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Abstract

This paper presents a study of the stress analysis in cylindrical assemblies. For the present study we use a cylindrical assembly of two

tubes. We write all the components of the stress field function of the sð1Þzz ðzÞ stress in the first tube and then we introduce these components

into the potential energy formulation. Our method is a variational method applied on the potential energy of deformation. The model

can predict the intensity and the distributions of stresses in the assembly. We can also analyse the influence of some geometrical or

material parameters on the stress field.
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1. Introduction

The increase in the use of adhesive bonded joints is due

to the many advantages of this method compared to

traditional methods. This assembling method distributes

stresses over the whole joining surface and removes the

concentrations of stresses to the boundary of holes

generated by bolting or riveting assemblies. Another factor

in the increased use of adhesive bonded joints is the

appearance of composite materials, because their mechan-

ical performances decrease if the assembly requires

machining.

The mechanical performance of an adhesive bonded

joint is related to the distribution of stresses in the adhesive

layer. Consequently it is essential to know this distribution,

which, because of its complexity, makes the prediction of

fractures difficult. From the first works of Volkersen [1],

which give only a distribution of the shear stress in the

adhesive joint, to the more recent studies by finite elements,

many formulations have made it possible to define the field

of stresses in such assemblies in a better way.

Compared to the number of recent scientific publications

concerning plane joints, with single or double lap [2–9],

there are only a few theoretical works concerning the study

of mechanical behaviour in adhesive assemblies with

symmetry of revolution under tensile loading [10–14],

subjected to torsion [15] or a harmonic axial load [16].

Lubkin and Reissner [17] present an analysis of stresses

in tubular assemblies subjected to an axial loading and give

a solution of the peeling stress distribution in the thickness

of the adhesive. The tubes are supposed to be of small

thickness, and they use the theory of thin walls to build the

stress field. Their analysis assumes that the work of shear

and peel stresses in the two tubes is negligible relative to

that of the same stresses in the adhesive.

Alwar and Nagaraja [18] made a study by finite elements

of tubular joining subjected to an axial load, taking into

account the viscoelastic behaviour of the adhesive. They

also showed that the viscoelastic behaviour of the adhesive

makes it possible to predict a considerable reduction in the

maximum stresses at the ends of the joint.

Other more recent work confronts experimental results

with analytical computation results from the classical

theory, to which are added correcting fields. Others draw
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a certain number of conclusions on optimisation of the

various geometrical and structural parameters, conferring

maximum mechanical strength on the assembly when it is

under tensile loading.

The most recent work concerning the type of assembly

considered is by Shi and Cheng [11]. They build a first

stress field using equilibrium equations and the conditions

of continuity of stresses at the interfaces using an equation

of compatibility. They then calculate the potential energy

associated with this field, and, using the theorem of

minimal complementary energy, obtain a system of

differential equations, the solutions of which are used to

determine the optimal field.

2. Theoretical model

All work has encountered difficulties in modelling the

stress field in the vicinity of the ends of the joint. The

method used to obtain the optimal field for this type of

assembly consists of:

� construction of a statically acceptable field,

� calculation of the potential energy associated with the

stress field,

� minimisation of this energy by the variational method,

and

� resolution of the differential equation obtained.

2.1. Geometrical definitions and hypothesis

In this study we consider an assembly of tubes subjected

to a tensile load whose geometrical definitions are

represented in Fig. 1, where we have the following

notations: Ec, nc, Young’s modulus and Poisson’s ratio of

the adhesive r; Etl, E ll, ntll, longitudinal, transverse

modulus and Poisson’s ratio of the inner tube; E2t, E2l,

ntl2, longitudinal, transverse modulus and Poisson’s ratio of

the external tube; ri, internal radius of the inner tube; ric,

external radius of the inner tube; rec, internal radius of the

external tube; re, external radius of the external tube; L,

joining length; and f and q, tensile stresses following along

the z-axis, on the inner and outer tubes, respectively.

The constraints in various materials will be referenced by

the index (i) (i ¼ A—the internal tube, r—the adhesive

and B—the external tube).

To build the statically acceptable field, we adopt the

following assumptions:

� The radial stress sðiÞrr ¼ 0 is null in the three domains.

� The revolution symmetry imposes that the shear stress is

null:

try ¼ tzy ¼ 0. (1)

� The stress in the adhesive will be neglected:

sðrÞ
zz ¼ 0. (2)

� The axial stress will be a function of only ‘‘axial’’

variable z.

