N
N

N

HAL

open science

Persistence approximation property and controlled

operator K-theory

Hervé Oyono-Oyono, Guoliang Yu

» To cite this version:

Hervé Oyono-Oyono, Guoliang Yu. Persistence approximation property and controlled operator K-

theory. Miinster Journal of Mathematics, 2017, 10 (2), pp.201. 10.48550/arXiv.1403.7499 .

00967531

HAL Id: hal-00967531
https://hal.science/hal-00967531
Submitted on 28 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00967531
https://hal.archives-ouvertes.fr

PERSISTENCE APPROXIMATION PROPERTY AND
CONTROLLED OPERATOR K-THEORY

HERVE OYONO-OYONO AND GUOLIANG YU

ABSTRACT. In this paper, we introduce and study the persistent approxima-
tion property for quantitative K-theory of filtered C*-algebras. In the case
of crossed product C*-algebras, the persistent approximation property follows
from the Baum-Connes conjecture with coefficients. We also discuss some
applications of the quantitative K-theory to the Novikov conjecture.

Keywords: Baum-Connes Conjecture, Coarse Geometry, Novikov Conjecture,
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0. INTRODUCTION

The idea of quantitative operator K-theory was first introduced in [14] to study
the Novikov conjecture for groups with finite asymptotic dimension. In [8], the au-
thors introduced a general quantitative K-theory for filtered C*-algebras. Examples
of filtered C*-algebras include group C*-algebras, crossed product C*-algebras, Roe
algebras, foliation C*-algebras and finitely generated C*-algebras. For a C*-algebra
A with a filtration, the K-theory of A, K,(A) is the limit of the quantitative K-
theory groups K" (A) when r goes to infinity. The crucial point is that quantitative
K-theory is often more computable using certain controlled exact sequences (e.g.
see [14] and [8]). The study of K-theory for the Roe algebra can be reduced to that
of quantitative K-theory for the Roe algebra associated to finite metric spaces,
which in essence is a finite dimensional linear algebra problem.

The main purpose of this paper is to introduce and study the persistent ap-
proximation property for quantitative K-theory of filtered C*-algebras. Roughly
speaking, the persistent approximation property means that the convergence of
K" (A) to K«(A) is uniform. More precisely, we say that the filtered C*-algebra
A has persistent approximation property if for each ¢ in (0,1/4) and r > 0, there
exists v’ > r and ¢’ in [g,1.4) such that an element from K" (A) is zero in K, (A)

if and only if it is zero in K& (A). The main motivation to study the persis-
tent approximation property is that it provides an effective way of approximating
K-theory with quantitative K-theory. In the case of crossed product C*-algebras,
the Baum-Connes conjecture with coefficients provides many examples that sat-
isfy the persistent approximation property. It turns out that this property provides
geometrical obstruction for the Baum-Connes conjecture. In order to study this ob-
struction in full generality, we consider the persistence approximation property for
filtered C*-algebra ARK(£%(X)), where A is a C*-algebra and ¥ is a discrete metric
space with bounded geometry. For this purpose, we introduce a bunch of quan-
titative local assembly maps valued in the quantitative K-theory for AQK(¢?(X))
and we set quantitative statements, analogue in this geometric setting to the quan-
titative statements of [8, Section 6.2] for the quantitative Baum-Connes assembly
maps. We also show that if these statements hold uniformly for the family of finite
subsets of a discrete metric space ¥ with bounded geometry, the coarse Baum-
Connes conjecture for ¥ is satisfies. In particular, in the case of a finitely generated
group I' provided with the metric arising from any word length, then these uniform
statements for finite metric subsets of I' implies the Novikov conjecture for I' on
homotopy invariance of higher signatures. We point out that in this case, these
statements reduce to finite dimension problems in linear algebra and analysis.

The paper is organized as follows. In section 1, we review the main results of
[8] concerning quantitative K-theory. In section 2, we introduce the persistence
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approximation property. We prove that if I is a finitely generated group that sat-
isfies the Baum-Connes conjecture with coefficients and which admits a cocompact
universal example for proper actions, then for any I'-C*-algebra A, the reduced
crossed product A x, I' satisfies the persistence approximation property. In the
special case of the action of the group I" on Cy(T") by translation, we get a canon-
ical identification between Co(T') x I' and K(¢?(X)) that preserves the filtration
structure. Hence, the persistence approximation property can be stated in a com-
pletely geometrical way. This leads us to consider this property for the algebra
ARK(F2(X)), where A is a C*-algebra and ¥ is a proper discrete metric space, with
filtration structure induced by the metric of 3. In section 3, following the idea of
the Baum-Connes conjecture, we construct in order to compute the quantitative
K-theory groups for AQK(£?(X)) a bunch of quantitative assembly maps I/;’:f*. If
view of the proof of the persistence approximation property in the crossed product
algebras case, we introduce a geometrical assembly map vg’, (which plays the
role of the Baum-Connes assembly map with relevant coefficients). Following the
route of [10], we show that the target of these geometric assembly maps is indeed
the K-theory of the crossed product algebra of an appropriate C*-algebra Ag, (x)
by the groupoid Gy, associated in [10] to the coarse structure of X. In section 4, we
study the Baum-Connes assembly map for the pair (Gx, Ac,(x)) and we show that
the bijectivity of the geometric assembly maps 157, , is equivalent to the Baum-
Connes conjecture for (Gx, Ac,(x)). We set in the geometric setting the analogue
of the quantitative statements of [8, Section 6.2] for the quantitative Baum-Connes
assembly maps and we prove that these statements holds when X coarsely embeds
into a Hilbert space. We then apply this results to the persistent approximation
property for A®K(¢%(X)). In particular, we prove it when ¥ coarsely embeds into
a Hilbert space, under an assumption of coarse uniform contractibility. This con-
dition is the analogue in the geometric setting of the existence of a cocompact
universal example for proper actions and is satisfied for instance for Gromov hy-
perbolic discrete metric spaces. In section 5, we show that for a discrete metric
space with bounded geometry, if the quantitative statements of section 4 for vz,
holds uniformly when F' runs through finite subsets of 3, then ¥ satisfies the coarse
Baum-Connes conjecture.

1. SURVEY ON QUANTITATIVE K-THEORY

We gather this section with the main results of [8] concerning quantitative K-
theory and that we shall use throughout this paper. Quantitative K-theory was
introduced to describe propagation phenomena in higher index theory for non-
compact spaces. More generally, we use the framework of filtered C'*-algebras to
model the concept of propagation.

