We have for any filtered C∗-algebra A and any positive numbers r, r′, ε and ε′

with ε 6 ε′ < 1/4 and r 6 r′ natural group homomorphisms

• ιε,r0 : Kε,r
0 (A)−→K0(A); [p, l]ε,r 7→ [κ0(p)]−[Il] (where κ0(p) is the spectral

projection associated to p);
• ιε,r1 : Kε,r

1 (A)−→K1(A); [u]ε,r 7→ [u] ;
• ιε,r∗ = ιε,r0 ⊕ ιε,r1 ;

• ιε,ε
′,r,r′

0 : Kε,r
0 (A)−→Kε′,r′

0 (A); [p, l]ε,r 7→ [p, l]ε′,r′ ;

• ιε,ε
′,r,r′

1 : Kε,r
1 (A)−→Kε′,r′

1 (A); [u]ε,r 7→ [u]ε′,r′ .

• ιε,ε
′,r,r′

∗ = ιε,ε
′,r,r′

0 ⊕ ιε,ε
′,r,r′

1

If some of the indices r, r′ or ε, ε′ are equal, we shall not repeat it in ιε,ε
′,r,r′

∗ . The
following result is a consequence of [8, Remark 1.4].

Proposition 1.3. Let A = (Ar)r>0 be a filtered C∗-algebra.

(i) For any ε in (0, 1/4) and any y in K∗(A), there exist a positive number r
and an element x in Kε,r

∗ (A) such that ιε,r∗ (x) = y;
(ii) There exists a positive number λ > 1 independent on A such that the

following is satisfies:

let ε be in (0, 1/4), let r be a positive number and let x and x′ be elements
in Kε,r

∗ (A) such that ιε,r∗ (x) = ιε,r∗ (x′) in K∗(A). Then there exists a

positive number r′ with r′ > r such that ιε,λε,r,r
′

∗ (x) = ιε,λε,r,r
′

∗ (x′) in

Kλε,r′

∗ (A).
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If φ : A → B is a homomorphism filtered C∗-algebras, then since φ preserve
ε-r-projections and ε-r-unitaries, it obviously induces for any positive number r
and any ε ∈ (0, 1/4) a group homomorphism

φε,r
∗ : Kε,r

∗ (A) −→ Kε,r
∗ (B).

Moreover quantitative K-theory is homotopy invariant with respect to homotopies
that preserves propagation [8, Lemma 1.27]. There is also a quantitative version of
Morita equivalence [8, Proposition 1.29].

Proposition 1.4. If A is a filtered algebra and H is a separable Hilbert space, then
the homomorphism

A→ K(H)⊗A; a 7→



a

0
. . .




induces a (Z2-graded) group isomorphism (the Morita equivalence)

Mε,r
A : Kε,r

∗ (A)→ Kε,r
∗ (K(H)⊗A)

for any positive number r and any ε ∈ (0, 1/4).

1.2. Quantitative objects. In order to study the functorial properties of quanti-
tative K-theory, we introduce the concept of quantitative object.

Definition 1.5. A control pair is a pair (λ, h), where

• λ > 1;
• h : (0, 1

4λ) → (1,+∞); ε 7→ hε is a map such that there exists a non-

increasing map g : (0, 1
4λ)→ (0,+∞), with h 6 g.

The set of control pairs is equipped with a partial order: (λ, h) 6 (λ′, h′) if
λ 6 λ′ and hε 6 h′

ε for all ε ∈ (0, 1
4λ′ ).

Definition 1.6. A quantitative object is a family O = (Oε,r)0<ε<1/4,r>0 of abelian
groups, together with a family of group homomorphisms

ιε,ε
′,r,r′

O : Oε,r → Oε′,r′

for 0 < ε 6 ε′ < 1/4 and 0 < r ≤ r′ such that

• ιε,ε,r,rO = IdOε,r for any 0 < ε < 1/4 and r > 0;

• ιε
′,ε′′,r′,r′′

O ◦ ιε,ε
′,r,r′

O = ιε,ε
′′,r,r′′

O for any 0 < ε 6 ε′ 6 ε′′ < 1/4 and
0 < r 6 r′ 6 r′′;
• there exists a control pair (α, k) such that the following holds: for any
0 < ε < 1

4α and r > 0 and any x in Oε,r, there exists x′ in Oαε,kεr

satisfying ιε,αε,r,kεr
O (x) + x′ = 0.

Example 1.7.

(i) Our prominent example will be of course quantitative K-theory K∗(A) =
(Kε,r

∗ (A))0<ε<1/4,r>0 of a filtered C∗-algebras A = (Ar)r>0 with structure

maps ιε,ε
′,r,r′ : Kε,r

∗ (A)−→Kε′,r′

∗ (A) and ιε, r : Kε,r
∗ (A)−→K∗(A) such

that ιε,ε
′,r,r′

∗ = ιε
′,r′

∗ ◦ ιε,ε
′,r,r′

∗ for 0 < ε 6 ε′ < 1/4 and 0 < r 6 r′;
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(ii) If (Oi)i∈N is a family of quantitative object with Oi = (Oε,r
i )0<ε<1/4,r>0 for

any integer i. Define
∏

i∈N
Oi = (

∏
i∈N

Oε,r
i )0<ε<1/4,r>0. Then

∏
i∈N
Oi is

also a quantitative object. In the case of a constant family (Oi)i∈N with
Oi = O a quantitative object, then we set ON for

∏
i∈N
Oi.

1.3. Controlled morphisms. Obviously, the definition of controlled morphism
[8, Section 2] can be then extended to quantitative objects.

Definition 1.8. Let (λ, h) be a control pair and let O = (Oε,r)0<ε<1/4,r>0 and
O′ = (O′ε,r)0<ε<1/4,r>0 be quantitative objects. A (λ, h)-controlled morphism

F : O → O′

is a family F = (F ε,r)0<ε< 1
4λ ,r>0 of semigroups homomorphisms

F ε,r : Oε,r → O′λε,hεr

such that for any positive numbers ε, ε′, r and r′ with 0 < ε 6 ε′ < 1
4λ and

hεr 6 hε′r
′, we have

F ε′,r′ ◦ ιε,ε
′,r,r′

O = ι
λε,λε′,hεr,hε′r

′

O′ ◦ F ε,r.

When it is not necessary to specify the control pair, we will just say that F is
a controlled morphism. If O = (Oε,r)0<ε<1/4,r>0 is a quantitative object, let us
define the identity (1, 1)-controlled morphism IdO = (IdOε,r )0<ε<1/4,r>0 : O → O.
Recall that if A and B are filtered C∗-algebra and if F : K∗(A) → K∗(B) is
a (λ, h)-controlled morphism, then F induces a morphism F : K∗(A) → K∗(B)
unically defined by ιε,r∗ ◦ F ε,r = F ◦ ιε,r∗ .

If (λ, h) and (λ′, h′) are two control pairs, define

h ∗ h′ : (0,
1

4λλ′
)→ (0,+∞); ε 7→ hλ′εh

′
ε.

Then (λλ′, h∗h′) is again a control pair. LetO = (Oε,r)0<ε<1/4,r, O
′ = (O′ε,r)0<ε<1/4,r

and O′′ = (O′′ε,r)0<ε<1/4,r be quantitative objects, let

F = (F ε,r)0<ε< 1
4αF

,r>0 : O → O
′

be a (αF , kF)-controlled morphism, and let

G = (Gε,r)0<ε< 1
4αG

,r>0 : O′ → O′′

be a (αG , kG)-controlled morphism. Then G ◦ F : O → O′′ is the (αGαF , kG ∗ kF)-
controlled morphism defined by the family

(GαF ε,kF,εr ◦ F ε,r : Oε,r → O′′αGαFε,kF,εkG,αF ,εr)0<ε< 1
4αFαG

,r>0:.

Notation 1.9. LetO = (Oε,r)0<ε<1/4,r>0 andO
′ = (O′ε,r>0)0<ε<1/4,r>0be quanti-

tative objects and letF = (F ε,r)0<ε<1/4,r>0 : O → O′ (resp. G = (Gε,r)0<ε<1/4,r>0 :
O → O′) be a (αF , kF)-controlled morphism (resp. a (αG , kG)-controlled mor-

phism). Then we write F
(λ,h)
∼ G if

• (αF , kF ) 6 (λ, h) and (αG , kG) 6 (λ, h).
• for every ε in (0, 1

4λ) and r > 0, then

ι
αFε,λε,kF,εr,hεr
j ◦ F ε,r = ι

αGε,λε,kG,εr,hεr
j ◦Gε,r.
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Definition 1.10. Let (λ, h) be a control pair, and let F : O → O′ be a (αF , kF)-
controlled morphism with (αF , kF ) 6 (λ, h). F is called (λ, h)-invertible or a (λ, h)-

isomorphism if there exists a controlled morphism G : O′ → O such that G ◦F
(λ,h)
∼

IdO and F ◦ G
(λ,h)
∼ IdO′ . The controlled morphism G is called a (λ, h)-inverse for

G.

In particular, if A and B are filtered C∗-algebras and if G : K∗(A) → K∗(B)
is a (λ, h)-isomorphism, then the induced morphism G : K∗(A) → K∗(B) is an
isomorphism and its inverse is induced by a controlled morphism (indeed induced
by any (λ, h)-inverse for F).

If A = (Ai)i∈N is any family of filtered C∗-algebras and if H a separable Hilbert
space. Set A∞

c,r =
∏

i∈N
K(H)⊗Ai,r for any r > 0 and define the C∗-algebra A∞

c as
the closure of

⋃
r>0A

∞
c,r in

∏
i∈N
K(H)⊗Ai.

Lemma 1.11. Let A = (Ai)i∈N be a family of filtered C∗-algebras and let

FA,∗ = (FA,ε,r)0<ε,1/4,r>0 : K∗(A
∞
c ) −→

∏
K∗(Ai),

where

F ε,r
A,∗ : Kε,r

∗ (A∞
c ) −→

∏

i∈N

Kε,r
∗ (Ai)

is the map induced on the j th factor and up to the Morita equivalence by the
restriction to A∞

c of the evaluation
∏

i∈N
K(H)⊗Ai → K(H)⊗Aj at j ∈ N. Then,

FA,∗ is a (α, h)-controlled isomorphism for a control pair (α, h) independent on the
family A.

We postpone the proof of this lemma until the end the next subsection.

1.4. Control exact sequences.

Definition 1.12. Let (λ, h) be a control pair,

• Let O = (Oε,r)0<ε< 1
4 ,r>0, O

′ = (O′
ε,r)0<ε< 1

4 ,r>0 and O
′′ = (O′′

ε,r)0<ε< 1
4 ,r>0

be quantitative objects and let

F = (F ε,r)0<ε< 1
4λ ,r>0 : O → O

′

be a (αF , kF )-controlled morphism and let

G = (Gε,r)0<ε< 1
4αG

,r>0 : O′ → O′′

be a (αG , kG)-controlled morphism. Then the composition

O
F
→ O′ G

→ O′′

is said to be (λ, h)-exact at O′ if G ◦ F = 0 and if for any 0 < ε <
1

4max{λαF ,αG} , any r > 0 and any y in O′ε,r such that Gε,r(y) = 0 in O′′
ε,r,

there exists an element x in Oλε,hεr such that

Fλε,hλεr(x) = ι
ε,αFλε,r,kF,λεhεr
O′ (y)

in O′αFλε,kF,λεhεr.
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• A sequence of controlled morphisms

· · · Ok−1
Fk−1
−→ Ok

Fk−→ Ok+1
Fk+1
−→ Ok+2 · · ·

is called (λ, h)-exact if for every k, the composition

Ok−1
Fk−1
−→ Ok

Fk−→ Ok+1

is (λ, h)-exact at Ok.

Definition 1.13. Let A be a C∗-algebra filtered by (Ar)r>0 and let J be an ideal
of A. The extension of C∗-algebras

0→ J → A→ A/J → 0

is said to be filtered and semi-split (or a semi-split extension of filtered C∗-algebras)
if there exists a completely positive cross-section

s : A/J → A

such that

s((A/J)r)) ⊂ Ar

for any number r > 0. Such a cross-section is said to be semi-split and filtered.

Notice that in this case, the ideal J is then filtered by (Ar ∩ J)r>0. For any
extension of C∗-algebras

0→ J → A→ A/J → 0

we denote by ∂J,A : K∗(A/J)→ K∗(J) the associated (odd degree) boundary map.

Proposition 1.14. There exists a control pair (αD, kD) such that for any semi-split
extension of filtered C∗-algebras

0 −→ J −→ A
q
−→ A/J −→ 0,

there exists a (αD, kD)-controlled morphism of odd degree

DJ,A = (∂ε,r
J,A)0<ε< 1

4αD
,r>0 : K∗(A/J)→ K∗(J)

which induces in K-theory ∂J,A : K∗(A/J)→ K∗(J).

Moreover the controlled boundary map enjoys the usual naturally properties
with respect to extensions. If the extension

0→ J → A→ A/J → 0

is split by a filtered homomorphism, i.e there exists a homomorphism of filtered
C∗-algebras s : A/J → A such that q ◦ s = IdA/J , then we have DJ,A = 0.

Theorem 1.15. There exists a control pair (λ, h) such that for any semi-split
extension of filtered C∗-algebras

0 −→ J

−→ A

q
−→ A/J −→ 0,

then the following six-term sequence is (λ, h)-exact

K0(J)
∗

−−−−→ K0(A)
q∗

−−−−→ K0(A/J)

DJ,A

x DJ,A

y

K1(A/J)
q∗

←−−−− K1(A)
∗

←−−−− K1(J)
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If A is a filtered C∗-algebra, let us denote its suspension and its cone respectively
by SA and CA, i.e SA = C0((0, 1)) and CA = C0((0, 1]). We endow SA and CA
with the obvious structure of filtered C∗-algebras arising from A. The algebra CA
being contractible as a filtered C∗ algebra, the we have Kε,r

∗ (CA) = {0} for every
positive number ε and r such that ε < 1/4 [8, Lemma 1.27]. If we consider the
Bott extension

0−→SA→ CA
ev1−→ A−→0,

where ev1 : CA→ A is the evaluation at 1 with corresponding controlled boundary
morphisms DA = DSA,CA. Then

DA = (∂ε,r
A )0<ε 1

4αD
,r>0 : K0(A)→ K1(SA)

and

DA = (∂ε,r
A )0<ε 1

4αD
,r>0 : K1(A)→ K0(SA)

are controlled isomorphisms that induce the Bott isomorphisms ∂A : K0(A) →
K1(SA) and ∂A : K1(A)→ K0(SA).

In the particular case of a filtered extension of C∗-algebras

0→ J

→ A

q
→ A/J → 0

that splits by a filtered morphism, then the following sequence is (λ, h)-exact

0−→K0(J)

−→ K0(A)

q
−→ K0(A/J)−→0.

Proof of lemma 1.11. Assume first that all the Ai are unital. Then the result is
a consequence of [8, Proposition 3.1]. If Ai is not unital for some i, then for every
integer i, let us provide

Ãi = {(x, λ); x ∈ Ai , λ ∈ C}

with the product

(x, λ)(x′, λ′) = (xx′ + λx′ + λ′x)

for all (x, λ) and (x′, λ′) in Ai. Then Ãi is filtered with

Ãi,r = {(x, λ); x ∈ Ai,r , λ ∈ C}.

Set then Ã = (Ãi)i∈N. Let us denote by C the constant family of the C∗-algebra
C. Then

0−→A∞
c −→Ã∞

c −→Cc−→0

is a split extension of filtered C∗-algebra. Then we have a commutative diagram

0 −−−−→ K∗(A
∞
c ) −−−−→ K∗(Ã

∞
c ) −−−−→ K∗(Cc) −−−−→ 0

FA,∗

y
yF

Ã,∗

yFC,∗

0 −−−−→
∏

i∈N
K∗(Ai) −−−−→

∏
i∈N
K∗(Ãi) −−−−→ KN

∗ (C) −−−−→ 0

,

with (λ, h)-exact rows for the control pair (λ, h) of theorem 1.15. The result is now
a consequence of a five lemma type argument. �
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1.5. KK-theory and controlled morphisms. Let A be a C∗-algebra and let B
be a filtered C∗-algebra filtered by (Br)r>0. Let us define A⊗Br as the closure in
the spatial tensor product A⊗B of the algebraic tensor product of A and Br. Then
the C∗-algebra A⊗B is filtered by (A⊗Br)r>0. If f : A1 → A2 is a homomorphism
of C∗-algebras, let us set

fB : A1⊗B → A2⊗B; a⊗b 7→ f(a)⊗b.

Recall from [3] that for C∗-algebras A1, A2 and B, G. Kasparov defined a ten-
sorization map

τB : KK∗(A1, A2)→ KK∗(A1⊗B,A2⊗B).

If B is a filtered C∗-algebra, then for any z in KK∗(A1, A2) the morphism

K∗(A1⊗B)−→K∗(A2⊗B); x 7→ x⊗A1⊗BτB(z)

is induced by a control morphism which enjoys compatibity properties with Kas-
parov product [8, Theorem 4.4].

Theorem 1.16. There exists a control pair (αT , kT ) such that

• for any filtered C∗-algebra B;
• for any C∗-algebras A1 and A2;
• for any element z in KK∗(A1, A2),

There exists a (αT , kT )-controlled morphism TB(z) : K∗(A1⊗B)→ K∗(A2⊗B) with
same degree as z that satisfies the following:

(i) TB(z) : K∗(A1⊗B) → K∗(A2⊗B) induces in K-theory the right multipli-
cation by τB(z);

(ii) For any elements z and z′ in KK∗(A1, A2) then

TB(z + z′) = TB(z) + TB(z
′).

(iii) Let A′
1 be a filtered C∗-algebras and let f : A1 → A′

1 be a homomorphism
of C∗-algebras, then TB(f

∗(z)) = TB(z) ◦ fB,∗ for all z in KK∗(A
′
1, A2).

(iv) Let A′
2 be a C∗-algebra and let g : A′

2 → A2 be a homomorphism of C∗-
algebras then TB(g∗(z)) = gB,∗ ◦ TB(z) for any z in KK∗(A1, A

′
2).

(v) TB([IdA1 ])
(αT ,kT )
∼ IdK∗(A1⊗B).

(vi) For any C∗-algebra D and any element z in KK∗(A1, A2), we have TB(τD(z)) =
TB⊗D(z).

(vii) For any semi-split extension of C∗-algebras 0 → J → A → A/J → 0
with corresponding element [∂J,A] of KK1(A/J, J) that implements the
boundary map, then we have

TB([∂J,A]) = DJ⊗B,A⊗B.

Moreover, TB is compatible with Kasparov products.

Theorem 1.17. There exists a control pair (λ, h) such that the following holds :
let A1, A2 and A3 be separable C∗-algebras and let B be a filtered C∗-algebra.

Then for any z in KK∗(A1, A2) and any z′ in KK∗(A2, A3), we have

TB(z⊗A2z
′)

(λ,h)
∼ TB(z

′) ◦ TB(z).

We also have in the case of finitely generated group a controlled version of the
Kasparov transformation. Let Γ be a finitely generated group. Recall that a length
on Γ is a map ℓ : Γ→ R

+ such that



12 H. OYONO-OYONO AND G. YU

• ℓ(γ) = 0 if and only if γ is the identity element e of Γ;
• ℓ(γγ′) 6 ℓ(γ) + ℓ(γ′) for all element γ and γ′ of Γ.
• ℓ(γ) = ℓ(γ−1).

In what follows, we will assume that ℓ is a word length arising from a finite generat-
ing symmetric set S, i.e ℓ(γ) = inf{d such that γ = γ1 · · · γd with γ1, . . . , γd in S}.
Let us denote by B(e, r) the ball centered at the neutral element of Γ with radius
r, i.e B(e, r) = {γ ∈ Γ such that ℓ(γ) 6 r}. Let A be a separable Γ-C∗-algebra, i.e
a separable C∗-algebra provided with an action of Γ by automorphisms. For any
positive number r, we set

(A⋊redΓ)r
def
=={f ∈ Cc(Γ, A) with support in B(e, r)}.

Then the C∗-algebra A⋊redΓ is filtered by ((A⋊redΓ)r)r>0. Moreover if f : A →
B is a Γ-equivariant morphism of C∗-algebras, then the induced homomorphism
fΓ : A⋊redΓ → B⋊redΓ is a filtered homomorphism. In [3] was constructed
for any Γ-C∗-algebras A and B a natural transformation JΓ : KKΓ

∗ (A,B) →
KK∗(A⋊redΓ, B⋊redΓ) that preserves Kasparov products.

Theorem 1.18. There exists a control pair (αJ , kJ ) such that

• for any separable Γ-C∗-algebras A and B;
• For any z in KKΓ

∗ (A,B),

there exists a (αJ , kJ )-controlled morphism

J red
Γ (z) : K∗(A⋊red Γ)→ K∗(B⋊redΓ)

of same degree as z that satisfies the following:

(i) For any element z of KKΓ
∗ (A,B), then J red

Γ (z) : K∗(A⋊red Γ)→ K∗(B⋊redΓ)
induces in K-theory right multiplication by Jred

Γ (z).
(ii) For any z and z′ in KKΓ

∗ (A,B), then

J red
Γ (z + z′) = J red

Γ (z) + J red
Γ (z′).

(iii) For any Γ-C∗-algebra A′, any homomorphism f : A→ A′ of Γ-C∗-algebras
and any z in KKΓ

∗ (A
′, B), then J red

Γ (f∗(z)) = J red
Γ (z) ◦ fΓ,∗.

(iv) For any Γ-C∗-algebra B′, any homomorphism g : B → B′ of Γ-C∗-algebras
and any z in KKΓ

∗ (A,B), then J red
Γ (g∗(z)) = gΓ,∗ ◦ J red

Γ (z).
(v) If

0→ J → A→ A/J → 0

is a semi-split exact sequence of Γ-C∗-algebras, let [∂J,A] be the element of
KKΓ

1 (A/J, J) that implements the boundary map ∂J,A. Then we have

J red
Γ ([∂J,A]) = DJ⋊redΓ,A⋊redΓ.