The constraint field is reduced to the following

components:

� Inner tube (A):

sð1Þzz ðzÞ; tð1Þrz ðr; zÞ; s
ð1Þ
yy ðr; zÞ. (3)

� Adhesive (r):

s
ðrÞ
yy ðr; zÞ; tðrÞ

rz ðr; zÞ. (4)

� Outer tube (B):

sð2Þzz ðzÞ; tð2Þrz ðr; zÞ; s
ð2Þ
yy
ðr; zÞ. (5)

By introducing the adopted assumptions, the equilibrium

equations in cylindrical co-ordinates are reduced to the
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Fig. 1. Geometrical and material definitions of the assembly.



following two expressions:

�
1

r
syy þ

@trz

@z
¼ 0, (6)

@trz

@r
þ

1

r
trz þ

@szz

@z
¼ 0. (7)

By writing the equilibrium of the assembly we obtain the

relation that connects the two loads f and q with the sðiÞzz ðzÞ

stresses:

r2ic � r2i
� �

sð1Þzz þ r2ec � r2ic
� �

sðCÞ
zz

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

0

þ r2e � r2ec
� �

sð2Þzz

¼ r2ic � r2i
� �

f ¼ r2e � r2ec
� �

q. ð8Þ

2.2. Stress field definition

For the inner tube (A):

By writing the equilibrium of an elementary length

section of tube (Fig. 2) we are able to express the shear

stress tð1Þrz :

tð1Þrz ðr; zÞ ¼
r2i � r2
� �

2r

dsð1Þzz

dz
. (9)

From expression (9) and equilibrium equation (6), we

express directly the orthoradial stress in the material A:

s
ð1Þ
yy
ðr; zÞ ¼

r2i � r2
� �

2

d2sð1Þzz

dz2
. (10)

For the adhesive r:

With the help of Eq. (7) and the continuity condition of

the shear stress for r ¼ ric, we obtain the expression for the

shear stress tðcÞrz :

tðcÞrz ðr; zÞ ¼
r2i � r2ic
� �

2r

dsð1Þzz

dz
. (11)

The expression of the orthoradial stress in the adhesive is

obtained as for the inner tube A:

s
ðcÞ
yy
ðr; zÞ ¼

r2i � r2ic
� �

2

d2sð1Þzz

dz2
. (12)

For the outer tube (B):

The expression for shear stress in the external tube can

be given in two ways: either by considering the balance of a

section of tube or by using the equilibrium equation (7) and

the condition of continuity of this same constraint at the

interface with the adhesive. These two methods lead to the

same expression:

tð2Þrz ðr; zÞ ¼
r2e � r2
� �

r2ic � r2i
� �

2rðr2ec � r2eÞ

dsð1Þzz

dz
. (13)

The orthoradial stress is obtained immediately:

s
ð2Þ
yy
ðr; zÞ ¼

r2e � r2
� �

r2ic � r2i
� �

2rðr2ec � r2eÞ

d2sð1Þz

dz2
. (14)

The orthoradial stress in the adhesive is independent of r.

This is due to the nullity of the sðcÞzz ðzÞ stress. We can

see that the orthoradial stress is continuous over inter-

faces with the adhesive. This continuity results from the

starting hypothesis in which we consider the radial stress

as null.

Now the field is entirely determined and its com-

ponents are written according to the stress in the inner

tube sð1Þzz .

For the rest of the problem we must use the boundary

conditions, those that translate the presence of edges into

z ¼ 0 and z ¼ L.

z ¼ 0; sð1Þzz ð0Þ ¼ q; tðcÞrz ðr; 0Þ ¼ 0;

z ¼ L; sð1Þzz ðLÞ ¼ 0; tðcÞrz ðr;LÞ ¼ 0. ð15Þ
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Fig. 2. Equilibrium of an elementary length section of the inner tube, r 2 ri; ric½ �.



2.3. Expression of potential energy

Because the tubes considered are transversally isotropic

and the adhesive isotropic, the potential energy can be

written as

xp ¼ p

Z L

0

Z ric

ri

s
ð1Þ2
yy

E1t

þ
sð1Þ2zz

E1l

�
2ntl1

E1t

sð1Þzz s
ð1Þ
yy

þ
1

G1

tð1Þ2rz

" #

r dr dz

þ p

Z L

0

Z rec

ric

1

Ec

s
ðcÞ2
yy

þ 2ð1þ ncÞt
ðcÞ2
rz

h i

r dr dz

þ p

Z L

0

Z re

rec

s
ð2Þ2
yy

E2t

þ
sð2Þ2zz

E2l

�
2ntl2

E2t

sð2Þzz s
ð2Þ
yy

þ
1

G2

tð2Þ2rz

" #

r dr dz.

