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Model-Checking Real-Time Properties

of an Aircraft Landing Gear System
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1CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
2Univ de Toulouse, LAAS, F-31400 Toulouse, France

We describe our experience with modeling the landing gear system of an
aircraft using the formal specification language Fiacre. Our model takes into
account the behavior and timing properties of both the physical parts and
the control software of this system. We use this formal model to check safety
and real-time properties on the system but also to find a safe bound on the
maximal time needed for all gears to be down and locked (assuming the ab-
sence of failures). Our approach ultimately relies on the model-checking tool
Tina, that provides state-space generation and model-checking algorithms for
an extension of Time Petri Nets with data and priorities.

1 Introduction

We describe our experience with modeling the landing gear system of an aircraft using
the formal specification language Fiacre [2]. This case study has been submitted as a
problem to be solved by the participants of the Case Study Track at the 4th International
ABZ Conference. Our answer to this challenge is based on the use of a model-checking
tool for an extension of Time Petri Nets with data and priorities. All the requirements
were checked using a dense (continuous) time model, without resorting to discrete time
verification methods. The Fiacre models used in this study are available online at http:
//projects.laas.fr/fiacre/examples/landinggear.html.

The purpose of the control system is to manage and monitor the hydraulic and me-
chanical parts operating the movement of the gears—and their associated doors—on a
modern aircraft: activation of the electrical and hydraulic power; opening of the locks
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and doors; extension or retraction of the gears; . . . A full description of the system is
given in [6].

The control (digital) part of the system is fairly complex, since there are several sub-
systems involved—each associated with their own set of timing constraints—and many
safety requirement to be satisfied. Some of these requirements are quite straightforward,
like for instance that “gears should not be extended if the doors are closed”, but other
requirements depend on the architecture of the system. For instance that “the controller
should not attempt to power the doors without first stimulating the general electro-
valves” or that “stimulation of the electro-valves should be separated by at least 200ms”.
Another source of complexity stems from the multiple redundancies put in place as a
contingency in case of mechanical failure. Actually, one of the main tasks of the control
system is to identify the occurence of failures in order to warn the pilot of any anomalous
behavior. This is a major safety requirement, since the pilot should be warned as soon
as possible that he needs to engage his emergency extension system.

Our formal model takes into account the behavior and timing properties of the mechan-
ical and control parts of the system, both in its normal and failure mode of operation.
We study several versions of the model, each of growing complexity, by strengthening our
assumptions on the system. The different versions are used to check safety and real-time
properties on the system but also to find a safe bound on the maximal time needed for
all gears to be down and locked (assuming the absence of failures). Therefore we exper-
iment here with another interesting application of model-checking, that is as a tool for
architecture exploration (dimensioning).

This case study is interesting for several reasons. First, it is well-suited for component-
based modeling languages (since the description is highly modular) and it is a good
example for real-time verification methods (since the specification has plenty of timing
constraints). Also, a similar case study was used by Boniol et al. in 2006 [7], where
they compared the use of several model-checking tools: a majority of tools based on the
synchronous language Lustre, and one tool, Uppaal, based on timed automata. It is
interesting to revisit these results that are nearly ten years old.

2 Fiacre and Tina

We describe the language and tools used to check the behavior of the system. Our ap-
proach is based on Fiacre (http://www.laas.fr/fiacre/), a specification language designed
to represent compositionally both the behavioral and timing aspects of embedded and
distributed systems for the purposes of formal verification or simulation. The language
comes equipped with a set of dedicated tools, such as compilers from Fiacre to the input
formats of model-checking toolboxes, like Tina [4].

2.1 The Fiacre Language

Fiacre is a modeling language for behavioral verification, with a textual notation, in the
vein of Promela or BIP. It can be used for model-checking but is not tied to any partic-
ular toolset. The language supports two of the most common coordination paradigms:
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communication through shared variable (shared-memory) and synchronization through
synchronous communication ports (message-passing). A formal definition of the language
is given in [3].

Fiacre programs are stratified in two main notions: processes, which are well-suited for
modeling structured activities, and components, which describe a system as a composition
of processes, possibly in a hierarchical manner.