The controlled Kasparov transformation is compatible with Kasparov products.

Theorem 1.19. There exists a control pair (λ, h) such that the following holds:
for every separable Γ-C∗-algebras A, B and D, any elements z in KKΓ

∗ (A,B) and
z′ in KKΓ

∗ (B,D), then

J red
Γ (z ⊗B z′)

(λ,h)
∼ J red

Γ (z′) ◦ J red
Γ (z).

We have similar result for maximal crossed products.
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1.6. Quantitative assembly maps. Let Γ be a finitely generated group and let B
be a Γ-C∗-algebraB. We equip Γ with any word metric. Recall that if d is a positive
number, then the Rips complex of degree d is the set Pd(Γ) of probability measure
with support of diameter less than d. Then Pd(Γ) is a locally finite simplicial
complex and provided with the simplicial topology, Pd(Γ) is endowed with a proper
and cocompact action of Γ by left translation. In [8] was constructed for any Γ-C∗-
algebra B a bunch of quantitative assembly maps

µε,r,d
Γ,B,∗ : KKΓ

∗ (C0(Pd(Γ)), B)→ Kε,r
∗ (B⋊redΓ),

with d > 0, ε ∈ (0, 1/4) and r > rd,ε, where

r : [0,+∞)× (0, 1/4)→ (0,+∞) : (d, ε) 7→ rd,ε

is a function independent on B, non decreasing in d and non increasing in ε. More-

over, the maps µε,r,d
Γ,B,∗ induced the usual assembly maps

µd
Γ,B,∗ : KKΓ

∗ (C0(Ps(Γ)), B)→ K∗(B⋊redΓ),

i.e µd
Γ,B,∗ = ιε,r∗ ◦µ

ε,r,d
Γ,B,∗. Let us recall now the definition of the quantitative assembly

maps. Observe first that any x in Pd(Γ) can be written down in a unique way as a
finite convex combination

x =
∑

γ∈Γ

λγ(x)δγ ,

where δγ is the Dirac probability measure at γ in Γ. The functions

λγ : Pd(Γ)→ [0, 1]

are continuous and γ(λγ′) = λγγ′ for all γ and γ′ in Γ. The function

pΓ,d : Γ→ C0(Pd(Γ)); γ 7→
∑

γ∈Γ

λ1/2
e λ1/2

γ

is a projection of C0(Pd(Γ))⋊redΓ with propagation less than d. Let us set then
rd,ε = kJ ,ε/αJ

d. Recall that kJ can be chosen non increasing and in this case, rd,ε
is non decreasing in d and non increasing in ε.

Definition 1.20. For any Γ-C∗-algebra A and any positive numbers ε, r and d
with ε < 1/4 and r > rd,ε, we define the quantitative assembly map

µε,r,d
Γ,A,∗ : KKΓ

∗ (C0(Pd(Γ)), A) → Kε,r
∗ (A⋊red Γ)

z 7→
(
J
red, ε

αJ
, r
kJ,ε/αJ

Γ (z)
)(

[pΓ,d, 0] ε
αJ

, r
kJ,ε/αJ

)
.

Then according to theorem 1.18, the map µε,r,d
Γ,A is a homomorphism of groups

(resp. groups) in even (resp. odd) degree. For any positive numbers d and d′

such that d 6 d′, we denote by qd,d′ : C0(Pd′(Γ))→ C0(Pd(Γ)) the homomorphism
induced by the restriction from Pd′(Γ) to Pd(Γ). It is straightforward to check
that if d, d′ and r are positive numbers such that d 6 d′ and r > rd′,ε, then

µε,r,d
Γ,A = µε,r,d′

Γ,A ◦ qd,d′,∗. Moreover, for every positive numbers ε, ε′, d, r and r′ such

that ε 6 ε′ 6 1/4, rd,ε 6 r, rd,ε′ 6 r′, and r < r′, we get by definition of a
controlled morphism that

ιε,ε
′,r,r′

∗ ◦ µε,r,d
Γ,A,∗ = µε′,r′,d

Γ,A,∗ .
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2. Persistence approximation property

In this section, we introduce the persistence approximation property for filtered
C∗-algebras. In the case of a crossed product C∗-algebra by a finitely gener-
ated group, we prove that the persistence approximation property follows from
the Baum-Connes conjecture with coefficients.

Let B be a filtered C∗-algebra. As a consequence of proposition 1.3, we see that
there exists for every ε ∈ (0, 1/4] a surjective map

lim
r>0

Kε,r
∗ (B)→ K∗(B)

induced by (ιε,r∗ )r>0. Moreover, although this morphism is not a priori ono-to-one,
there exist for every ε ∈ (0, 1/4] and r > 0, positive numbers ε′ in [ε, 1/4) (indeed
independent on x and B) and r′ > r such that for any x in Kε,r

∗ (B), then ιε,r∗ (x) = 0

implies that ιε,ε
′,r,r′

∗ (x) = 0 in Kε′,r′

∗ (B). It is of revelance to ask whether this
r′ depends or not on x, in other word whether the family (Kε,r

∗ (B))ε∈(0,1/4),r>0

provides a persistent approximation for K∗(B) in the following sense: for any ε
in (0, 1/4) and r > 0, there exist ε′ in (ε, 1/4) and r′ > r such that for any x in

Kε,r
∗ (B), then ιε,ε

′,r,r′

∗ (x) 6= 0 in Kε′,r′

∗ (B) implies that ιε,r∗ (x) 6= 0 in K∗(B).
Let us consider for a filtered C∗-algebra B and positive numbers ε, ε′, and r′

such that 0 < ε 6 ε′ < 1/4 and 0 < r 6 r′ the following statement:

PA∗(B, ε, ε′, r, r′) : for any x ∈ Kε,r
∗ (B), then ιε,r∗ (x) = 0 in K∗(B) implies that

ιε,ε
′,r,r′

∗ (x) = 0 in Kε′,r′

∗ (B).

Notice that PA∗(B, ε, ε′, r, r′) can be rephrased as follows:

the restriction of ιε
′,r′

∗ : Kε′,r′

∗ (B)→ K∗(B) to ιε,ε
′,r,r′

∗ (Kε,r
∗ (B)) is one-to-one.

We investigate in this section the following persistence approximation property:
given ε small enought and r positive numbers, is there exist positive numbers ε′

and r′ with 0 < ε 6 ε′ < 1/4 and r < r′ such that PA∗(B, ε, ε′, r, r′) holds?

2.1. The case of crossed products.

Theorem 2.1. Let Γ be a finitely generated group. Assume that

• Γ satisfies the Baum-Connes conjecture with coefficients.
• Γ admits a cocompact universal example for proper actions.

Then for some universal constant λpa > 1, any ε in (0, 1
4λpa

), any r > 0, and any

Γ-C∗-algebra A there exists r′ > r such that PA(A⋊redΓ, ε, λpaε, r, r
′) holds.

Proof. Notice first that since Γ satisfies the Baum-Connes conjecture with coef-
ficients and admits a cocompact universal example for proper action, there exist
positive numbers d end d′ with d 6 d′ such that for any Γ-C∗-algebra B, the
following is satisfies:

• for any z in K∗(B⋊redΓ), there exists x in KKΓ
∗ (C0(Pd(Γ)), B) such that

µd
Γ,B,∗(x) = z;

• for any x in KKΓ
∗ (C0(Pd(Γ)), B) such that µd

Γ,B,∗(x) = 0, then q∗d,d′(x) = 0

inKKΓ
∗ (C0(Pd(Γ)), B), where q∗d,d′ : KKΓ

∗ (C0(Pd(Γ)), B)→ KKΓ
∗ (C0(Pd′(Γ)), B)

is induced by the inclusion Pd(Γ) →֒ Pd′(Γ).

Let us fix such d and d′, let λ be as in proposition 1.3, pick (α, h) as in lemma 1.11
and set λpa = αλ. Assume that this statement does not hold. Then there exists:
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• ε in (0, 1
4λpa

) and r > 0;

• an unbounded increasing sequence (ri)i∈N bounded below by r;
• a sequence of Γ-C∗-algebras (Ai)i∈N;
• a sequence of elements (xi)i∈N with xi in Kε,r

∗ (Ai⋊redΓ)

such that ιε,r∗ (xi) = 0 in K∗(Ai⋊redΓ) and ιε,λpaε,r,ri
∗ (xi) 6= 0 in Kλpaε,ri

∗ (Ai⋊redΓ)
for every integer i. We can assume without loss of generality that r > rd′,ε.

According to lemma 1.11, there exists an element x inKαε,hεr
∗

((∏
j∈N
K(H)⊗Aj

)
⋊redΓ

)

that maps to ιε,αε,r,hεr
∗ (xi) for all integer i under the composition

Kαε,hεr
∗

((∏

j∈N

K(H)⊗Aj

)
⋊redΓ

)
−→ Kαε,hεr

∗ (K(H)⊗Ai⋊redΓ)
Mαε,hεr

Ai−→ Kαε,hεr
∗ (Ai⋊redΓ),

where the first map is induced by the i th projection
∏

j∈N
K(H)⊗Aj−→K(H)⊗Ai

and the map Mαε,hεr
Ai

is the Morita equivalence of proposition1.4. Let z be an

element in KKΓ
∗

(
C0(Pd(Γ)),

∏
j∈N
K(H)⊗Aj

)
such that

µd
Γ,

∏
j∈N

K(H)⊗Aj ,∗
(z) = ιαε,hεr

∗ (x)

in K∗

((∏
j∈N
K(H)⊗Aj

)
⋊redΓ

)
. Recall from [9, Proposition 3.4], that we have an

isomorphism

(1) KKΓ
∗

(
C0(Pd(Γ)),

∏

j∈N

K(H)⊗Aj

) ∼=
−→

∏

j∈N

KKΓ
∗ (C0(Pd(Γ)), Aj)

induced on the i th factor and up to the Morita equivalence

KKΓ
∗ (C0(Pd(Γ)), Aj) ∼= KKΓ

∗ (C0(Pd(Γ)),K(H) ⊗Aj)

by the i the projection
∏

j∈N
K(H)⊗Aj → K(H)⊗Ai. Let (zj)j∈N be the element

of
∏

j∈N
KKΓ

∗ (C0(Pd(Γ)), Aj) corresponding to z under this identification. The
quantitative Baum-Connes assembly maps being compatible with the usual one,
we get that

µd
Γ,

∏
j∈N

K(H)⊗Aj,∗
(z) = ιαε,hεr

∗ ◦ µd,αε,hεr
Γ,

∏
j∈N

K(H)⊗Aj ,∗
(z).

But then, according to item (ii) of proposition 1.3, there exists R > hεr such that

ιαε,λpaε,hεr,R
∗ (x) = ιαε,λpaε,hεr,R

∗ ◦ ιαε,hεr
∗ ◦ µd,αε,hεr

Γ,
∏

j∈N
K(H)⊗Aj ,∗

(z)

= µd,λpaε,R
Γ,

∏
j∈N

K(H)⊗Aj,∗
(z)

Using once again the compatibility of the quantitative assembly maps with the
usual ones, we obtain by naturality that µd

Γ,Ai,∗,red
(zi) = 0 for every integer i and

hence qd,d′,∗(zi) = 0 in KKΓ
∗ (C0(Pd′(Γ)), Ai). Using once more, equation (1) we

deduce that qd,d′,∗(z) = 0 in KKΓ
∗

(
C0(Pd′(Γ)),

∏
j∈N
K(H)⊗Aj

)
and since

µd,λpaε,R
Γ,

∏
j∈N

K(H)⊗Aj ,∗
(z) = µd′,λpaε,R

Γ,
∏

j∈N
K(H)⊗Aj ,∗

◦ qd,d′,∗(z)

that ιαε,λpaε,hεr,R
∗ (x) = 0 in Kλpaε,R

∗

((∏
j∈N
K(H)⊗Aj

)
⋊redΓ

)
. By naturality, we

see that ιε,λpaε,r,R
∗ (xi) = 0 in Kλpaε,R

∗ (Ai⋊redΓ) for every integer i. Pick then an
integer i such that ri > R, we have

ιε,λpaε,r,ri
∗ (xi) = ιλpaε,R,ri ◦ ιε,λpaε,r,R

∗ (xi)

= 0
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which contradicts our assumption. �

If we specifies the coefficients in the previous proof, we get indeed

Proposition 2.2. Let Γ be a finitely generated group and let A be a Γ-C∗-algebra.
Assume that

• Γ admits a cocompact universal example for proper actions;
• the Baum-Connes assembly map for Γ with coefficients in ℓ∞(N,K(H)⊗A)
is onto;
• the Baum-Connes assembly map for Γ with coefficients in A is one to one.

Then for some universal constant λpa > 1, any ε in (0, 1
4λpa

) and any r > 0 there

exists r′ > r such that PA(A⋊redΓ, ε, λpaε, r, r
′) is satisfied.

Since for any C∗-algebra B, the Baum-Connes assembly map for Γ with coeffi-
cient in C0(Γ, B) (B being provided with the trivial action) is an isomorphism and
since C0(Γ, B)⋊redΓ ∼= B ⊗ K(ℓ2(Γ)), previous proposition leads to the following
corollary

Corollary 2.3. Let Γ be a finitely generated group and let B be a C∗-algebra.
Assume that

• Γ admits a cocompact universal example for proper actions;
• the Baum-Connes assembly map for Γ with coefficients in ℓ∞(N, C0(Γ,K(H)⊗
B)) is onto;

Then for some universal constant λpa > 1, any ε in (0, 1
4λpa

) and any r > 0 there

exists r′ > r such that PA(B ⊗ K(ℓ2(Γ)), ε, λpaε, r, r
′) is satisfied. Moreover, if Γ

satisfies the Baum-Connes conjecture with coefficients, then r′ does not depend on
B.

If we take B = C in the previous corollary, we obtain the following linear algebra
statement:

Proposition 2.4. Let Γ be a finitely generated and let H be a separable Hilbert
space. Assume that

• Γ admits a cocompact universal example for proper actions;
• the Baum-Connes assembly map for Γ with coefficients in ℓ∞(N, C0(Γ,K(H)))
is onto;

Then for some universal constant λ > 1, any ε in (0, 1
4λ) and any r > 0 there exists

R > r such that

• If u is an ε-r-unitary of K(ℓ2(Γ)⊗H) + CIdℓ2(Γ)⊗H , then u is connected
to Idℓ2(Γ)⊗H by a homotopy of λε-R-unitaries.

• If q0 and q1 are ε-r-projections of K(ℓ2(Γ)⊗H) such that rankκ0(q0) =
rankκ0(q1). Then q0 and q1 are connected by a homotopy of λε-R-projections.

2.2. Induction and geometric setting. The conclusions of corollary 2.3 and
proposition 2.4 concern only the metric properties of Γ (indeed as we shall see
latter up to quasi-isometries). For the purpose of having statements analogous to
corollary 2.3 in a metric setting, we need to have a completly geometric description
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of the quantitative assembly maps

µd,ε,r
Γ,

∏
i∈N

C0(Γ,K(H)⊗Ai),∗
: KKΓ

∗ (C0(Pd(Γ)),
∏

i∈N

C0(Γ,K(H)⊗Ai))

−→K∗((
∏

i∈N

C0(Γ,K(H)⊗Ai)⋊redΓ)

(see the proof of theorem 2.1). Namely, we study in this subsection a slight gener-
alisation of these maps to the case of induced algebras from the action of a finite
subgroup of Γ.

Let Γ be a discrete group equipped with a proper lenght ℓ. Let F be a finite
subgroup of Γ. For any F -C∗-algebra A, let us consider the induced Γ-algebra

IΓF (A) = {f ∈ C0(Γ, A) such that f(γ) = kf(γk) for every k in F}.

Then left translation on C0(Γ, A) provides a Γ-C∗-algebra structure on IΓF (A).

Moreover, there is a covariant representation of (IΓF (A),Γ) on the algebra of ad-
jointable operators of the right Hilbert A-module A⊗ℓ2(Γ), where

• if f is in IΓF (A), then f acts on A⊗ℓ2(Γ) by pointwise multiplication by
γ 7→ γ−1(f(γ));
• Γ acts by left translations.

The induced representation then provides an identification between IΓF (A)⋊redΓ
and the algebra of F -invariant element of A⊗K(ℓ2(Γ)) for the diagonal action of
F , the action on K(ℓ2(Γ) being by right translation. Let us denote by AF,Γ the
algebra of F -invariant element of A⊗K(ℓ2(Γ)) and by

ΦA,F,Γ : IΓF (A)⋊redΓ→ AF,Γ,

the isomorphism induced by the above covariant representation.
The lenght ℓ gives rise to a filtration structure (IΓF (A)⋊redΓr)r>0 on IΓF (A)⋊redΓ

(recall that (IΓF (A)⋊redΓr) is the the set of functions of Cc(Γ, I
Γ
F (A) with support

in the ball of radius r centered at the neutral element). The right invariant met-
ric associated to ℓ also provides a filtration structure on K(ℓ2(Γ)) and hence on
A⊗K(ℓ2(Γ)). This filtration is invariant under the action of F and moreover the

isomorphism ΦA,F,Γ : IΓF (A)⋊redΓ → AF,Γ preserves the filtrations. By using the
induced algebra in the proof of corollary 2.3, we get

Proposition 2.5. Let F be a finite subgroup of a finitely generated group Γ and
let A be a F -C∗-algebra. Assume that

• Γ admits a cocompact universal example for proper actions;
• the Baum-Connes assembly map for Γ with coefficient in ℓ∞(N, C0(Γ,K(H)⊗
IΓF (A))) is onto;

Then for some universal constant λpa > 1, any ε in (0, 1
4λpa

) and any r > 0 there

exists r′ > r such that PA(AF,Γ, ε, λpaε, r, r
′) is satisfied. Moreover, if Γ satisfies

the Baum-Connes conjecture with coefficients, then r′ does not depend on F and
A.

In [7] was stated for any F -C∗-algebra an isomorphism

(2) IΓF (Ps(Γ))∗ : lim
X

KKF
∗ (C(X), A)

∼=
−→ KKΓ

∗ (C0(Ps(Γ)), I
Γ
F (A)),
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where X runs through F -invariant compact subsets of Ps(Γ). In order to describe
this isomorphism, let us first recall the definition of induction for equivariant KK-
theory. Let A and B be F -C∗-algebras and let (E , ρ, T ) be aK-cycle forKKF

∗ (A,B)
where,

• E is a right B-Hilbert module provided with an equivariant action of F ;
• ρ : A → LB(E) is an F -equivariant representation of A into the algebra
LB(E) of adjointable operators of E ;
• T is a F -equivariant operator of LB(E) satisfying the K-cycle relations.

Let us define

IΓF (E) = {f ∈ C0(Γ, E) such that f(γ) = kf(γk) for every k in F}.

Then IΓF (E) is a right IΓF (B)-Hilbert module for the pointwise scalar product and
multiplication and the representation ρ : A→ LB(E) gives rise in the same way to
a representation

IΓF ρ : IΓF (A)→ LIΓF (B)(I
Γ
F (E)).

Let IΓF T be the operator of LIΓF (A)(I
Γ
F (E)) given by the pointwise multiplication by

T , it is then plain to check that (IΓF (E), I
Γ
F ρ, IΓF T ) is a K-cycle forKKΓ

∗ (I
Γ
F A, IΓF B)

and that moreover, (E , ρ, T )→ (IΓF (E), I
Γ
F ρ, IΓF T ) gives rise to a well defined mor-

phism IΓF : KKF
∗ (A,B)−→KKΓ

∗ (I
Γ
F (A), I

Γ
F (B)).

Back to the definition of the isomorphism of equation (2), let F be a finite
subgroup of a discrete group Γ and let X be a F -invariant compact subset of Ps(Γ)
for s > 0. If we equipped Γ×X with the diagonal action of F , where the action on
Γ is by right multiplication, then there is a natural identification between IΓF (C(X))
and C0((Γ×X)/F ). The map

(Γ×X)/F → Ps(Γ); [(γ, x)] 7→ γx

then gives rises to a Γ-equivariant homomorphism

ΥΓ
F,X : C0(Ps(Γ))→ IΓF (C(X)).

Then for any F -C∗-algebra A, the morphism

KKF
∗ (C(X), A)−→KKΓ

∗ (C0(Ps(Γ)), I
Γ
F (A)); x 7→ ΥΓ,∗

F,X(IΓF (x))

is compatible with the inductive limit over F -invariant compact subsets of Ps(Γ)
and hence we eventually obtain a natural homomorphism

IΓF (Ps(Γ))∗ : lim
X

KKF
∗ (C(X), A)−→KKΓ

∗ (C0(Ps(Γ), I
Γ
F (A))

which turns out to be an isomorphism. Let us consider now the composition

(3) ΦA,F,Γ,∗ ◦ µ
ε,r,s

Γ,IΓF A,∗
◦ IΓF (Ps(Γ))∗ : lim

X
KKF

∗ (C(X), A)−→Kε,r
∗ (AF,Γ),

where X runs through F -invariant compact subsets of Ps(Γ). The two sides of
these maps depend only on the metric structure of Γ (indeed only on the coarse
structure), and our aim in next section is to provide a geometric definition for these
bunch of assembly maps.
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3. Coarse geometry

Let Σ be a proper metric space equipped with a free action of a finite group
F by isometries and let A be a F -C∗-algebra. Define then AF,Σ as the set of
invariant elements of A⊗K(ℓ2(Σ)) for the diagonal action of F . For F trivial, we
set A{e},Σ = AΣ. The filtration (A⊗K(ℓ2(Σ))r)r>0 on A⊗K(ℓ2(Σ)) is preserved by
the action of the group F . Hence, if AF,Σ,r stands for the set of F -invariant elements
of A⊗K(ℓ2(Σ))r, then (AF,Σ,r)r>0 provides AF,Σ with a structure of filtered C∗-
algebra. Our aim in this section is to investigate the permanence approximation
property for AF,Σ. Let us set PAF,Σ(ε, ε

′, r, r′) for the property PA(AF,Σ, ε, ε
′, r, r′),

i.e the restriction of

ιε
′,r′

∗ : Kε′,r′

∗ (AF,Σ) −→ K∗(AF,Σ)

to ιε,ε
′,r,r′

∗ (Kε,r
∗ (AF,Σ)) is one-to-one.

