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A NEW PROCESS FOR SPECIES SEPARATION IN A BINARY MIXTURE USING MIXED CONVECTION

In this paper, a numerical and analytical analysis is performed in order to improve the species separation process in a binary fluid mixture by decoupling the thermal gradient from the convective velocity. The configuration considered is a horizontal rectangular cavity, of large aspect ratio, filled with a binary fluid. A constant tangential velocity is applied to the upper horizontal wall. The two horizontal impermeable walls are maintained at different and uniform temperatures T 1 and T 2 with T  =T 1 -T 2 . Species separation is governed by two control parameters, the temperature difference T  and the velocity of the upper plate

x Ue . The intensity of the thermodiffusion is controlled by the temperature, while the velocity

x Ue controls the convective flow. This problem depends on six dimensionless parameters, namely, the separation ratio,  , the Lewis number, Le, the Prandlt number Pr, the aspect ratio of the cell, A and two control parameters: the thermal Rayleigh number, Ra and the Péclet number Pe. In this study, the formulation of the separation (mass fraction difference between the two ends of the cell) as a function of the Péclet number and the Rayleigh number is obtained analytically. For a cell heated from below, the optimal separation 15 42 m  is obtained for Le Pe 42  and  Le Ra 540  . 2D numerical results, obtained by solving the full governing equations, are in good agreement with the analytical results based on a parallel flow approach.

INTRODUCTION

A temperature gradient applied to a binary fluid mixture induces a mass fraction gradient: this phenomenon called thermodiffusion is also known as Ludwig-Soret effect or the Soret effect. Under the gravity field, the coupling between convection and thermodiffusion, namely thermogravitational diffusion may lead to species separation. [START_REF] Clusius | New Process for Separation of Gas Mixtures and Isotopes[END_REF] successfully carried out the separation of gas mixtures in a vertical cavity heated from the side usually called thermogravitational column (TGC). The authors observed a significant separation of the gas components and suggested that this technique could be used for isotope separation. [START_REF] Furry | On theory of isotope separation by thermal diffusion[END_REF] developed a fundamental theory to interpret the experimental process of isotope separation in TGC columns (FJO theory). However, in their study, the authors did not take into account the influence of the concentration gradient on the density gradient, which is referred as "forgotten effect". Afterwards, many works were devoted to justify and extend the results of the FJO theory to the case of binary liquids. Other studies were carried out in order to improve the experimental devices and increase the separation. Lorenz and Emery(1959) introduced a porous medium in the TGC columns. [START_REF] Bou-Ali | Stability of convection in a vertical binary fluid layer with an adverse density gradient[END_REF] imposed, in a thermogravitational column, a horizontal temperature gradient to a binary fluid with a negative Soret coefficient. The authors observed a steady-state adverse density gradient along the layer and analysed the stability of this configuration. Three-dimensional numerical study of Soret-driven convection in a cubic cell filled with a binary mixture of water (90%) and isopropanol (10%) was performed by [START_REF] Shevtsova | Onset of convection in Soret-driven instability[END_REF]. The instabilities occurring in this binary fluid with negative Soret coefficient for a cubic cell heated from above was analysed. In order to increase the separation, [START_REF] Platten | Enhanced molecular separation in inclined thermogravitational columns[END_REF] used an inclined cavity heated from the top. [START_REF] Elhajjar | Study of thermogravitation in a horizontal fluid layer[END_REF] suggested a new method to obtain species separation in a binary fluid mixture. The authors considered a horizontal parallelipipedic cavity subjected to a constant horizontal temperature gradient on the two horizontal walls to improve the separation process depending on two control parameters. They obtained significant separation (10%) with realistic values of the thickness (about 2mm), while very low thicknesses (0.2 mm) were required in vertical cells to obtain separation with the same order of magnitude. [START_REF] Elhajjar | Separation of a binary fluid mixture in a porous horizontal cavity[END_REF] developed a linear stability analysis of the unicellular flow which appears at the onset of convection in a horizontal porous cavity saturated by a binary fluid and heated from below. The authors showed that if the separation ratio  is positive and greater than a particular value, mono  , it is possible to separate the species of the binary fluid mixture between the two ends of the cell. [START_REF] Elhajjar | Separation of a binary fluid mixture in a porous horizontal cavity[END_REF] showed that the Rayleigh number leading to the optimum separation in a horizontal cell is larger than the one obtained in a vertical cell (TGC), which allows to perform separation in a cell of greater thickness. The existence of multiple solutions and the influence of the Soret effect on the convection in a horizontal porous layer under cross temperature and concentration gradients were discussed by [START_REF] Bennacer | Thermodiffusion in porous media: Multidomain constitutant separation[END_REF]. [START_REF] Zebib | Inclined layer Soret Instabilities[END_REF] performed a linear stability analysis of a binary mixture buoyant return flow in a tilted differentially heated infinite layer using asymptotic long-wave analysis and pseudo-spectral Chebyshev numerical solutions. [START_REF] Elhajjar | Influence of vertical vibrations on the separation of a binary mixture in a horizontal porous layer heated from below[END_REF] studied the influence of vertical high frequency and small-amplitude vibrations on the stability of the unicellular flow in a shallow horizontal porous layer saturated by a binary fluid and heated from below. [START_REF] Alloui | Multiple steady states in a porous enclosure partially heated and fully salted from below[END_REF] used the Darcy model with the Boussinesq approximation to study natural convection in a porous medium saturated by a binary fluid. It was found that both unicellular and bicellular symmetrical circulations are possible for centrally located heated element. [START_REF] Elhajjar | Separation in an inclined porous thermogravitational cell[END_REF] presented a theoretical and numerical study of species separation in an inclined porous cavity.