We give a simple example of a Fiacre specification in Fig. 1. It is the model of a
computer mouse driver with double-click. A more complex example of Fiacre process,
extracted from the case study, is given in Fig. 4. The behavior of the computer mouse
is to emit the event double if it receives more than two click events in strictly less
than one unit of time (u.t.). Note that the semantics of the language is based on a
dense, “dimensionless”, notion of time. This approach is consistent with several of the
state space abstraction techniques used in our tools [5]. Indeed, the “geometric methods”
based on the use of Difference Bound MAtrices (DBM) are insensitive to the scaling of
time (this is not true for methods based on a discrete time approach that may also be
used in Tina).

process Push [click : none ,

single : none ,

double : none ,

delay : none] is

states s0 , s1 , s2

var dbl : bool := false

from s0 click; to s1

from s1

select

click ; dbl := true; loop

[] delay ; to s2

end

from s2

if dbl then double

else single end ;

dbl := false; to s0

component Mouse [click : none ,

once : none ,

twice : none] is

port delay : none in [1,1]

priority delay > click

par

Push [click , once , twice , delay]

end

// -------------------------------------

component Main is

port click , once , twice , thrice : none

par

once → Mouse [click , once , twice]

|| once → Mouse [once , twice , thrice ]

end

Figure 1: A double-click example in Fiacre

Processes: a process is defined by a set of parameters and control states, each associated
with a set of complex transitions (introduced by the keyword from). The initial state of
a process is the state corresponding to the first from declaration. Complex transitions
are expressions that declare how variables are updated and which transitions may fire.

Expressions are built from deterministic constructs available in classical programming
languages (assignments, conditionals, sequential composition, . . . ); non-deterministic
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constructs (such as external choice, with the select operator); communication on ports;
and jump to a state (with the to or loop operators). For example, in Fig. 1, we de-
clare a process named Push with four communication ports (click to delay) and one
local boolean variable, dbl. Ports may send and receive typed data. The port type none

means that no data is exchanged; ports of type none simply act as synchronization events.
Regarding complex transitions, the expression for s1, for instance, declares two possible
behaviors when in state s1: first, on a click event, set dbl to true and stay in state s1;
second, on a delay event, change to state s2.

Data variables are not restricted to simple boolean values. The language provides rich
datatypes, such as natural numbers, arrays, queues, records, . . . For instance, in the
model of the landing gear system (see Sect. 3), we use records and arrays of booleans
to represent the signals from the replicated sensor probes. The language is strongly
typed, meaning that type annotations are exploited in order to guarantee the absence of
unchecked run-time errors.

Components: a component is built from the parallel composition of processes and/or
other components, expressed with the operator par P0 || . . . || Pn end. Components are
the unit for process instantiation and for declaring ports and shared variables. The syntax
of components allows to associate timing constraints with communications and to define
priority between communication events. The ability to express directly timing constraints
in programs is a distinguishing feature of Fiacre. For example, in the declaration of
component Mouse (see Fig. 1), the port statement declares a local event delay with a
punctual timing constraint [1, 1]. As a consequence, a transition from state s1 to s2 in
the mouse cannot be delayed more than one unit of time. A behavior similar to the
synchronization on a local, time-constrained port like delay (basically a time-out) can be
obtained using the expression wait [1, 1]. Additionally, the priority statement asserts
that a transition on event click cannot occur if a transition on delay is also possible.

2.2 Behavioral Verification with Tina

Tina [4], the TIme Petri Net Analyzer, provides a software environment to edit and ana-
lyze Time Petri Nets and their extensions. It is particularly well suited to the verification
of systems subject to real time constraints, such as the landing gear system studied in
this paper. The core of the Tina toolset is an exploration engine used to generate state
space abstractions that are fed to dedicated model checking and transition system an-
alyzer tools. The front-ends to the exploration engine convert models into an internal
representation — the abstract Time Transition Systems (TTS) — that is an extension of
Time Petri Nets (TPN) handling data and priorities [1]. We can use the frac compiler to
convert Fiacre description into TTS and therefore to model-check Fiacre specifications.