Following the route of the proof of theorem 2.1, and in view of equation (3), let
us set

KF
∗ (Ps(Σ), A) = lim

X
KKF

∗ (C(X), A),

where in the inductive limit, X runs through F -invariant compact subsets of Ps(Σ)
for s > 0. Our purpose is to define a bunch of local quantitative coarse assembly
maps

νε,r,sF,Σ,A,∗ : KF
∗ (Ps(Σ), A)−→Kε,r

∗ (AF,Σ),

for s > 0, ε ∈ (0, 1/4), r > rs,ε and

[0,+∞)× (0, 1/4)→ (0,+∞) : (s, ε) 7→ rs,ε

a function independant on A, non decreasing in s and non increasing in ε such that,
if F is a subgroup of a discrete group Γ equipped with right invariant metric arising
from a proper lenght, then νε,r,sF,Γ,A,∗ coincides with the composition of equation (3).

3.1. A local coarse assembly map. Let Σ be a proper discrete metric space,
with bounded geometry and equipped with a free action of a finite group F by
isometries and let A be a F -algebra. Recall that AF,Σ is defined as the set of
invariant elements of A⊗K(ℓ2(Σ)) for the diagonal action of F . Notice that since
the action of F on Σ is free, the choice of an equivariant identification between
Σ/F × F and Σ (i.e the choice of a fundamental domain) gives rise to a Morita
equivalence between AF,Σ and A⋊ F . Let us set for s a positive number

KF
∗ (Ps(Σ), A) = lim

X
KKF

∗ (C(X), A),

where X runs through F -invariant compact subsets of the Rips complex Ps(Σ) of
degree s.

The aim of this section is to construct for s > 0 a bunch of local coarse assembly
maps

νsF,Σ,A,∗K
F
∗ (Pd(Σ), A)−→K∗(AF,Σ).

Le us define first for any F -algebras A and B a map

τF,Σ : KKF
∗ (A,B)→ KK∗(AF,Σ, BF,Σ)

analogous to the Kasparov transformation.
Let z be an element in KKF

∗ (A,B). Then z can be represented by an equivariant
K-cycle (π, T,H⊗ ℓ2(F )⊗B) where
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• H is a separable Hilbert space;
• F acts diagonally on H⊗ℓ2(F )⊗B, trivially on H and by the right regular
representation on ℓ2(F ).
• π is a F -equivariant representation of A in the algebra LB(H⊗ ℓ2(F )⊗B)
of adjointable operators of H⊗B;
• T is a F -equivariant self-adjoint operator of LB(H⊗ ℓ2(F )⊗B) satisfying
the K-cycle conditions, i.e. [T, π(a)] and π(a)(T 2 − IdH⊗B) belongs to
K(H⊗ ℓ2(F )) ⊗B, for every a in A.

Let HB,F,Σ be the set of invariant elements in H ⊗ ℓ2(F ) ⊗ B ⊗ K(ℓ2(Σ)). Then
HB,F,Σ is obviously a right BF,Σ-Hilbert module, and π induces a representation
πF,Σ of AF,Σ on the algebra LBF,Σ(HB,F,Σ) of adjointable operators of HB,F,Σ and
T gives rise also a self-adjoint element TB,F,Σ of LBF,Σ(HB,F,Σ). Moreover, by
choosing an equivariant identification between Σ/F × F and Σ, we can check that
the algebra of F -equivariant compact operators on H⊗ ℓ2(F )⊗ ℓ2(Σ)⊗B coincides
with the algebra of compact operators on the right BF,Σ-Hilbert module HB,F,Σ.
Hence, (πF,Σ, TB,F,Σ,HB,F,Σ) is a K-cycle for KK∗(AF,Σ, BF,Σ). Furthermore, its
class in KK∗(AF,Σ, BF,Σ) only depends on z and thus we end up with a morphism

(4) τF,Σ : KKF
∗ (A,B)→ KK∗(AF,Σ, BF,Σ).

It also quite easy to see that τF,Σ is functorial in both variables. Namely, for any F -
equivariant homomorphism f : A→ B of F -algebras, let us set fF,Σ : AF,Σ → BF,Σ

for the induced homomorphism. Then for any F -algebras A1, A2, B1 and B2 and
any homomorphism of F -algebra f : A1 → A2 and g : B1 → B2, we have

τF,Σ(f
∗(z)) = f∗

F,Σ(τF,Σ(z))

and

τF,Σ(g∗(z)) = gF,Σ,∗(τF,Σ(z))

for any z in KKF
∗ (A2, B1).

We are now in position to define the index map. Observe that any x in Ps(Σ)
can be written as a finite convex combination

x =
∑

σ∈Σ

λσ(x)δσ

where

• δσ is the Dirac probability measure at σ in Σ.
• for every σ in Σ, the coordinate function λσ : Ps(Σ)→ [0, 1] is continuous
with support in the ball centered at σ and with radius 1 for the simplicial
distance.

Moreover, for any σ in Σ and k in F , then we have λkσ(kx) = λσ(x). Let X be a
compact F -invariant subset of Pd(Σ). Let us define

PX : C(X)⊗ℓ2(Σ)→ C(X)⊗ℓ2(Σ)

by

(5) (PX · h)(x, σ) = λ1/2
σ (x)

∑

σ′∈Σ

h(x, σ′)λ
1/2
σ′ (x),

for any h in C(X)⊗ℓ2(Σ). Since
∑

σ∈Σ λσ = 1, it is straightforward to check that

PX is a F -equivariant projection in C(X)⊗K(ℓ2(Σ)) with propagation less than s
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and hence gives rise in particular to a class [PX ] in K0(C(X)F,Σ). For any F -C∗-
algebra A, the map

KKF
∗ (C(X), A) −→ K∗(AF,Σ); x 7→ [PX ]⊗C(X)F,Σ

τF,Σ(x)

is compatible with inductive limit over F -invariant compact subset of Ps(Σ) and
hence gives rise to a local coarse assembly map

νsF,Σ,A,∗ : KF
∗ (Ps(Σ), A)−→K∗(AF,Σ).

This local coarse assembly map is natural in the F -algebra. Furthermore, let us
denote for any positive number s and s′ such that s 6 s′ by

qs,s′,∗ : K∗(Ps(Σ), A)−→K∗(Ps′(Σ), A)

the homomorphism induced by the inclusion Ps(Σ) →֒ Ps′(Σ), then it is straight-
forward to check that

νsF,Σ,A,∗ = νs
′

F,Σ,A ◦ qs,s′,∗.

3.2. Quantitative local coarse assembly maps. With notation of section 3.1,
if Σ is proper discrete metric space equipped with an action of a finite group F
by isometries, then since the action of F preserves the filtration of A⊗K(ℓ2(Σ)),
then AF,Σ inherits from A⊗K(ℓ2(Σ)) a structure of filtered C∗-algebra. Our aim is
to define a quantitative version of the geometrical µs

F,Σ,A,∗. The argument of the
proof of theorem 1.16, can be easily adapted to prove

Theorem 3.1. There exists a control pair (αT , kT ) such that

• for any proper discrete metric space Σ equipped with a free action of a
finite group F by isometries;
• for any F -C∗-algebras A and B;
• any z in KKF

∗ (A,B),

there exists a (αT , kT )-controlled morphism

TF,Σ(z) = (τε,rF,Σ)0<ε< 1
4αT

: K∗(AF,Σ)→ K∗(BF,Σ)

that satisfies the following:

(i) TF,Σ(z) : K∗(AF,Σ)→ K∗(BF,Σ) induces in K-theory the right multiplica-
tion by the element τF,Σ(z) ∈ KK∗(AF,Σ, BF,Σ) defined by equation (4);

(ii) For any elements z and z′ in KKF
∗ (A,B) then

TF,Σ(z + z′) = TF,Σ(z) + TF,Σ(z
′).

(iii) Let A′ be a F -C∗-algebras and let f : A → A′ be a F -equivariant homo-
morphism of C∗-algebras, then TF,Σ(f

∗(z)) = TF,Σ(z) ◦ fF,Σ,∗ for all z in
KK∗(A

′, B).
(iv) Let B′ be a F -C∗-algebra and let g : B′ → B be a homomorphism of

C∗-algebras then TF,Σ(g∗(z)) = gF,Σ,∗ ◦ TF,Σ(z) for any z in KKF
∗ (A,B′).

(v) TF,Σ([IdA])
(αT ,kT )
∼ IdK∗(AF,Σ).

(vi) For any semi-split extension of F -C∗-algebras 0 → J → A → A/J → 0
with corresponding element [∂J,A] of KK1(A/J, J) that implements the
boundary map, then we have

TF,Σ([∂J,A]) = DJF,Σ,AF,Σ .

We can proceed as in the proof of theorem 1.17 to get the compatibility of TF,Σ

with Kasparov product.
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Theorem 3.2. There exists a control pair (λ, h) such that the following holds :

let F be a finite group acting freely by isometries on a discrete metric space Σ
and let A1, A2 and A3 be F -C∗-algebras. Then for any z in KK∗(A1, A2) and any
z′ in KK∗(A2, A3), we have

TF,Σ(z⊗A2z
′)

(λ,h)
∼ TF,Σ(z

′) ◦ TF,Σ(z).

Let us set rs,ε = skT ,ε/αT
for any ε in (0, 1/4) and s > 0. Then for any F -C∗-

algebra A and any r > rε,s, the map

KKF
∗ (C(X), A) −→ Kε,r

∗ (AF,Σ)(6)

x 7→
(
τ
ε/αT ,r/kT ,ε/αT

F,Σ (x)
)
([PX , 0]ε/αT ,r/kT ,ε/αT

)

is compatible with inductive limit over F -invariant compact subset of Ps(Σ) and
hence gives rise to a quantitative local coarse assembly map

νε,r,sF,Σ,A,∗ : KF
∗ (Ps(Σ), A)−→Kε,r

∗ (AF,Σ).

The quantitative local coarse assembly maps are natural in the F -algebras. It is
straightforward to check that

• ι∗ε,ε′,r,r′ ◦ ν
ε,r,s
F,Σ,A,∗ = νε

′,r′,s
F,Σ,A,∗ for any positive numbers ε, ε′, r, , r′ and s

such that ε 6 ε′ < 1/4, rs,ε 6 r, rs,ε′ 6 r′ and r 6 r′;

• νε,r,s
′

F,Σ,A,∗◦qs,s′,∗ = νε,r,sF,Σ,A,∗ for any positive numbers ε, r, s and s′ such that

ε < 1/4, s 6 s′ and rs′ε 6 r;
• νsF,Σ,A,∗ = ιε,r∗ ◦ νε,r,sF,Σ,A,∗ for any positive numbers ε, r and s such that

ε < 1/4 and rs,ε 6 r;

Let F be a finite subgroup of a finitely generated group Γ equipped with a right
invariant metric. Let us show that

νε,r,sF,Γ,A,∗ : KF
∗ (Ps(Γ), A)−→Kε,r

∗ (AF,Γ)

coincides with the composition of equation (3). Using the naturality of the map
Φ•,F,Γ : IΓF (•)⋊redΓ → •F,Γ and by construction of TF,Γ and J red

Γ [8, Section 5.2],
we get the following:

Lemma 3.3. Let F be a finite subgroup of a finitely generated discrete group Γ.
Then for any F -algebras A and B and any x in KKF

∗ (A,B), we have

ΦB,F,Γ,∗ ◦ J
red
Γ (IΓF (x)) = TF,Γ(x) ◦ ΦA,F,Γ,∗.

Proposition 3.4. Let Γ be a finitely generated group, let F be a finite subgroup
of Γ and let A be a F -C∗-algebra. Then for any ε ∈ (0, 1/4), any s > 0 and any
r > rε,s the following diagram is commutative

KKΓ
∗ (C0(Ps(Γ)), I

Γ
F (A))

µs,ε,r

Γ,IΓ
F

(A),∗

−−−−−−−→ Kε,r
∗ (IΓF (A)⋊redΓ)

IΓF (Ps(Γ))∗

x
yΦε,r

A,F,Γ,∗

KF
∗ (Ps(Γ), A)

νε,r,s
F,Γ,A,∗
−−−−−→ Kε,r

∗ (AF,Γ)

,

for s > 0, ε ∈ (0, 1/4) and r > rs,ε.
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Proof. Let us set (α, k) = (αJ , kJ ) = (αT , kT ). Let X be a F -invariant compact
subset of Ps(Γ) and let x be an element of KKF

∗ (C(X), A). The definition of the
quantitative assembly maps was recalled in section 1.6. We have set

pΓ,s : Γ→ C0(Ps(Γ)); γ 7→ λ1/2
e λ1/2

γ .

Then zΓ,s = [pΓ,s, 0] ε
α , r

kε/α
defines an element in K

ε
α , r

kε/α

0 (C0(Ps(Γ)) ⋊ Γ). More-

over, we have the equalities

Φε,r
A,F,Γ,∗ ◦ µ

s,ε,r

Γ,IΓF (A),∗
◦ IΓF (Ps(Γ))∗(x) = Φε,r

A,F,Γ,∗ ◦
(
J
red, ε

α , r
kε/α

Γ (ΥΓ,∗
F,X IΓF (x))

)
(zΓ,s)

= Φε,r
A,F,Γ,∗ ◦

(
J
red, ε

α , r
kε/α

Γ (IΓF (x))
)
◦Υ

Γ, ε
α , r

kε/α

F,X,Γ,∗ (zΓ,s)(7)

= T
ε
α , r

kε/α

F,Γ (x) ◦ Φ
ε
α , r

kε/α

C(X),F,Γ,∗ ◦Υ
Γ, ε

α , r
kε/α

F,X,Γ,∗ (zΓ,s)(8)

where

• ΥΓ
F,X,Γ : C0(Ps)⋊Γ→ IΓF (C(X))⋊Γ is the morphism induced by ΥΓ

F,X ;

• equation (7) is a consequence of naturality of J red
Γ (see section 1);

• equation (8) is a consequence of lemma 3.3.

Since

Φ
ε
α , r

kε/α

C(X),F,Γ,∗ ◦Υ
Γ, ε

α , r
kε/α

F,X,Γ,∗ (zΓ,s) = [ΦC(X),F,Γ ◦Υ
Γ
F,X,Γ(pΓ,s), 0] ε

α
, r
kε/α

,

the proposition is then a consequence of the equality

ΦC(X),F,Γ ◦Υ
Γ
F,X,Γ(pΓ,s) = PX .

�

3.3. A geometric assembly map. In order to generalize proposition 2.5 to the
setting of proper discrete metric spaces equipped with an isometric action of a finite
group F , we need

• an analogue in this setting of the algebra ℓ∞(N,K(H)⊗ IΓF (A))⋊redΓ for
an action on a C∗-algebra A of a finite subgroup F of a finitely generated
Γ;
• an assembly map that computes its K-theory.

For a family A = (Ai)∈∈N of F -C∗-algebras, let us define AF,Σ,r =
∏

i∈N
Ai,F,Σ,r

and let AF,Σ be the closure of ∪r>0AF,Σ,r in
∏

i∈N
Ai,F,Σ. Then AF,Σ is obviously a

filtered C∗-algebra. We set for the trivial group A{e},Σ = AΣ and thus, if Σ is acted
upon by a finite group F by isometries, F acts on AΣ and preserves the filtration.
Clearly, AF,Σ is the F -fixed points algebra of AΣ. If A = (Ai)∈∈N is a family of F -
C∗-algebras, we set A∞ = (K(H)⊗Ai)∈∈N, where K(H) is equipped with the trivial
action of F . We can then define A∞

F,Σ from A∞ as above. For a F -C∗-algebra A, we

set AN = (Ai)∈∈N for the constant family of F -C∗-algebras A = Ai for all integer

i and define from this AN

F,Σ and AN,∞
F,Σ as above. For any family A = (Ai)∈∈N of

F -C∗-algebras, let us consider the following controlled morphism

GF,Σ,A,∗ = (Gε,r
F,Σ,A)0<ε<1/4,r>0 : K∗(A

∞
F,Σ)→

∏

i∈N

K∗(Ai,F,Σ),

where
Gε,r

F,Σ,A,∗ : Kε,r
∗ (A∞

F,Σ)−→
∏

i∈N

Kε,r
∗ (Ai,F,Σ)
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is the map induced on the j th factor and up to the Morita equivalence by the
restriction to A∞

F,Σ of the evaluation
∏

i∈N
K(H)⊗Ai,F,Σ → K(H)⊗Aj,F,Σ at j ∈ N.

As a consequence of lemma 1.11, we have the following.

Lemma 3.5. There exists a control pair (α, h) such that

• for any finite group F ;
• for any proper discrete metric space Σ provided with an action of F by
isometries;
• for any families A = (Ai)i∈N of F -algebras,

then GF,Σ,A,∗ : K∗(A∞
F,Σ)→

∏
i∈N
K∗(Ai,F,Σ) is a (α, h)-controlled isomorphism.

For any families of F -C∗-algebrasA = (Ai)i∈N and B = (Bi)i∈N of F -C∗-algebras
and any family f = (fi : Ai → Bi)i∈N of F -equivariant homomorphisms, let us set

fΣ,F =
∏

i∈N

fi,Σ,F : AF,Σ −→ BF,Σ

and

f∞
Σ,F =

∏

i∈N

IdK(H)⊗fi,Σ,F : A∞
F,Σ −→ B

∞
F,Σ.

Then together with theorem 3.1, lemma 3.5 yields to

Corollary 3.6. There exists a control pair (α, h) such that

• for any proper discrete metric space Σ equipped with a free action of a
finite group F by isometries;
• for any families of F -C∗-algebras A = (Ai)i∈N and B = (Bi)i∈N;
• for any z = (zi)i∈N in

∏
i∈N

KKF
∗ (Ai, Bi),

there exists a (α, h)-controlled morphism

T ∞
F,Σ(z) = (τ∞,ε,r

F,Σ (z))0<ε< 1
4α ,r>0 : K∗(A

∞
F,Σ)→ K∗(B

∞
F,Σ)

that satisfies the following:

(i) For any elements z = (zi)i∈N and z′ = (z′i)i∈N in
∏

i∈N
KKF

∗ (Ai, Bi), then

T ∞
F,Σ(z + z′) = T ∞

F,Σ(z) + T
∞
F,Σ(z

′)

for z + z′ = (zi + z′i)i∈N

(ii) Let A′ = (A′
i)i∈N be a family of F -C∗-algebras and let f = (fi : A′

i →
Ai)i∈N be a family of F -equivariant homomorphisms of C∗-algebras. Then
T ∞
F,Σ(f

∗(z)) = T ∞
F,Σ(z) ◦ f

∞
F,Σ,∗ for all z = (zi)i∈N in

∏
i∈N

KKF
∗ (Ai, Bi),

where f∗(z) = (f∗
i (zi))i∈N.

(iii) Let B′ = (Bi)i∈N be a family of F -C∗-algebras and let g = (gi : Bi →
B′

i)i∈N be a family of F -equivariant homomorphism of C∗-algebras. Then
T ∞
F,Σ(g∗(z)) = g∞F,Σ,∗ ◦ T

∞
F,Σ(z) for all z = (zi)i∈N in

∏
i∈N

KKF
∗ (Ai, Bi),

where g∗(z) = (gi,∗(zi))i∈N

(iv) If we set IdA = (IdAi)i∈N, then T ∞
F,Σ([IdA])

(α,k)
∼ IdK∗(A∞

F,Σ).

(v) For any family of semi-split extensions of F -C∗-algebras

0→ Ji → Ai → Ai/Ji → 0

with corresponding element [∂Ji,Ai ] of KK1(Ai/Ji, Ji) that implements the
boundary maps, let us set J = (Ji)i∈N, A = (Ai)i∈N, A/J = (Ai/Ji)i∈N
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and [∂J ,A] = ([∂Ji,Ai ])i∈N ∈
∏

i∈N
KKΓ

1 (Ai/Ji, Ji). Then we we have

T ∞
F,Σ([∂J ,A]) = DJ∞

F,Σ,A∞
F,Σ

.

As a consequence theorem 3.2 and of lemma 3.5 we get

Proposition 3.7. There exists a control pair (λ, h) such that the following holds :

let F be a finite group acting freely by isometries on a discrete metric space Σ
and let A = (Ai)i∈N, B = (Bi)i∈N and B′ = (B′

i)i∈N be families of F -C∗-algebras.
Let us set z⊗Bz

′ = (zi⊗Biz
′
i)i∈N for any z = (zi)i∈N in

∏
i∈N

KKF
∗ (Ai, Bi) and

any z′ = (z′i)i∈N in
∏

i∈N
KKF

∗ (Bi, B
′
i). Then we have

T ∞
F,Σ(z⊗Bz

′)
(λ,h)
∼ T ∞

F,Σ(z
′) ◦ T ∞

F,Σ(z).

If F is a finite group and if A = (Ai)i∈N is a family of of F -C∗-algebras, let us
consider the family A⊗K(ℓ2(F )) = (Ai⊗K(ℓ2(F )))i∈N, provided by the diagonal
action of F where the action on K(ℓ2(F )) is induced with the right regular repre-
sentation. If moreover F acts on Σ by isometries, A∞

Σ is indeed a F -C∗-algebra
and we have a natural identification of filtered C∗-algebras

(9) A∞
Σ ⋊ F ∼= (A⊗K(ℓ2(F )))∞F,Σ,

where A∞
Σ ⋊ F is filtrered by (C(F,A∞

Σ,r))r>0 . Applying corollary 3.7 to the fam-

ily MA,F = (MAi,F )i∈N ∈
∏

i∈N
KKF

∗ (Ai, Ai⊗K(ℓ2(F ))) of F -equivariant Morita
equivalences, we get

Lemma 3.8. There exists a control pair (α, h) such that for any finite group F ,
any family A = (Ai)i∈N of F -C∗-algebras, and any discrete metric space Σ equipped
with a free action of F by isometries, then, under the identification of equation (9),

M∞
A,F

def
==T ∞

F,Σ(MA) : K∗(A
∞
F,Σ) −→ K∗(A

∞
Σ ⋊ F )

is a (α, h)-controlled isomorphism.

