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Abstract

We give a new way to study recursive towers of curves over a finite field, defined à
la Elkies from a bottom curve X and a correspondence Γ on X. A close examination of
singularities leads to a necessary condition for a tower to be asymptotically good. Then,
spectral theory on a directed graph, Perron-Frobenius theory and considerations on the
class of Γ in NS(X × X) lead to the fact that, under some mild assumption, a recursive
tower can have in some sense only a restricted asymptotic quality. Results are applied to
the Bezerra-Garcia-Stichtenoth tower along the paper for illustration.
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Introduction

Since Garcia-Stichtenoth’s well-known Inventiones’95 paper appeared [GS95], many examples of
good recursive towers of curves over finite fields have been described in the literature. Recall that
a tower T = (Cn)n≥1 of smooth projective absolutely irreducible curves Cn over a finite field Fq
is said to be good if it has many rational points over some finite extension of the base field. To
be more precise, for any r ≥ 1, denote by

λr(T ) = lim
n→+∞

number of points of Cn defined over Fqr
genus of Cn

,

βr(T ) = lim
n→+∞

number of points of Cn of degree r

genus of Cn
,

(it turns out that these limits exist). The well-known Drinfeld-Vlăduţ bound states that λr(T ) ≤√
qr−1 for any r ≥ 1 and any tower T . The tower is said to be good if at least one λr is non-zero.

Even more precisely, the closer to zero is the deficiency (see equation (3) below), the better is the
tower. Towers reaching the Drinfeld-Vlăduţ bound over some finite extension of the base field
have deficiency zero, hence are optimal. One usualy denote by

A(q) = lim sup
g→+∞

Nq(g)

g
, where Nq(g) = max

X/Fq sm., proj.,
curve of genus g

]X(Fq).

Some recursive towers reach the Drinfeld-Vlăduţ bound for q square [GS95, GSR03, Gar96],
others give interesting non-zero lower bounds for A(q) for some non-square values of q, as for
A(q3) [BGS05, BS07, BGS08] or more recently for A(q2n+1), n ≥ 1 [BBGS13]. It turns out
that all these towers are recursive over the projective line P1: they are given by an explicit
correspondence Γ on P1, and the curves of the towers are — sometimes irreducible components
of — the normalizations of the curves

Cn =
{

(P1, . . . , Pn) ∈
(
P1
)n | (Pi, Pi+1) ∈ Γ, for each i = 1, . . . , n− 1

}
.

The point is that no author give the procedure they used to obtain, or merely to guess which
explicit equation will lead to a good recursive tower. It turns out that very few papers contain
theoretical considerations on recursive towers. The first small family of exceptions are a series
of papers from Elkies [Elk01, LMSE02], whose goal is to make it plausible that any good re-
cursive tower should come from the modular world. Another very small family of exceptions
are Lenstra’s [Len02] and the subsequent Beelen’s [Bee04] papers, who deal with possibilities of
getting recursive towers with a great number of rational points. The last exception is Bouw and
Beelen’s paper [BB05], who give a link between some good recursive towers and Picard-Fuchs
differential equations in characteristic p. Up to our knowledge, these are the only theoretical
studies of recursive towers. The reader is referred to the excellent survey of Li [Li10] for details.

The aim of this paper is twofold. We want to understand better which features of the data
(X,Γ) can lead to a good recursive tower, and to study up to which point a recursive tower can
be good. The key ingredients are considerations on singular models of the tower, geometry of the
surface X×X through the class of Γ in the Neron-Severi group NS(X×X) and the introduction
of a graph attached to a tower which permits us to use some usual results in graph theory such
as spectral theory of adjacency matrices and Perron-Frobenius theory of non-negative matrices.

Section 1 is only a set-up one. We fix notations, introduce the standard invariants of a tower
and state some common hypothesis for most statements. The definition of a recursive tower
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requires only a pair (X,Γ) where X is a smooth, projective, absolutely irreducible curve defined
over Fq and where Γ is a correspondence on X which is supposed to be absolutely irreducible
and reduced. In fact one can restrict ourselves to correspondence of special type (d, d) for d ≥ 2
(see §1.2, for precise definition). By contrast, we do not need to restrict ourselves to X equal to
the projective line P1.

In section 2, we focus on the geometry of a recursive tower. Most previous authors have
chosen the function field point of view. In doing so, an important part of the geometry of the
tower — through the singularities of the models Cn of the curves — disappears. We investigate
more closely this geometry. This leads us to distinguish three models of towers: the singular one,
the smooth one, and finally the sharp one which is an avatar of the singular model. Of course,
the smooth model — which corresponds to the usual tower of function fields — is the most
interesting one. At any stage, the three curves are birational. The sharp one being naturally
embedded in a smooth surface, we can evaluate by adjunction formula and desingularization the
geometric genus sequence of the tower. We deduce a first necessary condition for a tower to be
good: either the curves Cn are singular for any n greater than some n0, or g(X) ≥ 2 and both
projections πi : Γ → X for i = 1, 2 are étale over X (proposition 5). More precisely, in the
singular case, we evaluate how the global measure of singularity should grow when n → ∞, for
a tower to be good. A key point for the rest of the paper is the understanding of the singular
points. We characterize them, and we study other singular points on the intersection of the
curves with some hypersurfaces for later use: corollary 9 plays an important place in the main
section 4.

In section 3, we associate to each recursive tower a geometric infinite directed graph and for
any r ≥ 1, an arithmetic finite directed graph. They depend only on the base curve X an on
the correspondence Γ. These graphs are closely related, but different, to the one introduced
by Beelen [Bee04]. The main difference is that the former depend on the singular model of the
tower, while the later depends only on the smooth model, that is on the associated function fields
tower. Though we share some common observations with Beelen, we give some new applications
of the graph, especially in the last section 4. It is a very convenient way to represent a tower
— in some way better than the equations themselves —, in the sense that some of the most
important properties can be directly seen from it. The degree, the singular points, the totally
splitting points, sometimes the irreducibility, can directly be read off the graph. This will be
illustrated on the BGS tower over Fp3 (see equation (17) below) attaining the Zink’s lower bound
[BGS05, BS07, BGS08].

Section 4 is the main one of this paper. It is devoted to the asymptotic behaviour of a
recursive tower. Cycles of length n in our graph are in bijection with the points of Cn+1 having
equal first and last coordinates. We have thus two ways to count them: the combinatorial one,
involving adjacency matrix of a graph, and the geometric one, involving intersection theory on
the surface X × X. The comparison of these countings, together with a standard lemma of
diophantine approximations and the previous study of the singularities lead us to prove a strong
constraint on the graph:

Theorem. Let (X,Γ) be a correspondence as in section 1.2 such that the curves Cn of the
associated tower are all irreducible. Then the graph G∞(X,Γ) has at most one finite d-regular
strongly connected component.

In order to deduce from this graph theoretical result some properties of recursive towers,
we use Perron Frobenius theorem for non-negative matrices as a last tool. This leads us to an
accurate form of the connection between the spectral radius of finite subgraphs of the geometric
graph, connected components of these subgraphs and the number of points on the singular model
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(proposition 20). Finally, all together, we prove our second necessary condition for a recursive
tower to be good (proposition 21). Especially we prove our main result about the (βr)r≥1 sequence
of a recursive tower:

Theorem. Let (X,Γ) be a correspondence as in section 1.2. Suppose that the curves Cn of the
associated tower are all irreducible and that the geometric genus sequence (gn)n≥1 goes to +∞.

Suppose also that the singular points of Cn give rise to a number of geometric points in C̃n
negligible compared to dn for large n. Then, there exists at most one integer r ≥ 1 such that βr 6=
0.

Note that the hypotheses of this theorem are satisfied for a large part of the known recursive
good towers. This is the case of the BGS tower (see loc. cit.). Combining with the closed formula
for the geometric genus of this tower, we are able to compute exactly — for the first time up to
our knowledge — two invariants, its defect δ and its zeta function both defined by Tsfasmann and
Vlăduţ [TV02]. Finally, several authors have recently studied some towers related to recursive
one, having several non-vanishing βr’s (e.g. Hesse, Stichtenoth and Tutdere [HST13], or Ballet
and Rolland [BR12]). It turns out that these towers are not recursive in the sense of this paper,
but are pull back of a recursive one under some finite surjective morphism π : Y → X. We prove
in the last section corollary 24 that in this case, the number of non-zero βr is at most equal to
the degree of π.

Acknowledgments: The authors would like to thank the anonymous referees for having
extremely carefully read the first submitted version of this work.

1 Models of recursive towers

1.1 Invariants of towers of curves over a finite field

An irreducible tower of curves T over a finite field Fq is a sequence of absolutely irreducible curves
(Cn)n≥1 defined over Fq together with a family of finite dominant morphisms Cn+1 → Cn. For

each n ≥ 1, let C̃n denote the normalization of Cn. Then T̃ = (C̃n)n is also a tower of curves.
Our purpose is to study the following invariants of these towers.

At finite levels, for n ≥ 1 and r ≥ 1:

• the arithmetic genus γn = γ(Cn) of Cn

• the common geometric genus gn = g(Cn) of Cn and C̃n;

• the number Nr(C̃n) = #C̃n(Fqr) of Fqr -rational points of C̃n;

• the number Br(C̃n) of points of C̃n of degree r.