We give the graphical representation of a TTS in Fig. 2. This example corresponds
to the interpretation of the Fiacre process Push from the computer mouse example of
Sect. 2.1. A TTS can be viewed as a Time Petri Net where transitions are decorated
with guards and actions on data variables; the pre and act expressions inside dotted
rectangles. Data is managed within the act and pre expressions and refer to a fixed set
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s0

click

s1 [1; 1]

delay

s2

double

pre: dbl == true

act: dbl := false

click

act: dbl := true

single

act: dbl := false

pre: dbl == false

Figure 2: Interpretation of the process Push in TTS

of variables that form the store of the TTS. In comparison with a TPN, a transition in a
TTS is enabled if there is both: (1) enough tokens in the places of its pre-condition; and
(2) the predicate pre is true. When a transition fires, the store is updated atomically by
executing the corresponding action act. For example, when the token reaches the place
s2 in the TTS of Fig. 2, we use the value of dbl to test whether we should signal a double
click or not. We can also see in this example the use of read arcs and priorities between
transitions (dashed arrow between transitions).

Time Transition Systems is the low level formalism used for model-checking. State
space abstractions are vital when dealing with timed systems, such as TTS, that have
in general infinite state spaces (because we work with a dense time model). Tina of-
fers several abstract state space constructions that preserve specific classes of properties
like absence of deadlocks, reachability of markings, linear time temporal properties, or
bisimilarity.

In the case of the landing gear, most of the requirements can be reduced to safety
properties, that is, checking that some bad state cannot occur. In this case, we do not
need to generate the whole state class graph of the system and we can use “more aggres-
sive” abstractions. Tina implements two main state-space abstraction methods, a default
method that preserves the set of states and traces of the system, and a method that pre-
serves the states but not the traces. While this abstraction gives an over-approximation
of the set of execution traces of the system, it is often much more efficient than the
default exploration mode. This second method can be used in Tina with the command
line options -M or -E. The state-space abstraction corresponding to -M usually has a bet-
ter space complexity than -E, but the latter is necessary when using models that have
priorities between transitions.

For more complex properties, Tina provides several back-ends to convert its output
into physical representations readable by external model checkers. In the context of this
study, we need to check LTL properties in the case of failure mode requirements. Broadly
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speaking, we need to check that, after the failure of a mechanical part (the system is in
a fail state), every event that triggers the part (say evt) will eventually lead to the
anomaly being detected (the probe normal_mode is set to false). Since the system stays
in a fail state when it reaches it, this property could be defined as follows in LTL:

[]((fail /\ evt) => <>(not normal_mode)) .

We can use selt, the model-checker distributed with the Tina toolbox, to check this
kind of properties on a Fiacre model. It is a model-checker for an enriched version
of State/Event-LTL, a linear time temporal logic supporting both state and transition
properties. For the properties found false, we can compute a timed counter example and
replay it in a TTS simulator.

3 Model of the Landing Gear System

We take benefit from the compositional and hierarchical nature of Fiacre to model the
landing gear system. Each component described in the informal specification [6] is en-
coded using a Fiacre component and we use the instantiation mechanism to efficiently
model the redundancies and symmetries of the system.

The digital and mechanical parts are all modeled using separate components. Only the
pilot interface remains implicit as a set of shared boolean variables that can be triggered
by the component modeling the system’s environment. We also assume that two separate
stimuli from the environment cannot occur in less than 100ms. This value of 100ms is
taken from the timing constraints information provided by the landing gear specification
document (Sect. 4.2 of [6]), namely that “two contrary orders (closure / opening doors,
extension / retraction gears) must be separated by at least 100ms”. The document does
not specify any timing constraints on the movement of the handle or, equivalently, on the
reactivity of the pilot/environment. We chose to apply the same constraints of 100ms
here to avoid unrealistic scenarios in which the handle could be moved infinitely often in
a finite amount of time.

The whole model—when taking into account the maximal level of details—amounts
to about 800 lines of Fiacre. Most of it was programmed in the course of one week by
a model-checking specialist that was novice with Fiacre. When compiled into a Time
Transition System (see Sect. 2.2) we obtain a net with about 100 places and 170 transi-
tions. These numbers give a rough idea of the complexity of the “coordination” aspect
of the system. Concerning the functional complexity of the model, we have about 60
variables in the resulting TTS, but many of these variables are correlated (at least in
normal mode, because of the redundancies). This is close to the 54 discrete sensor values
declared in the specification and the 5 electrical outputs (called electrical orders in the
specification [6]) emitted by each computing module.