Recall that to any F -invariant compact subset X of Ps(Σ) is associated a projec-
tion PX of C(X)F,Σ. Indeed for every x in X , then PX(x) is the matrix with almost

all vanishing entries indexed by Σ × Σ defined by PX(x)σ,σ′ = λσ(x)
1/2λσ′ (x)1/2

(recall that (λσ)σ∈Σ is the set of coordinate functions on Pr(Σ)). For any family
X = (Xi)i∈N of compact F -invariant subsets of Ps(Σ), let us set CX = (C(Xi))i∈N

and consider the projection P∞
X = (PXi⊗e)i∈N of C∞X ,F,Σ, where e is a fixed rank

one projection of K(H). The propagation of P∞
X is less than s. Hence for the

control pair (α, h) of corollary 3.6, any family A = (Ai)i∈N of F -C∗-algebras, any
ε ∈ (0, 1/4), any s > and any r > rs,ε, then the map

∏

i∈N

KKF
∗ (C(Xi), Ai)→ Kε,r

∗ (A∞
F,Σ); z 7→ τ

∞,ε/α,r/hε/α

F,Σ (z)(P∞
X )

is compatible with inductive limit of families X = (Xi)i∈N of compact F -invariant
subset of Ps(Σ). By composition with the controlled isomorphism

T ∞
F,Σ(MA) : K∗(A

∞
F,Σ) −→ K∗(A

∞
Σ ⋊ F ),

we get for a function (0, 1/4)× (0,∞) → (0,∞); (ε, s) 7→ rs,ε non-decreasing in s,
non increasing in ε and independant on F, Σ and A and for any ε in (0, 1/4), any
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positive numbers s and r such that r > rs,ε a quantitative geometric assembly map

ν∞,ε,r,s
F,Σ,A,∗ :

∏

i∈N

KF
∗ (Ps(Σ), Ai)−→Kε,r

∗ (A∞
Σ ⋊ F ).

Therefore, for s a fixed positive number, the bunch of maps (ν∞,ε,r,s
F,Σ,A,∗)ε>0,r>rs,ε

gives rise to a geometric assembly map

ν∞,s
F,Σ,A,∗ :

∏

i∈N

KF
∗ (Ps(Σ), Ai)−→K∗(A

∞
Σ ⋊ F )

unically defined by ν∞,s
F,Σ,A,∗ = ιε,r∗ ◦ ν

∞,ε,r,s
F,Σ,A,∗ for any positive numbers ε, r and s

such that ε < 1/4 and r > rs,ε.
The quantitative assembly maps ν∞,ε,r,s

F,Σ,A,∗ are compatible with inclusions of Rips
complexes: let

(10) q∞s,s′,∗ :
∏

i∈N

KF
∗ (Ps(Σ), Ai)−→

∏

i∈N

KF
∗ (Ps(Σ), Ai)

be the map induced by the inclusion Ps(Σ) →֒ Ps′ (Σ), then we have

ν∞,ε,r,s′

F,Σ,A,∗ ◦ q
∞
s,s′,∗ = ν∞,ε,r,s

F,Σ,A,∗

for any positive numbers ε, s, s,′ and r such that ε ∈ (0, 1/4), s 6 s′, r > rs′,ε, and
thus

ν∞,s′

F,Σ,A,∗ ◦ q
∞
s,s′,∗ = ν∞,s

F,Σ,A,∗

for any positive numbers s and s′ such that s 6 s′.

Eventually, we can take the inductive limit over the degree of the Rips complex
and set

Ktop,∞
∗ (F,Σ,A) = lim

s>0,

∏

i∈N

KF
∗ (Ps(Σ), Ai) = lim

s>0,(Xs
i )i∈N

∏

i∈N

KKF
∗ (C(Xs

i ), Ai),

where in the inductive limit on the right hand side, s runs through positive numbers
and (Xs

i )i∈N runs through families of F -invariant compact subset of Ps(Σ). We get
then an assembly map

(11) ν∞F,Σ,A,∗ : Ktop,∞
∗ (F,Σ,A) −→ K∗(A

∞
Σ ⋊ F ).

3.4. The groupoid approach. In order to generalize the proof of proposition 2.5
in the setting of dicrete metric space, our purpose in this section is to follow the
route of [10] and to show that if A = (Ai)i∈N is a family of C∗-algebras, then A∞

Σ is
the reduced crossed product of the algebra

∏
i∈N

C0(Σ, Ai⊗K(H)) by the diagonal
action of the groupoid attached to the coarse structure of the discrete metric space
Σ.

In [10] was associated to a discrete metric space Σ with bounded geometry a
groupoid G(Σ) with unit space the Stone-Cěch compactification βΣ of Σ and such
that the Roe algebra of Σ is the reduced crossed product of ℓ∞(Σ,K(H)) by an
action of G(Σ). Let us describe the construction of this groupoid. If (Σ, d) is a
discrete metric space with bounded geometry. Then a subset E of Σ× Σ is called
an entourage for Σ if there exists r > 0 such that

E ⊂ {(x, y) ∈ Σ× Σ such that d(x, y) < r}.

If E is an entourage for Σ, set Ē for its closure in the Stone-Cěch compactifi-
cation βΣ×Σ of Σ × Σ. Then there is a unique structure of groupoid on GΣ =
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∪E entourageĒ ⊂ βΣ×Σ with unit space the Stone-Cěch compactification βΣ of Σ
which extends the groupoid of pairs Σ× Σ.

For a family A = (Ai)i∈N of C∗-algebras, let us set AC0(Σ) =
∏

i∈N
C0(Σ, Ai).

Then the diagonal action of ℓ∞(Σ) by multiplication clearly provides AC0(Σ) with a
structure of C(βΣ)-algebra. Our aim is to show that GΣ acts diagonally on AC0(Σ)

and that AC0(Σ)⋊redGΣ is canonically isomorphic to AΣ.

Let C0(GΣ,A) be the closure in
∏

i∈N
C0(Σ× Σ, Ai) of

{(fi)i∈N; ∃r > 0; ∀i ∈ N, ∀(σ, σ′) ∈ Σ2, d(σ, σ′) > r ⇒ fi(σ, σ
′) = 0}.

For an entourage E and an element f = (fi)i∈N of AC0(Σ), let us define fE
r =

(fE
r,i)i∈N and fE

s = (fE
s,i)i∈N by fE

r,i(σ, σ
′) = χE(σ, σ

′)fi(σ) and fE
s,i(σ, σ

′) = χE(σ, σ
′)fi(σ

′)
for any integer i and any σ and σ′ in Σ.

Lemma 3.9. Let A = (Ai)i∈N be a family of C∗-algebras. Then we have isomor-
phisms of C(GΣ)-algebras

Ψr : r
∗AC0(Σ) → C0(GΣ,A)

and

Ψs : s
∗AC0(Σ) → C0(GΣ,A)

only defined by Ψr(χE⊗rf) = fE
r and Ψs(χE⊗sf) = fE

s for any f in AC0(Σ) and
any entourage E for Σ.

Proof. Is is clear that Ψr and Ψs are well and only defined by the formula above and
are isometries. Let us prove for instance that Ψr is an isomorphism. Surjectivity of
Ψr amounts to prove that for any (hi)i∈N in

∏
i∈N

C0(Σ×Σ, Ai) and any entourage
E then h = (χEhi)i∈N is in the range of Ψr. According to [10, Lemma 2.7], we can
assume that the restrictions s : E → Σ and r : E → Σ are one-to-one. For any
integer i, then define fi : Σ→ Ai by

• fi(σ) = hi(σ, σ
′) if there exists σ′ such that (σ, σ′) is in E;

• fi(σ) = 0 otherwise.

Then fi is in C0(Σ, Ai) for every integer i and if we set f = (fi)i∈N, then fE
r = h

and hence h is in the range of Ψr. �

Let us define VΣ = Ψr ◦Ψ
−1
s . Then VΣ : s∗AC0(Σ) → r∗AC0(Σ) is an isomorphism

of C(GΣ)-algebras that can be describe on elementary tensors as follows. For an
entourage E such that the restrictions s : E → Σ and r : E → Σ are one-to-one,
then for every σ in r(E) there exists a unique σ′ in s(E) such that (σ, σ′) is in E.
For any f = (fi)i∈N in AC0(Σ), we define E ◦ f = (E ◦ fi)i∈N in AC0(Σ), where for
any integer i,

• E ◦ fi(σ) = fi(σ
′) if σ is in r(E) and (σ, σ′) is in E;

• E ◦ fi(σ) = 0 otherwise.

Then under above assumptions, we have VΣ(χE⊗rf) = χE⊗rE ◦ f .

Lemma 3.10. For every family A = (Ai)i∈N of C∗-algebras, then

VΣ : s∗AC0(Σ) → r∗AC0(Σ)

is an action of the groupoid GΣ on AC0(Σ).
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Proof. For an element γ in GΣ, let VΣ,γ : AC0(Σ)s(γ)
→ AC0(Σ)r(γ)

be the map

induced by VΣ on the fiber of AC0(Σ) at s(γ). Let γ and γ′ be elements in G∞
Σ such

that s(γ) = r(γ′). Let E and E′ be entourages such that the restrictions of s and
r to E and E′ are one-to-one and such that γ ∈ Ē and γ′ ∈ Ē′. Let us set

E ◦ E′ = {(σ, σ′′) ∈ Σ× Σ; ∃σ′ ∈ Σ; (σ, σ′) ∈ E and (σ′, σ′′) ∈ E′}.

Then γ · γ′ is in E ◦ E′ and the restrictions of s and r to E ◦ E′ is one-to-one.
Moreover, we clearly have (E ◦ E′) ◦ f = E ◦ (E′ ◦ f) for all f in AC0(Σ). Hence,
we get

VΣ,γ·γ′(fs(γ′)) = (E ◦ E′ ◦ f)r(γ)

= VΣ,γ((E
′ ◦ f)s(γ))

= VΣ,γ((E
′ ◦ f)r(γ′))

= VΣ,γ ◦ VΣ,γ′(fs(γ))

�

Proposition 3.11. Let Σ be a discrete metric space with bounded geometry and
let A = (Ai)i∈N be a family of C∗-algebras. Then we have a natural isomorphism

IΣ,A : AC0(Σ)⋊redGΣ

∼=
−→ AΣ.

Proof. Following the proof of [10], we obviously have that JΣ,A = ⊕i∈NC0(Σ, Ai)
is a GΣ-invariant ideal of AC0(Σ). For any σ′ in Σ, we have at any element of Σ
a canonical identification of the fibre of JΣ,A with ⊕i∈NAi and under this iden-
tification, the action of Σ × Σ ⊂ GΣ on JΣ,A is trivial. According to [10, lemma
4.3], the reduced crossed product AC0(Σ)⋊rGΣ is faithfully represented in the right
JΣ,A-Hilbert module

L2(GΣ, JΣ,A) ∼= L2(GΣ,AC0(Σ))⊗AC0(Σ)
JΣ,A.

But we have a natural identification of JΣ,A-right Hilbert modules

L2(GΣ, JΣ,A) ∼= C0

(
Σ, (⊕i∈NAi)⊗ ℓ2(Σ)

)
.

Under this identification, the representation of AC0(Σ) ⋊r GΣ indeed arise from a

pointwise action on (⊕i∈NAi) ⊗ ℓ2(Σ). As such, the underlying representation of
AC0(Σ) ⋊r GΣ on (⊕i∈NAi)⊗ ℓ2(Σ) is faithfull. Let us describe this action.

• an element f = (fi)i∈N in AC0(Σ)
∼=

∏
i∈N

Ai⊗C0(Σ) acts on (⊕i∈NAi) ⊗
ℓ2(Σ) in the obvious way.
• If E is an entourage, then the action of χE on (⊕i∈NAi) ⊗ ℓ2(Σ) is by
pointwise multiplication by Id⊕i∈NAi⊗TE, where the operator TE is defined
by TE,σ,σ′ = χE(σ, σ

′) for any σ and σ′ in Σ.

The algebra AΣ acts also faithfully on (⊕i∈NAi) ⊗ ℓ2(Σ) by pointwise action at
each integer i of Ai⊗K(ℓ2(Σ)) on Ai⊗ℓ2(Σ). It is then clear that if f is in AC0(Σ)

and E is an entourage, then fTE is in AΣ. Conversely, let us show any element in
AΣ acts on (⊕i∈NAi) ⊗ ℓ2(Σ) as an element of AC0(Σ) ⋊r GΣ. Let (Ti)i∈N be an
element of AΣ,r. We can assume that for every integer i, there exists a finite subset
Xi of Σ such that, Ti = (Ti,σ,σ′)(σ,σ′)∈Σ2 lies indeed in Ai⊗K(ℓ2(Xi)). Applying
[10, Lemma 2.7] to the union of the support of the Ti when i runs through integers,
we can actually assume without loss of generality that there exists an entourage E
such that
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• the restrictions of s and r to E are one-to-one;
• for any integer i and any σ and σ′ in Σ, then Ti,σ,σ′ 6= 0 implies that (σ, σ′)
is in E.

Define then for any integer i

• fi(σ) = Ti,σ,σ′ if there exists σ′ in Xi such that (σ, σ′) is in E ∩ (Xi×Xi).
• fi(σ) = 0 otherwise.

Then fi is in C0(Σ, Ai) for every integer i and if we set f = (fi)i∈N, then fTE acts
on (⊕i∈NAi)⊗ ℓ2(Σ) as (Ti)i∈N. �

If Σ is equipped with an action of a finite group F by isometries, then the
diagonal action of F on Σ induces an action of F on GΣ by automorphisms of
groupoids. Moreover, for any family A = (Ai)i∈N of F -C∗-algebra, the action of
GΣ on AC0(Σ) =

∏
i∈N

C0(Σ, Ai) is covariant with respect the pointwise diagonal
action of F . Hence, we end up in this way with an action of F on AC0(Σ) ⋊r GΣ

by automorphisms. Namely, let us consider the semi-direct product groupoid

GF,Σ = GΣ ⋊ F = {(γ, x) ∈ GΣ × F}

provided with the source map

GF,Σ → βΣ; (γ, x) 7→ s(x−1(γ))

and range map

GF,Σ → βΣ; (γ, x) 7→ r(γ)

and composition rule (γ, x) · (γ′, x′) = (γ · x(γ′), xx′) if s(x−1(γ)) = r(γ′). Then
AC0(Σ) is actually a GF,Σ-C

∗-algebra and we have a natural identification

(12) (AC0(Σ) ⋊r GΣ)⋊ F ∼= AC0(Σ) ⋊r GF,Σ.

On the other hand, F also acts for each integer i on K(ℓ2(Σ))⊗Ai and hence
pointwisely onAΣ. The isomorphism of proposition 3.11 is then clearly F -equivariant
and hence gives rise under then identification of equation (12) to an isomorphism

(13) IF,Σ,A : AC0(Σ) ⋊r GF,Σ

∼=
−→ AΣ ⋊ F

Since C(βN×Σ) ∼= ℓ∞(N×Σ), then AC0(Σ) is for any family A a C(βN×Σ)-algebra.
Let us show that βN×Σ is actually provided with an action of GΣ on the right that
makes AC0(Σ) into a βN×Σ⋊GΣ-algebra.

Let p : βN×Σ → βΣ be the (only) map extending the projection N × Σ → Σ by
continuity. Let x be an element of βΣ, let γ be an element of GΣ such that r(γ) = x
and let E ⊂ Σ× Σ be an entourage such that

• γ belongs to Ē.
• the restrictions of s and r to E are one-to-one.

Let (nk, σk)k∈N be a sequence in N×Σ converging to z in βN×Σ and such that σk is
in r(E) for every integer k. For any integer k, let σ′

k be the unique element of s(E)
such that (σk, σ

′
k) is in E. Then the sequence (nk, σ

′
k)k∈N converge in βN×Σ to an

element z′ such that p(z′) = s(γ). This limit does not depend on the choice of E
and (nk, σk)k∈N that satisfy the conditions above and if we set z · γ = z′, we obtain
an action of GΣ on βN×Σ on the left. Obviously, the restriction of βN×Σ⋊GΣ to the
saturated open subset N× Σ of βN×Σ is the union of groupoid of pair on {n} × Σ.
If A is a family of C∗-algebras, the multiplier action of C(βN×Σ) is GΣ-equivariant
and hence we end up with an action of βN×Σ⋊GΣ on AC0(Σ).
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If Σ is endowed with an action of a finite group F by isometries, then the
diagonal action of F on N×Σ (trivial on N) gives rise to an action of F on βN×Σ by
homeomorphisms which makes the action of GΣ covariant. Hence βN×Σ is provided
with an action of GF,Σ = GΣ⋊F . Moreover, if A is a family of F -C∗-algebras, then
AC0(Σ) is a βN×Σ ⋊GF,Σ-algebra.

Consider now the spectrum β0
N×Σ of the ideal ℓ∞(N, C0(Σ)) of C(βN×Σ) ∼=

ℓ∞(N × Σ). Then β0
N×Σ is a saturated open subset of βN×Σ, the pointwise mul-

tiplication of ℓ∞(N, C0(Σ)) on AC0(Σ) =
∏

i∈N
C0(Σ, Ai) provides AC0(Σ) with a

structure of C(β0
N×Σ)-algebra and thus we see that AC0(Σ) is indeed a β0

N×Σ⋊GΣ-
algebra. The three crossed products AC0(Σ)⋊redGΣ, AC0(Σ)⋊red(βN×Σ⋊GΣ) and

AC0(Σ)⋊red(β
0
N×Σ⋊GΣ) coincide. If Σ is equipped with an action of a finite group F

by isometries, then β0
N×Σ is F -invariant and hence endowed with an action of GF,Σ.

Moreover, for any family A of F -C∗-algebras, then AC0(Σ) is β
0
N×Σ⋊GF,Σ-algebra.

Let us set then GN

Σ (resp. G0,N
Σ ) for the groupoid βN×Σ⋊GΣ. (resp. β0

N×Σ⋊GΣ),
and if Σ is provided with an action of a finite group F by isometries, set then
GN

Σ,F = GN

Σ⋊F .

Lemma 3.12. Let E be a subset of N× Σ×Σ and assume that there exists r > 0
such that for all integer i and all σ and σ′ in Σ, then (i, σ, σ′) in E implies that
d(σ, σ′) < r. Then there exists

• f1, . . . , fk in ℓ∞(N× Σ);
• E1, . . . , Ek entourages of Σ included in

⋃
i∈N
{(σ, σ′) ∈ Σ2; (i, σ, σ′) ∈ E},

such that χE(i, σ, σ
′) =

∑k
j=1 fj(i, σ)χEj (σ, σ

′) for all integer i and all σ and σ′ in
Σ.

Proof. Let us set E1 = ∪i∈N{(σ, σ′) ∈ Σ2; (i, σ, σ′) ∈ E}. Using [10, Lemma 2.7],
we can assume without loss of generality that the restrictions of s and r to E1 are
one-to-one. Define then f1 : N× Σ→ C by

• f1(i, σ) = 1 if there exists σ′ in Σ such that (i, σ, σ′) in in E;
• f1(i, σ) = 0 otherwise.

Then χE(i, σ, σ
′) = f1(i, σ)χE1(σ, σ

′) for all integer i and all σ and σ′ in Σ. �

4. The Baum-Connes assembly map for (GF,Σ, AC0(Σ))

Recall that the definition of the Baum-Connes assembly map has been extended
to the setting of groupoids in [11]. Let G be a locally compact groupoid equipped
with a Haar system and let B be a C∗-algebra acted upon by G. Then there is an
assembly map

µG,B,∗ : Ktop
∗ (G,B)→ K∗(B ⋊r G),

where Ktop
∗ (G,B) is the topological K-theory for the groupoid G with coefficients

in B. Our aim in this section is to describe the left hand side of this assembly map
for the action of GΣ on A∞

C0(Σ) and then to show that the Baum-Connes conjecture

is equivalent to the bijectivity of the geometric assembly map

ν∞F,Σ,A,∗ : Ktop,∞
∗ (F,Σ,A)−→K∗(A

∞
Σ ⋊ F )

defined in 3.3. Using result of [10] on the Baum-Connes conjecture for groupoid
affiliated to coarse structures, we get examples of coarse spaces that satistifies the
permanence approximation property. Notice that GN

Σ,F is clearly a σ-compact and

étale groupoid and that according to [10, Lemma 4.1], the Baum-Connes conjectures
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for the action of GF,Σ on A∞
C0(Σ) and for the action of of GN

Σ,F on A∞
C0(Σ) are indeed

equivalent.

4.1. The classifying space for proper actions of the groupoid GN

Σ. For a
σ-compact and étale groupoid G, the following description for the left hand side of
the assembly map was given in [12, Section 3]. Let K be a compact subset of G
and let us consider the space PK(G) of probability measures η on G such that for
all γ and γ′ in the support of η,

• γ and γ′ have same range;
• γ−1 · γ′ is in K.

