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Noise-induced phase slips, log-periodic oscillations,

and the Gumbel distribution

Nils Berglund

Abstract

When two synchronised phase oscillators are perturbed by weak noise, they dis-
play occasional losses of synchrony, called phase slips. The slips can be characterised
by their location in phase space and their duration. We show that when properly
normalised, their location converges, in the vanishing noise limit, to the sum of an
asymptotically geometric random variable and a Gumbel random variable. The dura-
tion also converges to a Gumbel variable with different parameters. We relate these
results to recent works on the phenomenon of log-periodic oscillations and on links
between transition path theory and extreme-value theory.
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1 Introduction

The aim of this work is to explore connections between the concepts given in the title:

1. Noise-induced phase slips are occasional losses of synchrony of two coupled phase os-
cillators, due to stochastic perturbations [51]. The problem of finding the distribution
of their location and length can be formulated as a stochastic exit problem, which
involves the exit through a so-called characteristic boundary [20, 21].

2. Log-periodic oscillations designate the periodic dependence of a quantity of interest,
such as a power law exponent, on the logarithm of a system parameter. They often
occur in systems presenting a discrete scale invariance [54]. In the context of the
stochastic exit problem, they are connected to the phenomenon of cycling of the exit
distribution through an unstable periodic orbit [22, 11, 14].

3. The Gumbel distribution is one of the max-stable distributions known from extreme-
value theory [39]. This distribution has been known to occur in the exit distribution
through an unstable periodic orbit [49, 11, 14]. More recently, the Gumbel distribution
has also been found to govern the length of reactive paths in one-dimensional exit
problems [17, 6, 7].

In this work, we review a number of prior results on exit distributions, and build on
them to derive properties of the phase slip distributions. We start in Section 2 by recalling
the classical situation of two coupled phase oscillators, and the phenomenology of noise-
induced phase slips. In Section 3, we present the mathematical set-up for the systems we
will consider, and introduce different tools that are used for the study of the stochastic
exit problem.
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Section 4 contains our main results on the distribution of the phase slip location. These
results are mainly based on those of [14] on the exit distribution through an unstable planar
periodic orbit, slightly reformulated in the context of limit distributions. We also discuss
links to the concept of log-periodic oscillations.

In Section 5, we discuss a number of connections to extreme-value theory. After sum-
marizing properties of the Gumbel distribution relevant to our problem, we give a short
review of recent results by Cérou, Guyader, Lelièvre and Malrieu [17] and by Bakhtin [6, 7]
on the appearance of the Gumbel distribution in transition path theory for one-dimensional
problems.

Section 6 presents our results on the duration of phase slips, which build on the pre-
vious results from transition path theory. Section 7 contains a summary and some open
questions, while the proofs of the main theorems are contained in the Appendix.
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2 Synchronization of phase oscillators

In this section, we briefly recall the setting of two coupled phase oscillators showing syn-
chronization, following mainly [51].

2.1 Deterministic phase locking

Consider two oscillators, whose dynamics is governed by ordinary differential equations
(ODEs) of the form

ẋ1 = f1(x1) ,

ẋ2 = f2(x2) , (2.1)

where x1 ∈ Rn1 , x2 ∈ Rn2 with n1, n2 > 2. A classical example of a system displaying
oscillations is the Van der Pol oscillator [55, 56, 57]

θ̈i − γi(1− θ2i )θ̇i + θi = 0 , (2.2)

which can be transformed into a first-order system by setting xi = (θi, θ̇i) ∈ R 2. The
precise form of the vector fields fi, however, does not matter. What is important is that
each system admits an asymptotically stable periodic orbit, called a limit cycle. These
limit cycles can be parametrised by angular variables φ1, φ2 ∈ R /Z in such a way that

φ̇1 = ω1 ,

φ̇2 = ω2 , (2.3)
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where ω1, ω2 ∈ R are constant angular frequencies [51, Section 7.1]. Note that the product
of the two limit cycles forms a two-dimensional invariant torus in phase space Rn1+n2 .

Consider now a perturbation of System (2.1) in which the oscillators interact weakly,
given by

ẋ1 = f1(x1) + εg1(x1, x2) ,

ẋ2 = f2(x2) + εg2(x1, x2) . (2.4)

The theory of normally hyperbolic invariant manifolds (see for instance [41]) shows that
the invariant torus persists for sufficiently small nonzero ε (for stronger coupling, new
phenomena such as oscillation death can occur [51, Section 8.2.2]). For small ε, the
reduced equations (2.3) for the dynamics on the torus take the form

φ̇1 = ω1 + εQ1(φ1, φ2) ,

φ̇2 = ω2 + εQ2(φ1, φ2) , (2.5)

where Q1,2 can be computed perturbatively in terms of f1,2 and g1,2. Assume that the
natural frequencies ω1, ω2 are different, but that the detuning ν = ω2 − ω1 is small.
Introducing new variables ψ = φ1 − φ2 and ϕ = (φ1 + φ2)/2 yields a system of the form

ψ̇ = −ν + εq(ψ, ϕ) ,

ϕ̇ = ω +O(ε) , (2.6)

where ω = (ω1 + ω2)/2 is the mean frequency. Note that the phase difference ψ evolves
more slowly than the mean phase ϕ, so that the theory of averaging applies [16, 59]. For
small ν and ε, solutions of (2.6) are close to those of the averaged system

ω
dψ

dϕ
= −ν + εq̄(ψ) , q̄(ψ) =

∫ 1

0
q(ψ,ϕ) dϕ (2.7)

(recall our convention that the period is equal to 1). In particular, solutions of the equation
−ν + εq̄(ψ) = 0 correspond to stationary solutions of the averaged equation (2.7), and to
periodic orbits of the original equation (2.6) (and thus also of (2.5)).

For example, in the case of Adler’s equation, q̄(ψ) = sin(2πψ), there are two stationary
points whenever |ν| < |ε|. They give rise to one stable and one unstable periodic orbit.
The stable periodic orbit corresponds to a synchronized state, because the phase difference
ψ remains bounded for all times. This is the phenomenon known as phase locking.

Remark 2.1. Similar phase locking phenomena appear when the ratio ω2/ω1 is close
to any rational number m/n ∈ Q . Then for small ε the quantity nφ1 − mφ2 may stay
bounded for all times (n : m frequency locking). The sets of parameter values (ε, ν) for
which frequency locking with a specific ratio occurs are known as Arnold tongues [2].

2.2 Noise-induced phase slips

Consider now what happens when noise is added to the system. This is often done (see
e.g. [51, Chapter 9]) by looking at the effect of noise on the averaged system (2.7), which
becomes

ω
dψ

dϕ
= −ν + εq̄(ψ) + noise , (2.8)
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Figure 1. (a) Washboard potential V (ψ) of the averaged system (2.8), in a case where
ν < 0. Phase slips correspond to transitions over a local potential maximum. (b) For
the unaveraged system (2.10), phase slips involve crossing the unstable periodic orbit
delimiting the basin of attraction of the synchronized state.

where we will specify in the next section what kind of noise we consider. The first two
terms on the right-hand side of (2.8) can be written as

− ∂

∂ψ
V (ψ) , where V (ψ) = νψ − ε

∫ ψ

0
q̄(x) dx . (2.9)

In the synchronization region, the potential V (ψ) has the shape of a tilted periodic, or
washboard potential (Figure 1a). The local minima of the potential represent the syn-
chronized state, while the local maxima represent an unstable state delimiting the basin
of attraction of the synchronized state. In the absence of noise, trajectories are attracted
exponentially fast to the synchronized state and stay there. When weak noise is added, so-
lutions still spend most of the time in a neighbourhood of a synchronized state. However,
occasional transitions through the unstable state may occur, meaning that the system
temporarily desynchronizes, before returning to synchrony. This behaviour is called a
phase slip. Transitions in both directions may occur, that is, ψ can increase or decrease
by 1 per phase slip. When detuning and noise are small, however, transitions over the
lower local maximum of the washboard potential are more likely.

In reality, however, we should add noise to the unaveraged system (2.6), which becomes

ψ̇ = −ν + εq(ψ, ϕ) + noise ,

ϕ̇ = ω +O(ε) + noise . (2.10)

Phase slips are now associated with transitions across the unstable orbit (Figure 1b). Two
important random quantities characterising the phase slips are

1. the value of the phase ϕτ0 at the time τ0 when the unstable orbit is crossed, and
2. the duration of the phase slip, which can be defined as the phase difference between

the time τ− when a suitably defined neighbourhood of the stable orbit is left, and the
time τ+ when a neighbourhood of (a translated copy of) the stable orbit is reached.

Unless the system (2.10) is independent of the phase ϕτ0 , there is no reason for the slip
phases to have a uniform distribution. Our aim is to determine the weak-noise asymptotics
of the phase ϕτ0 and of the phase slip duration ϕτ+ − ϕτ− .
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3 The stochastic exit problem

Let us now specify the mathematical set-up of our analysis. The stochastically perturbed
systems that we consider are Itô stochastic differential equations (SDEs) of the form

dxt = f(xt) dt+ σg(xt) dWt , (3.1)

where xt takes values in R 2, and Wt denotes k-dimensional standard Brownian motion,
for some k > 2. Physically, this describes the situation of Gaussian white noise with
a state-dependent amplitude g(x). Of course, one may consider more general types of
noise, such as time-correlated noise, but such a setting is beyond the scope of the present
analysis.