In this paper a study of the species separation in a binary fluid mixture is presented for a new geometrical configuration. The binary fluid mixture is confined in a shallow horizontal rectangular cavity heated either from above or below. The two horizontal impermeable walls are maintained at uniform temperatures T 1 and T 2 . The upper horizontal wall moves with a constant velocity, x Ue . The dimensionless corresponding parameters of the problem studied are the Péclet number, Pe and the Rayleigh number, Ra. In addition to these two parameters, the problem depends on the separation ratio, Ψ, the Lewis number, Le, the Prandlt number, Pr and the aspect ratio of the cell, A. In order to obtain an analytical solution of the unicellular flow, occurring for a wide range of variation of the dimensionless parameters, the assumption of parallel flow is adopted. The velocity profile, the temperature and the mass fraction field are obtained using Maple software. The species separation is thus calculated as a function of Ra, Pe, Le, Ψ and A. For a cell heated from below the values of the Péclet number and the Raleigh number for which the separation is optimal are determined analytically. The analytical results are corroborated by direct 2D numerical simulations.

MATHEMATICAL FORMULATION

Conservation equations An horizontal rectangular cavity filled with a binary fluid mixture submitted to vertical temperature gradient is considered. The dimensions of the cell are H along the z-axis and L along the x-axis. The aspect ratio of the cell A=L/H is larger than unity. The top and bottom walls of the cell are maintained, respectively, at temperatures T 1 and T 2 with 12 TT  or 12 TT  . The lateral walls are assumed thermally insulated (see Figure 1). The binary mixture is considered as Newtonian fluid and the Boussinesq approximation is assumed valid. Thus, the thermo-physical properties of the fluid mixture are constant except the density in the buoyancy term, which varies linearly with the local temperature T and the local mass fraction of the denser component C :

(1)

where the subscript 0 refers to the reference values of T and C (In this paper we consider .

T  and C  are, respectively, the thermal and the mass expansion coefficients defined as follows:
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The heat and the mass fraction flux in the binary mixture are coupled due to the Soret effect and both contribute to the density gradient. The buoyancy force g  ( z g g e 

) is thus influenced by the Soret effect. Under these conditions, the mathematical model governing this problem, which includes the conservation equations (mass, momentum, energy and chemical species), is written as follows:
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Figure 1. Geometry of the physical problem.

Where D , and T D are, respectively, the mass diffusion and the thermal diffusion coefficients,  and a are, respectively, the dynamic viscosity and thermal diffusivity of the binary fluid. In equations ( 2) to ( 5), the asterisks represent the dimensional variables, and the Soret coefficient is defined as:
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Binary fluid

Typically, in the Soret-driven convection, if the mass fraction difference is small,

) 1 ( * * C C  can be replaced by ) 1 ( * 0 * 0 C C 
C 0 being the concentration in the initial state.

Boundary Conditions

The associated boundary conditions include a constant velocity applied on the upper wall, no-slip condition for the velocity of the others rigid walls, distinct constant temperatures on the top and the bottom wall. Vertical walls are impermeable and thermally insulated. Accordingly, the associated boundary conditions are defined as follows:
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Dimensionless Equations The references scales are: H for the length , a H 2 for the time, Thus the dimensionless governing equations are given by: 0
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is the separation ratio, and z e is the unit vector along the z-axis.