We describe the structure of the Fiacre specification starting from the data types used
in the model. The main data types are almost word for word those given in the informal
specification of the system.
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3.1 Data types

Different parts of the system interact using electrical orders, hydraulic pressure or sensors.
Our model represents this information as boolean values. For example we observe the
presence or absence of hydraulic pressure but not its transition phase (growing up / going
down). However the time needed by this transition phase is always taken in account and
adequately modeled in different parts.

Because the sensors are triplicated, we use a record (a structured data type) formed
of a boolean value and a natural number counting active sensors. This makes the inter-
pretation of the sensors much easier and allows the representation of sensor failure.

To simplify the model, we also use arrays of sensors for closed/open door sensors,
extended/retracted gear sensors and gear shock absorbers sensors. This allows to reduce
the number of variables handled by different processes and to reduce the code size of our
model without modifying the generated state space.

3.2 Digital part

No timing constraints are given on the speed of the digital part of the system. (Actually,
the description of the system is quite heavily oriented toward a synchronous architecture
rather than, say, a time-triggered one.) Since the speed of digital signals is incommen-
surate with the speed of mechanical parts, we have chosen a null response time for every
interaction with the digital part. Thus the digital component computes new outputs
instantaneously each time a sensor value changes. However, electro-valve order delays
are considered (we adopt the same timing constraints than in the use case specification,
see Sect. 4.2 of [6]):

• the simulation of the general electro-valve and the maneuvering electro-valves must
be separated by 200ms;

• orders to stop the general electro-valve and the maneuvering electro-valves must
be separated by 1s;

• two opposite electro-valve orders must be separated by 100ms.

The digital part is modeled using two instances of the same computing module com-
ponent and an electrical “OR” process making the composition of computing modules
orders. To keep the model simple, each computing module is divided in four processes:
the computing process responsible for detecting failures and ordering electro-valves; a
process handling general electro-valve timing constraints; and two processes handling
contrary orders and their timing constraints. This architecture has been faithfully mim-
icked in our model even if it is redundant in the normal operation mode given the 100ms
delay between stimuli and because both computing processes should behave in the same
manner. We illustrate the structure of a computing module component in Fiacre in
Fig. 3. (The whole model uses two copies of this component.)
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sensorsto pilot interface

open EV close EV expand EV retract EV general EV

to hydraulic part and analogical switch

Figure 3: Computing module implementation.

3.3 Hydraulic Part

The hydraulic part is modeled using a component handling doors and gears circuits.
The component is composed of two electro-valves and three cylinders; each part in the
hydraulic architecture (valve, cylinder, . . . ) is modeled using a Fiacre process. The
timing constraints used in the Fiacre processes are the one given by the specification (see
e.g. Sect. 3.2 of [7]). For instance, an electro-valve changes its state from open to close in
1 second and from close to open in 3,6 seconds. The process for the cylinders is parametric
and configured based on specification times. As for electro-valves, each cylinder motion
can be reversed at any time. We consider the whole extension or retraction time in each
case and take into account the 20% time variation mentioned in the specification (Sect.
3.3 of [6]).

The main simplification with regards to the specification is that we do not discretize
the behavior of the valve and always consider the worst possible execution time. In the
experimental results section of this paper (see Sect. 4), we also give some results on a
“discrete” version of the model where we record the progress of the cylinders between a
closing and opening requests and follow the physical behavior defined by the specification
(see e.g. Fig. 8 of [6]). The discrete model use a sampling time of 100ms between every
event. The size of the state space for this discrete model is quite big when compared
to our abstracted model. The worst-case time obtained with the discrete version of the
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model is the same than with our abstract version; actually we obtain a value that is
marginally higher with the discrete model due to an accumulation of errors originating
from the “time quantum”.