The drift term f and the diffusion term g are assumed to satisfy the usual regularity
assumptions guaranteeing the existence of a unique strong solution for all square-integrable
initial conditions x0 (see for instance [50, Section 5.2]). In addition, we assume that g
satisfies the uniform ellipticity condition

c1‖ξ‖2 6 〈ξ,D(x)ξ〉 6 c2‖ξ‖2 ∀x, ξ ∈ R 2 , (3.2)

where c2 > c1 > 0. Here D(x) = ggT(x) denotes the diffusion matrix.
We finally assume that the drift term f(x) results from a system of the form (2.6), in

a synchronized case where there is one stable and one unstable orbit. It will be convenient
to choose coordinates x = (ϕ, r) such that the unstable periodic orbit is given by r = 0
and the stable orbit is given by r = 1/2. The original system is defined on a torus, but we
will unfold everything to the plane R 2, considering f (and g) to be periodic with period
1 in both variables ϕ and r. The resulting system has the form1

drt = fr(rt, ϕt) dt+ σgr(rt, ϕt) dWt ,

dϕt = fϕ(rt, ϕt) dt+ σgϕ(rt, ϕt) dWt , (3.3)

and admits unstable orbits of the form {r = n} and stable orbits of the form {r = n+1/2}
for any integer n. In particular, fr(n/2, ϕ) = 0 for all n ∈ Z and all ϕ ∈ R . Using a
so-called equal-time parametrisation of the periodic orbits, it is also possible to assume
that fϕ(0, ϕ) = 1/T+ and fϕ(1/2, ϕ) = 1/T− for all ϕ ∈ R , where T± denote the periods
of the unstable and stable orbit [14, Proposition 2.1]2. The instability of the orbit r = 0
means that the characteristic exponent

λ+ =

∫ 1

0
∂rfr(0, ϕ) dϕ (3.4)

is strictly positive. The similarly defined exponent −λ− of the stable orbit is negative. It
is then possible to redefine r in such a way that

f(r, ϕ) = λ+r +O(r2) ,

f(r, ϕ) = −λ−(r − 1/2) +O((r − 1/2)2) (3.5)

1In the situation of synchronised phase oscillators considered here, the change of variables yielding (3.3)
is global. In more general situations considered in [14], such a transformation may only exist locally, in a
domain surrounding the stable and unstable orbit, and the analysis applies up to the first-exit time from
that domain.

2Because of second-order terms in Itô’s formula, the periodic orbits of the reparametrized system may
not lie exactly on horizontal lines r = n/2, but be shifted by a small amount of order σ2.
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for all ϕ ∈ R (see again [14, Proposition 2.1]). It will be convenient to assume that fϕ(r, ϕ)
is positive, bounded away from zero, for all (r, ϕ).

Finally, for definiteness, we assume that the system is asymmetric, in such a way
that it is easier for the system starting with r near −1/2 to reach the unstable orbit in
r = 0 rather than its translate in r = −1. This corresponds intuitively to the potential
in Figure 1 tilting to the right, and can be formulated precisely in terms of large-deviation
rate functions introduced in Section 3.2 below.

3.1 The harmonic measure

Fix an initial condition (r0 ∈ (−1, 0), ϕ0 = 0) and let

τ0 = inf{t > 0: rt = 0} (3.6)

denote the first-hitting time of the unstable orbit. Note that τ0 can also be viewed as
the first-exit time from the set D = {r < 0}. The crossing phase ϕτ0 is equal to the exit
location from D, and its distribution is also known as the harmonic measure associated
with the infinitesimal generator

L =
∑

i∈{r,ϕ}

fi(x)
∂

∂xi
+
σ2

2

∑

i,j∈{r,ϕ}

Dij(x)
∂2

∂xi∂xj
(3.7)

of the diffusion process. It is known that the harmonic measure admits a smooth density
for sufficiently smooth f , g and ∂D [9].

It follows from Dynkin’s formula [50, Section 7.4] that for any continuous bounded
test function b : ∂D → R , the function h(x) = Ex {b(ϕτ0)} satisfies the boundary value
problem3

Lh(x) = 0 x ∈D ,

h(x) = b(x) x ∈∂D . (3.8)

One may think of the case of a sequence bn converging to the indicator function 1{ϕ∈B}.
Then the associated hn converge to h(x) = Px{ϕτ0 ∈ B}, giving the harmonic measure
of B ⊂ ∂D. While it is in general difficult to solve the equation (3.8) explicitly, the fact
that Lh = 0 (h is said to be harmonic) yields some useful information. In particular, h
satisfies a maximum principle and Harnack inequalities [38, Chapter 9].

3.2 Large deviations

The theory of large deviations has been developed in the context of general SDEs of the
form (3.1) by Freidlin and Wentzell [35]. With a path γ : [0, T ] → R2 it associates the rate
function

I[0,T ](γ) =
1

2

∫ T

0
(γ̇s − f(γs))

TD(γs)
−1(γ̇s − f(γs)) ds . (3.9)

Roughly speaking, the probability of the stochastic process tracking a particular path γ
on [0, T ] behaves like e−I[0,T ](γ)/σ

2
as σ → 0.

3Several tools will require D to be a bounded set. This does not create any problems, because our
assumptions on the deterministic vector field imply that probabilities are only affected by a negligible
amount if D is replaced by its intersection with some large compact set.
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In the case of the stochastic exit problem from a domain D, containing a unique
attractor4 A, the theory of large deviations yields in particular the following information.
For y ∈ ∂D let

V (y) = inf
T>0

inf
γ : A→y

I[0,T ](γ) , (3.10)

be the quasipotential, where the second infimum runs over all paths connecting A to y in
time T . Then for x0 ∈ A

lim
σ→0

σ2 logEx0
{
τ0
}
= inf

y∈∂D
V (y) . (3.11)

Furthermore, if the quasipotential reaches its infimum at a unique isolated point y∗ ∈ ∂D,
then

lim
σ→0

Px0
{
‖xτ0 − y∗‖ > δ

}
= 0 (3.12)

for all δ > 0. This means that exit locations concentrate in points where the quasipotential
is minimal.

If we try to apply this last result to our problem, however, we realise that it does
not give any useful information. Indeed, the quasipotential V is constant on the unstable
orbit {r = 0}, because any two points on the orbit can be connected at zero cost, just by
tracking the orbit.

Nevertheless, the theory of large deviations provides some useful information, since it
allows to determine most probable exit paths. The rate function (3.9) can be viewed as a
Lagrangian action. Minimizing the action via Euler–Lagrange equations is equivalent to
solving Hamilton equations with Hamiltonian

H(γ, η) =
1

2
ηTD(γ)η + f(γ)Tη , (3.13)

where η = D(γ)−1(γ̇ − f(γ)) = (pr, pϕ) is the moment conjugated to γ. This is a two-
degrees-of-freedom Hamiltonian, whose orbits live in a four-dimensional space, which is,
however, foliated into three-dimensional hypersurfaces of constant H.

Writing out the Hamilton equations (cf. [14, Section 2.2]) shows that the plane {pr =
pϕ = 0} is invariant. It corresponds to deterministic motion, and contains in particular
the periodic orbits of the original system. These turn out to be hyperbolic periodic orbits
of the three-dimensional flow on the set {H = 0}, with characteristic exponents ±λ+T+
and ∓λ−T−. Typically, the unstable manifold of the stable orbit and the stable manifold
of the unstable orbit will intersect transversally, and the intersection will correspond to
a minimiser γ∞ of the rate function, connecting the two orbits in infinite time. In the
sequel, we will assume that this is the case, and that γ∞ is unique up to shifts ϕ 7→ ϕ+ n
(cf. [14, Assumption 2.3 and Figure 2.2] and Figure 6).

Example 3.1. Assume that in (3.3), fr(r, ϕ) = sin(2πr)[1+ε sin(2πr) cos(2πϕ)], whereas
fϕ(r, ϕ) = ω and gr = gϕ = 1. The resulting Hamiltonian takes the form

H(r, ϕ, pr, pϕ) =
1

2
(p2r + p2ϕ) + sin(2πr)[1 + ε sin(2πr) cos(2πϕ)]pr + ωpϕ . (3.14)

4In the present context, an attractor A is an equivalence set for the equivalence relation ∼D on D,
defined by x ∼D y whenever one can find a T > 0 and a path γ connecting x and y in time T and staying
in D such that I[0,T ](γ) = 0, cf. [35, Section 6.1]. In addition, D should belong to the basin of attraction
of A. In other words, deterministic orbits starting in D should converge to A, and the set A should have
no proper subsets invariant under the deterministic flow.
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r 1 2 3 n ϕτ0
n+ 1 ϕ

γ∞

R0
R1 R2 R3

Rn

− 1

2

−δ

s∗δ

Figure 2. Definition of the random Poincaré map. The sequence (R0, R1, . . . , R⌊τ0⌋)
forms a Markov chain, killed at ⌊τ0⌋, where τ0 is the first time the process hits the unstable
periodic orbit in r = 0. The process is likely to track a translate of the path γ∞ minimizing
the rate function.

In the limiting case ε = 0, the system is invariant under shifts along ϕ, and thus pϕ is a
first integral. The unstable and stable manifolds of the periodic orbits do not intersect
transversally. In fact, they are identical, and given by the equation pr = −2 sin(2πr),
pϕ = 0. However, for small positive ε, Melnikov’s method [40, Chapter 6] allows to prove
that the two manifolds intersect transversally.