For any n ≥ 1, we have gn ≤ γn, and

Nr(C̃n) =
∑
d|r

rBr(C̃n). (1)

Ultimately, as usual, we introduce the two asymptotic invariants provided that the genus se-
quence satisfies limn→+∞ gn = +∞:

λr(T ) = lim
n→+∞

Nr(C̃n)

gn
and βr(T ) = lim

n→+∞

Br(C̃n)

gn
.
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Following Tsfasmann and Vlăduţ [TV02], a tower is said to be asymptotically exact if these
limits λr(T ) and βr(T ) do exist for any r ≥ 1, provided that the genus tends to infinity. Garcia
and Stichtenoth have observed that a recursive tower is always asymptotically exact:

Lemma 1. Let T = (Cn)n≥1 be an irreducible tower of projective smooth absolutely irreducible
curves and let (dn)n denote the degrees sequence of the tower, i.e. dn = deg(Cn → C1). Suppose

that limn→+∞ g(Cn) = +∞. Then, for any r ≥ 1, the sequences
(

dn
g(Cn)

)
n≥1

and
(
Nr(Cn)
dn

)
n≥1

are convergent. The limits λr(T ) and βr(T ) exist and λr(T ) is non-zero if and only if both

sequences
(
g(Cn)
dn

)
n≥1

and
(
Nr(Cn)
dn

)
n≥1

admit a non-zero limit.

Proof — We compare the sequences (Nr(Cn))n and (g(Cn)− 1)n with (dn)n. One has:

Nr(Cn) ≤ deg(Cn → Cn−1)Nr(Cn−1) and g(Cn)− 1 ≥ deg(Cn → Cn−1) (g(Cn−1)− 1) ,

the second inequality being a consequence of Riemann-Hurwitz formula. Thus the sequence
(
Nr(Cn)
dn

)
n

decreases, while the sequence
(
g(Cn)−1

dn

)
n

increases. If moreover limn→∞ g(Cn) = +∞, we de-

duce that sequences
(
Nr(Cn)
dn

)
n
,
(

dn
g(Cn)−1

)
n

and
(

dn
g(Cn)

)
n

are convergent. This proves that the

limit λr((Cn)n≥1) do exist. By induction on r thanks to the relation (1), we also deduce that the
limit βr((Cn)n≥1) exist for any r ≥ 1. The lemma follows. �

From equation (1), we have for any r ≥ 1

λr(T ) =
∑
d|r

dβd(T ) (2)

and the important inequality
A(qr) ≥ λr(T ).

A recursive tower is interesting only if at least one λr exists and is non-zero, in which case the
tower is said to be good. One can be more precise. It has been proved by Tsfasman [Tsf92] that

∞∑
r=1

rβr√
qr − 1

≤ 1,

generalizing the well known Drinfeld-Vlăduţ bound. Tsfasmann and Vlăduţ [TV02] have also
defined the deficiency of an asymptotically exact tower by

δ(T ) = 1−
∞∑
r=1

rβr√
qr − 1

∈ [0, 1]. (3)

To sum up, a tower is good if δ < 1. It is said optimal if δ = 0.

1.2 Recursive towers of curves over a finite field

This article deals with specific towers of curves, the so-called recursive ones, defined by Elkies
[Elk01] as follows.

Let X be a smooth projective absolutely irreducible algebraic curve of genus g(X) ≥ 0 defined
over the finite field Fq. Let Γ be a correspondence of type (d1, d2) on X; this means that d1 = Γ·H
and d2 = Γ · V , where H = X × pt and V = pt×X denote the horizontal and vertical divisors
on X ×X (cf. [Har77, Chap V,§1,Ex 1.9, page 368]).
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Consider the two projection morphisms πi : X × X → X, defined by πi(P1, P2) = Pi for
i = 1, 2. We have the following diagram:

X ×X

X X

π1 π2
which induces two

finite morphisms:

Γ

X X

π1 π2 deg(π1) = d2

deg(π2) = d1

Note that the curve Γ is not supposed to be smooth. The irreducibility assumption of Γ is natural
since we will deal with irreducible towers.

From these data, one can define three towers of curves.

• The singular recursive tower T (X,Γ) is the sequence of curves (Cn)n≥1 defined by:

Cn = {(P1, P2, · · · , Pn) ∈ Xn | (Pi, Pi+1) ∈ Γ for each i = 1, 2, . . . , n− 1} (4)

By definition, each curve Cn is embedded in the n-fold product Xn. For 1 ≤ i ≤ n, let πni :
Cn → X (or simply πi if the domain is clear from the context) be the i-th projection defined
by (P1, . . . , Pn) 7−→ Pi.

Thus C1 = X is supposed to be smooth, while C2 = Γ is not! So except for C1, the curves Cn
for n ≥ 2 need not to be smooth (even if Γ is, see propositions 6 and 11).

• The smooth recursive tower T̃ (X,Γ) is the sequence of smooth curves (C̃n)n≥1 where, for

each n ≥ 1, we denote by C̃n the normalization of the curve Cn and by νn : C̃n → Cn the
desingularization morphism.

• The sharp recursive tower T ](X,Γ) is the sequence of curves (C]
n)n≥1, where C]

n is the

pullback of the embedding Γ ↪→ X ×X along πn−1
n−1 ◦ νn× Id : C̃n−1×X → X ×X. It is also the

pullback of the embedding Cn ↪→ Cn−1×X along νn−1× Id : C̃n−1×X → Cn−1×X, so that we
have the cartesian diagram

C]
n C̃n−1 ×X

Cn Cn−1 ×X

Γ X ×X

All the morphisms between the different curves are summarized in figure 1. All vertical maps
and the two curved ones are finite morphisms, while the straight diagonal maps are birational
isomorphisms if the Cn are irreducible. Indeed, it is easily checked using the fiber product
interpretation of C]

n that the map C̃n → C]
n is surjective, so that C]

n is also irreducible. Since

moreover the composite map C̃n → C]
n → Cn is a birational isomorphism and all curves are

irreducible, both maps are birational isomorphisms. Therefore

γ(Cn) ≥ γ(C]
n) ≥ g(C̃n),

which means that the curve C]
n is singular, but less than Cn itself.

In most of the examples studied in the literature, the base curve X is the projective line P1.
As for the correspondence, it has most often separated variables, that is:

Γf,g =
{

(P,Q) ∈ P1 × P1 | f(P ) = g(Q)
}
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C̃n

C]
n

...

Cn
... C̃2

... C]
2

C2

C1

...

...

...

Figure 1: The three towers

where f and g are two rational functions on P1. The curves Cn are then defined by:

Cn = {(P1, . . . , Pn) ∈ (P1)n | f(Pi) = g(Pi+1), i = 1, . . . , n− 1}.

Even if, the smooth recursive tower is the most interesting — this is the tower studied by
previous authors usually using the function field language —, we think that the consideration
of the singular recursive tower can be fruitful due to its geometric definition. As for the sharp
recursive tower, it turns to be useful in order to study the genus of the smooth recursive tower
using adjunction formula on smooth surfaces and normalization process.

Since our final goal is to study the asymptotic behaviour of smooth absolutely irreducible
curves, we will assume in most statements that the singular curves Cn are irreducible. Up to our
knowledge, the only important reducible recursive tower containing a good irreducible sub-tower
is in [BGS05]. However, this good irreducible sub-tower turned later to be itself recursive in
[BGS08]. A simple criterion asserting this irreducibility, satisfied by most known good recursive
towers, is given in the remark in section 3.4.

For our purpose, under the assumption of irreducibility, we could restrict our attention to the
case of correspondence of type (d1, d2) with d1 = d2 as this well known lemma shows.

Lemma 2. Let (X,Γ) be a correspondence as in section 1.2, except that the type is assumed to
be (d1, d2). Let T = (Cn)n≥1 be the associated tower. Suppose that the curves Cn are irreducible
for any n ≥ 1, and that the geometric genus sequence (gn)n≥1 goes to infinity. If d1 6= d2, then
λr(T ) = 0 and βr(T ) = 0 for any r ≥ 1.

Proof — Suppose for instance that d1 < d2, and let r ≥ 1. Then one has Nr(Cn) ≤ Nr(C1)dn−1
1 .

On the other hand, since the genus g(Cn) goes to infinity, one can also suppose that g(C1) ≥ 2
and by Hurwitz genus formula, one has g(Cn) − 1 ≥ dn−1

2 (g(C1) − 1) for any n ≥ 1. There-

fore λr(T (X,Γ)) = 0 since
(
d1
d2

)n
→ 0. The assertion for the βr’s follows by induction from

formula (2). �
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In the whole paper we make the following assumptions:

Hypotheses — The curve X is supposed to be smooth, projective, absolutely irre-
ducible, and defined over Fq. The correspondence Γ on X is supposed to be absolutely
irreducible, reduced, and of type (d, d) for d ≥ 2.

2 Genus sequences in a recursive tower

In order to compute the λr’s and βr’s invariants of a recursive tower, one needs to understand
the behaviour of the genus sequence. It turns out that gn and γ]n are closely related thanks to
adjunction formula (proposition 4 thanks to lemma 3). This leads us to distinguish two kinds of
recursive towers which could be good (proposition 5). The proof of proposition 6, which gives a
characterization of the singular points in a recursive tower, takes the largest part of this section.
Then, we prove proposition 8 and its important corollary 9, which is one of the tools in the proof
of theorem 22 in section 4.

2.1 Arithmetic versus geometric genus in recursive towers

Let (X,Γ) be as in section 1.2 and consider T , T ] and T̃ the associated towers of curves. The
sharp model turns here to be a useful tool to understand the geometric genus sequence (gn)n≥1.
We proceed in two steps: first we compare the geometric genus gn with the arithmetic genus γ]n
using the adjunction formula on the smooth surface C̃n−1×X, then we prove an induction relation
between gn and gn−1 involving terms coming from desingularization of C]

n.