3.4 Analogical Switch

The analogical switch is responsible for interfacing digital orders with the general electro-
valve and protecting it from erratic orders. It is enabled each time the handle is moved.
We model the closing and the opening of the switch by waiting a certain fixed amount of
time (taken from the specification), that is, we do not discretize the state of the switch
and always use the worst-case time when changing state.

We list the Fiacre process corresponding to the analogical switch process in Fig. 4.
The process AnalogicalSwitch is parametrized with variables shared between processes
which are used to update sensor states or pass electrical orders. We consider that these
operations are immediate and thus are seen as shared boolean variables in our model.
The values of these probes are used as guards on the transitions of the process (using the
operator on). The different states of the switch are open, closing, closed, opening, and
can be directly mapped to states given in the informal specification of the system. As
can be seen on the transition from the closing to the closed state (line 14 of the code),
the switch has to wait at most 800ms for changing state, as stated by the expression
wait [0, 800].

3.5 Handling Failures

The physical parts in the system have multiple ways to fail. In our model, we only
consider cylinder failures by allowing gear and door cylinders to get stuck in their current
position indefinitely. We also assume that a part cannot leave a failure state once it has
entered it (no transient failure). We consider only one possible type of failure at a
time since adding all the possible cases—and all their combinations—could lead to an
intractable model.

To address failure mode requirements, we have added failure handling mechanisms in
each computing module, allowing to detect failures and to notify the pilot. In the current
model, the only notification mechanism is to set the shared variable normal_mode to false.
This is done by watching sensor states with adequate timeouts. We focused on failures
induced by the requirements R7⋆ which are stronger than R6⋆, however requirements R6⋆

could be easily implemented (we use the notation R6⋆ to stand for requirements R61 to
R64). So, requirements R6⋆ and R8⋆ were not addressed but could be added with no
effort. We made this choice to limit state space sizes.

3.6 Optimizations

Because model checking is highly sensitive to state space explosion, our model embeds a
certain number of optimizations. The electrical orders, hydraulic pressure, and sensors
are abstracted to boolean values, so we can control the number of operations involved
when a value changes. For example, we will trigger a component from the digital part
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1 process AnalogicalSwitch (& handle : sensor ,

2 &general_EV : electrical_order ,

3 &out_EV : electrical_order ,

4 &analogical_switch : sensor ) is

5 states open , intermediate1 , closed , intermediate2

6 var last_handle : bool := HANDLE_DOWN

7

8 from open

9 wait [0 ,0];

10 on (handle .value <> last_handle ); // handle state has changed

11 last_handle := handle .value;

12 to intermediate1 // move to state intermediate1

13

14 from intermediate1

15 wait [0 ,800]; // wait 800 ms... then deliver power

16 out_EV := general_EV ;

17 analogical_switch.value := SWITCH_CLOSED;

18 to closed // move to state closed

19

20 from closed

21 select

22 wait [20000 ,20000]; // wait 20s but only if...

23 on (handle .value = last_handle ); // handle did not move

24 // then cut power and start intermediate2

25 analogical_switch.value := SWITCH_OPEN ;

26 out_EV := false ;

27 to intermediate2

28 [] wait [0 ,0];

29 on (handle .value = last_handle ); // if handle did not move...

30 on (out_EV <> general_EV ); // but the input value had changed

31 out_EV := general_EV ; // update the output

32 loop // stay in this state without but do not reset

33 [] wait [0 ,0];

34 on (handle .value <> last_handle );

35 // otherwise if handle state has changed ...

36 // reset immediately this state

37 last_handle := handle .value;

38 out_EV := general_EV ;

39 to closed

40 end

41

42 from intermediate2

43 select

44 wait [0 ,1200]; // wait 1.2 s if handle did not move

45 on (handle .value = last_handle );

46 analogical_switch.value := SWITCH_OPEN ;

47 to open // move to state open

48

49 [] wait [0 ,0]; // otherwise if handle did move

50 on (handle .value <> last_handle );

51 last_handle := handle .value;

52 to intermediate1 // move to state intermediate1

53 end

Figure 4: The AnalogicalSwitch Process in Fiacre (see Fig. 8 of [6]). Full model available
at http://projects.laas.fr/fiacre/examples/landinggear.html.