3.3 Random Poincaré maps

The periodicity in ϕ of the system (3.3) yields useful information on the distribution of
the crossing phase ϕτ0 . We fix an initial condition (r0, ϕ0 = 0) with −1 < r0 < 0 and
define for every n ∈ N

τn = inf{t > 0: ϕt = n} . (3.15)

In addition, we kill the process at the first time τ0 it hits the unstable orbit at r = 0, and
set τn = ∞ whenever ϕτ0 < n. The sequence (R0, R1, . . . , RN ) defined by Rk = rτk and
N = ⌊τ0⌋ defines a substochastic Markov chain on E = R−, which records the successive
values of r whenever ϕ reaches for the first time the vertical lines {ϕ = k} (Figure 2).
This Markov chain has a transition kernel with density k(x, y), that is,

P{Rn+1 ∈ B|rτn = Rn} =: K(Rn, B) =

∫

B
k(Rn, y) dy , B ⊂ E (3.16)

for all n > 0. In fact, k(x, y) is obtained5 by restricting to {ϕ = 1} the harmonic measure
for exit from {ϕ < 1, r < 0}, for a starting point (0, x). We denote by Kn the n-step
transition probabilities defined recursively by

Kn(R0, B) := PR0{Rn ∈ B} =

∫

E
Kn−1(R0, dy)K(y,B) . (3.17)

If we decompose ϕ = n+ s into its integer part n and fractional part s, we can write

P0,R0{ϕτ0 ∈ n+ ds} =

∫

E
Kn(R0, dy)P

0,y{ϕτ0 ∈ ds} . (3.18)

5Again, for technical reasons, one has to replace the set {ϕ < 1, r < 0} by a large bounded set, but this
modifies probabilities by exponentially small errors that will be negligible.
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Results by Fredholm [34] and Jentzsch [44], extending the well-known Perron–Frobenius
theorem, show thatK admits a spectral decomposition. In particular,K admits a principal
eigenvalue λ0, which is real, positive, and larger than the module of all other eigenvalues
λi. The substochastic nature of the Markov chain, due to the killing, implies that λ0 < 1.
If we can obtain a bound ρ < 1 on the ratio |λi|/λ0 valid for all i > 1 (spectral gap
estimate), then we can write

Kn(R0, B) = λn0π0(B)
[
1 +O(ρn)

]
(3.19)

as n → ∞. Here π0 the probability measure defined by the right eigenfunction of K
corresponding to λ0 [44, 47, 15]. Since

PR0{Rn ∈ B|N > n} =
Kn(R0, B)

Kn(R0, E)
= π0(B)

[
1 +O(ρn)

]
, (3.20)

the measure π0 represents the asymptotic probability distribution of the process con-
ditioned on having survived. It is called the quasistationary distribution of the pro-
cess [60, 53]. Plugging (3.19) into (3.18), we see that

P0,R0{ϕτ0 ∈ n+ ds} = λn0

∫

E
π0(dy)P

0,y{ϕτ0 ∈ ds}
[
1 +O(ρn)

]
. (3.21)

This implies that the distribution of crossing phases ϕτ0 asymptotically behaves like a
periodically modulated geometric distribution: its density P satisfies P (ϕ+ 1) = λ0P (ϕ)
for large ϕ.

4 Log-periodic oscillations

In this section, we formulate our main result on the distribution of crossing phases ϕτ0 of
the unstable orbit, which describe the position of phase slips. This result is based on the
work [14], but we will reformulate it in order to allow comparison with related results.

4.1 The distribution of crossing phases

Before stating the results applying to general nonlinear equations of the form (3.3), let us
consider a system approximating it near the unstable orbit at r = 0, given by

drt = λ+rt dt+ σgr(0, ϕt) dWt ,

dϕt =
1

T+
dt . (4.1)

This system can be transformed into a simpler form by combining a ϕ-dependent scaling
and a random time change. Indeed, let hper(ϕ) be the periodic solution of

dh

dϕ
= 2λ+T+h−Drr(0, ϕ) , (4.2)

and set r = [2λ+T+h
per(ϕ)]1/2y. Then Itô’s formula yields

dyt =
Drr(0, ϕt)

2T+hper(ϕt)
yt dt+ σ

gr(0, ϕt)√
2λ+T+hper(ϕt)

dWt . (4.3)
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0.3

0.4

t

e−t−e−t

Figure 3. Density of a standard Gumbel random variable.

Next, we introduce the function

θ(ϕ) = λ+T+ϕ− 1

2
log

(
hper(ϕ)

2hper(0)2

)
, (4.4)

which should be thought of as a parametrisation of the unstable orbit that makes the
stochastic dynamics as simple as possible. Indeed, note that θ(ϕ+ 1) = θ(ϕ) + λ+T+ and
θ′(ϕ) = Drr(0, ϕ)/(2h

per(ϕ)) > 0. Thus the random time change dt = [λ+T+/θ
′(ϕt)] ds

yields the equation

dys = λ+ys ds+ σg̃r(0, s) dWs , g̃r(0, s) =
gr(0, ϕt)√
Drr(0, ϕt)

, (4.5)

in which the effective noise intensity is constant, i.e. D̃rr(0, s) = g̃r(0, s)g̃r(0, s)
T = 1.

In order to formulate the main result of this section, we set

θδ(ϕ) = θ(ϕ)− log δ + log

(
hper(s∗δ)

hper(0)

)
, (4.6)

where s∗δ ∈ [0, 1) is such that (s∗δ ,−δ) belongs to a translate of the optimal path γ∞
(Figure 2). A real-valued random variable Z is said to follow the standard Gumbel law if

P
{
Z 6 t

}
= e− e−t ∀t ∈ R . (4.7)

Figure 3 shows the density e−t−e−t
of a standard Gumbel law.

Theorem 4.1 ([14, Theorem 2.4]). Fix an initial condition (r0, ϕ0 = 0) of the nonlinear
system (3.3) with r0 sufficiently close to the stable orbit in r = −1/2. There exist β, c > 0
such that for any sufficiently small δ,∆ > 0, there exists σ0 > 0 such that for 0 < σ < σ0,

Pr0,0
{
θδ(ϕτ0)

λ+T+
∈ [t, t+∆]

}
= ∆[1− λ0(σ)]λ0(σ)

tQλ+T+

( |log σ|
λ+T+

− t+O(δ)

)

×
[
1 +O(e−cϕ/|log σ|) +O(δ|log δ|) +O(∆β)

]
. (4.8)

Here λ0(σ) is the principal eigenvalue of the Markov chain, and 1 − λ0(σ) is of order
e−I∞/σ2

, where I∞ = I(γ∞) is the value of the rate function for the path γ∞. Furthermore,
Qλ+T+(x) is the periodic function, with period 1, given by

Qλ+T+(x) =
∑

n∈Z

A
(
λ+T+(n− x)

)
, (4.9)
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where

A(x) = exp
{
−2x− 1

2
e−2x

}
(4.10)

is the density of (Z − log 2)/2, with Z a standard Gumbel variable.

We will discuss various implications of this result in the next sections. The periodic
dependence on log σ will be addressed in Section 4.2, and we will say more on the Gumbel
law in Section 5. For now, let us give a reformulation of the theorem, which will ease
comparison with other related results. Following [42, 43], we say that an integer-valued
random variable Y is asymptotically geometric with success probability p if

lim
n→∞

P{Y = n+ 1|Y > n} = p . (4.11)

We use limn→∞ Law(Xn) = Law(X) to denote convergence in distribution of a sequence
of random variables Xn to a random variable X.

Theorem 4.2. There exists a family (Y σ
m)m∈N ,σ>0 of asymptotically geometric random

variables such that

lim
m→∞

[
lim
σ→0

Law
(
θ(ϕτ0)− |log σ| − λ+T+Y

σ
m

)]
= Law

(
Z

2
− log 2

2

)
, (4.12)

where Z is a standard Gumbel random variable independent of the Y σ
m. The success prob-

ability of Y σ
m is of the form pm,σ = e−Im/σ

2
, where Im = I∞ +O(e−2mλ+T+).

This theorem is almost a corollary of Theorem 4.1, but a little work is required to
control the limit m → ∞, which corresponds to the limit δ → 0. We give the details in
Appendix A.

The interpretation of (4.12) is as follows. To reach the unstable orbit at ϕτ0 , the
system will track, with high probability, a translate γ∞(· + n) of the optimal path γ∞
(Figure 2). The random variable Y σ

m is the index n of the chosen translate. This index
follows an approximately geometric distribution of parameter 1− λ0(σ) ≃ e−I∞/σ2

, which
also manifests itself in the factor (1 − λ0)λ

t
0 in (4.8). The distribution of ϕτ0 conditional

on the event {Y σ
m = n} converges to a shifted Gumbel distribution — we will come back

to this point in Section 5.
We may not be interested in the integer part of the crossing phase ϕτ0 , which counts the

number of rotations around the orbit, but only in its fractional part ϕ̂τ0 = ϕτ0 (mod 1).
Then it follows immediately from (4.12) and the fact that Y σ

m is integer-valued that

lim
σ→0

Law
(
θ(ϕ̂τ0)− |log σ|

)
= Law

([
Z

2
− log 2

2

]
(mod λ+T+)

)
. (4.13)

The random variable on the right-hand side has a density given by (4.9). This result can
also be derived directly from [14, Corollary 2.5], by the same procedure as the one used
in Section A.1.

Remark 4.3.