• The first step is classical. For any n ≥ 2, and any P ∈ C]
n(Fq) be a geometric point, let δP

denote the measure of the singularity at P (see Hartshorne [Har77], Chap IV, Ex 1.8 or Liu
[Liu02], §7.5), that is1

δP = dimFq ÕP/OP ,

where OP and ÕP denote the local ring of C]
n at P and its integral closure. This measure is

non-zero if and only if the point P is singular so it makes sense to define

∆n =
∑

P∈C]n(Fp)

δP (5)

as a measure of the whole singularities of C]
n. Then the geometric and arithmetic genus of C]

n

are related by
γ]n = gn + ∆n (6)

(see loc. cit.).

• Second, to prove the induction relation in Proposition 4, (i), we need the following lemma.

Lemma 3. Let fi : Yi → Xi be finite morphisms of smooth absolutely irreducible projective curves
of degree ni for i = 1, 2, and let F : Y1 × Y2 → X1 ×X2 be the product morphism F = f1 × f2.
If Γ is a correspondence of type (d1, d2) between X1 and X2, then the arithmetic genus γ(F ∗(Γ))
of the pull-back F ∗(Γ) of Γ by F is given by

2γ(F ∗(Γ))− 2 = n1n2Γ2 + n2d2 (2g(Y1)− 2) + n1d1 (2g(Y2)− 2)

where g(Yi) denotes the genus of Yi (i = 1, 2) and where Γ2 is the self-intersection of Γ computed
in the group NS(X1 ×X2).

1Consistency would require sharp exponents for the following δP , OP and ∆n. For simplicity, we choose to
drop them.
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Proof — By adjunction formula (see Liu [Liu02, theorem 1.37, page 390] in the geometric case
page 376 therein), the arithmetic genus is given by

2γ (F ∗(Γ))− 2 = F ∗(Γ) · (F ∗(Γ) +KY1×Y2) ,

where KY1×Y2 is the canonical class in the Neron-Severi group NS(Y1 × Y2) of the smooth sur-
face Y1×Y2. This class KY1×Y2 is known to be (2g(Y2)−2)H+(2g(Y1)−2)V where H and V denote
the horizontal and vertical classes in NS(Y1×Y2) (see Hartshorne [Har77], Chap II, Ex 8.3). Then

2γ (F ∗(Γ))− 2 = F ∗(Γ) · F ∗(Γ) + (2g(Y2)− 2)F ∗(Γ) ·H + (2g(Y1)− 2)F ∗(Γ) · V.

Denote by h and v the horizontal and vertical classes in NS(X1×X2). By the projection formula
(see Liu [Liu02, Theorem 2.12, page 398]), we have

F ∗(Γ) · F ∗(Γ) = Γ · F∗F ∗(Γ) = Γ · deg(F )Γ = n1n2Γ2,

F ∗(Γ) ·H = Γ · F∗(H) = Γ · n1h = n1d1,

F ∗(Γ) · V = Γ · F∗(V ) = Γ · n2v = n2d2

since we have d1 = Γ · h and d2 = Γ · v by the very definition of the type (d1, d2). �

Proposition 4. Let (X,Γ) be a correspondence as in section 1.2. Let (gn)n≥1 and (γ]n)n≥1 be the
geometric and sharp-arithmetic genus sequence of the associated tower.

(i) The sharp-arithmetic genus γ]n and the geometric genus gn−1 are related, for n ≥ 2, by

γ]n − 1 = d(gn−1 − 1) + dn−2
[
(γ]2 − 1)− d(g1 − 1)

]
.

(ii) For any n ≥ 1, the geometric genus gn is given by

gn−1 =

{
(n− 1)dn−2 [(γ2 − 1)− d(g1 − 1)] + dn−1(g1 − 1)−

∑n
i=2 d

n−i∆i (general case)

(n− 1)dn−2 [(g2 − 1)− d(g1 − 1)] + dn−1(g1 − 1) (smooth case)

where the ∆i’s are defined in formula (5) and where γ2 denote the arithmetic genus of Γ.

Proof — To prove (i), we first apply lemma 3 with Y1 = C̃n−1, Y2 = X, X1 = X2 = X,
f1 = πn−1

n−1 ◦ νn−1 (see §1.2 for definitions) and f2 = Id. We get n1 = dn−2, n2 = 1 and

2γ]n − 2 = dn−2Γ2 + d(2gn−1 − 2) + dn−1(2g1 − 2).

In particular, for n = 2, this leads to Γ2 = (2γ2 − 2)− 2d(2g1 − 2). Substituting this expression
of Γ2 in the preceding equation permits to conclude.

To prove (ii), let un = gn−1
dn

. From (i) together with (6), we deduce the induction relation

un = un−1 +
(g2 − 1)− d(g1 − 1) + ∆2

d2
− ∆n

dn
.

An easy calculation gives the general formula. If all the Cn are smooth, then all ∆i vanish and
γ2 = g2. �
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2.2 Another necessary condition for a tower to be good

We prove that under the irreducibility assumption, the tower needs either to be singular, or to
be constructed from an étale correspondence on a curve X in order to be good.

Proposition 5. Let (X,Γ) be a correspondence as in section 1.2 and let T = (Cn)n≥1 be the
associated recursive tower. Suppose that Cn is irreducible for any n ≥ 1 and that the genus
sequence (gn)n≥1 tends to infinity. If there is at least one r ≥ 1 such that λr(T ) > 0, then

(i) either Cn is singular for any n greater than some n0;

(ii) or g1 = g(X) ≥ 2 and both covers πi : Γ→ X for i = 1, 2 are étale over X.

Proof — Suppose that Cn is smooth for any n ≥ 1. Then by the last item of proposition 4, one
obtains for any n ≥ 1

gn = (n− 1)dn−2 [(g2 − 1)− d(g1 − 1)] + dn−1(g1 − 1) + 1.

If (g2 − 1)− d(g1 − 1) 6= 0, then

gn ∼ (n− 1) ((g2 − 1)− d(g1 − 1)) dn−2.

On the other hand, using the projection morphism from Cn to C1 given by (P1, . . . , Pn) 7→ P1 of
degree dn−1, one deduces that

Nr(Cn) ≤ Nr(C1)× dn−1

for any r ≥ 1. Therefore,

Nr(Cn)

gn
≤ Nr(C1)dn−1

gn
∼ Nr(C1)

(g2 − 1)− d(g1 − 1)
× dn−1

(n− 1)dn−2
−→
n→+∞

0

and λr(T (X,Γ)) = 0.
If (g2 − 1) − d(g1 − 1) = 0, then both projections must be étale and one must have g1 =

g(X) ≥ 1. Finally if X is an elliptic curve, then Riemann-Hurwitz yields to gn = 1 for any n,
which doesn’t tend to infinity. �

It worth to noticing that if both morphisms are non-étale, then not only the tower (Cn)n need
to be singular, but it needs to be sufficiently singular. More precisely, by lemma 1, the genus
sequence must behave like c× dn for some c > 0. By proposition 4, the measures of singularities
must be large enough to satisfy:

n∑
i=2

dn−i∆i = (n− 1)dn−2 [(γ2 − 1)− d(g1 − 1)] + c′ × dn + o(dn)

for some c′ > 0.

This proposition 5 motivates a more accurate study of singular points of Cn. This is the aim
of the next section.

2.3 Singular points of Cn

The goal of this section is twofold. First, we characterize the singular points of the curves Cn
in proposition 6. Then we prove corollary 9 about the singularities of cycles which will be a key
point later; it will be responsible of the crucial “−1” at the end of formula (20).
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To begin with, let X and Y be two projective absolutely irreducible curves over2 Fq and
let Γ be a correspondence between X and Y , without any vertical, nor horizontal, components.
We still denote by π1 and π2 the projections onto the first and second factors. Let P ∈ X
and Y ∈ Q be geometric smooth points such that (P,Q) ∈ Γ. Consider affine neighborhoods
of P ∈ U ⊂ Ar, Q ∈ V ⊂ As and (P,Q) ∈ W ⊂ Ar+s. Suppose that the two affine curves U
and V are respectively defined by (r−1)+ρ and (s−1)+σ equations (where r, s ≥ 1 and ρ, σ ≥ 0);
suppose also that besides the equations of U and V , we need 1 + τ more equations to define W
(where τ ≥ 0). Taking into account that the equations defining U (resp. V ) only depend on the
r first (resp. s last) indeterminates, we deduce that the jacobian matrix of the point (P,Q) ∈ W
has the following shape:

JΓ(P,Q) =

JX(P )

A B

JY (Q)




(7)

where JX(P ) and JY (Q) denote the jacobian matrices of X at P and Y at Q. Since the curves X
and Y are supposed to be smooth at P and Q, the jacobian submatrices JX(P ) and JY (Q) have
rank equal to (r − 1) and (s − 1) respectively. Therefore, due to its shape, JΓ(P,Q) has rank
greater or equal to r + s − 2. On the other hand, JΓ(P,Q) has rank less or equal to r + s − 1
since Γ is a curve locally embedded in Ar+s. We easily deduce that

rk(JΓ(P,Q)) = r + s− 2 ⇐⇒ rk

(
JX(P )
A

)
= r − 1 and rk

(
B

JY (Q)

)
= s− 1 (8)

and thus that

rk(JΓ(P,Q)) = r + s− 1 ⇐⇒ rk

(
JX(P )
A

)
= r or rk

(
B

JY (Q)

)
= s (9)

Study of the smoothness of Γ at (P,Q). The point (P,Q) is smooth if and only if the
jacobian matrix has maximal rank r + s− 1, that is by (9):

the point (P,Q) ∈ Γ

is smooth
⇐⇒ rk

(
JX(P )
A

)
= r or rk

(
B

JY (Q)

)
= s (10)

In that case, one can extract from JX(P ) an (r−1)×r block J ′X(P ) of maximal rank, from JY (Q)
an (s − 1) × s block J ′Y (Q) of maximal rank and from the ”correspondence” block AB exactly
one line such that the (r + s− 1)× (r + s) matrix

J ′Γ(P,Q) =

J ′X(P )

a1 ar b1 bs

J ′Y (Q)




2In fact, a large part of this section works over an arbitrary field k.
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has maximal rank equal to (r+ s− 1). The rank of each block does not depend on the choice of
the line in the correspondence block AB since one must have

rk

(
J ′X(P )

a1 · · · ar

)
= rk

(
JX(P )
A

)
and rk

(
b1 · · · bs

J ′Y (Q)

)
= rk

(
B

JY (Q)

)
.