10



of the system (a computing module) only when the change in its input probes leads to
a change in the values that it writes. This is useful because it helps reduce the number
of transitions in our system. Also, one can remark that computing modules are fully
symmetric. Therefore, in normal mode, we will always observe the same values twice;
once for each copy of the module. To avoid this unnecessary source of interleaving, we
have added priorities between copies of the same component.

Priorities have also been added between the components of the hydraulic system so
as to fix an arbitrary order between operations of the electro-valves and cylinders. This
optimization is correct because all these devices are independent; hence we limit the
interleaving between independent actions but do not rule out any possible scenario.

4 Experimental Results

We follow a methodology similar to the one adopted by Boniol et al. in a previous
experiment with model-checking of a landing gear control system [7]. We define several
versions of our model that corresponds to different abstractions or optimizations on
the system. We define three sets of assumptions and, by combining these parameters,
consider different cases of growing complexity.

Parameter V We consider two configurations for the gear-door sets, a version with only
one gear-door set (denoted V1) and a complete version, with all three gear-door
sets (V3).

Parameter H We consider several versions for the environment that stimulates the pilot
handle. The most general case where the only constraint on handle movements is a
100ms delay between two stimuli is denoted H2. We also consider simpler scenarios
where the pilot can move the handle at most k times. This assumption is denoted
H1(k).

Parameter N/F We use the notation N for models that are restricted to the normal
mode, where no failures can happen, and the notation F for models that include
failures.

With these parameters defined, it is possible to refer to a version of the model with a
triplet, for instance (V1,H1(2), N). This is the simplest possible, meaningful case: only
one gear-door set; two actions on the handle; and no failures. The most complex case is
(V3,H2, F ).

Because of the complexity of the system, we considered only cylinder failures. Since
we only consider cylinder failures, we do not duplicate the computing component in the
digital part, however we provide a version of our model allowing this duplication. For
checking behavioral properties, we assume that, in the initial state of the system, gears
are extended and doors are opened. We also assume that gear absorbers are always
relaxed, i.e. we assume that the plane is flying.
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4.1 Normal mode requirements

The properties corresponding to normal mode requirements (see [6]) can be expressed
as reachability properties. Indeed checking requirements R2⋆, R3⋆, R4⋆, R5⋆ corresponds
to looking for a state were some condition is not satisfied, and requirement R1⋆ can be
expressed with an observer of the system (waiting 15s) and a reachability condition. This
allows for efficient verification using the faster state-space abstraction of Tina (option
-E) that preserves reachable states without building the whole class graph.

All these properties are expected to be true on our model. This is the worst possible
case when checking reachability since it means that we need to generate the whole set of
reachable states of the system. We give below the computation times and the memory
usage for generating the whole state graph. We also give the complexity using the
number of “markings” and “classes” that have been generated in each case. A marking
corresponds to a particular value for every variable and state for each process in the
system. A class adds timing constraints on the possible transitions enabled from a
marking (hence there are always more classes than markings.) Markings are enough to
decide the requirements R1⋆ to R5⋆, but we need to compute a set of classes in order to
compute an exact set of reachable markings.

Normal mode state space computation times and memory usage

H2 H1(10) H1(11) H1(12) H1(13) H1(14)

V1

time 41s 56s 71s 88s 105s 123s
memory 24MB 47MB 54MB 62MB 69MB 76MB

V3

time 262s 248s 331s 415s 507s 602s
memory 127MB 202MB 241MB 282MB 323MB 364MB

Normal mode markings and classes sizes

H2 H1(10) H1(11) H1(12) H1(13) H1(14)

V1

markings 16 · 103 56 · 103 63 · 103 71 · 103 79 · 103 86 · 103

classes 153 · 103 252 · 103 303 · 103 356 · 103 411 · 103 468 · 103

V3

markings 90 · 103 242 · 103 283 · 103 325 · 103 367 · 103 409 · 103

classes 979 · 103 1 125·103 1 409·103 1 701·103 2 015·103 2 333·103

We can observe that the infinite behavior scenario (H2) is easier to handle than
bounded ones when the bound is at least 10 handle moves for V1 and 11 handle moves for
V3. This is mainly due to the fact that bounding the number of interactions is performed
by implementing a counter that may increase the number of reachable states.