We endowed PK(G) with the weak-∗ topology, and equip it with the natural left
action of G. Then according to [12, Proposition 3.1], the action of G on PK(G)
is proper and cocompact. If K ⊆ K ′ is an inclusion of compact subsets of G,
then for any G-algebra B, the inclusion PK(G) →֒ PK′(G) induces a morphism
KKG

∗ (C0(PK(G)), B) −→ KKG
∗ (C0(PK′(G)), B) and we have

Ktop
∗ (G,B) = lim

K
KKG

∗ (C0(PK(G)), B),

where in the inductive limit, K runs though compact subsets of G. If the groupoid
G is provided with an action of a finite group F by automorphisms, then for any
F -invariant subset of G, the space PK(G) is F -invariant and for any G⋊F -algebra
B, we get

Ktop
∗ (G⋊F,B) = lim

K
KKG⋊F

∗ (C0(PK(G)), B),

where in the inductive limit, K runs though compact and F -invariant subsets of G.
If Σ is a proper discrete metric space and if r is a non positive negative number,
let us set

Er = {(σ, σ′) ∈ Σ× Σ such that d(σ, σ′) 6 r},

and then consider the element χr = 1⊗C(βΣ)χEr of Cc(G
N

Σ). Then we have χ2
r = χr

and hence

suppχr = {γ ∈ GN

Σ such that χr(γ) = 1}

is a compact subset of GN

Σ. Let us set then Pr(G
N

Σ) = Psuppχr (G
N

Σ). If Σ is provided
with an action of a finite group F by isometries, χr being F -invariant, we see that
Pr(G

N

Σ) is for any r > 0 provided with a action of F by homeomorphisms.
For any ω in βN×Σ and any subset Y of some Pr(G

N

Σ), let us set Yω for the fiber
of Y at ω, i.e the set of probability measures of Y supported in the set of elements
of GN

Σ with range ω. If W is a subset of βN×Σ then define Y/W = ∪ω∈WYω . Let

us define Pr(G
0,N
Σ ) = Pr(G

N

Σ)/β0
N×Σ

. For a fix r > 0, every element (n, σ, x) of

N×Σ×Pr(Σ) can be viewed as a element in Pr(G
0,N
Σ ). For any family X = (Xi)i∈N

of compact subsets of Pr(Σ), let us set ZX for the closure of

{(n, σ, x) ∈ N× Σ× Pr(Σ); n ∈ N , σ ∈ Xn, x ∈ Xn}

in Pr(G
N

Σ)(we view an element σ of Σ as an element of Pr(Σ), the Dirac measure
at σ).

Lemma 4.1. Let r be a positive number and let X = (Xi)i∈N be family of compact

subsets of Pr(Σ). Then ZX is a compact subset of Pr(G
0,N
Σ ).
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Proof. Since Xi is a compact subset of the locally finite simplicial complex Pr(Σ),
there exists a finite set Yi of Σ such that every element of Xi is supported in Yi.
Applying lemma 3.12 to

E = {(n, σ, σ′) ∈ N× Σ× Σ; σ ∈ Yn, σ
′ ∈ Yn , d(σ, σ′) 6 r},

we see that there exist f1, . . . , fk in ℓ∞(N × Σ) ∼= C(βN×Σ) and E1, . . . , Ek en-

tourages of Σ of diameter less than r such that χE(i, σ, σ
′) =

∑k
j=1 fj(i, σ)χEj (σ, σ

′)

for all integer j and all σ and σ′ in Σ. Set then χ̃E =
∑k

j=1 fj⊗C(βΣ)χEj ∈ Cc(G
0,N
Σ ).

Then χ̃E is valued in {0, 1}. The set of probabity measures η such that η(χ̃E) = 1
is closed in the unit ball of the dual of Cc(G

N

Σ) equipped with the weak topology
and hence is compact. Since η(χ̃E) = 1 for any η in ZX , we get that ZX is compact
in Pr(G

N

Σ). But since we also have η(χ̃Ef) = η(f) for any η in ZX and any f in

Cc(G
N

Σ) and since χ̃E is in Cc(G
0,N
Σ ), we deduce that ZX is included in Pr(G

0,N
Σ ). �

Corollary 4.2. Let r be a positive number and let X = (Xi)i∈N be family of
compact subsets of Pr(Σ). Then the closure of

⋃
i∈N
{n} × Σ ×Xi in Pr(G

N

Σ) is a

GN

Σ-invariant and GN

Σ-compact subset of Pr(G
0,N
Σ ).

Proof. The closure of
⋃

i∈N

{n}×Σ×Xi in Pr(G
N

Σ) is the GN

Σ-orbit of ZX and hence

is GN

Σ-invariant and GN

Σ-compact in Pr(G
0,N
Σ ). �

4.2. TopologicalK-theory for the groupoid GF,Σ with coefficients in AC0(Σ).

The aim of this subsection is to show that for any free action of a finite group F by
isometries on Σ and any family A = (Ai)i∈N of F -C∗-algebras, we have a natural

identification between Ktop
∗ (GN

Σ,F ,A
∞
C0(Σ)) and Ktop,∞

∗ (F,Σ,A).

Let Σ be a discrete metric space with bounded geometry. For any GN

Σ-invariant

and GN

Σ-compact subset Y of Pr(G
0,N
Σ ), then Y/{i}×Σ×Pr(Σ) is an invariant and

cocompact subset of {i}×Σ×Pr(Σ) for the action of the groupoid of pairs Σ×Σ.
Hence, there exists a family X Y = (XY

i )i∈N of compact subset of Pr(Σ) such that

(14) Y/{i}×Σ×Pr(Σ) = {i} × Σ×XY
i

for every integer i. Notice that if Σ is provided with an action of a finite group F
by isometries and if Y as above is moreover F -invariant, then XY

i is F -invariant

for every integer i. For any GN

Σ,F -invariant and GN

Σ-compact subset Y of Pr(G
0,N
Σ )

and any family A = (Ai)i∈N of F -C∗-algebras, consider the following composition
(recall that A∞

C0(Σ) =
∏

i∈N
C0(Σ, Ai⊗K(H)))

iY : KK
GN

Σ,F
∗ (C0(Y ),A∞

C0(Σ)) −→∏

i∈N

KKF
∗ (C(XY

i ),K(H)⊗Ai) −→
∏

i∈N

KKF
∗ (C(XY

i ), Ai),
(15)

where

• XY
i is for any integer i defined by equation (14);

• the first map is induced by groupoid functoriality with respect to the bunch
of groupoid morphisms

F →֒ (N× Σ× Σ)⋊F ; x 7→ (i, σ, x(σ), x),
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where i runs through integers and σ is a fixed element of Σ (recall that
N× Σ× Σ is a F -invariant subgroupoid of GN

Σ.)
• the second map is given for every integer i by the Morita equivalence
between K(H)⊗Ai and Ai.

Let A = (Ai)i∈N and B = (Bi)i∈N be families of F -algebras and let z = (zi)i∈N

be a family in
∏

i∈N
KKF

∗ (Ai, Bi). We can assume without loss of generality that

for every integer i, then zi is represented by a F -equivariant K-cycle (πi, Ti, ℓ
2(F )⊗

H⊗Bi) where

• H is a separable Hilbert space;
• F acts diagonally on ℓ2(F ) ⊗ H ⊗ Bi by the right regular representation
on ℓ2(F ) and trivially on H.
• πi is a F -equivariant representation of Ai in the algebra LBi(ℓ

2(F )⊗H⊗Bi)
of adjointable operators of ℓ2(F )⊗H⊗Bi;
• Ti is a F -equivariant self-adjoint operator of LBi(ℓ

2(F )⊗H⊗Bi) satisfy-
ing the K-cycle conditions, i.e. [Ti, πi(a)] and πi(a)(T

2
i − Idℓ2(F )⊗H⊗Bi

)

belongs to K(ℓ2(F )) ⊗H⊗Bi, for every a in Ai.

Noticing that we have an identification between the algebras LBi(ℓ
2(F )⊗H⊗Bi)

and LK(H)⊗Bi
(ℓ2(F )⊗K(H)⊗Bi). Indeed these two C∗-algebras can be viewed as

the mutiplier algebra of K(ℓ2(F ) ⊗ H) ⊗ Bi. We see that the pointwise diagonal
multiplication by

N→ LK(H)⊗Bi
(ℓ2(F )⊗K(H)⊗Bi); i 7→ Ti

gives rise to a F -equivariant adjointable operator T∞
C0(Σ) of the right B

∞
C0(Σ)-Hilbert

module
∏

i∈N
C0(Σ, ℓ

2(F )⊗K(H)⊗Bi) ∼= ℓ2(F )⊗B∞
C0(Σ). The family of represen-

tation (πi)i∈N gives rise to a representation π∞
C0(Σ) of AC0(Σ) on the algebra of

adjointable operators of
∏

i∈N
C0(Σ, ℓ

2(F )⊗K(H)⊗Bi). It is then straightforward

to check that π∞
C0(Σ) and T∞

C0(Σ) are indeed GN

Σ,F -equivariant and that T∞
C0(Σ)

satisfies the K-cycle conditions. Therefore, we obtain in this way a K-cycle for

KK
GN

Σ,F
∗ (AC0(Σ),B

∞
C0(Σ)) and we can define in this way a morphism

τ∞C0(Σ) :
∏

i∈N

KKF
∗ (Ai, Bi)→ KK

GN

Σ,F
∗ (AC0(Σ),B

∞
C0(Σ))

which is moreover bifunctorial, i.e if A = (Ai) and B = (Bi) are families of F -
algebras, then

• for any family A′ = (A′
i) of F -algebras and any family f = (fi)i∈N

of F -equivariant homomorphisms fi : Ai → A′
i, then τ∞C0(Σ)(f

∗(z)) =

f∗
Σ(τ

∞
C0(Σ)(z)) for any z in

∏
i∈N

KKF
∗ (A′

i, Bi);

• for any family B′ = (B′
i) of F -algebras and any family g = (gi)i∈N of F -

equivariant homomorphisms gi : Bi → B′
i, then τ∞C0(Σ)(g∗(z)) = g∞Σ,∗(τ

∞
C0(Σ)(z))

for any z in
∏

i∈N
KKF

∗ (Ai, Bi).

For a family X = (Xi)i∈N of compact subsets in some Pr(Σ), we set CX =
(C(Xi))i∈N. If X ′ = (X ′

i)i∈N is another such a family such that Xi ⊂ X ′
i for any

integer i (we say that (X ,X ′) is a relative pair of families), let us set CX ,X ′ =
(C0(X

′
i \Xi))i∈N. Let Z be a GN

Σ-compact subset of some PK(GN

Σ) for K a given
compact subset of GN

Σ. Let us fix r > 0 such that PK(GN

Σ) ⊂ Pr(G
N

Σ) and let
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X = (Xi)i∈N be a family of compact subsets in Pr(Σ) such that ZX ⊂ Z. Define
then the GN

Σ-equivariant homomorphism

ΛZ
X : C0(Z)→ CX ,C0(Σ); f 7→ (fi)i∈N,

with fi in C0(Σ × Xi) defined by fi(σ, x) = f(i, σ, x) for any integer i, any σ in
Σ and any x in Xi. In the same way, if (Z,Z ′) is a relative pair of GN

Σ-compact
subsets of PK(GN

Σ) and if (X ,X ′) is a relative pair of families of compact subsets in

Pr(Σ) such that ZX ⊂ Z and ZX ′ ⊂ Z ′, the restriction of ΛZ′

X ′ to C0(Z
′ \ Z) gives

rise to a GN

Σ-equivariant homomorphism

ΛZ,Z′

X ,X ′ : C0(Z
′ \ Z)→ CX ,X ′,C0(Σ).

If (Z,Z ′) is a relative pair of GN

Σ-compact subsets of PK(GN

Σ) and if X ′ is a family
of compact subsets in Pr(Σ) such that ZX ′ ⊂ Z ′, then there exists a unique family
X ′

/Z = (X ′
i,/Z )i∈N of compact subsets in Pr(Σ) such that (X ′

/Z ,X
′) a relative pair of

families and ZX ′
/Z

= ZX ′ ∩ Z. If the relative paire (Z,Z ′) is moreover F -invariant,

then (X ′
/Z ,X

′) is a relative pair of families of F -invariant compact spaces and the
map

∏

i∈N

KKF
∗ (C0(X

′
i \X

′
i,/Z), Ai) −→ KK

GN

Σ,F
∗ (C0(Z

′ \ Z),A∞
C0(Σ))

z = (zi)i∈N 7→ ΛZ,Z′,∗
X ,X ′ (τ∞C0(Σ)(z)))

is compatible with family of inclusions (Xi →֒ X ′
i)i∈N of F -invariant compact sub-

sets. Hence, taking the inductive limite and setting

KF,∞
∗ (Z,Z ′,A) = lim

X ′

∏

i∈N

KKF
∗ (C0(X

′
i \X

′
i,/Z), Ai),

where X ′ = (X ′
i)i∈N runs through family of compact F -invariant subsets in Pr(Σ)

such that ZX ′ ⊂ Z ′, we end up with a morphism

(16) υZ,Z′

F,Σ,A,∗ : KF,∞
∗ (Z,Z ′,A)→ KK

GN

Σ,F
∗ (C0(Z

′ \ Z),A∞
C0(Σ)).

We set KF,∞
∗ (Z,A) for KF,∞

∗ (∅, Z,A) and υZ
F,Σ,A,∗ for υ∅,Z

F,Σ,,A,∗.

Lemma 4.3. Let Z be a GN

Σ,F -invariant closed subset of some PK(GN

Σ) for K a

compact subset of GN

Σ. Assume that the restriction to Z of the anchor map for the
action of GN

Σ on PK(GN

Σ) is locally injective, i.e there exists a covering of Z by open
subsets for which the restriction of the anchor map is one-to-one. Then for any
family A = (Ai)i∈N of F -algebras,

υZ
F,Σ,A,∗ : KF,∞

∗ (Z,A)→ KK
GN

Σ,F
∗ (C0(Z),A∞

C0(Σ))

is an isomorphism.

Proof. According to [12], since A∞
C0(Σ) is indeed a C(β0

N×Σ)-algebra, there is an

isomorphism

(17) lim
Z′

: KKGN

Σ,F (C0(Z
′),A∞

C0(Σ)) −→ KKGN

Σ,F (C0(Z),A∞
C0(Σ))

where

• in the inductive limit of the left hand side, Z ′ runs through GN

Σ-compact
and F -invariant subsets of Z/β0

N×Σ
.
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• the map is then induced by the inclusion Z ′ →֒ Z.

Under the identification of equation (17), the bunch of maps defined by equation
(15)

iZ′ : KK
GN

Σ,F
∗ (C0(Z

′),A∞
C0(Σ)) −→

∏

i∈N

KKF
∗ (C(XZ′

i ), Ai),

where Z ′ runs through GN

Σ-compact and F -invariant subsets of Z/β0
N×Σ

provides an

inverse for υZ
F,Σ,A,∗. �

Since for any compact subset K of GN

Σ, there exists r > 0 such that PK(GN

Σ) ⊂
Pr(G

N

Σ), we get that

(18) Ktop,∞
∗ (F,Σ,A) = lim

K
KF,∞

∗ (PK(GN

Σ),A),

where in the right hand side, K runs through compact F -invariant subsets of GΣ,
and the inductive limit is taken under the maps induced by inclusions PK(GN

Σ) →֒
PK′(GN

Σ) corresponding to relative pairs (K,K ′) of F -invariant compact subset of
GN

Σ. The maps

υ
PK(GN

Σ)
F,Σ,A,∗ : KF,∞

∗ (PK(GN

Σ),A)→ K
GN

Σ,F
∗ (C0(PK(GN

Σ)),A
∞
C0(Σ))

are then obviously compatible with the inductive limit of equation (18) and hence
gives rise to a morphism

υF,Σ,A,∗ : Ktop,∞
∗ (F,Σ,A)→ Ktop

∗ (GN

Σ,F ,A
∞
C0(Σ)).

We end this subsection by proving that υF,Σ,A,∗ is an isomorphism. The idea is
to use the simplicial structure of PK(GN

Σ) to carry out a Mayer-Vietoris argument.
In order to do that, we need first to reduce to the case of a second-countable and
étale groupoid. Recall from [10, Lemma 4.1] that there exists a second countable
étale groupoid G′

Σ with compact base space β′
Σ and an action of G′

Σ on βΣ such
that GΣ = βΣ⋊G′

Σ. The groupoid G′
Σ then acts on βN×Σ through the action

of GΣ and βN×Σ⋊GΣ = βN×Σ⋊G′
Σ. For any subset X of a G′

Σ-space, let us set
XN

Σ = βN×Σ×β′
Σ
X . If Σ is provided with an action by isometries of a finite group F ,

then G′
Σ can be choosen provided with an action of F by automorphisms that make

the action on βΣ and hence on βN×Σ equivariant. If we set then G′
F,Σ = G′

Σ⋊F ,

then for any family A = (Ai)i∈N of F -algebra, AC0(Σ) is a G′
F,Σ-algebra. Let Y

be a locally compact space equipped with a proper and cocompact action of G′
F,Σ.

Then the map

KK
GN

Σ,F
∗ (C0(Y

N

Σ ),AC0(Σ))→ KK
G′

F,Σ
∗ (C0(Y ),AC0(Σ))

obtained by forgetting the C(βN×Σ)-action is an isomorphism. Moreover, up to the
identification AC0(Σ)⋊redG

N

Σ,F
∼= AC0(Σ)⋊redG

′
F,Σ, then the Baum-Connes conjec-

ture for GN

Σ,F and for G′
F,Σ are for the coefficient AC0(Σ) equivalent [10]. For any

compact subset K of G′
Σ, we have a natural identification

PKN

Σ
(GΣ) ∼= PK(G′

Σ)
N

Σ.

Fix for a compact subset K of G′
Σ a positive number r such that PKN

Σ
(GΣ) ⊂

Pr(G
N

Σ). Let Y be a G′
F,Σ-invariant closed subset of PK(G′

Σ) and let X = (Xi)i∈N
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be a family of F -invariant compact subset of Pr(G
N

Σ) such that ZX ⊂ Y N

Σ and let
us consider the composition

Λ′X
Y : C0(Y ) −→ C0(Y

N

Σ )
ΛX

Y N
Σ−→ CX ,C0(Σ),

where the first map of the composition is induced by the projection Y N

Σ → Y .
Let us also consider the relative version: let (Y, Y ′) be a relative pair of G′

F,Σ-

invariant closed subsets of PK(G′
Σ) and let (X ,X ′) be a relative family of compact

F -invariant subsets of Pr(G
N

Σ) such that ZX ⊂ Y N

Σ and Z ′
X ⊂ Y ′

Σ
N
, define

Λ′X
Y,Y ′ : C0(Y

′ \ Y ) −→ CX ,X ′,C0(Σ)

as the restiction of Λ′X
Y to C0(Y

′ \ Y ′). Let us then proceed as we did to define

υY,Y ′

F,Σ,A,∗ in equation (15).

If τ ′∞C0(Σ)(•) stands for the restriction of τ∞C0(Σ)(•) to KK
G′

F,Σ
∗ (•, •), then the map

∏

i∈N

KKF
∗ (C0(X

′
i \X

′
i,/Y N

Σ
), Ai) −→ KK

G′
F,Σ

∗ (C0(Y
′ \ Y ),A∞

C0(Σ))

z = (zi)i∈N 7→ Λ′Y,Y
′,∗

X ,X ′ (τ ′∞C0(Σ)(z)))

is compatible with family of inclusions (Xi →֒ X ′
i)i∈N of F -invariant compact sub-

set. Hence, taking the inductive limit under family of F -invariant compact subset
of Y ′, we end up as in equation (15) with a morphism

υ′Y,Y ′

F,Σ,A,∗ : KF,∞
∗ (Y N

Σ , Y ′
Σ
N
,A) −→ KK

G′
F,Σ

∗ (C0(Y
′ \ Y ),A∞

C0(Σ)).

which is indeed the composition

KF,∞
∗ (Y N

Σ , Y ′
Σ
N
,A)

υY,Y ′

F,Σ,A,∗
−→ KK

GN

Σ,F
∗ (C0(Y

′
Σ
N
\ Y N

Σ ),A∞
C0(Σ))

−→ KK
G′

F,Σ
∗ (C0(Y

′ \ Y ),A∞
C0(Σ)),

where the second map is induced by the projection Y ′
Σ
N → Y ′. We set also υ′Y

F,Σ,A,∗

for υ′∅,Y
F,Σ,,A,∗

Lemma 4.4. Let Y be a G′
F,Σ-simplicial complexe in sense of [12, Definition 3.7]

lying in some PK(G′
F,Σ) for K a compact subset of G′

F,Σ. Then for any family

A = (Ai)i∈N of F -algebras,

υ
Y N

Σ

F,Σ,A,∗ : KF,∞
∗ (Y N

Σ ,A) −→ KK
GN

Σ,F
∗ (C0(Y

N

Σ ),A∞
C0(Σ))

is an isomorphism.

Proof. Notice first that as we have already mentionned, this is equivalent to prove

that υ′Y
F,Σ,A,∗ : KF,∞

∗ (Y N

Σ ,A) −→ KK
G′

F,Σ
∗ (C0(Y ),A∞

C0(Σ)) is an isomorphism. Let

us prove the result by induction on the dimension of the G′
F,Σ-simplicial complexe

Y . If Y has dimension 0, the anchor map for the action of GN

Σ,F is locally injective
and hence, the result is consequence of lemma 4.3. We can assume without loss
of generality that Y is typed and that the action of G′

F,Σ is typed preserving. Let
Y0 ⊂ Y1 ⊂ . . . Yn = Y be the skeleton of Y , and assume that we have proved that

υ
Y N

n−1,Σ

F,Σ,A,∗ : KF,∞
∗ (Y N

n−1,Σ,A) −→ K
GN

Σ,F
∗ (C0(Y

N

n−1,Σ),A
∞
C0(Σ))
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is an isomorphism. Since Y is second countable, the inclusion Yn−1 →֒ Yn gives rise
to a long exact sequence

. . . −→ KK
G′

F,Σ

i (C0(Yn−1),A
∞
C0(Σ)) −→ KK

G′
F,Σ

i (C0(Yn),A
∞
C0(Σ)) −→

KK
G′

F,Σ

i (C0(Yn \ Yn−1),A
∞
C0(Σ)) −→ KK

G′
F,Σ

i−1 (C0(Yn−1),A
∞
C0(Σ)) −→ . . .

