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ABSTRACT  In this paper, a numerical and analytical analysis is performed in order to improve the 
species separation process in a binary fluid mixture by decoupling the thermal gradient from the 
convective velocity. The configuration considered is a horizontal rectangular cavity, of large aspect 
ratio, filled with a binary fluid. A constant tangential velocity is applied to the upper horizontal 
wall. The two horizontal impermeable walls are maintained at different and uniform temperatures 
T1 and T2 with T =T1-T2. Species separation is governed by two control parameters, the 

temperature difference T  and the velocity of the upper plate xUe . The intensity of the 

thermodiffusion is controlled by the temperature, while the velocity xUe  controls the convective 

flow. This problem depends on six dimensionless parameters, namely, the separation ratio,  , the 
Lewis number, Le, the Prandlt number Pr, the aspect ratio of the cell, A and two control parameters: 
the thermal Rayleigh number, Ra and the Péclet number Pe. In this study, the formulation of the 
separation (mass fraction difference between the two ends of the cell) as a function of the Péclet 
number and the Rayleigh number is obtained analytically. For a cell heated from below, the optimal 

separation 
15

42
m 

 
is obtained for 

Le
Pe

42  and Le
Ra

540 . 2D numerical results, obtained by 

solving the full governing equations, are in good agreement with the analytical results based on a 
parallel flow approach. 
 
 

INTRODUCTION 
 

A temperature gradient applied to a binary fluid mixture induces a mass fraction gradient: this 
phenomenon called thermodiffusion is also known as Ludwig-Soret effect or the Soret effect. Under 
the gravity field, the coupling between convection and thermodiffusion, namely thermogravitational 
diffusion may lead to species separation.  
 
Clusius and Dickel (1938) successfully carried out the separation of gas mixtures in a vertical cavity 
heated from the side usually called thermogravitational column (TGC). The authors observed a 
significant separation of the gas components and suggested that this technique could be used for 
isotope separation. Furry et al. (1939) developed a fundamental theory to interpret the experimental 



process of isotope separation in TGC columns (FJO theory). However, in their study, the authors did 
not take into account the influence of the concentration gradient on the density gradient, which is 
referred as ”forgotten effect”. Afterwards, many works were devoted to justify and extend the results of 
the FJO theory to the case of binary liquids. Other studies were carried out in order to improve the 
experimental devices and increase the separation. Lorenz and Emery(1959) introduced a porous 
medium in the TGC columns. Bou-Ali et al. (1999) imposed, in a thermogravitational column, a 
horizontal temperature gradient to a binary fluid with a negative Soret coefficient. The authors 
observed a steady-state adverse density gradient along the layer and analysed the stability of this 
configuration. Three-dimensional numerical study of Soret-driven convection in a cubic cell filled with 
a binary mixture of water (90%) and isopropanol (10%) was performed by Shevtsova et al. (2006). The 
instabilities occurring in this binary fluid with negative Soret coefficient for a cubic cell heated from 
above was analysed.  
In order to increase the separation, Platten et al. (2003) used an inclined cavity heated from the top. 
Elhajjar et al. (2006) suggested a new method to obtain species separation in a binary fluid mixture. 
The authors considered a horizontal parallelipipedic cavity subjected to a constant horizontal 
temperature gradient on the two horizontal walls to improve the separation process depending on two 
control parameters. They obtained significant separation (10%) with realistic values of the thickness 
(about 2mm), while very low thicknesses (0.2 mm) were required in vertical cells to obtain separation 
with the same order of magnitude. Charrier-Mojtabi et al.(2008) developed a linear stability analysis of 
the unicellular flow which appears at the onset of convection in a horizontal porous cavity saturated by 
a binary fluid and heated from below. The authors showed that if the separation ratio   is positive and 

greater than a particular value, mono , it is possible to separate the species of the binary fluid mixture 

between the two ends of the cell. Elhajjar et al. (2008) showed that the Rayleigh number leading to the 
optimum  separation in a horizontal cell is larger than the one obtained in a vertical cell (TGC), which 
allows to perform separation in a cell of greater thickness. The existence of multiple solutions and the 
influence of the Soret effect on the convection in a horizontal porous layer under cross temperature and 
concentration gradients were discussed by Bennacer et al. (2009). Zebib and Bou-Ali (2009) 
performed a linear stability analysis of a binary mixture buoyant return flow in a tilted differentially 
heated infinite layer using asymptotic long-wave analysis and pseudo-spectral Chebyshev numerical 
solutions. Elhajjar et al.(2009) studied the influence of vertical high frequency and small-amplitude 
vibrations on the stability of the unicellular flow in a shallow horizontal porous layer saturated by a 
binary fluid and heated from below.  Alloui et al.(2009) used the Darcy model with the Boussinesq 
approximation to study natural convection in a porous medium saturated by a binary fluid. It was found 
that both unicellular and bicellular symmetrical circulations are possible for centrally located heated 
element. Elhajjar et al. (2010) presented a theoretical and numerical study of species separation in 
an inclined porous cavity.  
 