1. The index m in (4.12) seems artificial, and one would like to have a similar result for
the law of θ(ϕτ0) − |log σ| − λ+T+Y

σ
∞. Unfortunately, the convergence as σ → 0 is

not uniform in m, so that the two limits in (4.12) have to be taken in that particular
order.
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2. The speed of convergence in (4.11) depends on the spectral gap of the Markov chain.
In [14, Theorem 6.14], we proved that this spectral gap is bounded by e−c/|log σ| for
some constant c > 0, though we expect that the gap can be bounded uniformly in σ.
We expect, but have not proved, that the constant c is uniform in m (i.e. uniform in
the parameter δ).

4.2 The origin of oscillations

A striking aspect of the expression (4.8) for the distribution of ϕτ0 is that it depends
periodically on |log σ|. This means that as σ → 0, the distribution does not converge, but is
endlessly shifted around the unstable orbit proportionally to |log σ|. This phenomenon has
been discovered by Martin Day, who called it cycling [20, 21, 22, 24]. See also [49, 11, 36, 37]
for related work.

The intuitive explanation of cycling is as follows. We have seen that the large-deviation
rate function is minimized by a path γ∞ (and its translates). The path approaches the
unstable orbit as ϕ→ ∞, and the stable one as ϕ→ −∞. The distance between γ∞ and
the unstable orbit satisfies

|r(ϕ)| ≃ c e−θ(ϕ) as ϕ→ ∞ . (4.14)

This implies
|r(ϕ)| = σ ⇔ θ(ϕ) ≃ | log σ|+ log c . (4.15)

Thus everything behaves as if the unstable orbit has an “effective thickness” equal to
the standard deviation σ of the noise. Escape becomes likely once the optimal path γ∞
touches the thickened unstable orbit.

It is interesting to note that the periodic dependence on the logarithm of a parame-
ter, or log-periodic oscillations, appear in many systems presenting discrete-scale invari-
ance [54]. These include for instance hierarchical models in statistical physics [27, 18]
and self-similar networks [28], diffusion through fractals [1, 29] and iterated maps [25, 26].
One link with the present situation is that (4.14) implies a discrete-scale invariance, since
scaling r by a factor e−θ(1) = e−λ+T+ is equivalent to scaling the noise intensity by the
same factor. There might be deeper connections due to the fact that certain key functions,
as the Gumbel distribution in our case, obey functional equations — see for instance the
similar behaviour of the example in [26, Remark 3.1].

Remark 4.4. The periodic “cycling profile” Qλ+T+ admits the Fourier series representa-
tion

Qλ+T+(x) =
∑

k∈Z

ak e
2π i kx , ak =

2−π i k/(λ+T+)

λ+T+
Γ

(
1− π i k

λ+T+

)
, (4.16)

where Γ is Euler’s Gamma function. Qλ+T+ is also an elliptic function, since in addition to
being periodic in the real direction, it is also periodic in the imaginary direction. Indeed,
by definition of A(x), we have

Qλ+T+

(
z +

π i

λ+T+

)
= Qλ+T+(z) ∀z ∈ C . (4.17)

Being non-constant and doubly periodic, Qλ+T+ necessarily admits at least two poles in
every translate of the unit cell (0, 1)× (0, π i /(λ+T+)).
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5 The Gumbel distribution

5.1 Extreme-value theory

Let X1, X2, . . . be a sequence of independent, identically distributed (i.i.d.) real random
variables, with common distribution function F (x) = P{X1 6 x}. Extreme-value theory
is concerned with deriving the law of the maximum

Mn = max{X1, . . . , Xn} (5.1)

as n → ∞. It is immediate to see that the distribution function of Mn is F (x)n. We will
say that F belongs to the domain of attraction of a distribution function Φ, and write
F ∈ D(Φ), if there exist sequences of real numbers an > 0 and bn such that

lim
n→∞

F (anx+ bn)
n = Φ(x) ∀x ∈ R . (5.2)

This is equivalent to the sequence of random variables (Mn − bn)/an converging in distri-
bution to a random variable with distribution function Φ. Clearly, if F ∈ D(Φ), then one
also has F ∈ D(Φ(ax+ b)) for all a > 0, b ∈ R , so it makes sense to work with equivalence
classes {Φ(ax+ b)}a,b.

Any possible limit of (5.2) should satisfy the functional equation

Φ(ax+ b)2 = Φ(x) ∀x ∈ R (5.3)

for some constants a > 0, b ∈ R . Fréchet [33], Fischer and Tippett [32] and Gnedenko [39]
have shown that if one excludes the degenerate case F (x) = 1{x>c}, then the only possible
solutions of (5.3) are in one of the following three classes, where α > 0 is a parameter:

Φα(x) = e−x
−α

1{x>0} Fréchet law ,

Ψα(x) = e−(−x)α 1{x60} + 1{x>0} (reversed) Weibull law ,

Λ(x) = e− e−x

Gumbel law . (5.4)

In [39], Gnedenko gives precise characterizations on when F belongs to the domain of
attraction of each of the above laws. Of particular interest to us is the following result.
Let

R(x) = 1− F (x) = P{X1 > x} (5.5)

denote the tail probabilities of the i.i.d. random variables Xi.

Lemma 5.1 ([39, Lemma 4]). A nondegenerate distribution function F belongs to the
domain of attraction of Φ if and only if there exist sequences an > 0 and bn such that

lim
n→∞

nR(anx+ bn) = − log Φ(x) ∀x such that Φ(x) > 0 . (5.6)

The sequences an and bn are not unique, but [39, Theorem 6] shows that in the case
of the Gumbel distribution Φ = Λ,

bn = inf

{
x : F (x) > 1− 1

n

}
, an = inf

{
x : F (x) + bn > 1− 1

n e

}
(5.7)

is a possible choice. In this way it is easy to check that the normal law is attracted to the
Gumbel distribution.

Another related characterization of F being in the domain of attraction of the Gumbel
law is the following.
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x∗− x∗+a

x

V (x)

Figure 4. An example of double-well potential occurring in (5.10).

Theorem 5.2 ([39, Theorem 7]). Let x0 = inf{x : F (x) = 1} ∈ R ∪{∞}. Then F ∈ D(Λ)
if and only if there exists a continuous function A(z) such that limz→x0−A(z) = 0 and

lim
z→x0−

R(z(1 +A(z)x))

R(z)
= − log Λ(x) = e−x ∀x ∈ R . (5.8)

The function A(z) can be chosen such that A(bn) = an/bn for all n, where an and bn
satisfy (5.6).

The quantity on the left-hand side of (5.8) can be rewritten as

P
{
X1 > z(1 +A(z)x)

∣∣ X1 > z
}
, (5.9)

that is, it represents a residual lifetime. See also [8].

5.2 Length of reactive paths

The Gumbel distribution also appears in the context of somewhat different exit problems
(which, however, will turn out not to be so different after all). In [17], Cérou, Guyader,
Lelièvre and Malrieu consider one-dimensional SDEs of the form

dxt = −V ′(xt) dt+ σ dWt , (5.10)

where V (x) is a double-well potential (Figure 4).
Assume, without loss of generality, that the local maximum of V is in 0. Denote

the local minima of V by x∗− < 0 < x∗+, and assume λ = −V ′′(0) > 0. Pick an initial
condition x0 ∈ (x∗−, 0). A classical question is to determine the law of the first-hitting time
τb of a point b ∈ (0, x∗+]. The expected value of τb obeys the so-called Eyring–Kramers
law [3, 31, 46]

Ex0 {τb} =
2π√

V ′′(x⋆−)|V ′′(0)|
e2[V (0)−V (x⋆

−
)]/σ2[

1 +O(σ)
]
. (5.11)
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In addition, Day [19] has proved (in a more general context) that the distribution of τb is
asymptotically exponential:

lim
σ→0

Px0
{
τb > sEx0 {τb}

}
= e−s . (5.12)

The picture is that sample paths spend an exponentially long time near the local minimum
x∗−, with occasional excursions away from x∗−, until ultimately managing to cross the
saddle. See for instance [10] for a recent review.

In transition-path theory [30, 58], by contrast, one is interested in the very last bit
of the sample path, between its last visit to x∗− and its first passage in b. The length of
this transition is considerably shorter than τb. A way to formulate this is to fix a point
a ∈ (x∗−, x0), and to condition on the event that the path hits b before hitting a. The
result can be formulated as follows (note that our σ corresponds to

√
2ε in [17]):

Theorem 5.3 ([17, Theorem 1.4]). For any fixed a < x0 < 0 < b in (x∗−, x
∗
+),

lim
σ→0

Law
(
λτb − 2|log σ|

∣∣ τb < τa
)
= Law

(
Z + T (x0, b)

)
, (5.13)

where Z is a standard Gumbel variable, and

T (x0, b) = log
(
|x0|bλ

)
+

∫ 0

x0

(
λ

V ′(y)
+

1

y

)
dy −

∫ b

0

(
λ

V ′(y)
+

1

y

)
dy . (5.14)

The proof is based on Doob’s h-transform, which allows to replace the conditioned
problem by an unconditioned one, with a modified drift term. The new drift term becomes
singular as x → a+. See also [48] for other uses of Doob’s h-transform in the context of
reactive paths.

As shown in [17, Section 4], 2|log σ|+ T (x0, b)/λ is the sum of the deterministic time
needed to go from σ to b, and of the deterministic time needed to go from −σ to a
(in the one-dimensional setting, paths minimizing the large-deviation rate function are
time-reversed deterministic paths).