Definition 1.1. A filtered C*-algebra A is a C*-algebra equipped with o family
(A})r>0 of closed linear subspaces indexed by positive numbers such that:
A, CAafr<r';
A, is stable by involution;
Ap - Ay CApgprs
the subalgebra U A, is dense in A.
>0
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If A is unital, we also require that the identity 1 is an element of A, for every
positive number r. The elements of A, are said to have propagation r.

Let A and A’ be respectively C*-algebras filtered by (4;)r>0 and (A4).)r>0. A
homomorphism of C* -algebras ¢ : A— A’ is a filtered homomorphism (or a
homomorphism of filtered C*-algebras) if ¢(A,) C A’ for any positive number
r.

If A is not unital, let us denote by AT its unitarization, i.e
At ={(z,\);z € A, X € C}
with the product
(, (2", ) = (xz’ + Xz’ + N'z)
for all (z,\) and (2/,\') in AT. Then AT is filtered with
Af ={(z,\); z € AF ,NeC}.
We also define ps : AT — C; (z,\) — A

1.1. Definition of quantitative K-theory. Let A be a unital filtered C*-algebra.
For any positive numbers r and €, we call

e an element v in A a e-r-unitary if u belongs to A,, ||u*-u —1|| < € and
||w-u* —1|| < e. The set of e-r-unitaries on A will be denoted by U*"(A).
e an element p in A a e-r-projection if p belongs to A, p = p* and ||p® —p|| <
e. The set of e-r-projections on A will be denoted by P="(A).
Notice that a e-r-unitary is invertible, and that if p is an e-r-projection in A, then
it has a spectral gap around 1/2 and then gives rise by functional calculus to a
projection xo(p) in A such that ||p — ko(p)|| < 2e.
For any n integer, we set Uy"(A) = US" (M, (A)) and Py (A) = PS"(M,,(A)).
For any unital filtered C*-algebra A, any positive numbers € and r and any positive
integer n, we consider inclusions

r r 0
Py () < P (e (5 ()
and
e, e,r X u 0
U (A) = U (A); u e 0 1)
This allows us to define

U (4) = [J Ui

neN

Per(d) = | PEr(4).
neN
For a unital filtered C*-algebra A, we define the following equivalence relations
on PSY(A) x N and on UZJ (A):

e if p and ¢ are elements of P (A), [ and I’ are positive integers, (p,l) ~
(g,1’) if there exists a positive integer k and an element h of P (A[0, 1])
such that h(0) = diag(p, Ix+rr) and h(1) = diag(q, Tx41)-

e if u and v are elements of U (A), u ~ v if there exists an element h
of U%27(A[0,1]) such that h(0) = u and h(1) = v. Notice that we have
changed slightly the definition of [8], in order to make Kje,7(A) into group
(see [8, Remark 1.15]).

and
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If p is an element of P2 (A) and [ is an integer, we denote by [p, ], the equiv-
alence class of (p,!) modulo ~ and if u is an element of U (A) we denote by [u].
its equivalence class modulo ~.

Definition 1.2. Let r and e be positive numbers with e < 1/4. We define:
(i) K5"(A) =P (A) x N/ ~ for A unital and
K" (A) ={[p,1]s,r € P*"(AT) x N/ ~ such that rank ro(pa(p)) = I}

for A non wunital (ko(pa(p)) being the spectral projection associated to
PA (p))7
(ii) K7"(A) =U(AY)/ ~, with A= A% if A is already unital.

Then K" (A) turns to be an abelian group [8, Lemma 1.15] where

[pa Z]E7T + [plv l/]EyT = [diag(p,p/), l + ZI]E,T

for any [p,l]., and [p/,']., in K;"(A). According to [8, Remark 1.15], K7""(A) is
equipped with a structure of abelian group such that

[ule,r + [W']er = [diag(u, v)]e
for any [u]., and [u/], in K7"(A).

Recall from [8, corollaries 1.20 and 1.21] that for any positive numbers r and &
with € < 1/4, then

K" (C) = Z; [p,1]e,r — rankso(p) —
is an isomorphism and K7 (C) = {0}.

We have for any filtered C*-algebra A and any positive numbers r, 1/, ¢ and &’
with € <&’ < 1/4 and r < v’ natural group homomorphisms

o 1) K" (A)—Ko(A); [p,l]er — [ro(p)]—[11] (Where ko (p) is the spectral
projection associated to p);

° L?T : K?T(A)HKl(A), [u]s,r — [u] ;
e,r e,r e,r

® L =1y D

N LS’E/’T’T/ : KS’T(A)HKS,’T,(A); D, ler — [P, e s

o 7 KT (A)— KT " (A); [u]er > [u]er

’ ’ 7 ’ ’ ’
. Li,e T Lg,a T ® Li,e T

If some of the indices 7,7’ or €,&’ are equal, we shall not repeat it in Li’el’m/. The
following result is a consequence of [8, Remark 1.4].

Proposition 1.3. Let A = (4,),>0 be a filtered C*-algebra.

(i) For any € in (0,1/4) and any y in K.(A), there exist a positive number r
and an element z in K" (A) such that 13" () = y;

(ii) There exists a positive number X > 1 independent on A such that the
following is satisfies:

let € bein (0,1/4), let r be a positive number and let x and ' be elements
in Ko™ (A) such that 12" (x) = 12" (2') in K«(A). Then there exists a

. ) e.rr! e’ .
positive number v’ with v’ > r such that (""" (x) = 279" (2)) in

K27 (A).
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If ¢ : A — B is a homomorphism filtered C*-algebras, then since ¢ preserve
e-r-projections and e-r-unitaries, it obviously induces for any positive number r
and any ¢ € (0,1/4) a group homomorphism

B+ KT (A) — K37(B).
Moreover quantitative K-theory is homotopy invariant with respect to homotopies

that preserves propagation [8, Lemma 1.27]. There is also a quantitative version of
Morita equivalence [8, Proposition 1.29].

Proposition 1.4. If A is a filtered algebra and H is a separable Hilbert space, then
the homomorphism

A= KH)©A; am 0

induces a (Za-graded) group isomorphism (the Morita equivalence)
ME"KST(A) = KPT(K(H) @ A)
for any positive number r and any ¢ € (0,1/4).

1.2. Quantitative objects. In order to study the functorial properties of quanti-
tative K-theory, we introduce the concept of quantitative object.

Definition 1.5. A control pair is a pair (X, h), where

e A>1;
e h:(0,4) = (1,400); e — he is a map such that there exists a non-
increasing map g : (0, ﬁ) — (0,400), with h < g.
The set of control pairs is equipped with a partial order: (A, h) < (N,h') if
A< N and he < b for all € € (0, 71).