In this paper a study of the species separation in a binary fluid mixture is presented for a new 
geometrical configuration. The binary fluid mixture is confined in a shallow horizontal rectangular 
cavity heated either from above or below. The two horizontal impermeable walls are maintained at 
uniform temperatures T1 and T2. The upper horizontal wall moves with a constant velocity,xUe . 

The dimensionless corresponding parameters of the problem studied are the Péclet number, Pe and 
the Rayleigh number, Ra. In addition to these two parameters, the problem depends on the 
separation ratio, Ψ, the Lewis number, Le, the Prandlt number, Pr and the aspect ratio of the cell, A.  
In order to obtain an analytical solution of the unicellular flow, occurring for a wide range of 
variation of the dimensionless parameters, the assumption of parallel flow is adopted. The velocity 
profile, the temperature and the mass fraction field are obtained using Maple software. The species 
separation is thus calculated as a function of Ra, Pe, Le, Ψ and A. 
For a cell heated from below the values of the Péclet number and the Raleigh number for which the 
separation is optimal are determined analytically. The analytical results are corroborated by direct 
2D numerical simulations. 



 
MATHEMATICAL FORMULATION  

 
Conservation equations An horizontal rectangular cavity filled with a binary fluid mixture submitted 
to vertical temperature gradient is considered. The dimensions of the cell are H  along the z-axis and L 
along the x-axis. The aspect ratio of the cell A=L/H is larger than unity. The top and bottom walls of 
the cell are maintained, respectively, at temperatures T1 and T2 with 1 2T T or 1 2T T . The lateral 

walls are assumed thermally insulated (see Figure 1). The binary mixture is considered as Newtonian  
fluid and the Boussinesq approximation is assumed valid. Thus, the thermo-physical properties of the 
fluid mixture are constant except the density in the buoyancy term, which varies linearly with the local 
temperature T and the local mass fraction of the denser componentC :  

                           (1)  

where the subscript 0  refers to the reference values of T and C  (In this paper we consider       . 
T  and C  are, respectively, the thermal and the mass expansion coefficients defined as follows: 
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The heat and the mass fraction flux in the binary mixture are coupled due to the Soret effect and both 

contribute to the density gradient. The buoyancy force g  ( zg ge  ) is thus influenced by the Soret 

effect. Under these conditions, the mathematical model governing this problem, which includes the 
conservation equations (mass, momentum, energy and chemical species), is written as follows: 
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Figure 1.  Geometry of the physical problem. 

 

WhereD , and TD  are, respectively, the mass diffusion and the thermal diffusion coefficients,   and 
a  are, respectively, the dynamic viscosity and thermal diffusivity of the binary fluid. In equations (2) 
to (5), the asterisks represent the dimensional variables, and the Soret coefficient is defined as: 

D

D
S T

T   . 

Binary fluid 



Typically, in the Soret-driven convection, if the mass fraction difference is small, )1( ** CC   can be 

replaced by )1( *
0

*
0 CC   C0 being the concentration in the initial state. 

 
Boundary Conditions  The associated boundary conditions include a constant velocity applied on the 
upper wall, no-slip condition for the velocity of the others rigid walls, distinct constant temperatures on 
the top and the bottom wall. Vertical walls are impermeable and thermally insulated. Accordingly, the 
associated boundary conditions are defined as follows:  
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Dimensionless Equations  The references scales are: H  for the length , 
a

H 2

 for the time, 2

2

0 H

a  for 

the pressure, and 
H

a  for the velocity . The dimensionless temperature and concentration are given by: 
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Thus the dimensionless governing equations are given by: 
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Where  * *
0 0(1 )
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T

D
C C

D
is the separation ratio, and ze  is the unit vector along the z-axis. 