The problem considered depends on six dimensionless parameters which are :

The Rayleigh number, a In this paper, we consider 0  Ra if the cell is heated from below, and 0  Ra if the cell is heated from above. Moreover, a positive separation ratio is considered, which implies that, due to thermodiffusion, the denser component of the mixture migrates towards the cold wall. The associated boundary conditions in dimensionless form are:

( , 1)  x V x z Pe e , ( , 
0) 0  V x z (14) T(x ,z=0)=1 ; T(x, z=1)=0 (15) 0, 0 0,       TC V for x A xx ( 16 
) ; 0,1 TC for z zz      ( 17 
)

ANALYTICAL SOLUTION

In the case of a shallow cavity (A>>1), in order to solve the problem analytically, the parallel flow approximation [START_REF] Bennacer | The Soret effect on convection in a horizontal porous domain under cross temperature and concentration gradients[END_REF], [START_REF] Elhajjar | Separation in an inclined porous thermogravitational cell[END_REF]) is considered. The streamlines are assumed to be parallel to the horizontal walls. In this case, the vertical component of velocity can be neglected:
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This assumption implies steady-state and neglecting the inertia term in eq.( 11).

The temperature and the mass fraction are written as follows:
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Where b and m are respectively an unknown constant temperature and mass fraction gradient, in the x direction. b=0, due to the constant temperatures imposed on the horizontal walls.

Using the equations ( 18) to (20), and after replacing the pressure in the Navier-Stokes equation (Eq.( 11)), the following system of equations is obtained for the steady state:
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Since the boundary conditions on vertical walls are not taken into account , additional conditions are needed to solve the system of equations ( 21)-( 23) which are:

-The mass flow rate through any cross section perpendicular to the x-axis is equal to zero, -The mass conservation of the component of mass fraction C across the all cell,
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Applying these latter conditions and the boundary conditions ( 14) to (17) and using Maple software, the velocity, temperature and mass fraction fields are given by the following expressions:
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The velocity has a cubic profile, which is required to allow specie separation between the two ends of the cell.

Determination of the mass fraction gradient m along the x axis

To determine the mass fraction gradient, m , along the x axis, we use the fact that the mass flow rate of the species of mass fraction C through any vertical section is equal zero:
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This latter assumption leads to the following cubic equation giving m as function of the dimensionless parameters: Pe, Ra, Le and  .
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Under the condition that both the Lewis number, Rayleigh numbers and the separation ratio are positive, equation ( 28) with real coefficients admits three solutions. Depending on their corresponding discriminant ∆, a cubic equation has three distinct real roots if ∆>0, one real root and two non-real complex conjugate roots if ∆<0 For ∆ 0, a cubic equation has multiple real roots. The discriminant ∆ of equation 28 was obtained using the Maple algebra code. Its expression ,which is a function of Le, Pe, Ra, and ψ , is long and complicated. For this reason it was not detailed here.

Case,

0  
The surface associated to ∆=0 in the 3D space (Le, LePe, Raψ) separates the space into two regions, one corresponding to three real roots and the other one to one real and two complex conjugate roots. The surface associated to the case with three real roots, two of which are opposite, is close to the surface associated to the case ∆ 0. Its expression is given by: 0
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. The value of the Rayleigh number and the corresponding real roots of the equation ( 28 Equation ( 29) shows that for a positive value of the Rayleigh number is always positive > 0, which correspond to the case where the cellule is heated from below.

We deduce from equations ( 29) and ( 30), the maximum value of the species separation per unit length, . On the other hand, the maximal value of species

separation 9 14 3 , 2   m
obtained for Pe=0, can be deduced from equations ( 29) and ( 31).

The evolution of the three roots of equation ( 29) is plotted, in Fig. 2, as a function of the Péclet number for 2 0, 0 2. The two symmetrical curves represent the separation obtained using equation (31) (the convection goes clockwise or counter-clockwise); while the solid line show the separation obtained using equation ( 30). In this latter case, 0  Pe , there is no species separation independently of the value of Ra . The species separation is only possible for a horizontal cell heated from below ( 0 Ra  ). Here the maximum value of , root of equation ( 28) is obtained for an optimum value of the Péclet number defined as follows:

When the Péclet number is replaced, in the expression of m, by its expression given in equation ( 32 
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as function of the Rayleigh number can be seen in figure 3 for the cases 0, 0 0 , 0 , where , the species separation is only possible when the cell is heated from below and when the Rayleigh number exceeds a critical value > . A separation maximum is observed for an optimum value of Rayleigh number, where optimum coupling between convection and thermodiffusion is achieved. When the Rayleigh number is lower than the optimum value, the thermo-diffusion is predominant. In this case the separation, due mainly to the thermodiffusion, is small. Conversely, > the convection regime increases and tends to destroy the species segmentation. As a result, the separation decrease.