Definition 1.6. A quantitative object is a family O = (O%")o<cc<1/4,r>0 of abelian
groups, together with a family of group homomorphisms

/ 7 7 ’
L%’E 08T 5 O80T

forO0<e<e <1/4 and 0 <r <7’ such that

o 17" =1Idoer for any 0 <e <1/4 andr > 0;
!’ 1" ! 1" !’ !’ 1" 1"
o 1" T o™ =yt " forany 0 < e < € < &’ < 1/4 and

O<r<r < r”;
e there exists a control pair (a, k) such that the following holds: for any

0 <e< ﬁ and v > 0 and any x in O°", there exists =’ in OQ*ke"

satisfying L%O‘E’T’k”(ac) +2' =0.
Example 1.7.

(i) Our prominent example will be of course quantitative K-theory K.(A) =
(K" (A))o<e<1/ar>0 of a filtered C*-algebras A = (A;),~0 with structure

maps PG K" (A)—Ki " (A) and =" : K{"(A)— K. (A) such
that Li75 ST Li 5T OLi’a T for 0 < € < e < 1/4 and 0 < r < 7“/;
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(ii) If (O;)ien is a family of quantitative object with O; = (07" )occc1/4,r>0 for
any integer 7. Define [],cy O = (IT;en O o<e<1/a,r>0- Then [],c O is
also a quantitative object. In the case of a constant family (O;);en with
O; = O a quantitative object, then we set O for [[,cx O;.

1.3. Controlled morphisms. Obviously, the definition of controlled morphism
[8, Section 2] can be then extended to quantitative objects.

Definition 1.8. Let (A, h) be a control pair and let O = (0" )occct/ar>0 and
O = (0®")o<ccct1/a,r>0 be quantitative objects. A (X, h)-controlled morphism

F:0-=0
is a family F = (F€7T)0<a<ﬁ,r>0 of semigroups homomorphisms

FeT . O57 O/)\s,har

such that for any positive numbers €, ', v and v’ with 0 < € < & < 4 and

her < hot', we have
F&‘,’T, ° L@s’m,r’ _ L?QE/,)\E,,hET,hE/T, ° F€7”’.

When it is not necessary to specify the control pair, we will just say that F is
a controlled morphism. If O = (O®")pc.<1/4,,>0 is a quantitative object, let us
define the identity (1, 1)-controlled morphism Zdo = (Ido=r)o<c<1/a,r>0 : O — O.
Recall that if A and B are filtered C*-algebra and if F : K.(A) — K.(B) is
a (A, h)-controlled morphism, then F induces a morphism F' : K,(A4) — K.(B)
unically defined by 15" o F&" = F o5,

If (\,h) and (X', Rh') are two control pairs, define

1
,m) — (0, +OO), E hA/Eh;.
Then (AN, hxh') is again a control pair. Let O = (O*")occc1/a,r, O = (07 )ocectjar
and 0" = (0"*")g<.<1/a,» be quantitative objects, let

F=F")gcoe1_,50: 00

dar?

h*h': (0

be a (ar, kr)-controlled morphism, and let
Gg= (GE’T)0<5<Q,T>O 10" = 0"

be a (ag, kg)-controlled morphism. Then G o F : O — O” is the (agap, kg x kx)-
controlled morphism defined by the family

arekr.r E,7 . E,T nagare,kr kg ar,er
(G ’ © F T O o= O )0<E<m,’r>0:'

Notation 1.9. Let O = (OE’T)O<8<1/47T>O and O’ = (O/E’T>O)O<8<1/47T>Obe quanti—
tative objects and let F = (F*")occc1/ar>0 1 O = O (vesp. G = (G5 )occc1/ar>0
O — O) be a (ar,kr)-controlled morphism (resp. a (ag,kg)-controlled mor-
phism). Then we write F ) gif

o (ar,kr) < (\h)and (ag,kg) < (A h).

e for every ¢ in (0, ) and 7 > 0, then

L?_}‘E,AE,k_}‘ygT,h{T o FeT — ngs,/\a,kgwsr,hgr 0G5
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Definition 1.10. Let (A, h) be a control pair, and let F : O — O be a (ar, kr)-
controlled morphism with (ax,kr) < (A, h). F is called (X, h)-invertible or a (\, h)

Ah
isomorphism if there exists a controlled morphism G : 0" — O such that Go F O

Zdp and FoG Cele) Zdo:. The controlled morphism G is called a (X, h)-inverse for
g.

In particular, if A and B are filtered C*-algebras and if G : K.(A) — K.(B)
is a (A, h)-isomorphism, then the induced morphism G : K.(4) — K.(B) is an
isomorphism and its inverse is induced by a controlled morphism (indeed induced
by any (A, h)-inverse for F).

If A= (A;)ien is any family of filtered C*-algebras and if H a separable Hilbert
space. Set A, = [[;en K(H)®A; - for any 7 > 0 and define the C*-algebra AZ° as
the closure of (J,- A% in [],cny K(H)2A;.

=

Lemma 1.11. Let A = (4;)ien be a family of filtered C*-algebras and let

]:A,* = (FA,87T)O<€,1/4,T>O o (-ASO) — H’C* (Ai),

where
Fa s K (AR) — [[ K27 (4)
i€N
is the map induced on the j th factor and up to the Morita equivalence by the
restriction to A of the evaluation [[;cy K(H)®A; — K(H)®A; at j € N. Then,
Fax is a (o, h)-controlled isomorphism for a control pair (o, h) independent on the

family A.

We postpone the proof of this lemma until the end the next subsection.