5.3 Bakhtin’s approach

Yuri Bakhtin has recently provided some interesting insights into the question of why the
Gumbel distribution governs the length of reactive paths [6, 7]. They apply to linear
equations of the form

dxt = λxt dt+ σ dWt , (5.15)

where λ > 0. However, we will see in Section 6 below that they can be extended to the
nonlinear setting by using the technique outlined in Appendix A.1.

The solution of (5.15) is an “explosive Ornstein–Uhlenbeck process”

xt = eλt
(
x0 + σ

∫ t

0
e−λs dWs

)
, (5.16)

which can also be represented in terms of a time-changed Brownian motion,

xt = eλt x̃t , x̃t = x0 + W̃σ2(1−e−2λt)/(2λ) (5.17)

(this follows by evaluating the variance of x̃t using Itô’s isometry). Thus x̃t − x0 is equal
in distribution to σ

√
(1− e−2λt)/(2λ)N , where N is a standard normal random variable.
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Assume x0 < 0 and denote by τ0 the first-hitting time of x = 0. Then André’s reflection
principle allows to write

P
{
τ0 < t

∣∣ τ0 <∞
}
=

P{τ0 < t}
P{τ0 <∞} =

2P{x̃t > 0}
2P{x̃∞ > 0} = P

{
x̃t > 0

∣∣ x̃∞ > 0
}
. (5.18)

Now we observe that

P

{
τ0 < t+

1

λ
| log σ|

∣∣∣ τ0 <∞
}
= P

{
x̃t+ 1

λ
| log σ| > 0

∣∣∣ x̃∞ > 0
}

= P

{
N >

|x0|
σ

√
2λ

1− σ2 e−2λt

∣∣∣∣ N >
|x0|
σ

√
2λ

}
, (5.19)

where N is a standard normal random variable. It follows that

lim
σ→0

P

{
τ0 < t+

1

λ
| log σ|

∣∣∣ τ0 <∞
}
= exp

{
−x20λ e−2λt

}
. (5.20)

This can be checked by a direct computation, using tail asymptotics of the normal law.
However, it is more interesting to view the last expression in (5.19) as a residual lifetime,
given by the expression (5.9) with z = (|x0|/σ)

√
2λ, A(z) = z−2 and x = x20λ e

−2λt. The
right-hand side of (5.20) is the distribution function of (Z + log(x20λ))/(2λ), where Z is a
standard Gumbel variable. Building on this computation, Bakhtin provided a new proof
of the following result, which was already obtained by Day in [20].

Theorem 5.4 ([20] and [7, Theorem 3]). Fix a < 0 and an initial condition x0 ∈ (a, 0).
Then

lim
σ→0

Law
(
λτ0 − |log σ|

∣∣ τ0 < τa
)
= Law

(
Z

2
+

log(x20λ)

2

)
. (5.21)

Observe the similarity with Theorem 4.2 (and also with Proposition A.4). The proof
in [7] uses the fact that conditioning on {τ0 < τa} is asymptotically equivalent to condi-
tioning on {τ0 <∞}. Note that we use a similar argument in the proof of Theorem 4.2 in
Appendix A.3.

The expression (5.21) differs from (5.13) in some factors 2. This is due to the fact that
Theorem 5.4 considers the first-hitting time τ0 of the saddle, while Theorem 5.3 considers
the first-hitting time τb of a point b in the right-hand potential well. We will come back
to this point in Section 6.2.

The observations presented here provide a connection between first-exit times and
extreme-value theory, via the reflection principle and residual lifetimes. As observed in [6,
Section 4], the connection depends on the seemingly accidental property

− log Λ(e−x) = Λ(x) , (5.22)

or Λ(e−x) = e−Λ(x), of the Gumbel distribution function. Indeed, the right-hand side
in (5.20) is identified with − log Λ(x), evaluated in a point x proportional to − e−2λt.

6 The duration of phase slips

6.1 Leaving the unstable orbit

Consider again, for a moment, the linear equation (5.15). Now we are interested in the
situation where the process starts in x0 = 0, and hits a point b > 0 before hitting a point
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Figure 5. Density of the random variable Θ = − log |N |.

a < 0. In this section, Θ will denote the random variable Θ = − log |N |, where N is a
standard normal variable. Its density is given by

d

dt
2P{N < − e−t} =

√
2

π
e−t−

1
2
e−2t

, (6.1)

which is similar to, but different from, the density of a Gumbel distribution, see Figure 5.

Theorem 6.1 ([23, 4, 5]). Fix a < 0 < b and an initial condition x0 = 0. Then the linear
system (5.15) satisfies

lim
σ→0

Law
(
λτb − |log σ|

∣∣ τb < τa
)
= Law

(
Θ+

log(2b2λ)

2

)
. (6.2)

The intuition for this result is as follows. Consider first the symmetric case where
a = −b and let τ = inf{t > 0: |xt| = b} = τa ∧ τb. The solution of (5.15) starting in 0
can be written xt = eλt x̃t, where x̃t = σ

√
(1− e−2λt)/(2λ)N and N is a standard normal

random variable, cf. (5.17). The condition |xτ | = b yields

b = eλτ σ

√
1− e−2λτ

2λ
|N | ≃ eλτ σ

1√
2λ

|N | . (6.3)

Solving for τ yields λτ − | log σ| ≃ log(2λb2)/2 − log |N |. One can also show [23, The-
orem 2.1] that sign(xτ ) converges to a random variable ν, independent of N , such that
P{ν = 1} = P{ν = −1} = 1/2. This implies (6.2) in the symmetric case, and the
asymmetric case is dealt with in [4, Theorem 1].

Let us return to the nonlinear system (3.3) governing the coupled oscillators. We seek
a result similar to Theorem 6.1 for the first exit from a neighbourhood of the unstable
orbit. The scaling argument given at the beginning of Section 4.1 indicates that simpler
expressions will be obtained if this neighbourhood has a non-constant width of size propor-
tional to

√
2λ+T+hper(ϕ). This is also consistent with the discussion in [13, Section 3.2.1].

Let us thus set
τ̃δ = inf

{
t > 0: rt = δ

√
2λ+T+hper(ϕ)

}
. (6.4)
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Theorem 6.2. Fix an initial condition (ϕ0, r0 = 0) on the unstable periodic orbit. Then
the system (3.3) satisfies

lim
σ→0

Law
(
θ(ϕτ̃δ)− θ(ϕ0)− |log σ|

∣∣ τ̃δ < τ̃−δ
)
= Law

(
Θ+

log(2λ+δ
2)

2
+O(δ)

)
(6.5)

as δ → 0.

We give the proof in Appendix B.1. Note that this result is indeed consistent with (6.2),
if we take into account the fact that hper(ϕ) ≡ 1/(2λ+T+) in the case of a constant diffusion
matrix Drr ≡ 1.

6.2 There and back again

A nice observation in [7] is that Theorems 5.4 and 6.1 imply Theorem 5.3 on the length
of reactive paths in the linear case. This follows immediately from the following fact.

Lemma 6.3 ([7]). Let Z and Θ = − log |N | be independent random variables, where Z
follows a standard Gumbel law, and N a standard normal law. Then

Law

(
1

2
Z +Θ

)
= Law

(
Z +

log 2

2

)
. (6.6)

Proof: This follows directly from the expressions

E
{
ei tZ

}
= Γ(1− i t) and E

{
ei tΘ

}
= E

{
|N |− i θ

}
=

2− i t/2

√
π

Γ

(
1− i t

2

)
(6.7)

for the characteristic functions of Z and Θ, and the duplication formula for the Gamma
function,

√
π Γ(2z) = 22z−1Γ(z)Γ(z + 1

2).

Let us now apply similar ideas to the nonlinear system (3.3) in order to derive in-
formation on the duration of phase slips. In order to define this duration, consider two
families of continuous curves Γs− and Γs+, depending on a parameter s ∈ R , periodic in
the ϕ-direction, and such that each Γs− lies in the set {−1/2 < r < 0} and each Γs+ lies in
{0 < r < 1/2}. We set

τ s± = inf{t > 0: (rt, ϕt) ∈ Γs±} , (6.8)

while τ0 is defined as before by (3.6). Given an initial condition (r0 = −1/2, ϕ0), let us call
a successful phase slip a sample path that does not return to the stable orbit {r = −1/2}
between τ s− and τ0, and that does not return to Γs− between τ0 and τ s+ (see Figure 1).
Then we have the following result.

Theorem 6.4. There exist families of curves {Γs±}s∈R such that conditionally on a suc-
cessful phase slip,

lim
σ→0

Law
(
θ(ϕτ0)− θ(ϕτs

−
)− |log σ|

)
= Law

(
Z

2
− log(2)

2
+ s

)
, (6.9)

lim
σ→0

Law
(
θ(ϕτs+)− θ(ϕτ0)− |log σ|

)
= Law

(
Θ+ s

)
, (6.10)

lim
σ→0

Law
(
θ(ϕτs+)− θ(ϕτs

−
)− 2|log σ|

)
= Law

(
Z + 2s

)
, (6.11)
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where Z denotes a standard Gumbel variable, Θ = − log |N |, and N is a standard normal
random variable. The curves Γs± are ordered in the sense that if s1 < s2, then Γs1± lies
below Γs2± . Furthermore, Γs+ converges to the unstable orbit {r = 0} as s → −∞, and to
the stable orbit {r = 1/2} as s→ ∞. Similarly, Γs− converges to the unstable orbit {r = 0}
as s→ ∞, and to the stable orbit {r = −1/2} as s→ −∞.