For our next experiment, we study the requirement R11 and try to find the smallest
time, say tmin, for the gears to be fully extended and locked in open position. This
property can be reduced to a simple reachability property since there is a specific state,
si, in the process modeling the pilot behavior that is reached when the pilot stay idle
for a time tmin. Indeed, it is enough to check that there are no states where the pilot
is in si and the gears are not fully open. The following table gives the computation
time and memory usage for different value of tmin, for the configuration (N,H2, V3) (no
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failures, no assumptions on pilot behavior, and the complete gear-door sets). The best
time for which the property is true is 8.5s. We can observe that the computation time is
much smaller for values below this threshold since the property is false in this case (and
the state space exploration can be stopped). So, the computation is quasi-immediate
when the time bound is below the 8.5s threshold but the whole state space needs to be
computed above it.

Checking requirement R11 on (N,H2, V3) for different time limits tmin

tmin 15s 9s 8.5s 8.4s
result valid valid valid falsified

time 268s 268s 268s 2s
memory 127MB 127MB 127MB 5MB

We also considered a discretized version of our model where all intermediate movement
states were computed, for example the cylinder extension ratio, and where we used the
exact (hybrid) physical behavior given in the specification. This discretization was made
using a sampling time of 100ms. Because of the number or possible combinations of
cylinders, analogical switch and electro-valves, the number of states grow much faster
than with our abstract (non discrete) version. Actually the discretized version was our
first attempt, because we initially believed that it was giving more precise bounds. How-
ever, the 100ms sampling time was not enough to provide better results than the non
discrete version. With the discrete version, the configurations (N,H1(5), V1) and above
were not computable in reasonable times (less than 8 hours).

Normal mode state space computation times and memory usage (discrete)

H1(2) H1(3) H1(4)

V1

time 17s 804s 19 887s
memory 33MB 1 132MB 8 982MB

Normal mode markings and classes sizes (discrete)

H1(2) H1(3) H1(4)

V1

markings 158 · 103 5 097 · 103 112 094 · 103

classes 217 · 103 8 648 · 103 202 266 · 103

These experiments show the interest of having different kind of abstractions im-
plemented in the same tool (like having different symbolic methods available). The
most complex configuration we tried to analyze with the default options of Tina (that
preserves linear time properties) is (N,H2, V3). We stopped the analysis after 36 hours
of computation and more than 2 billion state classes. The same model can be analyzed
with the time-abstracted semantics (option -M) in two hours (7355s), then with the same
option and after removing duplication of the digital component in 422s. Our results
also show the interest of priorities to reduce the state space size. For instance, after
adding priorities between independent devices and removing duplication of the digital
component, we can analyze the same system in 262s (option -E). To see the impact
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of different optimizations we considered a smaller case (N,H1(8), V3) with different
configurations and all without computing module duplication, the results are shown in
the table below.

Impact of optimizations on markings and classes.

(N,H1(8), V3) -E priorities only no priorities

time 119s 5 237s 12 383s
memory 126MB 2 204MB 5 467MB

markings 160 · 103 160 · 103 292 · 103

classes 619 · 103 54 342 · 103 108 302 · 103

4.2 Failure mode requirements

As mentioned in section 3.5, we focused on requirements R7⋆: “If one of the three doors
is not seen locked in the open position more than 7 seconds after stimulating the opening
electro-valve, then the boolean output normal mode is set to false”. To check that we
satisfy these requirements we need to consider LTL formula.

We can express the requirement R71 quite naturally using LTL: after a failure
(fail_c1), if at least one door is closed (not open_d1) and we later try to stimulate
the opening electro-valve (<>open_EV) then the boolean normal_mode is eventually set
to false.

[]((fail_c1 /\ (not open_d1) /\ (<>open_EV)) => <>(not normal_mode)).