1.4. Control exact sequences.

Definition 1.12. Let (A h) be a control pair,

o LetO = (Oa,r)0<a<i,r>0a 0= (O‘/&‘,T)O<8<%,T>O and 0" = (Og,r)0<a<i,r>0
be quantitative objects and let

F= (FE,T)O<s<ﬁ,T>O 0= 0O
be a (ar, kr)-controlled morphism and let
g = (GE’T)0<5<Q,T>O 10" = 0"
be a (ag, kg)-controlled morphism. Then the composition
050 %o

is said to be (A, h)-exact at O if GoF = 0 and if for any 0 < £ <
any r > 0 and any y in O'®" such that G="(y) = 0 in OV

1
4dmax{Aar,ag}’ e,r’

there exists an element x in O 1" such that

F/\E’h“r(x) _ L‘Z/a}-)\a,r,kf,xahgr(y)

n O/a;)\e,kj:»\shgr'
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o A sequence of controlled morphisms

Fr—1 Fr Frt1
o Og—1 — Op = Opq1 — Okga- -

is called (A, h)-exact if for every k, the composition

]:kfl .Fk
Okp—1 — O — Opt1

is (A, h)-ezact at O.
Definition 1.13. Let A be a C*-algebra filtered by (A,)r>o and let J be an ideal
of A. The extension of C*-algebras
0-J—>A—A/J—=0

is said to be filtered and semi-split (or a semi-split extension of filtered C*-algebras)
if there exists a completely positive cross-section

s:AJJ— A
such that
s((A/J)r)) C Ay
for any number r > 0. Such a cross-section is said to be semi-split and filtered.
Notice that in this case, the ideal J is then filtered by (A, N J),~o. For any

extension of C*-algebras
0—>J—>A—A/J—=0

we denote by 97 4 : K.(A/J) — K.(J) the associated (odd degree) boundary map.

Proposition 1.14. There exists a control pair (ap, kp) such that for any semi-split
extension of filtered C*-algebras

0—J—A-2 A)J—0,
there exists a (ap, kp)-controlled morphism of odd degree
Dja=( 3::&)0<e<4alv >0t K (A/T) = Ki(J)

which induces in K-theory 0y 4 : K (A/J) = K. (J).

Moreover the controlled boundary map enjoys the usual naturally properties
with respect to extensions. If the extension

0—>J—>A—A/J—=0

is split by a filtered homomorphism, i.e there exists a homomorphism of filtered
C*-algebras s : A/J — A such that gos = Idy,;, then we have Dj 4 = 0.

Theorem 1.15. There exists a control pair (A, h) such that for any semi-split
extension of filtered C*-algebras

0—J A5 AT —0,
then the following siz-term sequence is (A, h)-ezact

Ko(J) —L Ko(A) —E— Ko(A/J)

'DJ,AT 'DJ,AJ(

Ki(A)J) +2— Ki(4) +2— Ki(J)
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If A is a filtered C*-algebra, let us denote its suspension and its cone respectively
by SA and CA, i.e SA = Cy((0,1)) and CA = Cy((0,1]). We endow SA and CA
with the obvious structure of filtered C*-algebras arising from A. The algebra C'A
being contractible as a filtered C* algebra, the we have K3"(CA) = {0} for every
positive number e and 7 such that ¢ < 1/4 [8, Lemma 1.27]. If we consider the

Bott extension
eV,

0—SA — CA — A—0,

where ev; : CA — A is the evaluation at 1 with corresponding controlled boundary
morphisms Dy = Dga,ca. Then

Da = (93" Joce im0 Ko(A) = Ki(S4)

and

Da = (03" )o<e o r>0 : K1(A) = Ko(SA4)

dap

are controlled isomorphisms that induce the Bott isomorphisms d4 : Ko(A) —
Kl(SA) and 8,4 : Kl(A) — Ko(SA)

In the particular case of a filtered extension of C*-algebras
0=-J5A4%4/7-0
that splits by a filtered morphism, then the following sequence is (A, h)-exact
0—Ko(J) =L Ko(4) -5 Ko(A/)T)—0.

Proof of lemma 1.11. Assume first that all the A; are unital. Then the result is
a consequence of [8, Proposition 3.1]. If A; is not unital for some 4, then for every
integer ¢, let us provide

A ={(z,)\); z € A;, e C}
with the product
(2, (2", ) = (w2’ + X2’ + N)
for all (,A) and (z',\') in A;. Then A, is filtered with
Aip={(z,)); z € Aiy, A€ C}.

Set then A = (Zi)ieN. Let us denote by C the constant family of the C*-algebra
C. Then
0— A —5 A® —C.—0

is a split extension of filtered C*-algebra. Then we have a commutative diagram

0 —— KJA®) —— K,(4A®) —— K. (C) —— 0

. |7 [ree

0 —— ThienKu(Ai) —— [liew Ku(A) —— KN(C) —— 0
with (A, h)-exact rows for the control pair (A, k) of theorem 1.15. The result is now

a consequence of a five lemma type argument. O
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1.5. KK-theory and controlled morphisms. Let A be a C*-algebra and let B
be a filtered C*-algebra filtered by (B;)r>0. Let us define A® B, as the closure in
the spatial tensor product AR B of the algebraic tensor product of A and B,.. Then
the C*-algebra A®B is filtered by (A®B;),>0. If f: A7 — As is a homomorphism
of C*-algebras, let us set

fB :A1®B — AQ@B; a®b — f(a)®b

Recall from [3] that for C*-algebras A;, As and B, G. Kasparov defined a ten-
sorization map

B KK*(Al, AQ) — KK*(A1®B, AQ@B)
If B is a filtered C*-algebra, then for any z in K K,(A4;, A2) the morphism

K.(A1®B)—K,(A2®B); © — 2Q®4,9875(2)

is induced by a control morphism which enjoys compatibity properties with Kas-
parov product [8, Theorem 4.4].

Theorem 1.16. There exists a control pair (aT, kt) such that
o for any filtered C*-algebra B;
o for any C*-algebras A1 and As;
o for any element z in KK,(A1, As),
There exists a (ar, kt)-controlled morphism Tp(z) : Ki(A1®B) — K. (A2®B) with
same degree as z that satisfies the following:
(i) Te(2) : Ki(A1®B) — K.(A2®@B) induces in K-theory the right multipli-
cation by T5(2);
(ii) For any elements z and 2" in KK.(A1, As) then
Te(z+2") =Tp(2) + T(z').
(iii) Let A} be a filtered C*-algebras and let f : Ay — A} be a homomorphism
of C*-algebras, then Tp(f*(2)) = Te(z) o fB.« for all z in KK, (A}, As).
(iv) Let A} be a C*-algebra and let g : Ay, — Az be a homomorphism of C*-
algebras then T(g«(2)) = gp,« © T(2) for any z in KK, (A1, Ay).

(ar kr)
(v) Te(Ida,]) """ Tdi, (4,08

(vi) For any C*-algebra D and any element z in K K. (A1, As), we have Tp(tp(2)) =

TB®D (Z)

(vil) For any semi-split extension of C*-algebras 0 — J — A — A/J — 0
with corresponding element [0y 4] of KK1(A/J,J) that implements the
boundary map, then we have

T5([07,4]) = DseB,asB-
Moreover, Tp is compatible with Kasparov products.