We give the proof in Appendix B.2, along with more details on how to construct the
curves Γs±. In a nutshell, they are obtained by letting evolve under the deterministic flow

the curves {r = ±δ
√
2λ+T+hper(ϕ)} introduced in the previous section. The parameter s

plays an analogous role as T (x0, b) in (5.14).

7 Conclusion and outlook

Let us restate our main results in an informal way. Theorem 4.2 shows that in the weak-
noise limit, the position of the center ϕτ0 of a phase slip, defined by the crossing location
of the unstable orbit, behaves like

θ(ϕτ0) ≃ | log σ|+ λ+T+Y
σ +

Z

2
− log 2

2
, (7.1)

where Y σ is an asymptotically geometric random variable with success probability of order
e−I∞/σ2

, and Z is a standard Gumbel random variable. This expression is dominated by
the term Y σ, which accounts for exponentially long waiting times between phase slips.
The term |log σ| is responsible for the cycling phenomenon, and the term (Z − log(2))/2
determines the shape of the cycling profile.

Theorem 6.4 shows in particular that the duration of a phase slip behaves like

θ(ϕτ+)− θ(ϕτ−) ≃ 2| log σ|+ Z + 2s , (7.2)

where s is essentially the deterministic time required to travel between σ-neighbourhoods
of the orbits, while the other two terms account for the time spent near the unstable orbit.
The dominant term here is 2|log σ|, which reflects the intuitive picture that noise enlarges
the orbit to a thickness of order σ, outside which the deterministic dynamics dominates.
The phase slip duration is split into two contributions from before and after crossing the
unstable orbit, of respective size (Z − log 2)/2 + s and Θ + s.

Decreasing the noise intensity has two main effects. The first one is to increase the
duration of phase slips by an amount 2| log σ|, which is due to the longer time spent
near the unstable orbit. The second effect is to the shift of the phase slip location by an
amount | log σ|, which results in log-periodic oscillations. Note that other quantities of
interest can be deduced from the above expressions, such as the distribution of residence
times, which are the time spans separating phase slips when the system is in a stationary
state. The residence-time distribution is given by the sum of an asymptotically geometric
random variable and a so-called logistic random variable, i.e., a random variable having
the law of the difference of two independent Gumbel variables, with density proportional
to 1/ cosh2(θ) [12].

The connection between first-exit distributions and extreme-value theory is partially
understood in the context as residual lifetimes, as summarized in Section 5.3. It is probable
that other connections remain to be discovered. For instance, functional equations satisfied
by the Gumbel distribution seem to play an important rôle. One of them is the equation

Λ
(
x− log 2

)2
= Λ(x) (7.3)
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which results from the Gumbel law being max-stable. Another one is the equation

Λ
(
e−x

)
= e−Λ(x) (7.4)

which appears in the context of the residual-lifetime interpretation. These functional
equations may prove useful to establish other connections with critical phenomena and
discrete scale invariance.

A Proof of Theorem 4.2

A.1 Dynamics near the unstable orbit

To prove convergence in law of certain random variables, we will work with characteristic
functions. The following lemma allows to compare characteristic functions of random
variables that are only known in a coarse-grained sense, via probabilities to belong to
small intervals of size ∆.

Lemma A.1. Let X,X0 be real-valued random variables. Assume there exist constants
a < b ∈ R , α, β > 0 such that as ∆ → 0,

1. P{X0 6∈ [a, b]} = O(∆α),
2. for any k ∈ Z such that Ik = [k∆, (k + 1)∆] intersects [a, b],

P{X ∈ Ik} = P{X0 ∈ Ik}
[
1 +O(∆β)

]
. (A.1)

Then ∣∣E
{
ei ηX

}
− E

{
ei ηX0

}∣∣ 6 4 sin

( |η|∆
2

)
+O(∆α∧β) (A.2)

holds for all η ∈ R .

Proof: We start by noting that (A.1) implies

P
{
X ∈ [a, b]

}
= P

{
X0 ∈ [a, b]

}[
1 +O(∆β)

]
=

[
1−O(∆α)

][
1 +O(∆β)

]
, (A.3)

and thus P{X 6∈ [a, b]} = O(∆α∧β). It follows that

∣∣E
{
ei ηX 1{X 6∈[a,b]}

}
− E

{
ei ηX0 1{X0 6∈[a,b]}

}∣∣ 6 P
{
X 6∈ [a, b]

}
+ P

{
X0 6∈ [a, b]

}

= O(∆α∧β) . (A.4)

Next, using the triangular inequality, we obtain for all k such that Ik ∩ [a, b] 6= ∅
∣∣E
{
ei ηX 1{X∈Ik}

}
− E

{
ei ηX0 1{X0∈Ik}

}∣∣ 6 Ak +Bk + Ck , (A.5)

where

Ak =
∣∣E
{
ei ηX 1{X∈Ik}

}
− ei ηk∆ P

{
X ∈ Ik

}∣∣ ,
Bk =

∣∣ei ηk∆
(
P
{
X ∈ Ik

}
− P

{
X0 ∈ Ik

})∣∣ ,
Ck =

∣∣ei ηk∆ P
{
X0 ∈ Ik

}
− E

{
ei ηkX0 1{X0∈Ik}

}∣∣ . (A.6)
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Using the fact that | ei η(x−k∆)−1| 6 2 sin(|η|∆/2) for all x ∈ Ik, we obtain

Ak 6

∫

Ik

∣∣ei ηx− ei ηk∆
∣∣P
{
X ∈ dx

}
6 2 sin

( |η|∆
2

)
P
{
X ∈ Ik

}
,

Ck 6

∫

Ik

∣∣ei ηk∆− ei ηx
∣∣P
{
X0 ∈ dx

}
6 2 sin

( |η|∆
2

)
P
{
X0 ∈ Ik

}
. (A.7)

In addition, (A.1) implies that Bk 6 O(∆β)P{X0 ∈ Ik}. Hence the result follows by
summing (A.5) over all k and adding (A.4).

Consider now the solution (rt, ϕt) of (3.3), starting in (0,−δ). Recall that τ0 denotes
the first-hitting time of the unstable orbit at r = 0. In addition, we denote by τ−2δ the
first-hitting time of the line {r = −2δ}.

Proposition A.2. For sufficiently small δ > 0,

lim
σ→0

E0,−δ
{
ei η(θδ(ϕτ0 )−|log σ|)

∣∣ τ0 < τ−2δ

}
= 2− i η/2Γ

(
1− i

η

2

)
+O(δ) , (A.8)

where Γ is Euler’s Gamma function.

Proof: We will use several relations from [14, Sections 6 and 7], which apply to the
process killed whenever rt leaves the interval (−2δ, 0). For ℓ ∈ N and s ∈ [0, 1), let

Q
∆̃
(0, ℓ+ s) = P0,−δ

{
ϕτ0 ∈ [ℓ+ s, ℓ+ s+ ∆̃]

}

= P0,−δ
{
θδ(ϕτ0) ∈ [t, t+∆]

}
, (A.9)

where t = θδ(ℓ+ s) = ℓλ+T+ + θδ(s) and ∆ = θ′δ(s)∆̃ +O(∆̃2).
By [14, (7.14) and (7.18)], we also have

Q
∆̃
(0, ℓ+ s) = C(σ)∆̃θ′δ(s)A

(
t− | log σ|+O(δℓ)

)[
1 +O(∆̃β)

]

= C(σ)∆A
(
t− | log σ|+O(δℓ)

)[
1 +O(∆β)

]
(A.10)

for some constants C(σ), 0 < β < 1, where A(t) = e−2t− 1
2
e−2t

. It follows that

P0,−δ
{
θδ(ϕτ0)− | log σ| ∈ [t, t+∆]

}
= C(σ)∆A

(
t+O(δℓ)

)[
1 +O(∆β)

]
. (A.11)

We now apply Lemma A.1, where X0 is a random variable with density proportional
to A(t − | log σ| + O(δℓ))[1 + O(∆β)], and X is the random variable θδ(ϕτ0) − | log σ|,
conditional on τ0 < τ−2δ, i.e. P{X ∈ B} = P{θδ(ϕτ0) − | log σ| ∈ B|τ0 < τ−2δ}. We
choose cut-offs a = −1

2 log(log∆
−1) and b = log(∆−1). This guarantees, on the one hand,

that P{X0 6∈ [a, b]} = O(∆1/2). On the other hand, |A′(x)/A(x)| is bounded above by
O(log∆−1) on [a, b], which allows to check that Condition (A.1) holds. It follows that

E0,−δ
{
ei η(θδ(ϕτ0 )−|log σ|)

∣∣ τ0 < τ−2δ

}
= C̃(σ)

∫ ∞

θδ(0)−|log σ|
ei ηtA(t) dt

[
1 +O(δ) +O(∆β)

]

+O(∆1/2∧β) +O
( |η|∆

2

)
, (A.12)

21



where C̃(σ) = C(σ)/P{τ0 < τ−2δ}. The change of variables v = 1
2 e

−2t yields

∫ ∞

θδ(0)−|log σ|
ei ηtA(t) dt = 2− i η/2

∫ e−2θδ(0) /2σ2

0
v− i η/2 e−v dv

= 2− i η/2Γ

(
1− i η

2

)
+O(e−O(δ2/σ2)) . (A.13)

Plugging this into (A.12), taking first the limit σ → 0 and then the limit ∆ → 0 shows
that C̃(0) = 1 +O(δ) (by evaluating in η = 0) and proves (A.8).

Note that the limit as δ → 0 of the right-hand side of (A.8) is the characteristic
function of (Z − log 2)/2, where Z is a standard Gumbel random variable.