The problem considered depends on six dimensionless parameters which are : 

The Rayleigh number, 
a

THg
Ra T

  3

, the Prandtl number, 
a

Pr , the Lewis number, 
D

a
Le  , 

the Péclet number, RePrPe , where 
LURe  (Reynolds number), the separation ratio ψ and the 

aspect ratio 
H

L
A  . 



In this paper, we consider 0Ra  if the cell is heated from below, and 0Ra  if the cell is heated 
from above. Moreover, a positive separation ratio is considered, which implies that, due to 
thermodiffusion, the denser component of the mixture migrates towards the cold wall. 
The associated  boundary conditions in dimensionless form are: 
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ANALYTICAL SOLUTION 

 
In the case of a shallow cavity (A>>1), in order to solve the problem analytically, the parallel flow 
approximation (Bennacer et al.(2003), Elhajjar et al. (2010)) is considered. The streamlines are 
assumed to be parallel to the horizontal walls. In this case, the vertical component of velocity can be 
neglected:  
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This assumption implies steady-state and neglecting the inertia term            in eq.(11).  

The temperature and the mass fraction are written as follows: 
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(20)  

Where b and m are respectively an unknown constant temperature and mass fraction gradient, in the x 
direction. b=0, due to the constant temperatures imposed on the horizontal walls. 
 
Using the equations (18) to (20), and after replacing the pressure in the Navier-Stokes equation 
(Eq.(11)), the following system of equations is obtained for the steady state: 
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Since the boundary conditions on vertical walls are not taken into account , additional conditions are 
needed to solve the system of equations (21)-(23) which are:  

- The mass flow rate through any cross section perpendicular to the x-axis is equal to zero,  
- The mass conservation of the component of mass fraction C across the all cell,  
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Applying these latter conditions and the boundary conditions (14) to (17) and using Maple software, 
the velocity, temperature and mass fraction fields are given by the following expressions: 
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(27)  

The velocity has a cubic profile, which is required to allow specie separation between the two ends of 
the cell. 
 
Determination of the mass fraction gradient m along the x axis  To determine the mass fraction 
gradient, m , along the x axis, we use the fact that the mass flow rate of the species of mass fraction C 
through any vertical section is equal zero: 
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This latter assumption leads to the following cubic equation giving m  as function of the dimensionless 
parameters: Pe, Ra, Le and  .   
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Under the condition that both the Lewis number, Rayleigh numbers and the separation ratio are 
positive, equation (28) with real coefficients admits three solutions. Depending on their corresponding 
discriminant ∆, a cubic equation has three distinct real roots if ∆>0, one real root and two non-real complex conjugate roots if ∆<0  For ∆ 0, a cubic equation has multiple real roots. The 
discriminant ∆ of equation  28  was obtained using the Maple algebra code. Its expression ,which is a 
function of Le, Pe, Ra, and ψ , is long and complicated. For this reason it was not detailed here. 

Case, 0   The surface associated to ∆=0 in the 3D space (Le, LePe, Raψ) separates the space into 
two regions, one corresponding to three real roots and the other one to one real and two complex 
conjugate roots. The surface associated to the case with three real roots, two of which are opposite, is 
close to the surface associated to the case ∆ 0. Its expression is given by: 

01134PeLe108RaLe7 22  . The value of the Rayleigh number and the corresponding real roots 
of the equation (28):  
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and the three real roots are: 
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Equation (29) shows that for a positive value of    the Rayleigh number is always positive   > 0, 
which correspond to the case where the cellule is heated from below. 

We deduce from equations (29) and (30), the maximum value of the species separation per unit length, 

30

105
m1   obtained for

Le
Peopt

105 . On the other hand, the maximal value of species 

separation  
9

14
3,2 m   obtained for Pe=0, can be deduced from equations (29) and (31). 

The evolution of the three roots of equation (29) is plotted, in Fig. 2, as a function of the Péclet number 
for    2 0,      0 2. The two symmetrical curves represent the separation obtained using equation 
(31) (the convection goes clockwise or counter-clockwise); while the solid line show the separation 
obtained using equation (30). In this latter case, 0Pe , there is no species separation independently of 
the value of Ra . The species separation is only possible for a horizontal cell heated from below (

0Ra ).  