ð16Þ

We replace the expressions of stresses and obtain, after

integration over the radius r, the following potential energy

expression:

xp ¼ p

Z L

0

Asð1Þ2zz þ Bsð1Þzz

d2sð1Þzz

dz2
þ C

dsð1Þzz

dz

� �2

þDsðlÞzz

"

þE
d2sð1Þzz

dz2

� �2

þ F
d2sð1Þzz

dz2
þ K

#

dz, ð17Þ

where A, B, C, D, E, F and K are constants depending on

the load and on the dimensional and mechanical specifica-

tions of the two tubes and adhesive.

By carrying out a variational calculus with this last

expression of energy and using the boundary conditions in

z ¼ 0 and z ¼ L, we find that the energy is minimal when

sð1Þzz is the solution of the following differential equation:

E
d4sð1Þzz

dz4
þ ðB� CÞ

d2sð1Þzz

dz2
þ Asð1Þzz þ

D

2
¼ 0. (18)

3. Model application

The application will be presented in the following way:

we use the configuration presented in Table 1 and some

figures presenting the distribution of stresses and the

influence of various parameters affecting the intensity and

the distribution of the stress field. This analysis will be

reduced to the study of the influence of adhesive thickness,

the length of adhesive joint, the Young’s modulus of the

adhesive and the relative rigidity E2/E1.

Fig. 3 gives the force definition, (19), and the radius for

which we made the analysis.

p r2ic � r2i
� �

f ¼ p r2e � r2ec
� �

q ¼ F ) f ¼
F

p r2ic � r2i
� � . (19)

Fig. 4 shows the distributions of stresses in the adhesive

for the configuration analysed. We note that the orthor-

adial stress is more significant than the shear stress.

After studying the influence of the geometrical para-

meters, we notice that for joints presenting a relatively

short covering length, the shear stress adopts a parabolic

profile with a maximum in the middle of the adhesive

cover. This remark is also made by Shi and Cheng [11], but

differs from the distributions of Lubkin [17] and Adams

[10], which show two peaks on the free edges; however, it is

not validated.

Fig. 5 shows that the covering length has a significant

effect on the distribution of shear and orthoradial stresses.

We notice that there is an optimal length beyond which the

maximum constraints do not change. Moreover, as the

covering length increases, we observe:

� compression of shear stress in the middle of the joint

and

ARTICLE IN PRESS

Table 1

Parameters of the assembly

Tube 1 Adhesive Tube 2 ri (mm) ric (mm) rec (mm) re (mm) L (mm) f (MPa)

Aluminium Araldite Aluminium

AU 4G AV 119 AU 4G

E ¼ 75 000MPa Ec ¼ 2700MPa E ¼ 75 000MPa 10 11 11.1 12.1 50 1000

G ¼ 28 846MPa Gc ¼ 1000MPa G ¼ 28 846MPa

u ¼ 0:3 u ¼ 0:35 u ¼ 0:3

F F 

L
rec − ricrm = ric + 2

Fig. 3. Definition of the tensile force.



� displacement of the peaks of stress towards the free

edges.

Fig. 6 presents the influence of the Young’s modulus of

the adhesive on the shear stress in the adhesive. We see that

the maximum peaks are more significant if the elastic

modulus is larger.

The influence of the relative rigidity between two tubes is

illustrated in Fig. 7. We observe that the maximum peaks

on the two edges are no longer equal if ratio E2/E1 is

different from 1.
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Fig. 4. Stress distribution in the adhesive: (a) orthoradial stress (syy); (b) shear stress (trz).

Fig. 5. Variation of shear stress (trz) with covering length.



The influence of the adhesive thickness variation on the

distribution and intensity of orthoradial and shear stresses

is shown in Figs. 8 and 9. We notice that, when the

thickness of the adhesive increases, the values of the two

components decrease on the free edges and the distribution

becomes more uniform.

Summary

A simple analytical model for predicting the distribution

and intensity of stresses in the adhesive joint has been

developed. The model is based on a variational method

applied to the potential energy in the assembly. The model

can be used to predict the stress field in the assembly or the

influence of some geometrical or material parameters on

the stress field.

We observe that when the thickness of the adhesive is

increased, the values of the stresses in the adhesive decrease

on the free edges and the distribution becomes more

uniform.
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