Theorem 1.17. There exists a control pair (A, h) such that the following holds :
let Ay, As and As be separable C*-algebras and let B be a filtered C*-algebra.
Then for any z in KK.(A1,As) and any z' in KK,(Az, As), we have

TB(2®A22’I) ()\fdl) TB(Z/) o TB(Z)

We also have in the case of finitely generated group a controlled version of the
Kasparov transformation. Let I' be a finitely generated group. Recall that a length
onI'is amap ¢: ' — R* such that



12 H. OYONO-OYONO AND G. YU

e /(y) =0 if and only if v is the identity element e of T;
2(vy') < Ly ) £(~") for all element v and + of T.
Uy) =L(y).

In what follows, we will assume that £ is a word length arising from a finite generat-
ing symmetric set S, i.e £(y) = inf{d such that v =1 - -y with 71,...,74 in S}.
Let us denote by B(e,r) the ball centered at the neutral element of I" with radius
r,i.e B(e,r) = {7 € I such that ¢(y) < r}. Let A be a separable I'-C*-algebra, i.e
a separable C*-algebra provided with an action of I' by automorphisms. For any
positive number r, we set

(Axredf)rd:e{{f € C¢(T', A) with support in B(e,r)}.

Then the C*-algebra Ax,.4I" is filtered by ((AX,eql')r)r>0. Moreover if f: A —
B is a I'-equivariant morphism of C*-algebras, then the induced homomorphism
fr i AXpeall = BxXyeql' is a filtered homomorphism. In [3] was constructed
for any I'-C*-algebras A and B a natural transformation Jr : KK (A, B) —
KEK.(AXeql', BXcql') that preserves Kasparov products.

Theorem 1.18. There exists a control pair (g, ky) such that

e for any separable I'-C*-algebras A and B;
e For any z in KKI'(A, B),

there exists a (a7, k)-controlled morphism
TE(2) t KilA Xpeq T) — Ku(Bxtyeal)

of same degree as z that satisfies the following:

(i) For any element z of KKI'(A, B), then J54(2) : Ku(A Xpea T) = Ku(BXpeal)
induces in K -theory right multiplication by Jre?(z).
(ii) For any z and 2’ in KKL (A, B), then

jTEd(ZjLZ) jred( >+jred( )

(iii) For any T'-C*-algebra A’, any homomorphism f : A — A" of T'-C*-algebras
and any z in KKI(A', B), then Jred(f*(2)) = Jie4(2) o fr ..
(iv) For any I'-C*-algebra B’, any homomorphism g : B — B’ of T-C*-algebras
and any z in KK{(A,B) then J7°%(g.(2)) = gr.« o J¢d(z).
(v) If
0—-J—>A—>A/J—=0

is a semi-split exact sequence of I'-C*-algebras, let [0 4] be the element of
KK{(A/J,J) that implements the boundary map Oy . Then we have

TN [05,4]) = Dty eal’, Axtyeal-
The controlled Kasparov transformation is compatible with Kasparov products.

Theorem 1.19. There exists a control pair (A, h) such that the following holds:
for every separable T'-C*-algebras A, B and D, any elements z in KKL (A, B) and
2" in KK (B, D), then

k)

Tz @p 2') R JEU) o JEed(z).

We have similar result for maximal crossed products.
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1.6. Quantitative assembly maps. Let I be a finitely generated group and let B
be a I'-C*-algebra B. We equip I" with any word metric. Recall that if d is a positive
number, then the Rips complex of degree d is the set Py(T") of probability measure
with support of diameter less than d. Then Py(T") is a locally finite simplicial
complex and provided with the simplicial topology, P;(T") is endowed with a proper
and cocompact action of " by left translation. In [8] was constructed for any I'-C*-
algebra B a bunch of quantitative assembly maps

HElL t KK (Co(Pa(T)), B) = K27 (Bxyeal),
with d > 0, ¢ € (0,1/4) and r > r4 ., where
r:[0,400) x (0,1/4) — (0,400) : (d,€) > Tae

is a function independent on B, non decreasing in d and non increasing in €. More-

over, the maps ul‘i’%d* induced the usual assembly maps

gt KK (Co(Ps(I")), B) = K.(Bxyeal),
Leuf g, =1"o ul‘i’%’f*. Let us recall now the definition of the quantitative assembly
maps. Observe first that any z in P4(T") can be written down in a unique way as a
finite convex combination
r= Z Ay ()65,

where d, is the Dirac probability measure at v in I'. The functions
Ayt Py(T) — [0, 1]
are continuous and y(Ay/) = Ay for all v and 4’ in I'. The function
: . 1/241/2
pra:T = Co(Pa(l)); v = Y AN
el

is a projection of Cy(Py(T"))xyeql’ with propagation less than d. Let us set then
Td,e = k7 ¢/a,d. Recall that k7 can be chosen non increasing and in this case, 74 ¢
is non decreasing in d and non increasing in €.

Definition 1.20. For any I'-C*-algebra A and any positive numbers €, r and d
with e <1/4 and r > rq., we define the quantitative assembly map

il KKD(Co(Pa(I), A) —  KS"(A Xpeql)
red

RN (JF oK e ey (z)) ([pr,d,O]L - ) .

ay’kye/ay

Then according to theorem 1.18, the map M?’i&d is a homomorphism of groups

(resp. groups) in even (resp. odd) degree. For any positive numbers d and d’
such that d < d’, we denote by ¢4 : Co(Py(T")) = Co(Pa(T)) the homomorphism
induced by the restriction from Py (T") to Py(T"). It is straightforward to check

that if d, d’ and r are positive numbers such that d < d and r > rg ., then
M?T,Zxd = ul‘i’i;,d © qq,q',+. Moreover, for every positive numbers ¢, ¢/, d, r and r’ such
that e < ¢’ < 1/4, rge < 7, rqe < 7/, and r < 7/, we get by definition of a

controlled morphism that
e’ rr’ erd _ elr'id
by OIUT,A*_IU’FA*'

) 141y
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2. PERSISTENCE APPROXIMATION PROPERTY

In this section, we introduce the persistence approximation property for filtered
C*-algebras. In the case of a crossed product C*-algebra by a finitely gener-
ated group, we prove that the persistence approximation property follows from
the Baum-Connes conjecture with coefficients.