 

 

Figure 2. Separation as function of Péclet number, for 2.0,230  Le  

 

Case 0   The equation (28) has one real root and two non-real complex conjugate roots defined 
as a function of PeRaLe ,,  and  . 
Here the maximum value of  , root of equation (28) is obtained for an optimum value of the Péclet 
number defined as follows: 

 

When the Péclet number is replaced, in the expression of m, by its expression given in equation (32), m 
is obtained as a function of Le,   and Ra. The maximum of m as a function of Ra can then be 

calculated. For a cavity heated from below 
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    as function of the Rayleigh number can be seen in figure 3 for the cases    0,    0 0 ,    0    , where 2.0,230  Le . The solid line represents the case where no velocity is applied on the 

upper wall (i.e  Pe=0). For 2.0,230  Le , the species separation is only possible when the cell is 
heated from below and when the Rayleigh number exceeds a critical value   >    . A separation 
maximum is observed for an optimum value of Rayleigh number, where optimum coupling between 
convection and thermodiffusion is achieved. When the Rayleigh number is lower than the optimum 
value, the thermo-diffusion is predominant. In this case the separation, due mainly to the thermo-
diffusion, is small. Conversely,   >       the convection regime increases and tends to destroy the 
species segmentation. As a result, the separation decrease. 

The two dotted curves represent the case where a constant velocity is applied on the upper wall 
(   0 0 ,    0  ). For this case ( 0Pe ) the separation is always possible whether the layer is 
heated from above or from below. This can be explained by the fact that the temperature gradient 
induces thermo-diffusion between the cold and the hot wall and the applied velocity leads to species 
separation between the two ends of the horizontal cell. 

For 06.0Pe  and 1.0Pe  the maximum value of m is respectively 417.0m  and 372.0m  
obtained respectively for 9Ra  and 34Ra  (heated from above). For 0Pe  the maximum 
horizontal transport rate ( 42.0m ) is obtained for 5.28Ra  (heated from below). In this case, the 

unicellular flow is possible if
Le

720
Ra  . This configuration (Pe=0) was studied by Knobloch (1986). 

He found that the pure double diffusive convection flow  transits to unicellular flow for a critical 

Rayleigh number
Le

720
Rac  . 

 

 

Figure 3. Species separation m, versus Rayleigh number for 0Pe , 06.0Pe , 1.0Pe  with 
2.0,230  Le . 

 

NUMERICAL METHOD 

Numerical simulations were carried out to evaluate the analytical results. For this purpose, the 
numerical solution of the full governing equations (10-13) with the associated boundary conditions 



(14-17), and with different initial values of   ,  ,  , was obtained using a finite element method 
(Comsol Multiphysics). 

The mesh choice should only be viewed as a compromise between the convergence and solver memory 
requirements (UMFPACK direct solver was used for the simulation). A  4000 elements quadratic mesh 
(69986 degrees of freedom), which is more convenient for our rectangular cell problem, was used. As 
the analytical solution is valid for large aspect ratios, A10 was used for all numerical simulations. 

The analytical model is found to be in good agreement with the numerical results obtained by solving 
the complete system of governing equations. 

A comparison of species separation m versus Péclet number Pe obtained, numerically and analytically, 
for a cell heated from below, 10,2.0,230,15  ALeRa   is presented in figure 4. The 
analytical solution is represented with solid lines and the numerical values are represented with dots. 
The analytical solution is in good agreement with the numerical results. 

When Péclet number is small or large (i.e. the applied velocity is low or high), the ratio between the 
mass diffusion time and the convective time does not allow the maximum species separation.  The 
maximum value of the species separation is   0   2 obtained for Pe =0.02.

  
 

 

Figure 4. Variation of species separationm  versus  Péclet number )(Pe , with 15Ra , 
10,2.0,230  ALe  . 

 
 

The analytical and numerical results obtained for the species separation per unit length, m, function of 
Pe are presented in table I, for Pr=27, 10,2.0,230,15  ALeRa  . 

 
 

  



Table I. Comparison between analytical an numerical values of m results for     2 ,   0  ,    2 0,        
 

Pe  Anam  
Numm  

0.02 0.429 0.43 
0.04 0.413 0.414 
0.06 0.372 0.373 
0.08 0.329 0.330 
0.1 0.2917 0.293 
0.12 0.2596 0.2613 
0.14 0.2327 0.2343 
0.16 0.2102 0.2116 
0.18 0.1912 0.1925 
0.2 0.1751 0.1765 
0.25 0.1440 0.1450 
0.3 0.1219 0.1226 
0.4 0.0930 0.098 

 
 