A.2 Large deviations and dynamics far from the unstable orbit

We consider in this section the dynamics up to the time

τ−δ = inf{t > 0: rt = −δ} (A.14)

the process enters a δ-neighbourhood of the unstable periodic orbit. We will choose a
sequence (δm)m∈N , converging to zero as m→ ∞, such that the optimal path γ∞ crosses
the level −δm when ϕ = m. It follows from the behaviour of the Hamiltonian (3.13) near
the unstable orbit (cf. [14, Section 4]) that

| log δm| = mλ+T+ +O(e−mλ+T+) (A.15)

as m→ ∞, which shows that δm ≃ e−mλ+T+ for large m.
We wish to compute the rate function Im(ϕ), corresponding to sample paths reaching

r = −δm near a given value of ϕ.

Proposition A.3. There exists a periodic function P (ϕ), reaching its maximum if and
only if ϕ ∈ Z , such that

Im

(
ϕ̂+

| log δm|
λ+T+

)
= I∞ − P (ϕ̂)δ2m +O(δ4m + e−2λ+T+ϕ̂) . (A.16)

Proof: The proof is based on similar considerations as in [14, Section 4]. We will con-
struct a path γ minimising the rate function by perturbation of a translate of the optimal
path γ∞. This is justified by our assumption that γ∞ is a unique minimizer for transitions
in arbitrary time, up to translations.

We fix a small constant δ0, such that γ∞ reaches level −δ0 for an integer value of ϕ.
Without loss of generality, we may assume that γ∞(0) = −δ0. Then we can also find an
integer ℓ and a δ̂0 6 δ0 such that γ∞(−ℓ) = −1/2 + δ̂0. The translate γk∞ = γ∞(· − k)
crosses level −δ0 at ϕ = k and level −1/2 + δ̂0 at ϕ = k− := k − ℓ.

The Hamiltonian flow of (3.13) can be viewed as a time-dependent flow for (r, pr) in
which ϕ plays the rôle of time [14, Section 2.2]. We denote by ±µ(s) the eigenvalues of
the linearised flow at γk∞(s). Let

α(s, s0) =

∫ s

s0

µ(u) du . (A.17)
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γ(k−)
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Figure 6. Construction of the optimal path {γ(s)}06s6ϕ for a first exit at ϕτ0 = ϕ.
The path is constructed as a perturbation of the translate γk∞(s) = γ∞(sk) of the path
minimizing the rate function in arbitrary time, which lies at the intersection of the unstable
and stable manifolds of the periodic orbits.

The principal solution U(s, s0) of the linearised flow has eigenvalues e±α(s,s0). We denote by
e±(s) the associated eigenvectors, which satisfy U(s, s0)e±(s0) = e±α(s,s0) e±(s). Consider
a perturbed path given by

γ(s) = γk∞(s) + ase+(s) + bse−(s) (A.18)

(Figure 6). Then we have

as = ak e
α(s,k)+O(‖a2 + b2‖∞) ,

bs = bk e
−α(s,k)+O(‖a2 + b2‖∞) , (A.19)

where ‖·‖∞ denotes the supremum over [0, ϕ].
Given an interval [u, s], let I0(u, s) denote the contribution of [u, s] to the integral

defining the rate function of γk∞ (cf. (3.9)). Let I1(u, s) denote its analogue for the rate
function of γ. Then a computation similar to the one in [14, Proposition 4.1] shows that,
up to a multiplicative error 1 +O(δ0),

I1(k, ϕ)− I0(k,∞) = −δ
2
0

2

hper(ϕ)

hper(0)2
x2+ − δ0bk +O(b2k, bkx

2
+) , (A.20)

where x+ = e−α(ϕ,k). In addition, the boundary condition γ(ϕ) ∈ {r = −δm} yields

ak = δ0
hper(ϕ)

hper(0)
x2+ − δmx+ +O(bkx

2
+) . (A.21)

A similar analysis can be made in the vicinity of the stable periodic orbit, and yields

I1(0, k−)− I0(−∞, k−) = − δ̂
2
0

2

1

hper− (0)
x2− + δ̂0ak e

−α(k,k−)+O(a2k, akx
2
−) , (A.22)
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where x− = e−α(k−,0), and hper− is a periodic function related to the linearisation at the
stable orbit. Note that α(k, k−) =: α0 does not depend on k, but only on the time ℓ it
takes for the optimal path γ∞ to go from −1/2 + δ̂0 to −δ0. The boundary condition
γ(0) ∈ {r = −1/2} yields the condition

eα0 bk = −δ̂0x2− +O(akx
2
−) . (A.23)

Finally, the transition between times k− and k yields

I1(k, k−)− I0(k, k−) = akc+ + bkc− +O(a2k + b2k) , (A.24)

where the constants c± depend only on the behaviour of γk∞ on [k−, k], and are thus
independent of k. Adding the estimates (A.20), (A.22) and (A.24), and using the boundary
conditions, we obtain

I1(ϕ, 0)− I∞ = Ahper+ (ϕ)x2+ +Bx2− − Cδmx+ +O(x4+ + x4− + δ4m) (A.25)

for some positive constants A,B,C. The optimal rate function is obtained by minimiz-
ing (A.25) under the constraint x−x+ e−α0 = e−α(ϕ,0). The result is that the minimum is
reached when

x+ =
C

2Ahper(ϕ)
δm

[
1 +O(δ2m) +O(δ−4

m e−α(ϕ,0))
]
, (A.26)

and has value

Im(ϕ)− I∞ = − C2

4Ahper(ϕ)
δ2m +O(δ4m + δ−2

m e−2α(ϕ,0)) . (A.27)

Noting that for large m, α(ϕ, 0) − λ+T+ϕ is bounded below, which implies e−α(ϕ,0) =
O(δm e−λ+T+ϕ̂), finishes the proof.

A.3 Final steps of the proof

Consider the random variable

ϕ̂m = ϕτ−δm
− | log δm|

λ+T+
. (A.28)

Note that (A.15) implies ϕ̂m − ϕτ−δm
+m → 0 as m → ∞, meaning that asymptotically,

ϕ̂m is just an integer shift of ϕτ−δm
. We introduce the integer-valued random variable

Y σ
m =

⌊
ϕ̂m +

1

2

⌋
, (A.29)

which has the property

P
{
Y σ
m = n

}
= P

{
ϕ̂m ∈ [n− 1

2
, n+

1

2
)

}
, (A.30)

that is, Y σ
m counts the number of periods until the process reaches the unstable orbit. The

same argument as the one yielding (3.21) shows that the random variable Y σ
m is asymp-

totically geometric. The large-deviation principle implies that the success probability is
of order e−Im/σ

2
, with Im = I∞ − P (0)δ2m +O(δ4m).
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Proposition A.4. We have

lim
m→∞

(
lim
σ→0

P
{∣∣ϕ̂m − Y σ

m

∣∣ > η
})

= 0 , (A.31)

for all η > 0. Therefore, ϕ̂m − Y σ
m converges in distribution to δ0, the Dirac mass at 0.

Proof: Proposition A.3 implies that the rate function Im(ϕ̂) has at most one minimum
in [n− 1/2, n+ 1/2), satisfying ϕ̂ = n+O(δ2m) +O(e−2nλ+T+). We decompose

P
{∣∣ϕ̂m − Y σ

m

∣∣ > η
}
6 P

{∣∣ϕ̂m − Y σ
m

∣∣ > η, Y σ
m > 2m

}
+ P

{
Y σ
m 6 2m

}
. (A.32)

If Y σ
m > 2m, then e−Y

σ
mλ+T+ = O(δ2m). Thus as σ → 0, the first term on the right-hand side

becomes bounded by 1{η<O(δ2m)}, which converges to 0 as m→ ∞. By the large-deviation

principle, the second term on the right-hand side has order 2m e−c/σ
2
for some c > 0,

which goes to zero as σ → 0.

By (A.28) and the definition (4.6) of θδ we have

θ(ϕτ0)−| log σ|−λ+T+Y σ
m =

[
θδm(ϕτ0)−| log σ|−λ+T+ϕτ−δm

]
+λ+T+(ϕ̂m−Y σ

m) . (A.33)

By Lévy’s continuity theorem, Proposition A.2 and periodicity, conditionally on τ0 <
τ−2δm , the term in square brackets converges in distribution to (Z − log 2)/2 as σ → 0
and m → ∞ (in that order). The second term on the right-hand side converges to 0, as
we have just seen. This proves the result conditionally on τ0 < τ−2δm . The result remains
true unconditionally because if τ̂−2δm = inf{t > τ−δm : rt = −2δm}, then

P
{
τ̂−2δm < τ0

∣∣ τ0 ∈ B
}
= O(e−cδ

2
m/σ

2
) (A.34)

for some constant c > 0, as a consequence of [14, Proposition 4.2]. This reflects the fact
that it is more expensive, in terms of rate function, to move back and forth between levels
−δm and −2δm before reaching the unstable orbit, than to go directly from level −δm to
0 (see also the renewal equation in [11]).

B Duration of phase slips

B.1 Proof of Theorem 6.2

We will start by characterising the exit distribution from a small strip of width of order
h0 = σγ around the unstable orbit. We set

τ̃±h0 = inf
{
t > 0: rt = ±h0

√
2λ+T+hper(ϕt)

}
. (B.1)

The following result is an adaptation of [23, Theorem 2.1] to the nonlinear, ϕ-dependent
situation.