Let B be a filtered C*-algebra. As a consequence of proposition 1.3, we see that
there exists for every € € (0,1/4] a surjective map

lim K;7(B) — K.(B)

induced by (:5")r>0. Moreover, although this morphism is not a priori ono-to-one,
there exist for every € € (0,1/4] and r > 0, positive numbers €’ in [¢,1/4) (indeed
independent on z and B) and r’ > r such that for any x in K" (B), then (5" (z) =0
implies that (5" (z) = 0 in Ki/’T/(B). It is of revelance to ask whether this
' depends or not on z, in other word whether the family (K3"(B)):c(0,1/4),r>0
provides a persistent approximation for K,(B) in the following sense: for any e
in (0,1/4) and r > 0, there exist ¢’ in (g,1/4) and " > r such that for any = in
K" (B), then Li’a/’T’T/(,T) # 0 in Kf/’rl (B) implies that (2" (x) # 0 in K.(B).

Let us consider for a filtered C*-algebra B and positive numbers ¢, &/, and r’
such that 0 < e <&’ < 1/4 and 0 < r < 7’ the following statement:

PA.(B,e,e',r,r') : for any x € K" (B), then 12" () = 0 in K, (B) implies that
S5 (2) = 0in K27 (B).

Notice that PA.(B,e,&’,r,r") can be rephrased as follows:

the restriction of i " : K27 (B) — K.(B) to (&5 """ (K5"(B)) is one-to-one.

We investigate in this section the following persistence approximation property:

given € small enought and r positive numbers, is there exist positive numbers &’
and r’ with 0 < e <&’ < 1/4 and r < 7’ such that PA,(B,e,&’,r,r") holds?

2.1. The case of crossed products.

Theorem 2.1. Let I" be a finitely generated group. Assume that

o [' satisfies the Baum-Connes conjecture with coefficients.

e I' admits a cocompact universal example for proper actions.
Then for some universal constant Apy = 1, any € in (0, ﬁ), any r > 0, and any
D-C*-algebra A there exists v’ > r such that PA(AX,cql', €, Apag, 7, 7") holds.

Proof. Notice first that since I' satisfies the Baum-Connes conjecture with coef-
ficients and admits a cocompact universal example for proper action, there exist
positive numbers d end d’ with d < d' such that for any I'-C*-algebra B, the
following is satisfies:
e for any z in K,(Bx,eql'), there exists x in KK (Co(Py(T)), B) such that
d _ .
MF,B,*(‘T) =z
e for any z in KK (Co(Pa(T)), B) such that uf. g, () = 0, then ¢} 4 (x) =0
in KK (Co(PulD), B), where g, - KKT(Co(Pa(T')), B) = KK (Co(Pa(T)), B)
is induced by the inclusion Py(T") — Py (T).
Let us fix such d and d’, let A be as in proposition 1.3, pick («, k) as in lemma 1.11
and set A\py = aA. Assume that this statement does not hold. Then there exists:
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e in (0, Klp\) and r > 0;
an unbounded increasing sequence (r;);eny bounded below by r;
a sequence of I-C*-algebras (A4;)ien;
a sequence of elements (z;);eny with z; in K7™ (A; Xpeql)
such that 2" (x;) = 0 in K, (A;X.q) and (EAPETTE (z;) # 0 in Kmer (A;Xpeql)
for every integer <. We can assume without loss of generality that r > rg ..
According to lemma 1.11, there exists an element z in K" ((TLjen K(H)®A;j) % rcal’)

that maps to (5@&"he"

"(x;) for all integer 4 under the composition

ae,her
Kaa hsr H /C ®A Nredr) N Kaa hET(K(’H)@AideF) A_i> Kf:z&hg’!‘( Aixredr)a
JEN

where the first map is induced by the ¢ th projection [, K(H)®A;—K(H)®

and the map M he” is the Morita equivalence of propositionl.4. Let z be an
element in K KL (CO(Pd( ) [Ljen K(H)® A;) such that
en K(H)2A, «(2) = 1FOReT ()

in K. (( [Lien K(H)®A;)%eal’). Recall from [9, Proposition 3.4], that we have an
isomorphism

(1) Y(Co(Pu()), [ K(H)@4;) = T KEL(Co(Pa(T)), A;)

jEN jEN

d
Hr 1T

induced on the i th factor and up to the Morita equivalence

KK (Co(Pa(T)), Aj) = KK (Co(Pa(T)),K(H) © 4;)
by the i the projection [[;ony K(H)®A; — K(H) ® A;. Let (2;)jen be the element
of [[en KK (Cy(Py(T)), A;) corresponding to z under this identification. The
quantitative Baum-Connes assembly maps being compatible with the usual one,
we get that

d _ Jhe d,ae,her
HO T en K(H)@Aj,*(z) =" "o Hr I en ,C(H)®Aj7*(z).
But then, according to item (ii) of proposition 1.3, there exists R > h.r such that

LfE,Am&ha"‘vR(z) =

ag,Ape,her, R ae,her d,ae,her
2 o LT o up Ty Mieinea, ()

_ d,\ppg, R ( )
T P en KH)®A; %

Using once again the compatibility of the quantitative assembly maps with the
usual ones, we obtain by naturality that u% Ai7*7red(zi) = 0 for every integer i and
hence qq.4 «(z;) = 0 in KKI'(Co(Py(T)), A;). Using once more, equation (1) we
deduce that gq,q+(z) =0 in KK (Co(Py(I)) HjeNIC(H)®Aj) and since
d,Appg, R d’ Appae,R
HETT, o k(@A (2) = BETT K (i)@a, o © G (2)

that (29 R(z) = 0 in K?""E’R((HjeNIC(H)@)AJ—) Xreql'). By naturality, we
see that (S me™ H(z;) =0 in K;\"AE’R(AixTedF) for every integer i. Pick then an
integer ¢ such that r; > R, we have

Li,)\ms,r,n (1'1) _ L)\PAE-,R-,TI' OLi’)\mE"T’R(ZEi)

= 0
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which contradicts our assumption. (I

If we specifies the coefficients in the previous proof, we get indeed

Proposition 2.2. Let I be a finitely generated group and let A be a I'-C*-algebra.
Assume that

e ' admits a cocompact universal example for proper actions;

e the Baum-Connes assembly map for T with coefficients in £>° (N, K(H)® A)
18 onto;

e the Baum-Connes assembly map for I' with coefficients in A is one to one.

Then for some universal constant Apy = 1, any ¢ in (0, ﬁm) and any r > 0 there
exists v’ > r such that PA(AXeql, €, Apag, 1, 1") is satisfied.