(in fact the vector space generated by the lines of JX(P ) and (a1, . . . , ar) must be equal to
the vector space generated by the lines of JX(P ) and the lines of A). Moreover the minors of
maximal size of J ′Γ(P,Q) can be easily described in terms of the minors of maximal size of J ′X(P )
and J ′Y (Q). More precisely, let δ1(J ′X(P )), . . . , δr(J

′
X(P )) and δ1(J ′Y (Q)), . . . , δs(J

′
Y (Q)) be the

minors of maximal size of J ′X(P ) and J ′Y (Q) (listed with alternate signs), and define

π′2(P,Q) =

∣∣∣∣ J ′X(P )
a1 · · · ar

∣∣∣∣ and π′1(P,Q) =

∣∣∣∣b1 · · · bs
J ′Y (Q)

∣∣∣∣ . (11)

Then the minors of maximal size of J ′Γ(P,Q) are the δi(J
′
X(P ))π′1(P,Q) for 1 ≤ i ≤ r and

the δj(J
′
Y (Q))π′2(P,Q) for 1 ≤ j ≤ s.

Recall that if M ∈ Mn−1,n(k) is a matrix of rank n − 1, then its kernel is generated by the
vector whose coordinates are its minors of size (n−1) with alternate signs. Therefore, the kernel
of J ′Γ(P,Q), which is nothing else than the tangent line of Γ at (P,Q), is thus generated by the
vector 

δ1(J ′X(P ))π′1(P,Q)
...

δr(J
′
X(P ))π′1(P,Q)

δ1(J ′Y (Q))π′2(P,Q)
...

δs(J
′
Y (Q))π′2(P,Q)


.

Because at least one of the minors of J ′X(P ) and of J ′Y (Q) are non zero by smoothness of X
and Y at P and Q, this vector is non zero if and only if π′2(P,Q) or π′1(P,Q) are non zero, that
is if and only if Γ is smooth at (P,Q) by (10).

Note for later use that, independently of the choice of the line inside the block AB, one has

π′2(P,Q) = 0 ⇔ rk

(
JX(P )
A

)
= r − 1 and π′1(P,Q) = 0 ⇔ rk

(
B

JY (Q)

)
= s− 1. (12)

Study of étaleness of πi at (P,Q) ∈ Γ. Since Q is a smooth point of Y , the projec-
tion π2 : Γ→ Y is étale at (P,Q) if and only if the point (P,Q) ∈ Γ is smooth and the induced
map Ker(JΓ(P,Q)) → Ker(JY (Q)) is an isomorphism, that is non zero since kernels are lines
here. In view of the generator of the tangent line at (P,Q), this application is non zero if and
only if π′2(P,Q) is non zero because at least one of the minors of J ′Y (Q) is non zero. Thanks
to (12), we deduce that

π2 is étale

at (P,Q)
⇔ rk(JΓ(P,Q)) = r + s− 1 and rk

(
JX(P )
A

)
= r

by (9)⇔ rk

(
JX(P )
A

)
= r.

(13)
Of course, we also prove the same way that

π1 étale

at (P,Q)
⇔ rk(JΓ(P,Q)) = r+s−1 and rk

(
B

JY (Q)

)
= s

by (9)⇔ rk

(
B

JY (Q)

)
= s. (14)
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From the negation of (10), and from (13) and (14), we deduce that the singularity of (P,Q)
in Γ can be characterized only using étaleness by

the point (P,Q) ∈ Γ

is singular
⇐⇒ both projections π1 and π2

are not étale at (P,Q)
. (15)

In the following proposition, we prove that such a characterization still occurs for the curves Cn
of a recursive tower.

Proposition 6. Let (X,Γ) be a correspondence as in section 1.2 and let (Cn)n≥1 be the associated
recursive tower. A point (P1, . . . , Pn) ∈ Cn is singular if and only if there exist 1 ≤ i ≤ j < n
such that π2 is not étale at (Pi, Pi+1) and π1 is not étale at (Pj, Pj+1).

Proof — One can suppose that the points P1, . . . , Pn ∈ X are contained in the same affine open
subspace U ⊂ Ar, and that the affine curve U is defined by (r − 1) + ρ equations. Suppose also
that, locally in U × U ⊂ A2r, Γ is defined, in addition of the equations coming from U , by 1 + τ
equations in Ar ×Ar = A2r. Thus Cn is locally embedded in Anr and the jacobian matrix of Cn
at (P1, . . . , Pn) is an ((nr − 1) + nρ+ (n− 1)τ)× nr matrix looking like

JCn(P1, . . . , Pn) =

JX(P1)

A1 B1

JX(P2)

. . .

An−1 Bn−1

JX(Pn)




Since every Pi ∈ X is smooth, every ”jacobian” block has rank equal to (r − 1). Since Γ
is locally a curve in A2r, every block looking like the jacobian matrix of equation (7) has
rank less than or equal to (2r − 1) (and greater than or equal to (2r − 2)). Hence the rank
of JCn(P1, . . . , Pn) is greater than or equal to n(r − 1) (contributions of the ”jacobian” blocks)
and every ”correspondence”-blocks has a contribution to the whole rank of at most 1.

A point (P1, . . . , Pn) ∈ Cn is smooth if and only if the rank of JCn(P1, . . . , Pn) is equal
to nr−1 = n(r−1)+(n−1). This is plausible only if each of the (n−1) ”correspondence”-blocks
has a contribution to the whole rank exactly equal to 1. Conversely, a point (P1, . . . , Pn) ∈ Cn
is singular if and only if there exists at least one ”correspondence”-block whose lines are all
in the vector space generated by the remaining lines. In particular, if (P1, . . . , Pm) ∈ Cm is
singular then so is (P1, . . . , Pm, Pm+1, . . . , Pn) ∈ Cn for every n ≥ m. Then (P1, . . . , Pn) ∈ Cn
is singular if and only if there exists 1 ≤ j ≤ n − 1 such that (P1, . . . , Pj) ∈ Cj is smooth
while (P1, . . . , Pj+1) ∈ Cj+1 ⊂ Cj ×X is singular. Applying the beginning of this section to the
correspondence Cj+1 on the product Cj ×X of smooth curves, we deduce that this is equivalent
to

rk
Aj


JCj(P1, . . . , Pj) = rj − 1 and rk

(
Bj

JX(Pj+1)

)
= r − 1,

where Aj and Bj denote the two blocks coming from the condition (Pj, Pj+1) ∈ Γ. By the negation
of (14), the second equality occurs if and only if the projection π1 is not étale at (Pj, Pj+1). As
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to the first equality, it occurs if and only if there exists 1 ≤ i ≤ j such that π2 is not étale
at (Pi, Pi+1), that is

∃1 ≤ i ≤ j, rk

(
JX(Pi)
Ai

)
= r − 1.

Indeed, since (P1, . . . , Pj) ∈ Cj is smooth, the jacobian matrix JCj(P1, . . . , Pj) has a rank equal
to rj − 1. As in the case of a correspondence on a product of only two curves, one can ex-
tract (r−1)-rank blocks J ′X(P1), . . . , J ′X(Pj) from the ”jacobian” blocks JX(P1), . . . , JX(Pj), and
lines (ak,1, . . . , ak,r, bk,1, . . . , bk,r) from the ”correspondence” block (Ak, Bk) for 1 ≤ k ≤ j − 1, to
obtain a (rj − 1) × rj matrix J ′Cj(P1, . . . , Pj) of maximal rank. The first rank equality is thus
equivalent to the fact that for every choice of line (aj,1, . . . , aj,r) in the block Aj, this line must
be a linear combination of the lines of J ′Cj(P1, . . . , Pj). So one must have∣∣∣∣ J ′X(P1)

a1,1 · · · a1,r

∣∣∣∣× · · · × ∣∣∣∣ J ′X(Pj−1)
aj−1,1 · · · aj−1,r

∣∣∣∣× ∣∣∣∣ J ′X(Pj)
aj,1 · · · aj,r

∣∣∣∣ = 0.

Hence,

either rk

(
JX(Pj)
Aj

)
= r − 1 or ∃1 ≤ i ≤ j − 1,

∣∣∣∣ J ′X(Pi)
ai,1 · · · ai,r

∣∣∣∣ = 0.

But, by (12), the last case is equivalent to

rk

(
JX(Pi)
Ai

)
= r − 1.

In both cases, by the negation of (13), we conclude that there exists 1 ≤ i ≤ j such that the
projection π2 is not étale at (Pi, Pi+1). �

Remark – This is a particular feature of recursive towers. It doesn’t hold true in
general that (P,Q) is singular in the pullback curve (π × Id)∗ (Γ) for any correspon-
dence Γ on X, any morphism π : Y → X from a singular curve Y (here Y = Cm)
and any singular point P on Y such that (π(P ), Q) ∈ Γ.

