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A novel algorithm for robust curvature estimation based on sinusoidal curve fitting is proposed. The evaluation of this algorithm is presented on analytical surface triangulations by comparing it with other recognized fitting methods according to three criteria: convergence, precision and robustness. By experimenting on various data, we show that the Sinefitting algorithm is less affected by errors in vertex normal estimation.

RELATED WORK

Knowledge about the geometric shape of an object is based on the understanding of the differential structure of the object boundary surface: the principal curvatures and directions, the Gauss and the Mean curvatures of the boundary surface. We are interested in estimating this differential structure of the underlying smooth surface from a given triangulation. Since the pioneer works of [START_REF] Besl | Invariant surface characteristics for 3d object recognition in range images[END_REF][START_REF] Sander | Generic curvature features from 3-d images[END_REF][START_REF] Flynn | On reliable curvature estimation[END_REF], curvature estimation is a central issue in a great number of research. For surveys we refer the reader to [START_REF] Maltret | Discrete curvatures and applications : a survey[END_REF][START_REF] Petitjean | A survey of methods for recovering quadrics in triangle meshes[END_REF][START_REF] Surazhsky | A comparison of gaussian and mean curvatures estimation methods on triangular meshes[END_REF]. Generalized curvatures, convergence and measure stability are covered by [START_REF] Guoliang | Convergence analysis of a discretization scheme for gaussian curvature over triangular surfaces[END_REF][START_REF] Morvan | Generalized Curvatures[END_REF][START_REF] Chazal | Stability of curvature measures[END_REF]. The approaches considered in this paper are based on the fitting paradigm: first, a quadratic form is constructed at each vertex of the surface triangulation and then the local differential structure is derived. Chen et al [START_REF] Chen | Intrinsic surface properties from surface triangulation[END_REF] use the normal curvature as stated by the Meusnier and Euler's theorem and locally fit a set of circles through the neighbour vertices. McIvor et al [START_REF] Mcivor | A comparison of local surface geometry estimation methods[END_REF] use a quadratic surface fitting for determining the principal frame and the rotated principal quadric. Different variants of this method are applied depending on the type of the quadratic form (simple SQFA, extended or full). More generally, Cazals et al [START_REF] Cazals | Estimating differential quantities using polynomial fitting of osculating jets[END_REF] make use of osculating jets defined as truncated Taylor expansions. For Taubin [START_REF] Taubin | Estimating the tensor of curvature of a surface from a polyhedral approximation[END_REF] the quadratic form is expressed as an integral representation that is used to obtain the curvature tensor. Langer et al [START_REF] Langer | Exact and interpolatory quadratures for curvature tensor estimation[END_REF] use integral representations of the Gauss and the Mean curvatures. Cohen-Steiner et al [START_REF] Cohen | Restricted delaunay triangulations and normal cycle[END_REF] use integrals of specific differential forms on their normal cycles. Fitting enables precise estimation of curvatures but it is very sensitive to the surface discretization and to the distribution of the edge directions in the vertex neighbourhood. Indeed, these methods make use of the surface normal approximation which strongly depends on the regularity of the triangles in this neighbourhood.

In the current paper, a novel method for curvature estimation, called SineFitting, is presented. At each vertex of the surface we construct a sinusoidal curve to fit the directional angles from the target vertex to its neighbours. Therefore, in contrast to Chen's method, there is no need to restrict the choice of neighbours to specific configurations (pairs of geometrically opposite vertices). Moreover, computations in under or oversampled neighbourhoods remain robust while maintaining high precision. The elaborated method has a linear convergence rate and is not acutely affected by errors in estimation of the normal.