The two dotted curves represent the case where a constant velocity is applied on the upper wall ( 0 0 , 0 ). For this case ( 0  Pe ) the separation is always possible whether the layer is heated from above or from below. This can be explained by the fact that the temperature gradient induces thermo-diffusion between the cold and the hot wall and the applied velocity leads to species separation between the two ends of the horizontal cell. . This configuration (Pe=0) was studied by Knobloch (1986).

He found that the pure double diffusive convection flow transits to unicellular flow for a critical

Rayleigh number Le 720 Ra c   . 

NUMERICAL METHOD

Numerical simulations were carried out to evaluate the analytical results. For this purpose, the numerical solution of the full governing equations (10-13) with the associated boundary conditions (14-17), and with different initial values of , , , was obtained using a finite element method (Comsol Multiphysics).

The mesh choice should only be viewed as a compromise between the convergence and solver memory requirements (UMFPACK direct solver was used for the simulation). A 4000 elements quadratic mesh (69986 degrees of freedom), which is more convenient for our rectangular cell problem, was used. As the analytical solution is valid for large aspect ratios, A  10 was used for all numerical simulations.

The analytical model is found to be in good agreement with the numerical results obtained by solving the complete system of governing equations. When Péclet number is small or large (i.e. the applied velocity is low or high), the ratio between the mass diffusion time and the convective time does not allow the maximum species separation. The maximum value of the species separation is 0 2 obtained for Pe =0.02. 

  velocity . The dimensionless temperature and concentration are given by:

(

  Reynolds number), the separation ratio ψ and the aspect ratio H L A  .

Figure 2 .

 2 Figure 2. Separation as function of Péclet number, for

For

  

Figure 3 .

 3 Figure 3. Species separation m, versus Rayleigh number for 0  Pe , 06 . 0  Pe , 1 . 0  Pe with 2 . 0 , 230   

A

  comparison of species separation m versus Péclet number Pe obtained, numerically and analytically, for a cell heated from below, figure 4. The analytical solution is represented with solid lines and the numerical values are represented with dots. The analytical solution is in good agreement with the numerical results.
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 I The analytical and numerical results obtained for the species separation per unit length, m, function of Pe are presented in table I, for Pr=27, Comparison between analytical an numerical values of m results for

	2 ,		0 ,			2 0,			
	Pe			m	Ana				m	Num
	0.02			0.429				0.43
	0.04			0.413				0.414
	0.06			0.372				0.373
	0.08			0.329				0.330
	0.1			0.2917				0.293
	0.12			0.2596			0.2613
	0.14			0.2327			0.2343
	0.16			0.2102			0.2116
	0.18			0.1912			0.1925
	0.2			0.1751			0.1765
	0.25			0.1440			0.1450
	0.3			0.1219			0.1226
	0.4			0.0930				0.098
	Le		, 230 		, 2 . 0	A		10	.	) (Pe , with	Ra		15	,
	Ra		, 15	Le		, 230			, 2 . 0	A		10	.

Velocity profile

The structure of the flow inside the cavity and the associated velocity's profile induced by the top wall driven by constant velocity along the x axis depends on the direction of convective rotating vortex generated by free convection inside the horizontal cell. The equation of the velocity profile obtained in equation ( 25) can be also written the form:

We verify that the discriminant of the quadratic equation associated to the velocity is positive for all values of Ra, Pe and  . Then there are two distinct real roots. If these two roots are in the interval [0,1] the velocity is equal zero at two points inside the cross section of the cell. We show that both roots are localised in the interval [0,1] only when the value of 

CONCLUSION

In this study, a new procedure leading to species separation in a horizontal rectangular cavity, filled with a binary fluid, heated from above or from below, was presented. A constant horizontal velocity was applied on the upper horizontal wall. The two control parameters of this procedure were: the applied velocity on the upper wall which determines the intensity of the convective flow, and the temperature difference between the two horizontal plates which controls the intensity of the thermodiffusion. In this study the species separation was quantified by both analytical and numerical methods. The influence of the thermal Rayleigh number and the Péclet number for different values of Prandlt, Lewis numbers and separation ratio was quantified and discussed. The optimum species separation was obtained for a cell heated from below or from above. The analytical and numerical results obtained were in good agreement. .