Since for any C*-algebra B, the Baum-Connes assembly map for I" with coeffi-
cient in Cy(T', B) (B being provided with the trivial action) is an isomorphism and
since Co(T, B)X,eql’ & B @ K(¢2(T)), previous proposition leads to the following
corollary

Corollary 2.3. Let I' be a finitely generated group and let B be a C*-algebra.
Assume that

e [ admits a cocompact universal example for proper actions;
e the Baum-Connes assembly map for T with coefficients in £°(N, Co(T', K(H)®
B)) is onto;

Then for some universal constant Apy > 1, any € in (0, ﬁ) and any r > 0 there
exists v’ > r such that PA(B @ K((2(T)), &, Apac, r,7") is satisfied. Moreover, if T
satisfies the Baum-Connes conjecture with coefficients, then v’ does not depend on
B.

If we take B = C in the previous corollary, we obtain the following linear algebra
statement:

Proposition 2.4. Let I' be a finitely generated and let H be a separable Hilbert
space. Assume that

e ' admits a cocompact universal example for proper actions;
o the Baum-Connes assembly map for T with coefficients in £>° (N, Co (T, K(H)))
18 onto;

Then for some universal constant A > 1, any € in (0, ﬁ) and any r > 0 there exists
R > r such that

o If uis an e-r-unitary of K((*(D)®H) + Cldprygm, then u is connected
to Idy2ryom by a homotopy of Ae-R-unitaries.

o If qo and q1 are e-r-projections of K((*>(T)®H) such that rank ko(qo) =
rank ko(q1). Then qo and q1 are connected by a homotopy of Ae-R-projections.

2.2. Induction and geometric setting. The conclusions of corollary 2.3 and
proposition 2.4 concern only the metric properties of I' (indeed as we shall see
latter up to quasi-isometries). For the purpose of having statements analogous to
corollary 2.3 in a metric setting, we need to have a completly geometric description
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of the quantitative assembly maps

d,e,r
“Fj‘ligw Co(D(H)@A;) KK (Co(Pa(T)), H Co(T, K(H)@45))
ieN
—>K*((H CO (Fa K:(H)(X)Al) ><I7‘edl—‘)
€N
(see the proof of theorem 2.1). Namely, we study in this subsection a slight gener-
alisation of these maps to the case of induced algebras from the action of a finite
subgroup of T.

Let T be a discrete group equipped with a proper lenght . Let F be a finite
subgroup of I'. For any F-C*-algebra A, let us consider the induced I'-algebra

I%.(A) = {f € Co(T", A) such that f(y) = kf(vk) for every k in F}.

Then left translation on Co(I', A) provides a I-C*-algebra structure on I%.(A).
Moreover, there is a covariant representation of (I%(A),T) on the algebra of ad-
jointable operators of the right Hilbert A-module A®¢?(T"), where

o if fis in I%(A), then f acts on A®¢*(I') by pointwise multiplication by

vy ()

e I' acts by left translations.
The induced representation then provides an identification between IL(A)x cqT
and the algebra of F-invariant element of AQK(¢%(T")) for the diagonal action of

F, the action on K(¢%(T") being by right translation. Let us denote by Apr the
algebra of F-invariant element of AQK(¢?(T")) and by

Dapr: (A ¥peal = Apr,

the isomorphism induced by the above covariant representation.

The lenght ¢ gives rise to a filtration structure (In(A) Xy eal'y)rs0 on Ih(A) X gl
(recall that (I%(A)x,.cqT',) is the the set of functions of C.(T, I (A) with support
in the ball of radius r centered at the neutral element). The right invariant met-
ric associated to ¢ also provides a filtration structure on K(¢?(I")) and hence on
A®IC(¢*(T)). This filtration is invariant under the action of F' and moreover the
isomorphism ® 4 pr : IE(A)XITedF — Apr preserves the filtrations. By using the
induced algebra in the proof of corollary 2.3, we get

Proposition 2.5. Let F' be a finite subgroup of a finitely generated group I' and
let A be a F-C*-algebra. Assume that

e ' admits a cocompact universal example for proper actions;
e the Baum-Connes assembly map for T with coefficient in £°(N, Co(T', C(H)®
1.(A))) is onto;
Then for some universal constant Apy = 1, any € in (0, ﬁm) and any r > 0 there
exists v’ = r such that PA(Arr,e, Aeae, 1, 7") is satisfied. Moreover, if I satisfies
the Baum-Connes conjecture with coefficients, then v’ does not depend on F and

A.

In [7] was stated for any F-C*-algebra an isomorphism

o

(2) Lp (Po(D))s + lim KK (C(X), A) — KK (Co(Pa(I)), I (A4)),
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where X runs through F-invariant compact subsets of Py(T"). In order to describe
this isomorphism, let us first recall the definition of induction for equivariant K K-
theory. Let A and B be F-C*-algebras and let (£, p, T) be a K-cycle for K K (A, B)
where,

e & is a right B-Hilbert module provided with an equivariant action of F;

e p: A — Lp(€) is an F-equivariant representation of A into the algebra
Lp(E) of adjointable operators of &;

e T is a F-equivariant operator of L5(€) satisfying the K-cycle relations.

Let us define
IL(E) = {f € Co(T, ) such that f(v) = kf(vyk) for every k in F}.

Then T%(€) is a right Ik (B)-Hilbert module for the pointwise scalar product and
multiplication and the representation p : A — Lp (&) gives rise in the same way to
a representation

7P Tp(A) = Lo 5 TR (E)).
Let Ih. T’ be the operator of Lo A)(IE( )) given by the pointwise multiplication by
T, it is then plain to check that (IF (£),15 p, I T) is a K-cycle for KK (T A, T% B)
and that moreover, (£, p,T) — (Ix(£), Il;w p, 1% T) gives rise to a well defined mor-
phism L. : KKF (A, B)— KK (1%.(A),15(B)).