OVERVIEW OF THE SINEFITTING METHOD

We refer the reader to [START_REF] Spivak | A Comprehensive Introduction to Differential Geometry[END_REF] for detailed discussion on surface differential geometry. Let S be a surface, P a target vertex from S and N the unit normal vector to S in P. Let τ be the tangent plane of S in P, see Fig. 1. Given a unit vector T in τ, the osculating plane ι through N and T intersects S in a curve c. Let n be the unit normal vector of c in P and  the angle between n and N , )

( max T , T = θ  ) ( ) ( θ •sin² k + θ •cos² k = k min max T (2)
The proposed algorithm, called SineFitting algorithm, is based on (1) and (2) in order to evaluate the principal directions min T and , T max the principal curvatures k min and k max , the Gauss and the Mean curvatures, k G and k H , in P. Our approach is based on a two steps procedure: First, the normal curvature k T is evaluated according to (1) for curves locally fitting the normal sections of the surface. Second, a sinusoidal curve is constructed to approximate the computed values of k T following (2). Principal curvatures and directions are calculated for specified values of the sinusoidal amplitude and frequency. Let T S be a triangulation of S, N(P) a neighbourhood of P, N={P i , PP i  T S , i=0,…,m-1} and k i the normal curvature of S along PP i . Let P i * be the projection of P i on τ, M i the middle point of PP i and M i the median of PP i , shown in Fig. 1. Let us construct a circle σ passing through P and P i , and centred at

O i , O i = N l ∩ m i , where N l is the straight line supporting N . Let n be the unit normal of σ, i i σ PO PO = n
, and k σ be the normal curvature of σ,

i σ PO = k 1 .
Let us now apply (1) to k i and k σ :

)) ( .cos( n , N k = k σ i  (3) 
The unit vectors N and n are aligned with opposite directions and thus

1 )) ( cos(   = n , N
. The curvature k i can be expressed then as:

i σ i PO = k = k 1   (4) 
Let ψ be the angle  (M i , P, O i ). From the right-angled triangle Δ(M i , P, O i ) it follows that

i i i i PO PP • PO PM = ψ 2 ) cos(  (5) 
The value of cos(ψ) can be estimated from the scalar product of N  and i PP and by the substitution in (4) we finally compute the estimation of k i :

² 2 i i i PP PP • N • = k (6)
It should be noticed that the estimation ( 6) is similar to the estimation in [START_REF] Taubin | Estimating the tensor of curvature of a surface from a polyhedral approximation[END_REF]. The above construction gives a geometrical insight of the normal curvature estimation.

The second step of our algorithm includes the construction of a sinusoidal curve that approximates the normal curvature in N(P). Our goal is to rise the constraint of using min T and max T in (2), and fit a linear sinusoidal expression. According to (2) we have:

    i min i max i θ •sin² k + θ •cos² k = k (7)
where

) ( max i i T , T = θ  . We introduce the angle ϕ ϕ =  ( 0 T , max T ) (8)
where 0 T is any vector from N * (P), N * (P)

= {PP i * , i=0, …, m-1}. In (7), i θ is substituted by α i , α i = θ i -ϕ.
Then ( 7) is rewritten as:

) ( ) (   + α •sin² k + + α •cos² k = k i min i max i (9)
Next we substitute ϕ, k min and k max as:
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The equation ( 9) is rewritten as:

c + α b• + α a• = k i i i ) sin(2 ) cos(2 (13) 
Now we are ready to compute a sinusoidal curve to approximate in a least square way the estimated from (6) normal curvatures. The intuition of this approach is to first estimate a sine wave shape of arbitrary phase. The peaks of its deviation will correspond to the values of k min and k max . The principal directions min T and max T will correspond to the phases of the leftmost peaks in relation to the origin.

The SineFitting algorithm is given in Algo. 1 [START_REF] Goldman | Curvature formulas for implicit curves and surfaces[END_REF], k max [START_REF] Guoliang | Convergence analysis of a discretization scheme for gaussian curvature over triangular surfaces[END_REF] 14: Calculate max T (8) & ( 10)
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EXPERIMENTAL SETUP

The discussion below is detailed on three particular examples, a sphere, S sphere , a right circular cylinder, S cylinder and a trigonometric bivariate function, S trigonometric defined as follows:

S sphere : x² + y² + z² = 2² (14) S cylinder : x² + y² = 2², -2 ≤ z ≤ 2 (15) S trigonometric : 0.1(cos(xπ) + cos(xπ)) (16)
The full experimentation data set covering all geometric configurations according to the surface classification given in [START_REF] Flynn | On reliable curvature estimation[END_REF], is accessible at http://dept-info.labri.fr/~charton/curvature_analysis/. The surface triangulation in use is the square split sampling defined in [START_REF] Hamann | Curvature approximation for triangulated surfaces[END_REF].