Figure 5. represents the variation of the concentration field of a binary fluid mixture for different 
values of the Péclet numberPe , for 2.0,230,10Pr,15  LeRa  and .10A  The black 
lines correspond to the iso-concentrations while the color scales represents the mass fraction intensity 
of the heaviest species. When Pe number increases, i.e. the flow velocity increases, the iso-
concentration curvature increases and the separation decreases 

 
 

 
(a) 

 
(b) 

 
(c) 

Figure 5.  Iso-concentration lines and variation of the concentration field as a function of Péclet 
number Pe  (a) 02.0Pe , (b) 1.0Pe , (c) 18.0Pe   with 15Ra , and 10,2.0,230  ALe   

27Pr .  
 
 

For a cell heated from above, we present in figure 6 an analytical and numerical comparison giving the 
value  of m as a function of  Péclet number for 2.0,230,50  LeRa . The analytical solution 
is represented by solid lines and numerical values are symbolically represented by dots. The analytical 
solution is in good agreement with the numerical results. For 115.0Pe  we obtain the maximum 
value of m: 36.0m . 



 

Figure 6. Variation of separationm  versus Péclet number Pe , for 50Ra , 
10,2.0,230  ALe  . 

 

Figure 7. Shows the variation of the concentration field at different values of the Péclet numbers 
18.0,1.0,02.0  PePePe  for 10,2.0,230,10Pr,50  ALeRa  . The lines 

correspond to the isoconcentration, while color represents the intensity of the mass fraction of the 
heaviest species. 
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Figure 7. Iso-concentration lines and variation of the concentration field versus Péclet number Pe  (a) 

02.0Pe ,(b) 1.0Pe , (c) 18.0Pe   with 50Ra , and 10,2.0,230  ALe   27Pr .  
 
 

Velocity profile   The structure of the flow inside the cavity and the associated velocity’s profile  
induced by the top wall driven by constant velocity along the x axis depends on the direction of 
convective rotating vortex generated by free convection inside the horizontal cell. 
The equation of the velocity profile obtained in equation (25) can be also written the form: 

])2436()32[(
12

1 2 PezmRazzzu    

We verify that the discriminant of the quadratic equation associated to the velocity is positive   for all 
values of   Ra, Pe and  . Then there are two distinct real roots. If these two roots are in the interval 
[0,1] the velocity is equal zero at two points inside the cross section of the cell. We show that both 



roots are localised in the interval [0,1] only when the value of 
mRa

Pe
X  is in the range of [-

0.042,0]. 
The velocity profile in the cavity for 10,1.0,100,06.0,60  ALePeRa  and m=0.4319 
leads to  0,042.0231.0 X it follows then that the profile velocity has only one value of  1,0z  
for which the velocity equal zero. The correspondent profile velocity is presented in Figure 8. In figure 
9, we present the associated stream function obtained numerically for cell with aspect ratio A=10. 
 

 
Figure 8.  Profile of velocity for 100,1.0,06.0,60  LePeRa  . 

 
 
 

              
Figure 9. Streamlines for 100,1.0,06.0,60  LePeRa   

 
 
for 100,200  LeRa , 1.0 , 1463.0,05.0  mPe  the value of -0.171X 

 
is in the range of  0,042.0  and the velocity is equal zero for two values of z (  1,084.0z,33.0z 21  ) the figure 

10 shows the corresponding profile velocity. Figure 11. presents the associated streamlines showing 
two counter-rotating superposed cells.  



 
Figure 10. Profile of velocity for 200,100  RaLe 1463.0,05.0  mPe 1.0 . 

 
 

               
Figure 11. Streamlines for 200,100  RaLe , 1463.0,05.0  mPe  1.0 . 

 
 

CONCLUSION 
 

In this study, a new procedure leading to species separation in a horizontal rectangular cavity, filled 
with a binary fluid, heated from above or from below, was presented. A constant horizontal velocity 
was applied on the upper horizontal wall. The two control parameters of this procedure were: the 
applied velocity on the upper wall which determines the intensity of the convective flow, and the 
temperature difference between the two horizontal plates which controls the intensity of the thermo-
diffusion. In this study the species separation was quantified by both analytical and numerical methods. 
The influence of the thermal Rayleigh number and the Péclet number for different values of  Prandlt, 
Lewis numbers and separation ratio was quantified and discussed. The optimum species separation was 
obtained for a cell heated from below or from above. The analytical and numerical results obtained 
were in good agreement. 
.   
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