Lemma B.1. Fix an initial condition (ϕ0, 0) and a constant h0 = σγ for γ ∈ (1/2, 1).
Then the solution of (3.3) satisfies

lim
σ→0

Law

(
θ(ϕτ̃h0 )− θ(ϕ0)− log

(
h0
σ

) ∣∣∣∣ τ̃h0 < τ̃−h0

)
= Law

(
Θ+

1

2
log(2λ+)

)
, (B.2)

where Θ = − log |N | and N is a standard normal random variable.
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Proof: Let τ̂ = τh0 ∧ τ−h0 , and ν = sign(rτ̂ ). We will introduce several events that have
probabilities going to 1 as σ → 0. The first event is

Ω1 =

{∣∣∣∣ϕt − ϕ0 −
t

T+

∣∣∣∣ 6M(h20t+ h0) ∀t 6 τ̂ ∧ 1

h0

}
, (B.3)

whereM is such that |bϕ(r, ϕ)| 6Mr2 for all (r, ϕ). Then [14, Proposition 6.3] shows that

P(Ωc1) 6 e−κ1h0/σ
2

(B.4)

for a constant κ1 > 0. On Ω1, the phase ϕt remains h0-close to ϕ0 + t/T+. Hence the
equation for rt can be written as

drt =
[
λ+rt + br(rt, ϕt)

]
dt+

[
g0(t) + g1(rt, ϕt, t)

]
dWt (B.5)

where g0(t) = gr(0, ϕ0+t/T+), and g1 = O(|r|+h0) on Ω1. The solution can be represented
as

rt = eλ+t
[
σ

∫ t

0
e−λ+s g0(s) dWs + σ

∫ t

0
e−λ+s g1(rs, ϕs, s) dWs +

∫ t

0
e−λ+s br(rs, ϕs) ds

]
.

(B.6)
Let Yt denote the second integral in (B.6), and define

Ω2(t) =

{
sup

06s6τ̂∧t
|Ys| > H

}
. (B.7)

Then the Bernstein-type estimate [52, Theorem 37.8] yields

P
(
Ω1 ∩ Ω2(t)

c
)
6 e−κ2H

2/h20 (B.8)

for a constant κ2 > 0, uniformly in t. Evaluating (B.6) in τ̂ , we obtain that on Ω1∩Ω2(t),

νh0
√

2λ+T+hper(ϕτ̂ ) = eλ+τ̂
[
σ

∫ τ̂

0
e−λ+s g0(s) dWs +O(σH + h20)

]
. (B.9)

Now we decompose

∫ τ̂

0
e−λ+s g0(s) dWs =

∫ ∞

0
e−λ+s g0(s) dWs−

∫ ∞

τ̂
e−λ+s g0(s) dWs =

√
v∞N−R , (B.10)

where N is a standard normal random variable, and (cf. [14, (2.29)])

v∞ =

∫ ∞

0
e−2λ+sDrr(ϕ0 + s/T+) ds = T+h

per(ϕ0) . (B.11)

The remainder R satisfies

E{R2} =
1

2λ+
E
{
e−2λ+τ̂

}
= O

(
σ2

h20

)
, (B.12)

since (B.9) implies that e−λ+τ̂ h0/σ is bounded (see also [45]). This shows that if we set
Ω3 = {|R| > H}, then by Markov’s inequality there is a constant κ3 > 0 such that

P(Ωc3) 6 κ3
σ2

h20H
2
. (B.13)
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Taking the logarithm of the absolute value of (B.9), we find that on Ω1 ∩ Ω2 ∩ Ω3,

log h0+
1

2
log(2λ+T+h

per(ϕτ̂ )) = λ+τ̂+log σ+
1

2
log(T+h

per(ϕ0))+log |N |+O
(
H+

h20
σ

)
.

(B.14)
Noting that on Ω1, τ̂ = T+(ϕτ̂ − ϕ0) + O(h0), and recalling the definition (4.4) of θ, we
obtain

lim
σ→0

Law

(
θ(ϕτ̂ )− θ(ϕ0)− log

(
h0
σ

))
= Law

(
Θ+

1

2
log(2λ+)

)
, (B.15)

by choosing H = σ(1−γ)/2 and taking the limit σ → 0. Finally, (B.9) implies that ν =
sign(rτ̂ ) converges to sign(N) as σ → 0, so that in this limit P{ν = 1} = P{ν = −1} = 1/2.
The result follows.

The following result shows that after time τh0 , the system essentially follows the de-
terministic dynamics.

Lemma B.2. Let h0 be as in the previous lemma. Fix an initial condition (r1, ϕ1) such
that r1 = h0

√
hper(ϕ1), and a curve {r = δρ(ϕ)}, where ρ is a continuous function such

that 0 < ρ0 6 ρ(ϕ) 6 1 for all ϕ. Denote by

• τδ the first-passage time at r = δρ(ϕ) of the solution (rt, ϕt) starting in (r1, ϕ1),
• τdetδ the first-passage time at r = δρ(ϕ) of the deterministic solution (rdett , ϕdet

t ) start-
ing in (r1, ϕ1).

Then
lim
σ→0

ϕτδ = ϕdet
τdet
δ

(B.16)

for sufficiently small δ, where the convergence is in probability.

Proof: The difference ζt = (rt − rdett , ϕt − ϕdet
t ) satisfies an equation of the form

dζt = A(t)ζt dt+ σg(ζt, t) dWt + b(ζt, t) dt , (B.17)

where A(t) is a matrix with top left entry a(t) = λ+ + O(rdett ), and the other entries of
order rdett or (rdett )2, while b has order ‖ζ‖2. Then

ζt = ζ0t + ζ1t = σ

∫ t

0
U(t, s)g(ζs, s) dWs +

∫ t

0
U(t, s)b(ζs, s) ds , (B.18)

where U(t, s) is the fundamental solution of ζ̇ = A(t)ζ. Denote by α(t, s) the integral of
a(u) between s and t. One can show that there exist constants M, c > 0 such that

‖U(t, s)‖ 6M eα(t,s)+cδ(t−s) ∀t > s > 0 . (B.19)

We want to show that with probability going to 1 as σ → 0, ζt remains of order h1 e
α(t,0)

up to time τδ ∨ τdetδ , where h1 → 0 as σ → 0. Set

τ1 = inf
{
t : ‖ζt‖ > h1 e

α(t,0)
}
. (B.20)

A Bernstein-type estimate shows that

P

{
sup
06s6t

e−α(s,0)‖ζ0s‖ > h1

}
6 exp

{
−κh

2
1

σ2
e−2α(t,0)−2ct

}
. (B.21)
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Furthermore, there exists a constant M > 0 such that

‖ζ1t∧τ1‖ 6Mh21 e
2α(t,0)+2ct . (B.22)

Since eα(τ
det
δ

,0) = O(δ/h0), we can find, for sufficiently small δ, an h1 such that

σ eα(t,0)+ct ≪ h1 ≪ e−α(t,0)−ct (B.23)

for all t 6 τδ ∨ τdetδ . This shows that with probability going to 1 as σ → 0, ‖ζt‖ 6

(h1/2) e
α(t,0) up to time τ1∧ (τδ ∨ τdetδ ), and thus τ1 > τδ ∨ τdetδ . This proves the claim.

To finish the proof of Theorem 6.2, we consider the deterministic dynamics of (3.3).
Using ϕ as new time variable, the dynamics can be written as dr/dϕ = fr(r, ϕ)/fϕ(r, ϕ).
If we set y = r/

√
hper(ϕ), it follows from (4.2) and (4.4) that this ODE is equivalent to

dy

dθ
= y + b̃(y, θ) , (B.24)

where b̃(y, θ) = O(y2). Standard perturbation theory shows that when starting with a
small initial condition y0 = h0, solutions of this equation are of the form

y(θ) = h0 e
θ−θ0

[
1 +O(h0 e

θ−θ0)
]
. (B.25)

Thus y(θ) reaches δ when θ − θ0 = log(δ/h0) + O(δ). Combining this with (B.2) yields
the result.

B.2 Proof of Theorem 6.4

Fix a small value of δ, and consider an orbit starting at time τ̃δ on the curve {y = δ}. For
u > 0, let Γu+(δ) be the image after time u of {y = δ} under the deterministic flow (B.24).
Theorem 6.2 and Lemma B.2 imply that the sample path will hit Γu+(δ) at a time ϕτ+(δ)

such that

θ(ϕτ+(δ))− θ(ϕτ0)− | log σ| → Θ+
log(2λ+δ

2)

2
+ u+O(δ) (B.26)

as σ → 0. Setting u = s− log(δ) and taking the limit δ → 0, we obtain (6.10), where

Γs+ = lim
δ→0

Γs−log δ
+ (δ) . (B.27)

Since yu ≃ y0 e
u = δ eu for small δ eu, this limit is indeed well-defined. This is the

equivalent of the regularization procedure used in (5.14).
Now (6.9) is obtained in an analogous way, using Proposition A.2, and (6.11) follows

from the two previous results, using Lemma 6.3.
We note that more explicit forms of the curves Γs± can be provided if we can find a

change of variables y 7→ ŷ such that

dŷ

dθ
= F (ŷ) = ŷ + b̂(ŷ) , (B.28)

in which the right-hand side does not depend on θ. Such a construction can be performed,
for instance, in the averaging regime. In these variables, the curves Γs± are simply hor-
izontal lines of constant ŷ, and their dependence on s can be determined by solving a
one-dimensional ODE, yielding expressions similar to (5.14).
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Bâtiment de Mathématiques, B.P. 6759
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