Back to the definition of the isomorphism of equation (2), let F be a finite
subgroup of a discrete group I" and let X be a F-invariant compact subset of Ps(T")
for s > 0. If we equipped I' x X with the diagonal action of F', where the action on
I is by right multiplication, then there is a natural identification between Ik (C/(X))
and Co((I" x X)/F). The map

(' x X)/F = Ps(D); [(v, @)] = v
then gives rises to a ['-equivariant homomorphism
T x : Co(Ps(I) = TR(C(X)).
Then for any F-C*-algebra A, the morphism
KKI(C(X), A)— KK (Co(P, (1)), Tp(A)); @ = T5 (T(x)

is compatible with the inductive limit over F-invariant compact subsets of Ps(T")
and hence we eventually obtain a natural homomorphism

Lp(Pa(I)). : lim KK (C(X), A)— K K (Co(Pu(T), In(A))

which turns out to be an isomorphism. Let us consider now the composition

(3)  Bapr.ony oA, lim KKF(C(X), A)— K57 (Arr),

where X runs through F-invariant compact subsets of Ps(I'). The two sides of
these maps depend only on the metric structure of T' (indeed only on the coarse
structure), and our aim in next section is to provide a geometric definition for these
bunch of assembly maps.
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3. COARSE GEOMETRY

Let ¥ be a proper metric space equipped with a free action of a finite group
F by isometries and let A be a F-C*-algebra. Define then Apys as the set of
invariant elements of A®K(¢?(X)) for the diagonal action of F. For F trivial, we
set Agey sy = Ay. The filtration (AQK(2(X)),)r>0 on ARK(£*(X)) is preserved by
the action of the group F'. Hence, if Ap s , stands for the set of F-invariant elements
of ARK(£?(X)),, then (Arxr)r>0 provides Apy with a structure of filtered C*-
algebra. Our aim in this section is to investigate the permanence approximation
property for Apx. Let us set PApx(e,e’,r,r’) for the property PA(Apx,¢e,e’,r, 1),
i.e the restriction of

Li/’rl : K:/’T,(Apyg) — K*(Apﬁg)

to (5" (K7 (AFy)) is one-to-one.

Following the route of the proof of theorem 2.1, and in view of equation (3), let
us set

Kf(Ps(E)aA) = h}r{nKKf(C(X),A),

where in the inductive limit, X runs through F-invariant compact subsets of Ps(X)
for s > 0. Our purpose is to define a bunch of local quantitative coarse assembly
maps
Vi a, KL (Po(2), A)— K" (Apy),
for s >0,e€(0,1/4), r > rs . and
[0,4+00) x (0,1/4) = (0,400) : (S,€) — T5e

a function independant on A, non decreasing in s and non increasing in ¢ such that,
if F' is a subgroup of a discrete group I' equipped with right invariant metric arising
from a proper lenght, then 3%, , coincides with the composition of equation (3).
3.1. A local coarse assembly map. Let X be a proper discrete metric space,
with bounded geometry and equipped with a free action of a finite group F' by
isometries and let A be a F-algebra. Recall that Apy is defined as the set of
invariant elements of A®K(¢?(X)) for the diagonal action of F. Notice that since
the action of F' on X is free, the choice of an equivariant identification between
Y/F x F and ¥ (i.e the choice of a fundamental domain) gives rise to a Morita
equivalence between Ap s and A x F. Let us set for s a positive number

where X runs through F-invariant compact subsets of the Rips complex Ps(X) of
degree s.
The aim of this section is to construct for s > 0 a bunch of local coarse assembly
maps
Vs anKE (Pa(S), A)— K, (Apx).

Le us define first for any F-algebras A and B a map
TFx : KK*F(A, B) — KK*(ARE, BF,E)

analogous to the Kasparov transformation.
Let 2 be an element in K K" (A, B). Then z can be represented by an equivariant
K-cycle (m,T,H ® (*(F) ® B) where
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‘H is a separable Hilbert space;
F acts diagonally on H® ¢?(F)® B, trivially on H# and by the right regular
representation on £2(F).
e 7 is a F-equivariant representation of A in the algebra £5(H ® (*(F)® B)
of adjointable operators of H ® B;
e T is a F-equivariant self-adjoint operator of L (H ® (*(F) ® B) satisfying
the K-cycle conditions, i.e. [T, 7(a)] and 7(a)(T? — Zdysp) belongs to
K(H ® (*(F)) ® B, for every a in A.
Let Hp pyx be the set of invariant elements in H ® ¢*(F) ® B ® K(¢%(X)). Then
‘Hp,ryx is obviously a right Bg s-Hilbert module, and 7 induces a representation
7r,x of Apx on the algebra Lp,. . (Hp,rx) of adjointable operators of Hp ry and
T gives rise also a self-adjoint element Ty of Lp, . (Hp,ryx). Moreover, by
choosing an equivariant identification between ¥/F x F and ¥, we can check that
the algebra of F-equivariant compact operators on H ® £2(F) ®{?(X) ® B coincides
with the algebra of compact operators on the right B s-Hilbert module Hp rs.
Hence, (1rs,T,ry, Hp ryx) is a K-cycle for KK, (Apy, Brx). Furthermore, its
class in KK, (A r,, Brx) only depends on z and thus we end up with a morphism

(4) s KKF(A,B) - KK.(Arys, Bry).

It also quite easy to see that 75y, is functorial in both variables. Namely, for any F-
equivariant homomorphism f : A — B of F-algebras, let us set frx : Apsx = Bryx
for the induced homomorphism. Then for any F-algebras A;, Az, B; and By and
any homomorphism of F-algebra f: A; — Ay and g : By — Bs, we have

rx(f*(2) = frs(Trx(2))
and
Tr5(94(2)) = grs,«(TFx(2))
for any z in KK (A, By).
We are now in position to define the index map. Observe that any x in Py(X)
can be written as a finite convex combination

x = Z Ao ()05

where

e J, is the Dirac probability measure at o in X.

e for every o in X, the coordinate function A, : Ps(X) — [0, 1] is continuous
with support in the ball centered at ¢ and with radius 1 for the simplicial
distance.

Moreover, for any ¢ in ¥ and k in F, then we have Ay, (kz) = A\y(z). Let X be a
compact F-invariant subset of P;(X). Let us define

Px : C(X)®0(E) = C(X)22 (%)
by
(5) (Px - h)(z,0) = \Y2(2) D h(z, o)AV (x),

o'ex

for any h in C(X)®¢*(X). Since > o5 Ay = 1, it is straightforward to check that
Px is a F-equivariant projection in C'(X)®K(¢%(X)) with propagation less than s
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and hence gives rise in particular to a class [Px] in Ko(C(X)py). For any F-C*-
algebra A, the map

KK (C(X), A) — K.(Aps); © = [Px] ®c(x)ps TF5(2)

is compatible with inductive limit over F-invariant compact subset of Ps(X) and
hence gives rise to a local coarse assembly map

V%,E,A,* : K*F(Pé(z)a A)—>K*(AF,Z)
This local coarse assembly map is natural in the F-algebra. Furthermore, let us
denote for any positive number s and s’ such that s < s’ by

0s,s' .+ Ki(Ps(2), A)— K. (Py (%), A)
the homomorphism induced by the inclusion Ps(X) < Py (X), then it is straight-
forward to check that

VJSU‘,E,A,* = V;‘,Z,A O Gs,s -

3.2. Quantitative local coarse assembly maps. With notation of section 3.1,
if ¥ is proper dis