In the same way, we have a long exact sequence

. . . −→ KF,∞
i (Y N

n−1,Σ,A) −→ KF,∞
i (Y N

n,Σ,A) −→

KF,∞
i (Y N

n−1,Σ, Y
N

n,Σ,A) −→ KF,∞
i−1 (Y N

n−1,Σ,A) −→ . . .

By naturality of the morphisms Λ′•,•
•,• and τ ′∞C0(Σ)(•), these two long exact sequences

are intertwinned by the maps υ•,•
F,Σ,A,∗. Using a five lemma argument, the proof of

the result amouts to show that

υ′Y
N

n−1,Σ,Y N

n,Σ

F,Σ,A,∗ : KF,∞
∗ (Y N

n−1,Σ, Y
N

n,Σ,A) −→ KK
G′

F,Σ
∗ (C0(Yn \ Yn−1),A

∞
C0(Σ))

is an isomorphism. Let Y ′ be the the set of centers of n simplices of Y . Since the
action of G′

F,Σ is type preserving, we have a G′
F,Σ-equivariant identification

(19) Yn \ Yn−1
∼= Y ′×

o

∆,

where
o

∆ is the interior of the standard simplex, and where the action of G′
F,Σ on

Y ′×
o

∆ is diagonal through Y ′. Let then [∂Yn−1,Yn ] be the element ofKK
G′

F,Σ
∗ (C0(Y

′), C0(Yn\
Yn−1)) that implements up to the identification of equation (19) the Bott period-
icity isomorphism. We can assume without loss of generality that in the definition

of KKF,∞
∗ (Y N

n−1,Σ, Y
N

n,Σ,A), the inductive limit is taken over families X = (Xi)i∈N

of F -invariant compact subsets of some Pr(Σ) such that

• Xi is for every integer i a finite union of n-simplices with respect to the
simplicial structure inherited from Y .
• ZX ⊂ Y N

n,Σ.

Let X be such a family and let X ′
i be for every integer i the set of centers of

n-simplices of Xi. Let us set then X ′ = (X ′
i)i∈N. Since the action of F is type

preserving, we have a F -equivariant identification

(20) Xi \Xi/Y N

n−1,Σ

∼= X ′
i×

o

∆,

the action of F on
o

∆ being trivial. Let [∂i] be the element of KKF
∗ (C(X ′

i), C0(Xi \
Xi/Y N

n−1,Σ
)) that implements up to this identification the Bott periodicity isomor-

phism and set then

[∂̃] = ([∂i])i∈N ∈
∏

i∈N

KKF
∗ (C(X ′

i), C0(Xi \Xi/Y N

n−1,Σ
)).

The Bott generator of KK∗(C, C0(
o

∆))) can be represented by a K-cycle (C0(
o

∆
,Cl), φ, T ) for some integer l, where m is the obvious representation of C on

C0(
o

∆,Cl) by scalar multiplication, and T is an adjointable operator on C0(
o

∆,Cl)
that satisfies the K-cycle conditions. Then for any integer i, the element [∂i] of
KKF

∗ (C(X ′
i), C0(Xi \Xi/Y N

n−1,Σ
)) can be represented by the K-cycle

(C0(X
′
i×

o

∆,Cl), φi, IdC(X′
i)
⊗T ),
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where C0(X
′
i×

o

∆,Cl) is viewed as a right C0(Xi \ Xi/Y N

n−1,Σ
)-Hilbert module by

using the identification of equation (20) and φi is the obvious diagonal represen-

tation of C0(X
′
i) on C0(X

′
i×

o

∆,Cl). Let [∂X ,C0(Σ)] be the class of the K-cycle

(
∏

i∈N
C0(Σ×X ′

i×
o

∆,Cl),
∏

i∈N
IdC0(Σ)⊗φi,

∏
i∈N

IdC0(Σ×X′
i)
⊗T ) inKK

G′
F,Σ

∗ (CX ′,C0(Σ), CX
/Y N

n−1,Σ
,X ,C0(Σ)).

Then we have

(21) Λ′X
′,∗

Y ′ ([∂X ,C0(Σ)]) = Λ′
X

/Y N
n−1,Σ

,X

Yn−1,Yn,∗
[∂Yn−1,Yn ].

Let z = (zi)i∈N be a family in
∏

i∈N
KKF (C0(Xi \Xi/Y N

n−1,Σ
), Ai). Then using the

characterisation of the Kasparov product (see [3] and [5] for the groupoid case), we
get that

Λ′X
′,∗

Y ′ ([∂X ,C0(Σ)])⊗τ
∞
C0(Σ)(z) = Λ′X

′,∗
Y ′ (τ∞C0(Σ)([∂̃]⊗z)).

This in turn implies that

[∂Yn−1,Yn ]⊗Λ
′
X

/Y N
n−1,Σ

,X ,∗

Yn−1,Yn
(τ∞C0(Σ)(z)) = Λ′

X
/Y N

n−1,Σ
,X

Yn−1,Yn,∗
([∂Yn−1,Yn ])⊗τ

∞
C0(Σ)(z)

= Λ′X
′,∗

Y ′ ([∂X ,C0(Σ)])⊗τ
∞
C0(Σ)(z)

= Λ′X
′,∗

Y ′ (τ∞C0(Σ)([∂̃]⊗z)),

where the first equality is a consequence of bifunctoriality of Kasparov product and
the second equality holds by equation (21). From this, we get the existence of a
commutative diagram

KF,∞
∗ (Y N

n−1,Σ, Y
N

n,Σ,A)
∼=

−−−−→ KF,∞
∗ (Y ′

Σ
N
,A)

υ′Yn−1,Yn

F,Σ,A,∗

y
yυ′Y ′

F,Σ,A,∗

KK
G′

F,Σ
∗ (C0(Yn \ Yn−1),A∞

C0(Σ))
[∂Yn−1,Yn ]⊗
−−−−−−−−→ KK

G′
F,Σ

∗ (C0(Y
′),A∞

C0(Σ))

,

where the top row is obtained by taking inductive limit over morphisms

([∂i]⊗ : KKF
∗ (C0(Xi \Xi/Y N

n−1,Σ
), Ai)

∼=
−→ KKF

∗ (C(X ′
i), Ai))i∈N

relative to families X = (Xi) of F -invariant compact subset of some Pr(Σ) such
that

• Xi is for every integer i a finite union of n-simplices.
• ZX ⊂ Y N

n,Σ.

Since Y ′ is a G′
F,Σ-simplicial complex of degree 0 and as we have already seen,

υ′Y ′

F,Σ,A,∗ is an isomorphism, and hence υ
′Yn−1,Yn

F,Σ,A,∗ is an isomorphism. From this we

deduce that υ′Yn

F,Σ,A,∗ is an isomorphism and hence that υ
Y N

n,Σ

F,Σ,A,∗ is an isomorphism.
�

Corollary 4.5. Let Σ be a discrete metric space provided with an action of a finite
group F by isometries and let A = (Ai)i∈N be a family of F -algebras. Then,

υF,Σ,A,∗ : Ktop,∞
∗ (F,Σ, A) −→ Ktop

∗ (GN

Σ,F ,A
∞
C0(Σ))

is an isomorphism.
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4.3. The assembly map for the action of GF,Σ on A∞
C0(Σ). The aim of this

subsection is to show that up to the identifications provided on the left hand side
by corollary 4.5 and on the right hand side by equation (12), then the maps

µGN

Σ,F ,A∞
C0(Σ)

,∗ : Ktop
∗ (GN

Σ,F ,A
∞
C0(Σ))→ K∗(A

∞
C0(Σ) ⋊r G

N

Σ,F )

and

ν∞F,Σ,A,∗ : Ktop,∞
∗ (F,Σ,A)−→K∗(A

∞
Σ ⋊ F )

coincide.

Fix a rank one projection e in K(H) and let us define  : C → K(H);λ 7→
λe. For any family of C∗-algebras A = (Ai)i∈N, let us consider the family of
homomorphisms (A = ⊗IdAi : Ai → Ai⊗K(H))i∈N.

Proposition 4.6. For any families of F -algebras A = (Ai)i∈N and B = (Bi)i∈N and
any element z = (zi)i∈N in

∏
i∈N

KKF
∗ (Ai, Bi), we have a commutative diagram

K∗(AC0(Σ)⋊redG
N

Σ,F )
⊗J

GN

Σ,F
(τ∞

C0(Σ)(z))

−−−−−−−−−−−−→ K∗(B∞
C0(Σ)⋊redG

N

Σ,F )

A,F,Σ,∗◦IF,Σ,A,∗

y
yIF,Σ,B∞,∗

K∗(A∞
Σ ⋊redF )

τ∞
F,Σ(z)
−−−−−→ K∗(B∞

Σ ⋊redF )

where up to the identifications K∗(A∞
Σ ⋊redF ) ∼= K∗(A∞

F,Σ) and K∗(B∞
Σ ⋊redF ) ∼=

K∗(B
∞
F,Σ), the morphism τ∞F,Σ(z) is induced in K-theory by the controlled morphism

T ∞
F,Σ(z) : K(A

∞
F,Σ)→ K(B

∞
F,Σ).

Proof. Assume first that the family z = (zi)i∈N is of even degree. According to [4,
Lemma 1.6.9], there exists for any integer i

• a F -algebra A′
i;

• two F -equivariant homomorphisms αi : A
′
i → Bi and βi : A

′
i → Ai such

that the induced element [βi] ∈ KKF
∗ (A′

i, Ai) is invertible and such that
zi = αi,∗([βi]

−1).

By naturality of •,F,Σ and IF,Σ,•,∗ and by left functoriality of τ∞C0(Σ), JGN

Σ
and τ∞F,Σ,

we can actually assume that for any integer i, then zi = [βi]
−1 for a homomorphism

βi : Bi → Ai such that the induced element [βi] ∈ KKF
∗ (Bi, Ai) is KK-invertible.

Let us consider the family of homomorphisms β = (βi)i∈N. Using the bifunctoriality
of τ∞F,Σ, we see that τ∞F,Σ(z) is an isomorphism with inverse β∞

F,Σ,∗. But then, if we

set [IdA] = ([IdAi ])i∈N, using once again the naturality of •,F,Σ and IF,Σ,•,∗ and
right functoriality of JGN

Σ,F
and τ∞F,Σ, we have

β∞
F,Σ,∗ ◦ IF,Σ,B∞,∗(JGN

Σ,F
(τ∞C0(Σ)(z))) = IF,Σ,A∞,∗(JGN

Σ,F
(τ∞C0(Σ)(β∗(z))))

= IF,Σ,A∞,∗(JGN

Σ,F
(τ∞C0(Σ)([IdA]))).

But up to the identifications provided by IF,Σ,•, then JGN

Σ,F
(τ∞C0(Σ)([IdA])) coincides

with A,F,Σ,∗ and hence we get the result in the even case.

If z = (zi)i∈N is a family of odd degree. Then, for every integer i, the element
zi of KKF

1 (Ai, Bi) can be viewed up to Morita equivalence as implementing the
boundary element of a semi-split extension of F -algebras

0−→K(H)⊗Bi−→Ei−→Ai−→0.
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If we set E = (Ei)i∈N, then the induced extension

0−→B∞
C0(Σ)−→EC0(Σ)−→AC0(Σ)−→0

is a semisplit extension of GN

Σ,F -algebra and hence gives rise to an extension of
C∗-algebras

0−→B∞
C0(Σ)⋊redG

N

Σ,F−→EC0(Σ)⋊redG
N

Σ,F−→AC0(Σ)⋊redG
N

Σ,F−→0

Moreover, by naturality of IF,Σ,•, have a commutative diagram with exact rows

0 −−−−→ B∞
C0(Σ)⋊redG

N

Σ,F −−−−→ EC0(Σ)⋊redG
N

Σ,F −−−−→ AC0(Σ)⋊redG
N

Σ,F −−−−→ 0

IF,Σ,B∞

y IF,Σ,E

y IF,Σ,A

y

0 −−−−→ B∞
Σ ⋊redF −−−−→ EΣ⋊redF −−−−→ AΣ⋊redF −−−−→ 0

.

By using naturally of the boundary map in K-theory, the result in the odd case is
a consequence of the two following observations:

• JGN

Σ,F
(τ∞C0(Σ)(z)) implements the boundary map of the top extension;

• if ∂B∞
Σ ⋊redF,EΣ⋊redF stands for the boundary map of the bottom extension,

then

∂B∞
Σ ⋊redF,EΣ⋊redF = τ∞F,Σ(z) ◦ A,F,Σ,∗.

�

Proposition 4.7. Let Σ be a discrete metric space provided with a free action of a
finite group F by isometries and let A = (Ai)i∈N be a family of F -algebras. Then
we have a commutative diagram

Ktop,∞
∗ (F,Σ, A)

υF,Σ,A,∗
−−−−−→ Ktop

∗ (GN

Σ,F ,A
∞
C0(Σ))

ν∞
F,Σ,A,∗

y
yµ

GN

Σ,F
,AC0(Σ),∗

K∗(A∞
Σ ⋊ F )

I−1
F,Σ,A∞,∗
−−−−−−−→ K∗(A∞

C0(Σ) ⋊r GF,Σ)

Proof. Let Z = PK(GN

Σ), for K a F -invariant subset in GN

Σ an let us fix r > 0
such that Z ⊂ Pr(G

N

Σ). Let us define φZ : Z → C; η 7→ η(χ0), where χ0 is the
characteristic function of the diagonal of Σ× Σ. Then φZ is a cut-off function for
the proper action of GN

Σ on Z. Let

PZ,GN

Σ
: Z ×βN×Σ

GN

Σ → C; (η, γ) 7→ φZ(η)
1/2φZ(η · γ)

1/2

be the Mishchenko projection of C0(Z)⋊redGΣ associated to φZ . For a family
X = (Xi)i∈N of F -invariant compact subsets of Pr(G

N

Σ) such that ZX ⊂ Z, let us
consider PX = (PXi)i∈N in CX ,F,Σ, where PXi is for each integer i the projection
defined by equation (5). Recall that then, P∞

X = (PXi⊗e)i∈N in C∞X ,Σ for e a fixed

rank one projection in K(H). Noticing that [P∞
X ] = ∞CX,F,Σ,∗

[PX ] in K0(C∞X ,F,Σ))
∼=

K0(C∞X ,Σ⋊F ), then the commutativity of the diagram amounts to show that

IF,Σ,A∞,∗([PZ,GN

Σ
]⊗JGN

Σ
(ΛX ,∗

Z (τ∞C0(Σ))(z))) = τ∞F,Σ(z)([CX,F,Σ(PX )])

up to the identification K∗(A
∞
Σ ⋊F ) ∼= K∗(A

∞
F,Σ). But it is straitforward to check

that

ΛZ
X (φZ) = (φΣ,i)i∈N
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with φΣ,i : Σ×Xi → C : (σ, x) 7→ λσ(x). Hence, if

ΛZ
X ,GN

Σ,F
: C0(Z)⋊GN

Σ,F → CX ,C0(Σ)⋊redG
N

Σ,F

stands for the map induced by ΛZ
X on the reduced crossed-products, we have

(22) IF,Σ,CX
◦ ΛZ

X ,GN

Σ,F
(PZ,GN

Σ
) = PX .

From this, we deduce

IF,Σ,A∞,∗([PZ,GN

Σ
]⊗JGN

Σ,F
(ΛX

Z,∗(τ
∞
C0(Σ))(z))) = IF,Σ,A∞,∗([Λ

X ,

Z,GN

Σ,F

(PZ,GN

Σ,F
)]⊗JGN

Σ,F
(τ∞C0(Σ))(z)))

= [ΛX
Z,GN

Σ,F
(PZ,GN

Σ
)]⊗IF,Σ,A∞,∗(JGN

Σ,F
(τ∞C0(Σ))(z))

= τ∞F,Σ(z) ◦ 
∞
CX ,F,Σ,∗ ◦ IF,Σ,CX ,∗ ◦ Λ

X
Z,GN

Σ,F ,∗([PZ,GN

Σ
])

= τ∞F,Σ(z) ◦ 
∞
CX ,F,Σ,∗([PX ]),

where there first equality holds by naturality of JGN

Σ,F
and left functoriality of Kas-

parov product, the second equality holds by right functoriality of Kasparov product,
the third equality is a consequence of proposition 4.6 and the fourth equality holds
by equation (22). �

As a consequence of corollary 4.5 and proposition 4.7, we obtain

Theorem 4.8. Let F be a finite group acting freely on a discrete metric space Σ
with bounded geometry and let A = (Ai)i∈N be a family of C∗-algebras. Then the
two following assertions are equivalent:

(i) ν∞F,Σ,A,∗ : Ktop,∞
∗ (F,Σ,A) −→ K∗(A∞

Σ ⋊ F ) is an isomorphism.

(ii) the groupoid GF,Σ satisfies the Baum-Connes conjecture with coefficients
in A∞

C0(Σ).

(iii) the groupoid GN

Σ,F satisfies the Baum-Connes conjecture with coefficients
in A∞

C0(Σ).

4.4. Quantitative statements. We are now in position to state the analoque of
the quantitative statements of [8, Section 6.2] in the setting of discrete metric spaces
with bounded geometry.

Let F be a finite group, let Σ a be discrete metric space with bounded geometry
provided with an action of F by isometries and let A be a F -algebra. Let us consider
for d, d′, r, r′, ε and ε′ positive numbers with d 6 d′, ε′ 6 ε < 1/4, rd,ε 6 r and
r′ 6 r the following statements:

QIF,Σ,A,∗(d, d
′, r, ε): for any element x inKF

∗ (Pd(Σ), A), then νε,r,dF,Σ,A,∗(x) = 0

in Kε,r
∗ (AF,Σ) implies that q∗d,d′(x) = 0 in KF

∗ (Pd′(Σ), A).

QSF,Σ,A,∗(d, r, r
′, ε, ε′): for every y in Kε′,r′

∗ (AF,Σ), there exists an element
x in KF

∗ (Pd(Σ), A) such that

νε,r,dF,Σ,A,∗(x) = ιε
′,ε,r′,r

∗ (y).

The following results provide numerous examples that satisfy these quantitative
statements.
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Theorem 4.9. Let F be a finite group, let Σ a be discrete metric space with bounded
geometry provided with a free action of F by isometries and let A be a F -algebra
Then the following assertions are equivalent:

(i) For any positive numbers d, ε and r with ε < 1/4 and r > rd,ε, there exists
a positive number d′ with d′ > d for which QIF,Σ,A,∗(d, d

′, r, ε) is satisfied.

(ii) ν∞F,Σ,A,∗ : Ktop,∞
∗ (F,Σ, AN) −→ K∗(A

N,∞
Σ ⋊ F ) is one-to-one.

(iii) µ∞
GF,Σ,AN,∞

C0(Σ)
,∗

: Ktop
∗ (GF,Σ, A

N,∞
C0(Σ)) −→ K∗(A

N,∞
C0(Σ)⋊redGF,Σ) is one-to-

one.

Proof. The equivalence between points (ii) and (iii) is a consequence of theorem
4.8. Let us prove that points (i) and (ii) are equivalent. Assume that condition (i)
holds. Let x = (xi)i∈N be a family of elements in some KF

∗ (Pd′(Σ), A) such that

ν∞,d
F,Σ,A,∗(x) = 0. By definition of ν∞,d

F,Σ,A,∗(x), we have that ιε
′,r′

∗ (ν∞,ε′,r′,d
F,Σ,A,∗ (x)) = 0

for any ε′ in (0, 1/4) and r′ > rd,ε′ and hence, by proposition 1.3, we can find ε in

(0, 1/4) and r > rd,ε such that µ∞,ε,r,d
F,Σ,A,∗(x) = 0. But up to the controlled morphisms

of proposition 3.7 and of lemma 3.8, µ∞,ε,r,d
F,Σ,A,∗(x) coincides with

∏
i∈N

µε,r,d
F,Σ,A,∗(xi), so

up to rescale ε and r by a (universal) control pair, we can assume that µε,r,d
F,Σ,A,∗(xi) =

0 for all integer i. Let d′ > d be a number such that QIF,Σ,A,∗(d, d
′, r, ε) is satisfied.

Then we get that qd,d′,∗(xi) = 0 for all integer i such that di > d and hence
qd,d′,∗(x) = 0.

Let us prove the converse. Assume first that there exists positive numbers d, ε
and r with ε < 1/4 and r > rd,ε and such that for all d′ > d, the condition

QIΣ,F,A(d, d
′, r, ε) does not hold. Let us prove that ν∞,d

F,Σ,A,∗ is not one-to-one. Let

(di)i∈N be an increasing and unbounded sequence of positive numbers such that
di > d for all integer i. For all integer i, let xi be an element in KF

∗ (Pd(Σ), A)

such that νε,r,dF,Σ,A,∗(xi) = 0 in Kε,r
∗ (AF,Σ) and qd,di,∗(xi) 6= 0 in KF

∗ (Pdi(Σ), A) and

set x = (xi)i∈N. Then we have ν∞,d
F,Σ,A,∗(x) = 0 and qd,di,∗(x) 6= 0 for all i. Since

the sequence (di)i∈N is unbounded, we deduce that the kernel of ν∞F,Σ,A,∗ is non
trivial. �

Theorem 4.10. There exists λ > 1 such that for any finite group F , any discrete
metric space Σ with bounded geometry, provided with a free action of F by isometries
and any F -algebra A, then the following assertions are equivalent:

(i) For any positive numbers ε and r′ with ε < 1
4λ , there exist positive numbers

d and r with rd,ε 6 r and r′ 6 r for which QSF,Σ,A,∗(d, r, r
′, λε, ε) is

satisfied.

(ii) ν∞F,Σ,A,∗ : Ktop,∞
∗ (F,Σ, AN) −→ K∗(A

N,∞
Σ ⋊ F ) is onto.