In the case of correspondences of type Γf,g on X = P1 so widely used in the literature, one
can take r = 1 and ρ = τ = 0 in the above proof. The characterization of the singular points
becomes:

Corollary 7. Let Γf,g be a correspondence on P1 where f and g are two non constant functions
on P1 and let (Cn)n≥1 be the corresponding singular recursive tower. A point (P1, . . . , Pn) ∈ Cn
is singular if and only if there exist 1 ≤ i < j ≤ n such that Pi is a ramified point of f and Pj is
a ramified point of g.

Proof — In this context, all the jacobian blocks are empty, and the correspondence blocks can
always be reduced to a single line. The étaleness of the projection π2 (resp. π1) at a point (P,Q) ∈
Γf,g becomes f ′(P ) 6= 0 (resp. g′(Q) 6= 0). The corollary follows. �

We will need at the end of this paper a characterization of the singular points contained in the
intersection of the curve Cn and the hypersurface P1 = Pn in Xn. In the following proposition, we
continue to make use of a local embedding of X in Ar and of the associated determinants π′1(P,Q)
and π′2(P,Q) defined in (11).
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Proposition 8. Let (X,Γ) be a correspondence as in section 1.2, let (Cn)n≥1 be the associated
recursive tower, and let Hn denote the hypersurface of Xn defined by P1 = Pn.

Consider (P1, . . . , Pn) ∈ Cn a smooth point. Then it is singular in the intersection Cn ∩Hn

if and only if

(−1)r(n−1)

n−1∏
i=1

π′2(Pi, Pi+1) =
n−1∏
i=1

π′1(Pi, Pi+1), in Fq(P1, . . . , Pn),

where, π′1 and π′2 are the determinants defined by (11).

Proof — We work in the affine neighborhood Arn of (P1, . . . , Pn). If (P1, . . . , Pn) ∈ Cn ∩ Hn,
that is if P1 = Pn, then

JCn∩Hn(P1, . . . , Pn) = JCn(P1, . . . , Pn)

Ir −Ir




where Ir is the identity matrix of size r. Since (P1, . . . , Pn) ∈ Cn is assumed to be smooth, the
jacobian matrix JCn(P1, . . . , Pn) has rank equal to nr−1. As to the point (P1, . . . , Pn) ∈ Cn∩Hn,
it is singular if and only if the matrix JCn∩Hn(P1, . . . , Pn) is still of rank rn−1, if and only if the r-
th last lines of JCn∩Hn(P1, . . . , Pn) lie in the vector space generated by the lines of JCn(P1, . . . , Pn).

As in the proof of proposition 6, after cancellation of redundant lines of the jacobian ma-
trix JCn(P1, . . . , Pn), we obtain a (rn − 1) × rn matrix J ′Cn(P1, . . . , Pn) of maximal rank. The
singularity conditions then reduce to the vanishing of the r determinants

J ′Cn(P1, . . . , Pn)

1, 0, . . . , 0 −1, 0, . . . , 0

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
= · · · = J ′Cn(P1, . . . , Pn)

0, . . . , 0, 1 0, . . . , 0,−1

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
= 0.

For each i, 1 ≤ i ≤ r, expanding the determinant along the last line leads, since P1 = Pn, to

(−1)rn+iδi(JX(P1))
n−1∏
i=1

π′1(Pi, Pi+1) + (−1)rn+r(n−1)+i × (−1)δi(JX(P1))
n−1∏
i=1

π′2(Pi, Pi+1) = 0.

Since P1 ∈ X is smooth, at least one of the δi(JX(P1))’s, 1 ≤ i ≤ r, is non-zero and the result
follows. �

A cycle in Cn is a point (P1, . . . , Pn) ∈ Cn ⊂ Xn such that P1 = Pn.

Corollary 9. With the hypothesis of the preceding proposition, let (P1, . . . , Pl, P1) be a smooth
cycle of length l ≥ 1 in Cl+1. Then there exists an iteration ρ of this cycle that becomes singular
in Cρl+1 ∩Hρl+1.

Proof. Applying the preceding proposition, we know that the ρ-th iterate cycle is singular if and
only if

(−1)rρl
l∏

i=1

π′2(Pi, Pi+1)ρ =
l∏

i=1

π′1(Pi, Pi+1)ρ.

Hence ρ equal to #Fq(P1, . . . , Pl)− 1 works.
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3 Graphs and recursive towers

3.1 Some basic definitions and properties in graphs theory

We list all the definitions and properties we use from graph theory in this section and the next
one. We refer to Godsil & Royle’s GTM [GR01] for proofs and more details.

Connectedness. — An undirected graph is said connected if there exists a path from each
vertex to every other vertex. A connected component of a graph is a maximal connected subgraph.

A directed graph is said to be weakly connected if it becomes connected by forgetting ori-
entation. A weakly connected component is a maximal weakly connected subgraph. A directed
graph is said to be strongly connected if there is a path from each vertex to every other vertex.
A strongly connected component of a graph is a maximal strongly connected subgraph. Such a
component is said to be primitive if there is a path of common length between every couple of
vertices (see loc. cit. §2.6).

Regularness. — Let G be a directed graph and P one of its vertices. The out degree d+(P )
and in degree d−(P ) at P is the number of vertices Q such that there exists a path from P
to Q and from Q to P . A graph is said d-regular if and only if the in and out degrees at any
vertices is equal to d. For a finite d-regular directed graph, being weakly connected is equivalent
to being strongly connected (see loc. cit. Lemma 2.6.1). As a consequence, every strongly
connected component of a finite d-regular directed graph is still d-regular (indeed: any weakly
connected component of such a graph must be d-regular and weakly connected and then strongly
connected).

Adjacency matrix. — To each finite directed graph G, one can associate its adjacency
matrix A. One can easily verify that

#{cycles of length n} = tr(An) and #{paths of length n} = |||An||| (16)

where |||(ai,j)i,j||| =
∑

i,j |ai,j|. Moreover, most of the previous properties can be read off this
matrix. The graph is d-regular if and only if the sums of the coefficients of every lines and of
every columns equal d. It is strongly connected (resp. primitive) if and only if A is irreducible
(resp. primitive).

Spectral theory of non negative matrices. — The adjacency matrix of a graph is of
course a non negative matrix. Such matrices have a well known spectral theory (see [HJ90,
Chapter 8]). One of the most important result in this area is the Perron-Frobenius theorem (see
loc. cit. Theorem 8.8.1). We will use it several times in the sequel.

3.2 The geometric graph and its arithmetic and singular subgraphs

To a recursive tower T (X,Γ) given by an irreducible correspondence Γ on X ×X, we associate
in a very natural way an incidence “geometric” infinite graph whose vertices are the geometric
points of X and whose edges depend on Γ. Some of its “arithmetic” finite subgraphs will play a
crucial role till the end of this paper and in the proof of theorem 22.

Definition 10. Let (X,Γ) be a correspondence as in section 1.2.

(i) The geometric graph G∞(X,Γ) = G∞ is the graph whose vertices are the geometric
points of X, and for which there is an oriented edge from P ∈ X(Fq) to Q ∈ X(Fq) if
(P,Q) ∈ Γ(Fq).
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(ii) An oriented edge P → Q of the graph is said to be étale by π1 if the morphism π1 is étale
at (P,Q). In the same way, the edge P → Q is said to be étale by π2 if the morphism π2 is
étale at (P,Q). The singular part of the graph G∞, denoted by Gsing, is the union of all
weakly connected components containing at least one edge which is not étale by π1 or by π2.

(iii) For any subset S ⊂ X(Fq), the graph GS is the subgraph of G∞, whose vertices are the
points of S and where there is an oriented edge from P ∈ S to Q ∈ S if there is one in G∞,
that is if (P,Q) ∈ Γ(Fq).

(iv) In particular for S = X(Fqr), 1 ≤ r < +∞, we denote by Gr the subgraph GX(Fqr ) and we
call it the r-th arithmetic graph.

This graph is a convenient way to “see” some of the most important features of a recursive
tower:
• The geometric points of Cn are in bijection with the paths of length n− 1 of G∞ (that is n

vertices and n − 1 edges) while the arithmetic points defined over Fqr are in bijection with the
paths of length n− 1 of Gr.
• The non étale points (P,Q) ∈ Γ can be read off the in and out degrees of the graph G∞.

Indeed, for every vertex P ∈ X(Fq), the out-degree d+(P ) (resp. in-degree d−(P )) at P of the
graph G∞ is equal to d except if there exists at least one point (P,Q) ∈ Γ (resp. (Q,P ) ∈ Γ)
above P which is not étale by π1 (resp. π2), in which case this out (resp. in) degree is < d.
• The complementary part of the singular part of G∞ is a d-regular graph in the graph

theoretic sense, which means that at every vertex the out and the in degrees are equal to d.

One can even be more precise.

Proposition 11. Let (X,Γ) be a correspondence as in section 1.2.

(i) A path of length (n − 1) in G∞ corresponds to a singular point of Cn if and only if there
exist 1 ≤ i ≤ j < n such that the edge Pi → Pi+1 is not étale by π2 and the edge Pj → Pj+1

is not étale by π1. In particular, this path is contained in the singular part Gsing of G∞.

(ii) Every path of length (n− 1) outside the singular part corresponds to a smooth point of Cn.

Proof — The first item is only a translation of proposition 6 whereas the second one follows
trivially. �

For instance, we represent in figure 2 the second arithmetic graph G2 for the very nice tame
tower of [GSR03] recursively defined by y2 = x2+1

2x
over F5. The singular part Gsing is the subgraph

whose vertices are the points of P1(F5) = {0,±1,±2,∞}.

3.3 Finite complete sets and rational points

We define as Beelen (see [Bee04]) the notions of complete, backward complete and forward
complete sets.