The proposed comparative analysis includes methods acknowledged as representative in both discrete and continuous approaches: the discrete approach formulates a closed form for differential geometry operators that works directly on the discrete representation as the method proposed by Desbrun, Meyer et al [START_REF] Desbrun | Discrete differential-geometry operators for triangulated 2-manifolds[END_REF][START_REF] Meyer | Discrete differential operators for computer graphics[END_REF] and abbreviated as SDA. The continuous approach includes a two stage procedure. First an entity fitting is processed: fitting of surfaces, as the simple quadratic fitting method of McIvor et al [START_REF] Mcivor | A comparison of local surface geometry estimation methods[END_REF] abbreviated SQFA, or fitting of curves, as [START_REF] Chen | Intrinsic surface properties from surface triangulation[END_REF], or fitting of the curvature tensor, as [START_REF] Taubin | Estimating the tensor of curvature of a surface from a polyhedral approximation[END_REF] and [START_REF] Langer | Exact and interpolatory quadratures for curvature tensor estimation[END_REF]. Then fitted entities are "interrogated" in order to evaluate the principal curvatures and directions, the Gauss and the Mean curvatures. We study the performances of the SineFitting method with respect to three criteria: the pointwise convergence, the precision and the robustness.

Pointwise convergence

Let P be a target vertex on the surface S, B(P, r) a ball centred at P with radius r and c B(P, r) an intersection curve, c B(P, r) = S ∩ B(P, r). Let us consider N(P) with central vertex at P and neighbour vertices 5 0 = i i } {P on c B(P, r) . The pointwise convergence tests for the target vertex P consist in checking if the estimated values of the curvatures converge to the exact values when r→0.

Precision

The estimated curvatures are compared with the exact ones computed from the curvature formulas for implicit surfaces given in see in [START_REF] Goldman | Curvature formulas for implicit curves and surfaces[END_REF]. For S sphere curvatures are constant, k min = k max = k H = 0.5, and k G = 0.25. For S cylinder any point not belonging to the bottom and the up circle sides has k min = 0, k max = 0.5, k H = 0.25 and k G = 0. For S trigonometric the symbolic computations are performed using Maple17.

Robustness

In order to test robustness, we investigate four strategies for the sampling of

5 0 = i i } {P
on c B(P, r) inspired from the experiments of [START_REF] Garimella | Curvature estimation for unstructured triangulations of surfaces[END_REF], [START_REF] Gatzke | Curvature maps for local shape comparison[END_REF], [START_REF] Gatzke | Estimating curvature on triangular meshes[END_REF] and [START_REF] Langer | Exact and interpolatory quadratures for curvature tensor estimation[END_REF]:

The regular neighbourhood N reg (P) corresponds to a regular sampling around P and enables to study convergence when no degenerate triangles occur in the vicinity of the target vertex.

In the irregular neighbourhood N irreg (P), pairs of vertices P i and P i+2 , i=0,1,2, are aligned. This geometric configuration corresponds to the "regular vertex" following [START_REF] Langer | Exact and interpolatory quadratures for curvature tensor estimation[END_REF]. Being less constrained than N reg (P), it focuses on the direction distribution and downplays the distances to the neighbours. The regular neighbourhood with angle perturbation N regδAngle (P) is constructed from N reg (P) by displacement of a single vertex P j toward or away from its neighbours on the surface. The regular neighbourhood with distance perturbation N regδDist (P) is constructed from N reg (P) by displacement of a single vertex P j towards or away from P on the surface. 

RESULTS

Pointwise convergence

Examples of the pointwise convergence, in P(2, 0, 0) on S sphere are provided in Fig. 3. The vertical axis indicates the variation of the mean curvature k H . The center of the k H variation interval is the exact value of k H . The horizontal axis corresponds to the radius r of B(P, r). According to our experimentation all methods converge to the exact curvature values when the theoretical normal is used no matter the perturbations on the neighbourhood N(P). The rates of convergence are linear except for the SQFA method.

When the normal is approximated with an area weighted normal and the neighbourhood vertices are displaced for N regδDist (P), see Fig. 3(c), only SDA converges to the exact value.