(iii) µGF,Σ,AN,∞
C0(Σ)

,∗ : Ktop
∗ (GF,Σ, A

N,∞
C0(Σ)) −→ K∗(A

N,∞
C0(Σ)⋊redGF,Σ) is onto.

Proof. The equivalence between points (ii) and (iii) is a consequence of theorem
4.8. Choose λ as in proposition 1.3 and assume that condition (i) holds. Let z be

an element in K∗(A
N,∞
Σ ⋊F ) and let y be an element in Kε,r′

∗ (AN,∞
F,Σ ⋊F ) such that

ιε,r
′

∗ (y) corresponds to z up to the identification K∗(A
N,∞
Σ ⋊ F ) ∼= K∗(A

N,∞
F,Σ ). Let

yi be the image of y under the composition

(23) Kε,r′

∗ (AN,∞
F,Σ )→ Kε,r′

∗ (K(H)⊗AF,Σ)
∼=
→ Kε,r′

∗ (AF,Σ),
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where the first map is induced by the evaluation AN,∞
F,Σ −→ AF,Σ⊗K(H) at the i th

coordinate and the second map is the Morita equivalence. Let d and r be numbers
with r > r′ and r > rd,ε and such that QSF,Σ,A(d, r, r

′, λε, ε) holds. Then for any

integer i, there exists a xi in KF
∗ (Pd(Σ), A) such that νλε,r,dF,Σ,A,∗(xi) = ιε,λε,r

′,r
∗ (yi) in

Kλε,r
∗ (AF,Σ). Consider then x = (xi)i∈N in Ktop,∞

∗ (F,Σ, AN). By construction of
the map ν∞F,Σ,A,∗, we clearly have ν∞F,Σ,A,∗(x) = z.

Conversely, assume that there exist positive numbers ε and r′ with ε < 1
4λ such

that for all positive numbers r and d with r > r′ and r > rd,ε, thenQSF,Σ,,A,∗(d, r, r
′, λε, ε)

does not hold. Let us prove then that ν∞F,Σ,A,∗ is not onto. Assume first for sake of

simplicity that A is unital. Let (di)i∈N and (ri)i∈N be increasing and unbounded se-
quences of positive numbers such that ri > rdi,λε and ri > r′. Let yi be an element

in Kε,r′

∗ (AF,Σ) such that ιε,λε,r
′,ri

∗ (yi) is not in the range of νλε,ri,di

F,Σ,A,∗. There exists

an element y in Kε,r′

∗ (AN,∞
F,Σ ) such that for every integer i, the image of y under

the composition of equation (23) is yi. Assume that for some d′, there is an x in

Ktop,∞
∗ (F,Σ, AN) such that up to the identification K∗(A

N,∞
Σ ⋊ F ) ∼= K∗(A

N,∞
F,Σ ),

then ιε,r
′

∗ (y) = µ∞,d′

F,Σ,A,∗(x). Using proposition 1.3, we see that there exists a positive

number r with r′ 6 r and rd′,λε 6 r and such that

ν∞,λε,r,d′

F,Σ,A,∗ (x) = ιε,λε,r
′,r

∗ (y).

But then, if we choose i such that ri > r and di > d′, we get by using the definition

of the geometric assembly map ν∞,·,·,·
F,Σ,•,∗ and by equation (23) that ιε,λε,r

′,ri
∗ (yi)

belongs to the image of νλε,ri,di

F,Σ,A,∗, which contradicts our assumption. If A is not
unital, then we use the control pair of lemma 1.11 to rescal λ.

�

Replacing in the proof of (ii) implies (i) of theorems 4.9 and 4.10 the constant
family AN by a family A = (Ai)i∈N of F -algebras, we can prove indeed the following
result.

Theorem 4.11. Let Σ be a discrete metric space with bounded geometry provided
with a free action of a finite group F by isometries.

(i) Assume that for any family A = (Ai)i∈N of F -algebras, then the assembly
map

µGF,Σ,A∞
C0(Σ)

,∗ : Ktop
∗ (GF,Σ,A

∞
C0(Σ)) −→ K∗(A

∞
C0(Σ)⋊redGF,Σ)

is one-to-one. Then for any positive numbers d, ε, r with ε < 1/4 and r >

rd,ε, there exists a positive number d′ with d′ > d such that QIΣ,F,,A(d, d
′, r, ε)

is satisfied for every F -algebra A;
(ii) Assume that for any family A = (Ai)i∈N of F -algebras, the assembly map

µGF,Σ,A∞
C0(Σ)

,∗ : Ktop
∗ (GF,Σ,A

∞
C0(Σ)) −→ K∗(A

∞
C0(Σ)⋊redGF,Σ)

is onto. Then for some λ > 1 and for any positive numbers ε and r′ with
ε < 1

4λ , there exist positive numbers d and r with rd,ε 6 r and r′ 6 r such
that QSΣ,F,A(d, r, r

′, λε, ε) is satisfied for every F -algebra A.

Recall from [10, 15] that if Σ coarsely embeds in a Hilbert space, then the
groupoid GF,Σ satisfies the Baum-Connes conjecture for any coefficients.
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4.5. Application to the persistence approximation property. Let F be a
finite group, let Σ be a discrete metric space with bounded geometry provided with
a free action of F by isometries and let A be a F -algebra. We apply the results of the
previous section to the persistence approximation for AF,Σ: for any ε small enough
and any r > 0 there exists ε′ in (ε, 1/4) and r′ > r such that PA(AF,Σ, ε, ε

′, r, r′) is
satisfied.

Notice that the approximation property is coarse invariant. To apply quanti-
tative statements of last subsection to our persistence approximation property, we
have to define the analogue in the setting of discrete proper metric space of the
existence of a cocompact universal example for proper action of a discrete group.

Definition 4.12. A discrete metric space Σ provided with a free action of a finite
group is coarsely uniformly F -contractible if for every d > 0 there exists d′ > d such
that any invariant compact substet of Pd(Σ) lies in a F -equivariantly contractible
invariant compact subset of of Pd′(Σ).

Example 4.13. Any (discrete) Gromov hyperbolic metric space provided with a
free action of a finite group F by isometries is coarsely uniformly F -contractible
[6].

Lemma 4.14. Σ be a proper discrete metric space provided with a free action of
finite group F by isometries. Assume that Σ is coarsely uniformly F -contractible.
Then for any positive numbers ε, d and r with ε < 1/4 and r > rd,ε, there exists
a positive number d′ with d′ > d such that QIF,Σ,A,∗(d, d

′, r, ε) is satisfied for any
F -algebra A.

Proof. Let A be a F -algebra and let x be an element of K∗(Pd(Σ), A) such that,

νε,r,dF,Σ,A,∗(x) = 0 in Kε,r
∗ (AF,Σ). Let d′ > d be a positive number such that every

invariant compact subset of Pd(Σ) lies in a F -equivariantly contractible invariant

compact subset of Pd′(Σ). Then qd,d
′

∗ (x) ∈ K∗(Pd′(Σ), A) comes indeed from an
element of KKF

∗ (C({p}), A) ∼= KKF
∗ (C, A) for p a F -invariant element in Pd′(Σ).

But under the identification between K∗(AF,Σ) and K∗(A ⋊ F ) given by Morita
equivalence (see section 3.1), the map

KKF
∗ (C, A) −→ K∗(AF,Σ); x 7→ [P{p}]⊗C({p})F,Σ

τF,Σ(x)

is the Green-Julg duality isomorphism for finite groups [2]. Since

νd
′

F,Σ,A,∗ ◦ q
d,d′

∗ (x) = νdF,Σ,A,∗(x)

= ιε,r∗ ◦ ν
ε,r,d
F,Σ,A,∗(x)

= 0.

We deduce that qd,d
′

∗ (x) = 0 �

Theorem 4.15. There exists λ > 1 such that for any finite group F and any
F -algebra A the following holds:

Let Σ be a discrete metric space with bounded geometry, provided with a free
action of F by isometries. Assume that

• µ∞
GF,Σ,AN,∞

C0(Σ)
,∗
: Ktop

∗ (GF,Σ, A
N,∞
C0(Σ)) −→ K∗(A

N,∞
C0(Σ)⋊redGF,Σ) is onto.

• Σ is uniformly F -contractible.
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Then for any ε in (0, 1
4λ ) and any r > 0, there exists r′ > 0 such that PAF,Σ,A,∗(ε, λε, r, r

′)
holds.

Proof. In view of corollary 4.5 and proposition 4.7, we get that under he assump-
tions of the theorem,

ν∞F,Σ,A,∗ : Ktop,∞
∗ (F,Σ,A) −→ K∗(A

∞
Σ ⋊ F )

is onto for any F -algebra A. Consider λ as in theorem 4.10. Let ε be a positive
number with ε < 1

4λ and let d and r′ be positive number with r′ > rd,ε such that
QSΣ,F,A(d, r, r

′, λε, ε) is satisfied for every F -algebra A. Choose d′ as in lemma 4.14
such that QIF,Σ,A,∗(d, d

′, r′, λε) is satisfies. We can assume without loss of gener-
ality that r′ > rd′,λε. Let y be an element of K∗

ε,r(AF,Σ) such that ιε,r∗ (y) = 0 in

K∗(AF,Σ). Then there exists x in K∗(Pd(Σ), A) such that νλε,r
′,d

F,Σ,A,∗(x) = ιε,λε,r,r
′

∗ (y).
Then we have

ι∗ε, λε, r, r
′(x) = νdF,Σ,A,∗(x)

= νd
′

F,Σ,A,∗ ◦ q
d,d′

∗ (x)

= 0

�

Similarly, using theorem 4.11, we get:

Theorem 4.16. There exists λ > 1 such that for any finite group F the following
holds:

Let Σ be a discrete metric space with bounded geometry, provided with a free
action of F by isometries. Assume that

• for any family A = (Ai)i∈N of F -algebras, then the assembly map

µGF,Σ,A∞
C0(Σ)

,∗ : Ktop
∗ (GF,Σ,A

∞
C0(Σ)) −→ K∗(A

∞
C0(Σ)⋊redGF,Σ)

is onto.
• Σ is coarsely uniformly F -contractible.

Then for any ε in (0, 1
4λ ) and any r > 0, there exists r′ > 0 such that PA∗(AF,Σ, ε, λε, r, r

′)
holds for any F -algebra A.

Corollary 4.17. There exists λ > 1 such that for any finite group F and any
discrete Gromov hyperbolic metric space Σ provided with a free action of F by
isometries, then the following holds: for any ε in (0, 1

4λ) and any r > 0, there exists
r′ > 0 such that PA∗(AF,Σ, ε, λε, r, r

′) holds for any F -algebra A.

5. Applications to Novikov conjecture

In this section, we investigate the connection between the quantitative state-
ments of 4.4 and the Novikov conjecture. Indeed, we show that when this statements
are satisfied uniformly for the family of finite subsets of a discrete metric space Σ
with bounded geometry, then Σ satisfies the coarse Baum-Connes conjecture.
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5.1. The coarse Baum-Connes conjecture. Let us first briefly recall the state-
ment of the coarse Baum-Connes conjecture. Let Σ be a discrete metric space with
bounded geometry and let H be a separable Hilbert space. Set C[Σ]r for the space
of locally compact operators on ℓ2(Σ)⊗H with propagation less than r, i.e opera-
tors that can be written as blocks T = (Tx,y)(x,y)∈Σ2 of compact operators of H
such that Tx,y = 0 if d(x, y) > r. The Roe algebra of Σ is then

C∗(Σ) = ∪r>0C[Σ]r ⊆ L(ℓ
2(Σ)⊗H)

and is by definition filtered by (C[Σ]r)r>0. In [1] was defined a bunch of coarse
assembly maps (we shall recall later on the definition of these maps)

µs
Σ,∗ : K∗(Ps(Σ))→ K∗(C

∗(Σ))

compatible with the maps K∗(Ps(Σ)) → K∗(Ps′ (Σ)) induced by the inclusions of
Rips complexes Ps(Σ) →֒ Ps′ (Σ) for s 6 s′. Taking the inductive limit, we end up
with the so-called coarse Baum-Connes assembly map

µΣ,∗ : lim
s>0

K∗(Ps(Σ))→ K∗(C
∗(Σ)).

We say that Σ satisfies the coarse Baum-Connes assembly map if µΣ,∗ is an iso-
morphism.

The coarse Baum-Connes conjecture is then related to the quantitative state-
ments of 4.4 in the following way. From now on, if Σ is a discrete metric space, then
QIΣ,∗(d, d

′, r, ε) and QSΣ,∗(d, r, r
′, ε, ε′) respectively stand for QI{e},Σ,C,∗(d, d

′, r, ε)
and QS{e},Σ,C,∗(d, r, r

′, ε, ε′).

Theorem 5.1. Let Σ be a discrete metric space with bounded geometry. Assume
that the following assertions hold:

(i) For any positive number d, ε and r with ε < 1/4 and r ≥ rd,ε, there exists
a positive number d′ with d′ ≥ d such that QIF,∗(d, d

′, r, ε) holds for any
finite subset F of Σ;

(ii) For any positive number ε′ and r′ with ε < 1/4, there exists positive
numbers d, ε and r with r ≥ rd,ε , r ≥ r′ and ε in [ε′, 1/4) such that
QSF,∗(d, r, r

′, ε, ε′) holds for any finite subset F of Σ.

Then Σ satisfies the coarse Baum-Connes conjecture.

Let us recall now the definition of the Coarse Baum-Connes assembly maps given
in [10, Section 2.3]. Indeed, the definition of the coarse Baum-Connes assembly map
was extended to Roe algebras with coefficients in a C∗-algebra. LetH be a separable
Hilbert space, let Σ be a proper discrete metric space with bounded geometry and
let B be a C∗-algebra. Define C∗(Σ, B) the Roe algebra of Σ with coefficient
in B as the closure of operators of the Hilbertian right B-module ℓ2(Σ)⊗H⊗B
which are locally compact with finite propagation. Then C∗(Σ, B) is sub-C∗-algebra
of LB(ℓ2(Σ)⊗H⊗B). This construction is moreover functorial. Any morphism
f : A → B induces in the obvious way a C∗-algebra morphism fΣ : C∗(Σ, A) →
C∗(Σ, B). In [10, Section 2.3] was defined in this setting a natural transformation

σΣ : KK∗(A,B)−→KK∗(C
∗(Σ, A), C∗(Σ, B)),

for any C∗-algebras A and B, which can be viewed as the geometrical analogue of
the Kasparov transformation for crossed products. Let us give now the description
of this map.
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Let (H⊗B, π, F ) be a non-degenerated K-cycle for KK∗(A,B). Define then

F̃ = Idℓ2(Σ)⊗H⊗F acting on the Hilbertian right B-module ℓ2(Σ)⊗H⊗H⊗B. The
map

LA(ℓ
2(Σ)⊗H⊗A)−→LB(ℓ

2(Σ)⊗H⊗H⊗B); T 7→ T⊗πIdH⊗B

induces by restriction and under the identification between LB(ℓ2(Σ)⊗H⊗H⊗B)
and LK(H)⊗B(ℓ

2(Σ)⊗H⊗K(H)⊗B) a morphism

π̃ : C∗(Σ, A)→M(C∗(Σ, B⊗K(H))),

where M(C∗(Σ, B⊗K(H))) stands for the multiplier algebra of C∗(Σ, B⊗K(H)).

Then (M(C∗(Σ, B⊗K(H))), π̃, F̃ ) is aK-cycle forKK∗(C
∗(Σ, A), C∗(Σ, B⊗K(H)))

and hence, under the identification between C∗(Σ, B⊗K(H)) and C∗(Σ, B) we end
up with an element in KK∗(C

∗(Σ, A), C∗(Σ, B)). We obtain in this way a natural
transformation

σΣ : KK∗(A,B)−→KK∗(C
∗(Σ, A), C∗(Σ, B)).

This transformation is also bifunctorial, i.e for any C∗-algebra morphisms f : A1 →
A2 and g : B1 → B2 and any element z in KK∗(A2, B1), then we have σΣ(f

∗(z)) =
f∗
Σ(σΣ(z)) and σΣ(g∗(z)) = gΣ,∗(σΣ(z)). If z is an element ofKK∗(A,B), we denote
by

SΣ(z) : K∗(C
∗(Σ, A))−→K∗(C

∗(Σ, B)); x 7→ x⊗C∗(Σ,A)σΣ(z)

induced by right multiplication by σΣ(z).
Notice that if

(24) 0→ J → A→ A/J → 0

is a semi-split extension of C∗-algebra, then C∗(Σ, J) can be viewed as an ideal of
C∗(Σ, A) and we get then a semi-split extension of C∗-algebras

(25) 0−→C∗(Σ, J)−→C∗(Σ, A)−→C∗(Σ, A/J)−→0.

If z is the element of KK1(A,B) corresponding to the boundary element of the
extension (24), then SΣ(z) : K∗(C

∗(Σ, A/J))−→K∗+1(C
∗(Σ, J)) is the boundary

morphism associated to the extension (25).
For a C∗-algebraA, let us denote by SA its suspension, i.e SA = C0((0, 1), A), by

CA its cone, i.e CA = {f ∈ C0([0, 1], A) such thatf(1) = 0} and by ev0 : CA→ A
the evaluation map at zero. Let us consider for any C∗-algebraA the Bott extension

0−→SA−→CA
ev0−→ A−→0,

with associated boundary map ∂A : K∗(A)→ K∗+1(SA). It is well known that the
corresponding element [∂A] of KK1(A,SA) is invertible with inverse up to Morita
equivalence the element ofKK1(K⊗A,SA) corresponding to the Toeplitz extension

0−→K⊗A−→T0⊗A−→SA−→0.

Lemma 5.2. For any C∗-algebra A, then SΣ([∂A]−1) is a left inverse for SΣ([∂A]).

Proof. Consider the following commutative diagram with exact rows

0 −−−−→ SC∗(Σ, A) −−−−→ CC∗(Σ, A) −−−−→ C∗(Σ, A) −−−−→ 0



y
y

y=

0 −−−−→ C∗(Σ, SA) −−−−→ C∗(Σ, CA) −−−−→ C∗(Σ, A) −−−−→ 0

,

where
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• the top row is the Bott extension for C∗(Σ, A) with boundary map

∂C∗(Σ,A) : K∗(C
∗(Σ, A))→ K∗+1(SC

∗(Σ, A));

• the bottom row is the extension induced for Roe algebras by the Bott
extension for A with boundary map

SΣ([∂A]) : K∗(C
∗(Σ, A))→ K∗+1(C

∗(Σ, SA));

• the left and the middle vertical arrows are the obvious inclusions.

Consider similarly the commutative diagram

0 −−−−→ C∗(Σ, A⊗K) −−−−→ CC∗(Σ, A⊗T0) −−−−→ C∗(Σ, SA) −−−−→ 0
x

x
x

0 −−−−→ C∗(Σ, A)⊗K −−−−→ C∗(Σ, A)⊗T0 −−−−→ SC∗(Σ, A) −−−−→ 0

,

• the bottom row is the Toeplitz extension for C∗(Σ, A).
• the top row is the extension induced for Roe algebras by the Toeplitz
extension for A;
• the left and the middle vertical arrows are the obvious inclusions.

By naturally of the boundary map in the first commutative diagram, we see that

SΣ([∂A]) = ∗ ◦ ∂C∗(Σ,A),

where ∗ : K∗(SC
∗(Σ, A) → K∗(C

∗(Σ, SA)) is the map induced in K-theory by
the inclusion  : SC∗(Σ, A) →֒ C∗(Σ, SA). Using now the naturally of the bound-
ary map in the second commutative diagram, we see that up to Morita equiva-
lence, SΣ([∂A]−1) ◦ ∗ is the boundary map for the Toeplitz extension associated
to C∗(Σ, A) and hence is an inverse for ∂C∗(Σ,A). Therefore, SΣ([∂A]−1) is a left
inverse for SΣ([∂A]). �

The transformation SΣ is compatible with the Kasparov product in the following
sense.

Proposition 5.3. If A, B and D are separable C∗-algebras, let z be an element in
KK∗(A,B) and let z′ be an element in KK∗(B,D). Then we have

SΣ(z⊗Bz
′) = SΣ(z

′) ◦ SΣ(z).

Proof. Assume first that z is even. Then according to [4, Theorem 1.6.11], there
exist

• a C∗-algebra A1;
• a morphism ν : A1 → B;
• a morphism θ : A1 → A such that the associated element [θ] inKK∗(A1, A)
is invertible,

such that z = ν∗([θ]
−1) is invertible. By bifunctoriality of the Kasparov product,

we have,

z⊗Bz
′ = ν∗([θ]

−1)⊗Bz
′

= [θ]−1⊗A1ν
∗(z′)

Since σΣ and hence SΣ is natural, we see that SΣ([θ]−1) is invertible, with inverse
induced by θΣ : C∗(Σ, A1)→ C∗(Σ, A). Then using once again the naturally of SΣ,
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we have

SΣ(z⊗Bz
′) ◦ θΣ,∗ = SΣ(ν

∗(z′))

= SΣ(z
′) ◦ νΣ,∗

= SΣ(z
′) ◦ νΣ,∗ ◦ SΣ([θ]

−1) ◦ θΣ,∗

= SΣ(z
′) ◦ SΣ(ν∗([θ]

−1)) ◦ θΣ,∗

= SΣ(z
′) ◦ SΣ(z) ◦ θΣ,∗

Since θΣ,∗ is invertible, we deduce that SΣ(z⊗Bz
′) = SΣ(z′) ◦ SΣ(z). If z′ is even,

we proceed similarly.