Definition 12. A subset S of X(Fq) is said to be:

(i) forward complete if every point of S has all its outgoing neighbors in G∞ inside S, that
is if π2(π−1

1 (S)) ⊂ S;

(ii) backward complete if every point of S has all its incoming neighbors in G∞ inside S,
that is if π1(π−1

2 (S)) ⊂ S;
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Figure 2: The second arithmetic graph G2

(
P1, x

2+1
2x

= y2
)

over F25

(iii) complete if it is both backward and forward complete.

Remark – Being complete for a subset S ⊂ X(Fq) does NOT mean that the
graph GS is complete in the usual sense of graph theory.

If S is complete and if the subgraph GS is outside the singular part Gsing then GS is d-regular
in standard graph theory. The following examples will illustrate this.

In the example of figure 2, the sets {α, α5, α7, α11, α13, α17, α19, α23} and {0,±1,±2,∞} are
complete while the set {α4, α9, α20, α21} is neither forward nor backward complete. The set
{2, 0,∞} is forward complete, but not backward complete. Moreover, the fact that, for instance,
α3 possesses no outgoing edge means that there is no point in C2(F25) above the point α3 ∈
C1(F25); this also means that there is no points in C3(F25) above the point (α16, α3) ∈ C2(F25).
In other terms, this point is inert in the field extension F25(C3)/F25(C2).

Lemma 13. Let S be a finite and backward complete subset of X(Fq) such that the graph GS is
outside the singular part. Then S is complete.

Proof — Since GS is outside the singular part and S is backward complete, the in-degree at
every vertex P ∈ S is equal to d−(P ) = d. On the other side, the out-degree d+(P ) at each
vertex P is less than d. Counting the edges, we get

d#S =
∑
P∈S

d−(P ) =
∑
P∈S

d+(P ) ≤ d#S,

so that one must have d+(P ) = d for every P ∈ S, which means that S is also forward complete
and thus complete. �
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Proposition 14. Let (X,Γ) be a correspondence as in section 1.2. If there exists a finite complete
set S ⊂ X(Fqr) such that the graph GS is outside the singular part Gsing, then

#C̃n(Fqr) ≥ #S × dn−1.

Proof — Since S is complete and since the graph GS is assumed to be outside the singular part,
the graph GS must be d-regular. Each path of length n in GS gives rise to exactly d paths of
length n + 1 by adding one of the d outgoing neighbors of the ending vertex. All these paths
correspond to smooth points of Cn or Cn+1 and we have just proved that above each such point
of Cn, there are exactly d points on Cn+1. We easily conclude by induction since C1 counts at
least #S points defined over Fqr . �

3.4 Illustration with the BGS tower

In 1985, Bezerra, Garcia and Stichtenoth [BGS05] have introduced what we refer to as the BGS
recursive tower T (X,Γ) over Fq, defined by X = P1 and by the separated variables correspon-
dence Γf,g (notations of section 1.2) with

f(x) =
xq + x− 1

x
and g(y) =

1− y
yq

. (17)

For each n ≥ 1, the curve Cn is embedded in (P1)n =
∏n

i=1 Proj(Fq[xi, yi]) and is defined by the
ideal 〈

xqi+1

(
xqi + xiy

q−1
i − yqi

)
−
(
yqi+1 − xi+1y

q−1
i+1

)
xiy

q−1
i , 1 ≤ i ≤ n− 1

〉
.

In this section, we would like to illustrate our approach about recursive towers taking the BGS
tower as example. We do not prove anything and refer to the original Crelle’s article [BGS05]
for the proofs.

The totally split points — In figure 3, we represent two complete sets for q = 3. The left
hand one counts q(q + 1) vertices, all contained in Fq3 . For q = 5, 7..., one easily sees evidence
of the existence of a complete set of size q(q+ 1) outside the singular part. By proposition 14, if
this is true, one should have

#C̃n(Fq3) ≥ qn(q + 1).

Of course, this is not a proof of this fact, but only a convenient way to see it. This is proved in
Crelle [BGS05, Proposition 3.1].

The singular points — The right hand side complete set of figure 3 has points 0, 1,∞ as
vertices. These are exactly the ramified points of f or g: the ramified points of f (resp. g) are 1
and∞ (resp.∞ and 0). The set {0, 1,∞} is not complete but one can easily prove that it suffices
to add the set R of roots of xq + x− 1 to complete the set. The subgraph G{0,1,∞}∪R is nothing
else that the singular part Gsing.

The fact that every curve Cn is irreducible can be read of this component. Indeed, there is
only one loop starting from the vertex 0. This means that above the point 0 ∈ C1, there is only
one point, i.e. (0, . . . , 0) ∈ Cn. Since 0 is not a ramified point of f , this point is smooth in Cn
and then must be totally ramified over 0 ∈ C1. Necessarily Cn is irreducible.

Remark – Using this argument, this is a general fact that if there exists in Gsing
only one loop outgoing from a point, étale by π2, then the tower is irreducible. This
is a common feature of many towers of the literature.
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Figure 3: The two interesting components of G6 for q = 3

It can also be easily seen that for α0, . . . , αr in R, the points

(1, α1, 1, α2, . . . , 1, αr) ∈ C2r and (α0, 1, α1, 1, α2, . . . , 1, αr) ∈ C2r+1

are smooth. Actually to be singular on Cn or C]
n, a point must start by 1 or∞ (a ramified point

of f) or by α ∈ R (an incoming neighbor of a ramified point of f) and must end by 0 or ∞ (a
ramified point of g). Thus there are two types of singular points depending on the ending point:

Type Corresponding points on Cn Range of r

T∞ (1, α1, 1, α2, . . . , 1, αr,∞) n odd and r = n−1
2

(α0, 1, α1, 1, α2, . . . , 1, αr,∞) n even and r = n−2
2

T0 (1, α1, 1, α2, . . . , 1, αr,∞, 0, . . . , 0) 0 ≤ r ≤
⌊
n−2

2

⌋
(α0, 1, α1, 1, α2, . . . , 1, αr,∞, 0, . . . , 0) 0 ≤ r ≤

⌊
n−3

2

⌋
In this table, the integer r is the number of instances of couples (1, α) for α ∈ R in the con-
sidered point of Cn. If r = 0, there is no such couples; the two r = 0 cases in type T0 are
points (∞, 0, . . . , 0) and (α0,∞, 0, . . . , 0).

Finding an exact formula or even an upper bound for the genus sequence in this tower
is a pretty hard and technical problem; at least three articles deal with this specific problem
in the literature [BGS05, BS07, BGS08]. We have tried to compute the genus sequence in
the spirit of section 2.1, using standard techniques of curves desingularization, such as Newton
polygons and local integral closure computations. Unfortunately, having made lots of preliminary
calculations, we do not think that our approach can give rise to a simpler proof for the genus
formula. Let us just reformulate results of propositions 2.7 and 2.8 in Crelle’s [BGS05] in terms of
desingularization. The points of type T∞ give rise to a unique point after desingularization; this
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is not difficult to prove even with the measure of singularity. Points of type T0 are much more
harder to deal with. Points (iv) of locally cited propositions say that: if s is odd (respectively

even), and n ≥ 2s − 1 (respectively n ≥ 2s − 2), then a point of type T0 gives rise to q
(s−1)

2

(respectively q
(s−2)

2 ) points; in between, this is more tricky. For our purpose, the key point is
that:

Proposition 15. The number of geometric points of C̃n coming from the desingularization of
Cn is O(

√
qn).

The lower bound for the number of rational points over Fq3 and the upper bound for the
genus sequence leads to the inequalities

A(q3) ≥ λ3(X,Γ) ≥ 2(q2 − 1)

q + 2
.

4 Application to the asymptotic behaviour of recursive

towers

Collecting all results of the previous sections, we prove here our main theorem 22, which states
that (under some assumption) at most one βr is non zero for a recursive tower. We begin by
proving proposition 16, which mixes combinatoric and intersection theory. In conjunction with
a diophantine lemma 17 and some spectral considerations on the graph, we deduce theorem 19,
that under the assumptions of section 1.2, there exists at most one finite strongly connected
component in the geometric graph G∞. This theorem 19 and considerations on non-negative
matrices and Perron-Frobenius theory then lead us to proposition 20, a very precise form of
the connection between adjacency matrices, subgraphs and number of rational points on curves.
After deducing proposition 21, a second necessary condition for a tower to be good, we prove
our main theorem 22. As an example, we compute using our results some invariants defined by
Tsfasmann and Vlăduţ [TV02] for the BGS tower already studied in section 3.4. We deduce
corollary 24, which gives the analogous statement for pull-back of recursive towers, a family of
towers recently studied by some authors.

4.1 Number of cycles

For the statement of the next proposition, we recall that the class in the Neron-Severi group
NS(X×X)R of a correspondence C on X is a triple (d1, d2, σ) ∈ Z×Z×End (T`(Jac(X))) where
Jac(X) is the Jacobian variety of X, and T`(Jac(X)) is its Tate module for some prime number `
prime to q. For instance, the class of the diagonal ∆ is (1, 1, Id). Then, the intersection number
C · C ′ is given by

C · C ′ = (d1, d2, σ) · (d′1, d′2, σ′) = d1d
′
2 + d′1d2 − tr(σσ′). (18)

Moreover, Castelnuevo identity states that the bilinear form tr(σσ′) is negative definite ([Zar95]
chapter VII, appendix of Mumford p. 153). It is worth noticing that what we called up to
now the type (d1, d2) of a divisor C in X ×X is actually the“trivial” part of its complete class
(d1, d2, σ).