The pointwise convergence in P(2, 0, 0) on S cylinder is shown in Fig. 4 and Fig. 5. For this example, all methods converge to the exact values with the theoretical normal except for the case of N reg (P), see Fig. 4(a). The methods SQFA, Langer's and the SineFitting converge to the exact values when the theoretical normal is used for all types of N ( P ) . The best convergence rate is achieved by the SineFitting method.

The results on S cylinder when the area weighted normal is used do not converge to the exact values when the neighbourhood is perturbed. Moreover, the type of perturbation, depending on the distance between the target vertex and the neighbours, or on the angles adjacent to the target vertex, does not have the same impact on the algorithms. As for example, Chen's and Langer's methods are precise for k H with angle perturbation, N irreg (P), while approximating H k with N regδAngle (P) and N regδDist (P). The extremely erroneous value for k H , k H = 0.277778, is produced by the Taubin's method on N irreg (P). 

Precision

The precision is illustrated in Fig. 7 with respect to the Gauss curvature evaluation on S trigonometric . As one can see in Fig. 7(b,c,f), Taubin's, Chen's and Langer's methods lack of precision in some points of inflection. The SineFitting method surpasses in precision the other methods: the error deviation is minimal for the different neighbourhood perturbations.

Robustness

The sensitivity of curvature estimation to the precision of the normal is illustrated in Fig. 6 and the area-weighted ones. SQFA and Langer's methods are the more sensitive to the normal precision as seen in Fig. 6(k)(l). The proposed SineFitting algorithm handles the irregularities in the valence and the shape of the surface triangulation when the theoretical normal is available and remains stable when the normal is approximated. 

CONCLUSION AND PERSPECTIVES

In the present article we propose a method for the evaluation of the principal directions and curvatures, the Gauss and the Mean curvatures of surface triangulations. The elaborated method is based on a curvature Sinefitting algorithm and allies the advantages of the curve and surface fitting methods in processing the irregular data sampling. Three fundamental treatments are identified during the curvature evaluation at a target vertex: extraction of the neighbourhood, estimation of the normal and principal directions and curvature computation. Key attention is kept to the role of the normal estimation. A comparative analysis with other widely used methods is provided. Experimental results on chosen data set enhance the SineFitting performances with respect to the pointwise convergence, the precision and the robustness of the computation. One future extension of our work is to improve the normal estimation on meshes. In addition, we intend to extend our method to compute curvature on a wider scale by examining multi-ring neighbourhood. Our goal is to revisit geometric saliency and develop segmentation techniques based on precise and robust curvature estimation.
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 1 Figure 1: Local surface geometry around point P According to Meusnier & Euler's theorem, the normal curvature T k of S in P along T could be defined as    cos . k = k T (1) where k denotes the curvature of c in P and N • n = ) cos( . While T is rotated around N , an infinite number of normal curvatures k T could be defined. The extreme values of k T , k min and k max , are achieved along the principal directions, min T and . max T Euler's theorem gives the relation between k T , k min , k max and the angle θ ,
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 2112 Figure 2: SineFitting curvature estimation over one ring neighbourhood
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 3 Figure 3: Sphere pointwise convergence test for mean curvature computation with area-weighted normal.
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 4 From a quantitative point of view, by counting the total number of successful tests, SQFA and the SineFitting perform better than the others. The convergence rate makes the difference: the quadratic convergence rate of the SQFA makes it less attractive, favouring the SineFitting method. Cylinder pointwise convergence test for mean curvature computation with theoretical normal.
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 5 . The regions where the estimated values are equal to the exact ones are coloured in green. With blue and red colours the regions where curvatures are respectively underestimated or overestimated are shown. All examples in Fig.6(a)-(f) use the theoretical normal while those in Fig.6(g)-(l) exploit the area-weighted normal approximation. As one can see the errors in the curvature estimation are structurally related to the quality of the underlying region triangulation, vertex valence for the poles of the sphere, and triangle quality all over the triangulation. The SDA outperforms all algorithms having similar results for both normals, the theoretical .Cylinder pointwise convergence test for mean curvature computation with area-weighted normal.
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 67 Mean curvature evaluation based on theoretical and area-weighted normal (Gauss curvature evaluation based on theoretical normal