If z and z′ are both odd. Let [∂B ] be the element of KK1(B,SB) correspond-
ing to the boundary morphism ∂B : K∗(B) → K∗+1(SB) associated to the Bott
extension 0→ SB → CB → B → 0. Then

SΣ(z⊗Bz
′) = SΣ(z⊗B [∂B]⊗SB [∂B]

−1⊗Bz
′)

= SΣ([∂B ]
−1⊗Bz

′) ◦ SΣ(z⊗B[∂B])

= SΣ([∂B ]
−1⊗Bz

′) ◦ SΣ([∂B]) ◦ SΣ([∂B ]
−1) ◦ SΣ(z⊗B[∂B ])

= SΣ(z
′) ◦ SΣ(z).

where,

• the second and the fourth equalities hold by the even cases;
• the third equality is a consequence of lemma 5.2

�

Now let Σ be a discrete metric space with bounded geometry. Let H be a
separable Hilbert space and fix a unit vector ξ0 in H. For any positive number s,
let Qs,Σ be the operator of LC0(Ps(Σ))(C0(Ps(Σ))⊗ℓ2(Σ)⊗H) defined by

(Qs,Σ · h)(x, σ) = λ1/2
σ (x)

∑

σ′∈Σ

λ
1/2
σ′ (x)〈h(x, σ′), ξ0〉ξ0,

where h in C0(Ps(Σ))⊗ℓ2(Σ)⊗H is viewed as function on Ps(Σ)×Σ with values in
H (recall that (λσ)σ∈Σ is the family of coordinate functions in Ps(Σ)).Then Qs,Σ is
a projection of C∗(Σ, C0(Ps(Σ))). Let B be a C∗-algebra. Then the bunch of maps

µs
Σ,B,∗ : KK∗(Ps(Σ), B)−→K∗(C

∗(Σ, B)); z 7→ [Qs,Σ]⊗C∗(Σ,C0(Ps(Σ)))σΣ(z)

is compatible with the maps K∗(Ps(Σ)) → K∗(Ps′ (Σ)) induced by the inclusion
of Rips complexes Ps(Σ) →֒ Ps′(Σ). Taking the inductive limit, we end with the
coarse Baum-Connes assembly map with coefficients in B

µΣ,B,∗ : lim
s

KK∗(Ps(Σ), B)−→K∗(C
∗(Σ, B)).

If µΣ,B,∗ is an isomorphism, we say that Σ satisfies the coarse Baum-Connes con-
jecture with coefficients in B. When B = C, we set µs

Σ,∗ for νsΣ,C,∗, νΣ,∗ for µΣ,C,∗

and we say that Σ satisfies the coarse Baum-Connes conjecture if

µΣ,∗ : lim
s

K∗(Ps(Σ))−→K∗(C
∗(Σ))

is an isomorphism. Recall that if Γ is a finitely generated group, and if |Γ| stands
for the metric space arising from any word metric, then the coarse Baum-Connes
conjecture for |Γ| implies the Novikov conjecture on higher signatures for the group
Γ.
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5.2. A geometric assembly map for families of finite metric spaces. To
prove theorem 5.1, we will need a slight modification of the map ν∞F,Σ,A,∗ defined

by equation (11). Let A = (Ai)i∈N be a family of C∗-algebras and let X = (Xn)n∈N

be a family of discrete proper metric spaces. Define A∞
X as the closure of the set

of x = (xn)n∈N ∈
∏

n∈N
An⊗K(ℓ2(Xn)⊗H) such that for some r > 0 then xn

has propagation less than r for all integer n. Then A∞
X is obviously a filtered

C∗-algebra. When A is the constant family Ai = C, then we set C∗(X ) for A∞
X .

According to lemma 1.11, there exists for a universal control pair (α, h), any family
A = (Ai)i∈N of C∗-algebras and any family X = (Xn)n∈N of discrete proper metric
spaces a (α, h)-controlled isomorphism

K∗(A
∞
X )−→

∏

i∈N

K∗(An⊗K(ℓ
2(Xn)))

induced on the j factor and up to Morita equivalence by the restriction to A∞
X of

the evaluation ∏

n∈N

Ai⊗K(ℓ
2(Xn)⊗H)−→An⊗K(ℓ

2(Xj)⊗H).

Proceeding as un corollary 3.6, we see that there exists a universal control pair
(α, h) such that

• For any family X = (Xn)n∈N of finite metric space;
• for any families of C∗-algebras A = (Ai)i∈N and B = (Bi)i∈N;
• for any z = (zi)i∈N in

∏
i∈N

KK∗(Ai, Bi),

there exists a (α, h)-controlled morphism

T ∞
X (z) = (τ∞,ε,r

X )0<ε< 1
4α ,r>0 : K∗(A

∞
X )→ K∗(B

∞
X )

that satisfies in this setting the analogous properties as those listed in corollary 3.6
and proposition 3.7 for T ∞

F,Σ(•). Consider now for Z a finite metric space and s a

positive number the projection Qs,Z of C(Ps(Z))⊗K(ℓ2(Z)) defined by

Qs,Z(h)(y, z) = λ1/2
z (y)

∑

z′∈Z

h(y, z′)λ
1/2
z′ (y)

for any h in C(Ps(Z))⊗ℓ2(Z) ∼= C(Ps(Z), ℓ2(Z)) where (λz)z∈Z is the family of
coordinate functions of Ps(Z), i.e y =

∑
z∈Z λz(y) for any y in Ps(Z). Then Qs,Z

has propagation less than s. If we fix any rank one projection e in K(H), for
any family X = (Xi)i∈N of finite metric spaces, then Q∞

s,X = (Qs,Xi⊗e)i∈N is a

projection of propagation less than s in A∞
X , where A is the family (C(Ps(Xi)))i∈N.

Now we can proceed as in section 3.3 to define a quantitative geometric assembly
map valued in C∗(X ). For any ε in (0, 1/4), any positive numbers s and r such
that r > rd,ε, define

ν∞,ε,r,s
X ,∗ :

∏

i∈N

K∗(Ps(X ))−→Kε,r
∗ (C∗(X )); z 7→ τ

∞,ε/α,r/hε/α

X (z)([Q∞
s,X , 0]ε/α,r/hε/α

).

The bunch of maps (µ∞,ε,r,s
X ,∗ )0<ε<1/4,r>rs,ε is obviously compatible with the struc-

ture maps of K∗(C
∗(X )), i.e ιε,ε

′,r,r′

∗ ◦ ν∞,ε,r,s
X ,∗ = ν∞,ε′,r′,s

X ,∗ for 0 < ε 6 ε′ < 1/4 and

rs,ε < r 6 r′. This allows to define

ν∞,s
X ,∗ :

∏

i∈N

K∗(Ps(X ))−→K∗(C
∗(X ))
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as ν∞,s
X ,∗ = ιε,r∗ ◦ ν

∞,ε,r,s
X ,∗ . The quantitative assembly maps are also compatible with

inclusion of Rips complexes. Let

(26) q∞s,s′,∗ :
∏

i∈N

K∗(Ps(Xi))−→
∏

i∈N

K∗(Ps(Xi))

be the map induced by the bunch of inclusions Ps(Xi) →֒ Ps′(Xi), then we have

ν∞,ε,r,s′

X ,∗ ◦ q∞s,s′,∗ = ν∞,ε,r,s
X ,∗

for any positive numbers ε, s, s,′ and r such that ε ∈ (0, 1/4), s 6 s′, r > rs′,ε, and
thus

ν∞,s′

X ,∗ ◦ q
∞
s,s′,∗ = ν∞,s

X ,∗

for any positive numbers s and s′ such that s 6 s′.
Let Σ be a graph space in the sense of [13] i.e Σ =

∐
i∈N

Xi, where (Xi)i∈N is a
family of finite metric spaces such that

• For any r > 0, there exists an integer Nr such that for any integer i, any
ball of radius r in Xi has at most Nr element;
• The distance between Xi and Xj is at least i+ j for any distinct integers
i and j;

If XΣ stands for the family (Xi)i∈N, we obviously have an inclusion of filtered
C∗-algebras Σ : C∗(XΣ) →֒ C∗(Σ).

Proposition 5.4. Let Σ be a graph space Σ =
∐

i∈N
Xi as above and let s a positive

number such that d(Xi, Xj) > s if i 6= j. Then we have a commutative diagram

∏
i∈N

K∗(Ps(Xi))
ν∞,s
X,∗

−−−−→ K∗(C
∗(XΣ))y≃

yΣ,∗

K∗(Ps(Σ))
µs
Σ,∗

−−−−→ K∗(C
∗(Σ))

,

where in view of the equality Ps(Σ) =
∐

i∈N
Ps(Xi), the left vertical map is the

identification between
∏

i∈N
K∗(Ps(Xi)) and K∗(

∐
i∈N

Ps(Xi));

The proof of this proposition will require some preliminary steps. If A =
(Ai)i∈N is a family of C∗-algebras, we set A⊕ = ⊕n∈NAi. The orthogonal fam-
ily (Ai⊗K(ℓ2(Xi)⊗H))i∈N of corners in A⊕⊗K(ℓ2(Σ)⊗H) gives rise to a one-to-one
morphism A,Σ : A∞

XΣ
−→C∗(Σ,A⊕). Let z = (zi)i∈N be a family in

∏
i∈N

KK∗(Ai,C).

Recall that we have a canonical identification between
∏

i∈N
KK∗(Ai,C) andKK∗(A⊕,C).

Let z̃ be the element of KK∗(A⊕,C) corresponding to z under this identification.

Lemma 5.5. For any family A = (Ai)i∈N of C∗-algebras, any graph space Σ =∐
i∈N

Xi and any z in
∏

i∈N
KK∗(Ai,C), then we have a commutative diagram

K∗(A
∞
Σ )

T ∞
XΣ

(z)
−−−−−→ K∗(C

∗(XΣ))

A,Σ

y
yΣ,∗

K∗(C
∗(Σ,A⊕))

SΣ−−−−→ K∗(C
∗(Σ))

,

Proof. Assume first that z is odd. Let us fix a separable Hilbert space H. For each
integer i, let (H, πi, Ti) be the K-cycle for KK∗(Ai,C) representing zi with πi :
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Ai → L(H) a representation and Ti in L(H) representing the K-cycle conditions.

Let us set Pi =
Ti+IdH

2 and

Ei = {(x, T ) ∈ Ai ⊕ L(H) such that Piπi(x)Pi − T ∈ K(H)}.

We have an inclusion

K(H) →֒ Ei; T 7→ (0, T )

as an ideal and a surjection

Ei → Ai; (x, T )→ x.

Up to Morita equivalence, zi induces by left multiplication the boundary morphism
of the semi-split extension

0−→K(H)−→Ei−→Ai−→0,

Let E be the family (Ei)i∈N and set CH for the constant family K(H). Then the
extension

0 7→
∏

i∈N

K(H)⊗K(ℓ2(Xi)⊗H)−→
∏

i∈N

Ei⊗K(ℓ
2(Xi)⊗H)−→

∏

i∈N

Ai⊗K(ℓ
2(Xi)⊗H)−→0

restrict to a semi-split extension of filtered C∗-algebras

0 7→ CH∞
XΣ
−→E∞XΣ

−→A∞
XΣ
−→0.

Up to the identification between K∗(CH
∞
XΣ

) and K∗(C
∗(XΣ)) arising from Morita

equivalence between C and K(H), the boundary morphism associated to this ex-
tension is T ∞

XΣ
(z) : K∗(A∞

XΣ
)−→K∗+1(C

∗(XΣ)). In the same way, let

E = {((xi)i∈N, T ) ∈ (⊕n∈NAi)⊕L(ℓ
2(N,H)) such that (⊕i∈Npiπi(xi)pi)−T ∈ K(ℓ

2(N,H))}.

As before we have a semi-split extension

(27) 0−→K(ℓ2(N)⊗H)−→E−→A⊕−→0

and SΣ(z̃) : K∗(C
∗(Σ,A⊕)) → K∗+1(C

∗(Σ)) is up to the identification between
K∗(C

∗(Σ)) and K∗(C
∗(Σ,K(ℓ2(N)⊗H))) arising from Morita equivalence is the

boundary morphism for the extension

0−→C∗(Σ,K(ℓ2(N)⊗H))−→C∗(Σ, E)−→C∗(Σ,A⊕)−→0

induced by the extension of equation (27). For every integer i, there is an obvious
representation of K(H⊗ℓ2(Xi))⊗Ei on the right E-Hilbert module H⊗ℓ2(Σ)⊗E
as a corner which gives rise to a C∗-morphism ′E,Σ : E∞XΣ

→ C∗(Σ, E) such that

′E,Σ(CH
∞
XΣ

) ⊆ C∗(Σ,K(ℓ2(N)⊗H)). We have then a commutative diagram

(28)
0 −−−−→ CH∞

XΣ
−−−−→ E∞XΣ

−−−−→ A∞
XΣ

−−−−→ 0

′E,Σ

y ′E,Σ

y
yA,Σ

0 −−−−→ C∗(Σ,K(ℓ2(N)⊗H)) −−−−→ C∗(Σ, E) −−−−→ C∗(Σ,A⊕) −−−−→ 0

,

The restriction morphism CH∞
XΣ

′E,Σ
−→ C∗(Σ,K(ℓ2(N)⊗H)) is homotopic to the com-

position

(29) CH∞
XΣ
−→C∗(Σ,K(H))−→C∗(Σ,K(ℓ2(N)⊗H))

where,
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• the first map is induced by the obvious representation of CH∞
XΣ

=
∏∞

i=1K(H⊗ℓ
2(Xi))⊗K(H)

on the K(H)-right Hilbert module H⊗ℓ2(Σ)⊗K(H) (each factor acting as
a corner);
• the second map is induced by the morphism

K(H)→ K(ℓ2(N)⊗H); x 7→ x⊗e,

where e is any rang one projection in K(ℓ2(N)).

But up to the identification on one hand between K∗(CH∞
XΣ

) and K∗(C
∗(XΣ)), and

on the other hand between K∗(C
∗(Σ,K(ℓ2(N)⊗H))) and K∗(C

∗(Σ)), the morphism
of equation (29) induces in K-theory Σ,∗ : K∗(C

∗(XΣ))→ K∗(C
∗(Σ). Since in the

commutative diagram (28), SΣ(z̃) is the boundary morphism associated to the top
row and T ∞

XΣ
(z) is the boundary morphism associated to the bottom row, the lemma

in the odd case is then a consequence of the naturally of the boundary morphisms.

If z is even, set [∂A] = ([∂Ai ])i∈N ∈
∏

i∈N
KK∗(Ai, SAi) and [∂A]

−1 = ([∂Ai ]
−1)i∈N ∈∏

i∈N
KK∗(SAi, Ai). Let us also define the families SA =

∏
i∈N

SAi and CA =∏
i∈N

CAi and set z′ = ([∂Ai ]
−1⊗Aizi)i∈N ∈

∏
i∈N

KK∗(SAi,C). Using the odd
case and the compatibility of the transformation T ∞

XΣ
(•) with Kasparov products,

we get that

(30) Σ,∗ ◦ T
∞
XΣ

(z) = Σ,∗ ◦ T
∞
XΣ

(z′) ◦ T ∞
XΣ

([∂A]) = SΣ(z̃′) ◦ Σ,SA,∗ ◦ T
∞
XΣ

([∂A])

Under the canonical identifications (SA)⊕ ≃ SA⊕ and (CA)⊕ ≃ CA⊕, we have
a commutative diagram

0 −−−−→ SA∞
XΣ

−−−−→ CA∞
XΣ

−−−−→ A∞
XΣ

−−−−→ 0

SA,Σ

y CA,Σ

y
yA,Σ

0 −−−−→ C∗(Σ, SA⊕) −−−−→ C∗(Σ, CA⊕) −−−−→ C∗(Σ,A⊕) −−−−→ 0

,

where the row both arise from the family of Bott extensions

(0→ SAi → CAi → Ai → 0)i∈N.

Then

• T ∞
XΣ

([∂A]) : K∗(SA∞
XΣ

) → K∗+1(A∞
XΣ

) is the boundary morphism for the
top row;
• SΣ([∂A⊕ ]) : K∗(C

∗(Σ,A⊕) → K∗+1(C
∗(Σ, SA⊕) is the boundary mor-

phism for the bottom row;

By naturally of the boundary extension, we get that

Σ,SA,∗ ◦ T
∞
XΣ

([∂A]) = SΣ([∂A⊕ ]) ◦ A,Σ,∗.

Hence, using proposition 5.3, we deduce from equation (30) that

Σ,∗ ◦ T
∞
XΣ

(z) = SΣ([∂A⊕ ]⊗A⊕ z̃′) ◦ A,Σ,∗.

But using the Connes-Skandalis characterization of Kasparov products, we get that

[∂A⊕ ]⊗A⊕ z̃′ = z̃ and hence Σ,∗ ◦ T ∞
XΣ

(z) = SΣ(z̃) ◦ A,Σ,∗.
�

Proof of proposition 5.4: Let z = (zi)i∈N be a family in
∏

i∈N
K∗(Ps(Xi)) =∏

i∈N
KK∗(C(Ps(Xi)),C). Then under the identification between

∏
i∈N

KK∗(C(Ps(Xi)),C)
and KK∗(C0(Ps(Σ)),C) given by the equality C0(Ps(Σ)) = ⊕i∈NC(Ps(Xi)), we
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have a correspondence between z and z̃ and hence the commutativity of the dia-
gram amounts to prove the equality

(31) SΣ(z̃)([Qs,Σ, 0]) = Σ,∗ ◦ T
∞
XΣ

(z)([Q∞
s,XΣ

, 0]).

Let us consider the family A = (C(Ps(Xi)))n∈N. Since d(Xi, Xj) ≥ s if i 6= j, we
see that A,Σ(Q

∞
s,XΣ

) = Qs,Σ and hence

SΣ(z̃)([Qs,Σ, 0]) = SΣ(z̃) ◦ A,Σ,∗([Q
∞
s,XΣ

, 0]).

The equality (31) is then a consequence of lemma 5.5. �

5.3. Proof of theorem 5.1. Let Σ be a discrete metric space with bounded geom-
etry that satisfies the assumptions of theorem 5.5. According to [13], we can assume
by using a coarse Mayer-Vietoris argument that Σ is a graph space Σ =

∐
i∈N

Xi.

Let us show that µΣ,∗ is one-to-one. Let d be a positive number and let x be
an element in K∗(Pd(Σ)) such that µΣ,∗(x) = 0. Fix ε > 0 small enough and
choose a positive number λ as in [8, Remark 1.18]. We can assume without loss
of generality that d(Xi, Xj) > d if i 6= j. Then Pd(Σ) =

∐
i∈N

Pd(Xi) and up to
the corresponding identification between K∗(Pd(Σ)) and

∏
i∈N

K∗(Pd(Xi)), we can
view x as a family (xi)i∈N in

∏
i∈N

K∗(Pd(Xi)). According to proposition 5.4, we
get that

Σ,∗ ◦ ν
∞
XΣ,∗(x) = 0.

If we fix r > rd,ε, then we have

Σ,∗ ◦ ν
∞
XΣ,∗ = Σ,∗ ◦ ι

ε,r
∗ ◦ ν

∞,ε,r
XΣ,∗

= ιε,r∗ ◦ 
ε,r
Σ,∗ ◦ ν

∞,ε,r
XΣ,∗ ,

and hence according to proposition 1.3, there exists r′ > r such that

λε,r
′

Σ,∗ ◦ ν
∞,λε,r′

XΣ,∗ (x) = 0.

Therefore, replacing λε by ε and r′ by r, we see that there exists ε in (0, 1/4) and r
a positive number such that ε,rΣ,∗ ◦ ν

∞,ε,r
XΣ,∗ (x) = 0. We can also assume without loss

of generality that d(Xi, Xj) > r if i 6= j and hence µ∞,ε,r
XΣ,∗ (x) = 0 in Kε,r

∗ (C∗(XΣ)).

Using the control isomorphism between K∗(C
∗(XΣ)) and

∏
i∈N
K∗(K(ℓ2(Xi)), we

see that up to rescale ε and r, we can assume that µε,r
Xi,∗

(xi) = 0 in Kε,r
∗ (K(ℓ2(Xi))

for every integer i. Let then d′ > d such that QIF,∗(d, d
′, r, ε) is satisfied for every

finite subset F of Σ. We have then qd,d′,∗(xi) = 0 in K∗(Pd′(Xi)) for every integer
i and therefore qs,s′,∗(x) = 0 in K∗(Pd′(Σ)). Hence µΣ,∗ is one-to-one.

Let us prove that νΣ,∗ is onto. Let z be an element in K∗(C
∗(Σ)) and fix ε′

small enough. Then for some positive number r′, there exists y′ in Kε′,r′

∗ (C∗(Σ))

such that z = ιε
′,r′

∗ (y′). Pick ε in [ε′, 1/4), d a positive number and r > r′ such
that QSF,∗(d, r, r

′, ε, ε′) holds for any finite subset F of Σ. We can assume without
loss of generality that d(Xi, Xj) > r and d(Xi, Xj) > d if i 6= j. Then there exist

an element y in Kε′,r′

∗ (C∗(XΣ)) such that ε
′,r′

Σ,∗ (y) = y′. For every integer i, let yi
be the image of y under the composition

Kε′,r′

∗ (C∗(XΣ))→ Kε′,r′

∗ (K(ℓ2(Xi)⊗H))→ Kε′,r′

∗ (K(ℓ2(Xi))),

where

• the first morphism is induced by the restriction to C∗(XΣ) of the i th
projection

∏
n∈N
K(ℓ2(Xn)⊗H)→ K(ℓ

2(Xi)⊗H);
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• the second morphism is the Morita equivalence.

For every integer i, there exists xi in K∗(Pd(Xi)) such that µε,r,d
Xi,∗

(xi) = ιε
′,ε,r,r′

∗ (yi).

Set then x = (xi)i∈N in
∏

i∈N
K∗(Pd(Xi)). Then ν∞,d

XΣ,∗(x) = ιε,r∗ (y) and hence

according to proposition 5.4 and under the identification between K∗(Pd(Σ)) and∏
i∈N

K∗(Pd(Xi)), we get that µd
Σ,∗(x) = Σ,∗(ι

ε,r
∗ (y)) = ιε,r∗ (y′) = z. Hence µΣ,∗ is

onto.
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