Note that Weil [Wei48] defined a product on the set of correspondences as follows. Let C, C ′

be two correspondences on X. Then the composition C ◦ C ′ is the correspondence on X given
by:

X −→ Div(X) −→ Div(X)
P 7−→

∑
Q∈X|(P,Q)∈C′ Q 7−→

∑
Q∈X|(P,Q)∈C′
R∈X|(Q,R)∈C

R.
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It then holds that, if C,C ′ have classes (d1, d2, σ) and (d′1, d
′
2, σ

′) in NS(X × X)R, then C ◦ C ′
has class (d1d

′
1, d2d

′
2, σσ

′). Of course, the class of C + C ′ is (d1 + d′1, d2 + d′2, σ1 + σ2). Since
the rational Neron-Severi group NS(X × X)Q is finite dimensional, say of dimension ρ, the
classes ∆, C, C ◦ C, · · · , Cρ are Q linearly dependant. This gives a Q-linear relation between
Id, σ, σ2, · · · , σρ, which implies that the eigenvalues of σ are in fact algebraic numbers.

The nice feature in the following statement is that the left hand side of formula (19) is
combinatorial in nature, whereas the right hand side is geometric. In this statement, we denote
by Sp(u) the spectrum of an operator u.

Proposition 16. Let (X,Γ) be a correspondence as in section 1.2, let (Cn)n≥1 be the associated
recursive tower whose curves Cn are assumed to be irreducible. We denote by π1,n+1 the projection
map Xn+1 → X ×X which sends (P1, . . . , Pn+1) to (P1, Pn+1) and by ∆ the diagonal of X ×X.

(i) The scheme-theoretic intersection Cn+1 ∩ π∗1,n+1(∆) in Xn+1 is zero-dimensional and of
degree equal to

Cn+1 · π∗1,n+1(∆) = 2dn −
∑

µ∈Sp(σ)

µn,

where (d, d, σ) is the class of Γ in NS(X ×X)R.

(ii) There is a one-one correspondence between the geometric points of Cn+1 ∩ π∗1,n+1(∆) and
the cycles of length n in G∞, whose number cn is thus finite.

(iii) Let r ≥ 1 be such that the graph Gr contains the cycles of length n and let Ar be the
adjacency matrix of Gr. Then

cn =
∑

λ∈Sp(Ar)

λn ≤ 2dn −
∑

µ∈Sp(σ)

µn (19)

and the last inequality is strict if the scheme Cn+1 ∩ π∗1,n+1(∆) contains a point with multi-
plicity at least 2.

Proof — We begin by proving that the irreducible curve Cn+1 is not contained in the hy-
persurface π∗1,n+1(∆). From the hypothesis on Γ, the first projection π1 : Γ → X is a finite
morphism of degree d, étale except at a finite number of geometric points (P,Q) ∈ Γ. Choose
a geometric point P ∈ X, such that π1 is étale at any point (P,Qi) ∈ Γ, 1 ≤ i ≤ d lying
above P . Choose a geometric point (P1, . . . , Pn−2, P ) ∈ Cn−1 whose last coordinate is Pn−1 = P .
There are d distinct geometric points (P1, . . . , Pn−2, P,Qi) ∈ Cn, for 1 ≤ i ≤ d lying above
(P1, . . . , Pn−2, P ) ∈ Cn−1. Suppose now by contradiction that Cn ⊂ π∗1,n+1(∆). This means that
for any 1 ≤ i ≤ d, we have Qi = P1, a contradiction since d ≥ 2. It follows that the intersec-
tion Cn+1 ∩ π∗1,n+1(∆) in Xn+1 is a zero dimensional subvariety. By the projection formula, one
has Cn+1 · π∗1,n+1(∆) = (π1,n+1)∗ (Cn+1) · ∆. By definition, (π1,n+1)∗ (Cn+1) is nothing else than
Γ ◦ Γ ◦ · · · ◦ Γ (n times), hence its class is (dn, dn, σn). Now, the class of the diagonal equals
(1, 1, Id), hence by (18)

Cn+1 · π∗1,n+1(∆) = (π1,n+1)∗ (Cn+1) ·∆ = dn × 1 + dn × 1− tr(σn),

which proves (i).
Now, a geometric point (P1, . . . , Pn+1) ∈ Xn+1 corresponds to a cycle of length n in G∞ if

and only if (P1, . . . , Pn+1) ∈ Cn+1 and (P1, . . . , Pn+1) ∈ π∗1,n+1(∆), which means that cycles of
length n correspond to points in the zero-dimensional intersection Cn+1 ∩ π∗1,n+1(∆) in Xn+1.
This proves that cn is finite and that cn ≤ Cn+1 · π∗1,n+1(∆).

Last, the equality cn =
∑

λ∈Sp(Ar)
λn holds since the number of cycles of length n is by (16)

the trace of the n-th power of the adjacency matrix Ar of Gr. �
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Remark – In case X = P1, it is also possible to give a proof of this proposition
using resultants.

This proposition is fruitful in conjunction with the following lemma:

Lemma 17 (Diophantine approximation). Let λ1, . . . , λk ∈ C∗. Then there exists an integer
N ∈ N∗, such that <(λNj ) > 0 for each 1 ≤ j ≤ k.

Proof — Let µj =
λj
|λj | for 1 ≤ j ≤ k. Then µj = exp(2ıπθj) for some real number θj ∈ R.

It follows from Hardy and Wright [HW08, theorem 201] that for any ε > 0, there exists some
N ∈ N∗ such that d(Nθj,Z) < ε for all 1 ≤ j ≤ k. By continuity of the exponential map, we
can also choose N such that |µNj − 1| < ε for any 1 ≤ j ≤ k. Now we choose ε = 1. There exists
some N ∈ N, such that |λNj − |λNj || < |λNj | for any j, which implies that <e(λNj ) > 0. �

4.2 Finite strongly connected regular components

We should focus on strongly connected components of the graph G∞ and especially the finite ones.

Proposition 18. Let (X,Γ) be a correspondence as in section 1.2. Then every finite d-regular
strongly connected subgraph G of the graph G∞(X,Γ) is primitive.

Proof — Let A be the adjacency matrix of the subgraph G. Since G is supposed to be strongly
connected, the matrix A is irreducible. Since G is d-regular, the vector (1, . . . , 1) is an eigenvector
of A for the eigenvalue d. By Perron-Frobenius theorem, this eigenvalue is simple and is nothing
else than the spectral radius of A. Moreover there exists a primitive root of unity ζm such that
the eigenvalues of absolute value d are the dζ im for 0 ≤ i ≤ m− 1, and all these eigenvalues are
also simple.

Relating to the trace of the matrix Amn for n ≥ 1, this implies that

tr(Amn) = mdmn +
∑

λ∈Sp(A)
|λ|<d

λmn

But this trace is also the number of cycles of length mn in G. By proposition 16, we thus have

∀n ≥ 1, (m− 2)dmn +
∑

λ∈Sp(A)
|λ|<d

λmn +
∑

µ∈Sp(σ)

µmn ≤ 0,

where (d, d, σ) is the class of Γ in NS(X×X)R. Note that in the left sum, any λ ∈ C \R appears
together with its conjugate λ̄. Then this sum is, in fact, a sum of real parts of powers of complex
numbers. By lemma 17, we deduce that m ≤ 2. Moreover, if m = 2, all the eigenvalues λ’s in
the left sum must be equal to zero using lemma 17 another time. Then the number of cycles of
length 2n in G, counted without multiplicities, is exactly 2d2n. But by proposition 16, it is also
equal to 2d2n counted with multiplicities. Then, for all n ≥ 1, every cycle of length 2n must be
simple. Thanks to corollary 9, we know that this is impossible. Hence m = 1; this characterizes
the fact that the matrix A or the graph G are primitive. �

Theorem 19. Let (X,Γ) be a correspondence as in section 1.2 such that the curves Cn of the
associated tower are all irreducible. Then the graph G∞(X,Γ) has at most one finite d-regular
strongly connected component.
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Remark – This theorem contains as a particular case Beelen’s theorem 5.5 [Bee04]
in the case of towers he called of type A on X = P1.

Proof — Suppose that there exists at least one such component. Let G1, . . . ,Gk, some finite d-
regular strongly connected components of G∞ and let Ai, 1 ≤ i ≤ k, be their adjacency matrices.
We denote by Sp(Ai) the spectrum of each Ai. As noticed in the preceding proof, each matrix Ai
has spectral radius d, and d is a simple eigenvalue. Hence, for any n ≥ 1

tr(An1 ) + · · ·+ tr(Ank) = kdn +
∑

λ∈
⋃k
i=1 Sp(Ai)\{d}

λn.

But this sum of traces is also the number of cycles of length n in the union of the Gi’s for
1 ≤ i ≤ k, which is of course less than the number of cycles of length n in the arithmetic graph
Gr for r large enough. Now, we have assumed that there exists at least one finite d-regular
strongly connected component, which contains of course at least one cycle of some length. Taken
sufficiently often, this cycle has multiplicity at least 2 by corollary 9, that is there is at least one
cycle, of some length m ∈ N∗, having multiplicity at least 2. Thus, by item (iii) of proposition 16,
we have for any n ≥ 1,

kdmn +
∑

λ∈
⋃k
i=1 Sp(Ai)\{d}

λmn +
∑

µ∈Sp(σ)

µmn ≤ 2dmn − 1 (20)

that is ∑
λ∈Sp(σ)

⋃
(Sp(A1)\{d})

⋃
···

⋃
(Sp(Ak)\{d})

(λm)n ≤ (2− k)dmn − 1.