We can observe that the 7 seconds delay does not appear explicitly in the formula.
Indeed, this delay is part of the behavior of the digital module. This formula is false
when checked on the model. After looking at the counter-example provided by the model-
checker, we find that the problematic scenario corresponds to a situation where the pilot
continuously moves the handle, waiting less than 7 seconds between each movement. We
can modify the property in order to rule out this scenario; i.e. ask that the pilot does
not move the handle up. We solve this issue by adding an idle state to our pilot that
can be reached after moving the handle. If this idle state is reached then the pilot will
not move the handle again. With this new state added, the correct formula is

[]((pilot_idle /\ handle_down /\ fail_c1 /\ (not open_d1)

/\ (<>open_EV)) => <>(not normal_mode)).

We were not able to model-check the system with the configuration H2. Even if the
number of reachable states remains quite small in this case, the number of classes is
too large to address it in reasonable time. We give below the results obtained with a
“bounded” pilot (H1(k)) and an incomplete or full gear-door set (configurations with V1

or V3).
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Failure mode, time and memory usage results for bounded scenarios

H1(3) H1(4) H1(5) H1(6)

V1

time 2s 7s 15s 32s
memory 7MB 17MB 34MB 54MB

V3

time 70s 304s 968s 2418s
memory 169MB 611MB 1 544MB 2 925MB

Failure mode, markings and classes counts for bounded scenarios

H1(3) H1(4) H1(5) H1(6)

V1

markings 12 · 103 30 · 103 54 · 103 83 · 103

classes 17 · 103 49 · 103 108 · 103 200 · 103

V3

markings 317 · 103 1 153 · 103 2 822 · 103 5 073 · 103

classes 458 · 103 1 725 · 103 4 967 · 103 10 847 · 103

4.3 Comparaison with a previous, similar study

A similar case study was used by Boniol et al. in 2006 [7], where they compared the use
of several model-checking tools: a majority of tools based on the synchronous language
Lustre, and one tool, Uppaal, based on timed automata. It is interesting to revisit these
results that are nearly ten years old. This comparison is not very significant though.
Indeed, even if the specification used in our work derives from the use case of [7], it is
not clear if they are totally equivalent. Also, we do not know what optimizations were
used in the other models. In particular, our use of an abstract (non discrete) behavior
for the analog switches and the cylinders may account for most of our good results.

In the study of [7], no tools were able to deal with the failure mode requirements.
For the nominal case, the most complex problem configuration studied is equivalent to
(N , H2, V3) with our notation. With this configuration, Lustre-SMV requires 414MB of
memory and 16mn 40s to compute its result. We give the running time for information
only, since it is not meaningful to compare computers that are 10 years apart. On the
opposite, the memory consumption offers a more reliable point of comparison. Using
Tina on our model for (N , H2, V3) we need only 127MB and 5mn.

Uppaal, that is based on timed automata, provides the formalism that is the closest
to Time Petri Nets from all the tools considered in this study. At the time, Uppaal
gave no results on the configuration with three gears. On a configuration with only one
gear, equivalent to (N , H2, V1) with our notation, it takes 761MB and nearly 6 hours to
return a result. Unfortunately we do not have access to the model and do not know the
number of states that were generated, so we cannot use this information as a basis for
our comparison. This can be compared to the 24MB of memory that are needed in our
experiment (and 41s, with the same caveat than previously).

5 Conclusion

We have illustrated the use of Fiacre for checking the real-time properties of a fairly large
and complex real-life case study. We have provided a formal model that is as faithful
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as possible to the informal, reference specification, at the risk of obtaining intractable
model-checking problems. This model could be further optimized in order to obtain
better computation times when checking a specific set of properties, for example by
reducing the inherent level of redundancies when it does not modify the behavior of the
system. Nonetheless, even without further optimizations, it is possible to check most of
the requirements that are part of the specification.

Other solutions for checking larger, more complex configurations of our model are
worth pursuing. A first possibility will be to take benefit from the symmetries of the
system (for instance, the two rear gears are interchangeable). Another solution will be
to simplify the transient transitions of the model, that is the internal, instantaneous
transitions that are only used for modeling purpose and have no “physical meaning” in
the system. This simplification can be compared to what we already obtain by adding
priorities between independent devices, but would be more efficient and simpler to define
at the model level. Unfortunately, our toolset does not provide this optimization. A first
investigation (by reducing the state class graph afterward) show that, this way, we could
reduce the memory usage by a factor of about 20.
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