Due to lemma 17, there exists some N ∈ N∗ such that

0 ≤ (2− k)dmN − 1,

which implies that k ≤ 1. �

Remark – It is worth noticing that the uniqueness comes from the “−1” at the
end of formula (20), which itself comes from the whole section 2.3 through its final
statement corollary 9. Without this term, the conclusion would be that there were
at most two finite d-regular strongly connected components. Consequences on the
rest of this paper would be that there were at most two (resp. 2d) non-zero βr’s in
theorem 22 (resp. in corollary 24).

The following proposition describes accurately the connection between three different worlds.

Proposition 20. Let (X,Γ) be a correspondence as in section 1.2, S ⊂ X(Fq) be a finite subset,
GS be the corresponding subgraph of G∞ and AS be the adjacency matrix of GS. Then, the following
assertions are equivalent:

(i) the spectral radius ρ(AS) of AS equals d;

(ii) there exists a unique Σ ⊂ S such that GΣ is d-regular and strongly connected;

(iii) there exists c > 0, such that:

]{(P1, . . . , Pn+1) ∈ Cn+1(Fq) | Pi ∈ S, ∀i} = c× dn + o(dn).
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Moreover, if these assertions are true, then the constant c in (iii) equals ]Σ in (ii); otherwise,
]{(P1, . . . , Pn+1) ∈ Cn+1(Fq) | Pi ∈ S, ∀i} = o(dn).

Proof — (i)⇒ (ii) Another consequence of Perron-Frobenius theorem is theorem 8.3.1 in Horn
& Johnson’s book on matrix analysis [HJ90] which states that the spectral radius d of AS is an
eigenvalue and that d is associated to a non-negative eigenvector

u = (uP )P∈S, such that uP ≥ 0 for any P ∈ S.

Of course, uP may be zero for some P ∈ S. Let Σ ⊂ S be the set of P ∈ S such that uP 6= 0.
Let AS = (aP,Q)P,Q∈S and AΣ = (aP,Q)P,Q∈Σ. Then

∀P ∈ Σ,
∑
Q∈S

aP,QuQ =
∑
Q∈Σ

aP,QuQ = duP ,

which means that the positive vector (uP )P∈Σ is an eigenvector of AΣ for the eigenvalue d. The
matrix AΣ is nothing else than the adjacency matrix of the subgraph GΣ.

Now, we prove that GΣ is d-regular, outside the singular part. By summation

∑
Q∈Σ

(∑
P∈Σ

aP,Q

)
uQ =

∑
Q∈Σ

duQ.

But:

• each uQ is > 0 for Q ∈ Σ,

• each (
∑

P∈Σ aP,Q) satisfies
∑

P∈Σ aP,Q ≤ d.

Hence
∀Q ∈ Σ,

∑
P∈Σ

aP,Q = d.

Let Q ∈ Σ; each term in the Q’th column in the adjacency matrix AΣ contains exactly d
coefficients 1. This means first that π1 is étale at any edge exiting from Q, second that Σ is
forward complete. Using a similar argument with the lines of AΣ, we also prove that π2 is étale
at any edge entering at Q, and that Σ is also backward complete, hence complete. In conclusion,
the graph GΣ is d-regular and any of its strongly connected components works. Now, such a
strongly connected d-regular component is unique by theorem 19.

(ii)⇒ (iii) As already noted, there is a one-to-one correspondence between the set of points
of Cn+1 with coordinates in S and the set paths of length n in GS. Therefore (see section 3.1):

]{(P1, · · · , Pn+1) ∈ Cn+1(Fq) | Pi ∈ S, ∀i} = |||AnS|||

and we are reduced to compute an equivalent of this norm.
To this end, let GS1 , . . . ,GSr be the weakly connected components of GS. The graph GΣ is

one of these components, say GS1 . Let AS1 , . . . , ASr be the corresponding adjacency matrices.
Then AS is the block diagonal matrix whose blocks are the ASi ’s and the norm satisfies

|||AnS||| =
r∑
i=1

∣∣∣∣∣∣AnSi∣∣∣∣∣∣.
The first norm

∣∣∣∣∣∣AnS1

∣∣∣∣∣∣ equals the number of paths of length n in GS1 = GΣ, that is equals
]Σ × dn by d-regularity. For i ≥ 2, the spectral radius must satisfy ρ(ASi) < d, otherwise, by

25



(i) ⇒ (ii), GSi would contain a d-regular strongly connected component. This would contradict
the uniqueness stated in theorem 19. Gelfand spectral radius theorem states that ρ(ASi) =

limn→∞
n

√∣∣∣∣∣∣AnSi∣∣∣∣∣∣. Therefore, ρ(ASi) < d implies that
∣∣∣∣∣∣AnSi∣∣∣∣∣∣ = o(dn). We deduce that |||AnS||| =∑r

i=1

∣∣∣∣∣∣AnSi∣∣∣∣∣∣ = ]Σ× dn + o(dn).
(iii) ⇒ (i) Hypothesis (iii) means that |||AnS||| = c × dn + o(dn). Hence (Gelfand theorem

again):

ρ(AS) = lim
n→∞

n

√
|||AnS||| = lim

n→∞
n
√
c× dn + o(dn) = d.

Along the proof of the equivalence, we have proved that the constant must be equal to ]Σ.
For the last assertion, we remark that ρ(AS) ≤ d: that is because AS is a non-negative matrix

whose sums on any line and any column are between 0 and d. If assertion (i) is not satisfied,
this means that ρ(AS) < d. Using again the Gelfand spectral radius theorem, one directly proves
that |||AnS||| = o(dn). �

Remark – The matrix norm |||A||| we use is not submultiplicative. Fortunately,
Gelfand spectral radius theorem does not require this assumption (cf. [HJ90, Corol-
lary 5.7.10]).

4.3 The (βr)r≥1 sequence of recursive towers

We apply most of the results of the preceding sections to show a specific property satisfied by
recursive towers. Especially, we focus on the (βr)r≥1 sequence.

We need some common notations for the statements of this section. Let C be a singular curve
defined over Fq, let ν : C̃ → C denote the normalization map, and let P ∈ C(Fqr) be a point of
C defined over Fqr for some r ∈ N∗ ∪ {∞} (with the convention Fq∞ = Fq). For s ∈ N∗ ∪ {∞},
we put

νP (Fqs) = ]
{
Q ∈ C̃ (Fqs) |ν(Q) = P

}
,

the number of Fqs-rational points of C̃ above P .
We will make heavy use of the r-arithmetic graph Gr (see definition 10), whose adjacency

matrix is denoted by Ar. Since the norm |||Anr ||| is the number of paths of length n in the
arithmetic graph by (16), we have

]C̃n+1(Fqr) = |||Anr |||+
∑

P ∈ Cn+1(Fqr )

(νP (Fqr)− 1), (21)

We first give another necessary condition for a recursive tower to have at least one non-zero βr.

Proposition 21. Let (X,Γ) be a correspondence as in section 1.2. Suppose that the curves Cn
of the associated tower are all irreducible, and that the geometric genus sequence (gn)n≥1 goes
to +∞. Suppose also that at least one βr is non-zero. Then:

(i) either the graph G∞(X,Γ) has exactly one finite d-regular strongly connected component;

(ii) or the number of new geometric points in C̃n(Fq) coming from desingularization has asymp-
totic behaviour: ∑

P∈Cn+1(Fq)

(νP (Fq)− 1) = c× dn + o(dn)

for some constant c > 0.
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Proof — Let r ≥ 1 be such that βr 6= 0. We use proposition 20 with S = X(Fqr), hence GS = Gr
is the r-th arithmetic graph, whose adjacency matrix is Ar. Thanks to (21), we have

]C̃n+1(Fqr) = |||Anr |||+
∑

P ∈ Cn+1(Fqr )

(νP (Fqr)− 1),

By lemma 1, since βr 6= 0, we know that there exists a constant c > 0 such that ]C̃n+1(Fqr) =
c × dn + o(dn). Suppose that (i) does not hold. Then by proposition 20 (last statement), we
have |||Anr ||| = o(dn). Therefore (ii) must holds. �

In the following result we show under some hypothesis that the sequence (βr)r≥1 of a recursive
tower could have at most an unique non-zero term.

Theorem 22. Let (X,Γ) be a correspondence as in section 1.2. Suppose that the curves Cn of the
associated tower are all irreducible and that the geometric genus sequence (gn)n≥1 goes to +∞.
Suppose also that the following hypothesis holds:

(H) the number of new geometric points of C̃n coming from the desingularisation of Cn is
negligible compared to dn for large n, that is:∑

P ∈ Cn+1(Fq)

(νP (Fq)− 1) = o(dn).

Then, there exists at most one integer r ≥ 1 such that βr 6= 0.

Remarks

1. The irreducibility and genus-behaviour hypotheses are quite cheap.

2. Up to our knowledge, the only examples in the literature who do not satisfy
the desingularization assumption (H) are the tower defined by the recursive equation
(x+ 1)3 = y3 + 1 over F4 ([GST97] or [Bee04, example 2.4]), and a tower of Shimura
curves computed by Elkies (see [Elk01]).

3. The conclusion of this theorem is false for good towers constructed from Hilbert
class field towers using Grunwald-Wang theorem as communicated to us by Philippe
Lebaque. It is also false for pull back of recursive towers, see the last section 4.4 at
the end of this paper.

Proof — For s ≥ 1, we consider the s-th arithmetic graph Gs and we denote by As its adjacency
matrix. We have by (21):

]C̃n+1(Fqs) = |||Ans |||+
∑

P ∈ Cn+1(Fqs )

(νP (Fqs)− 1), (22)

Hypothesis (H) implies that the sum on the right hand side is negligible compared to dn. As
for the norm |||Ans |||, it depends whether or not conditions of proposition 20 are satisfied for the
finite set S = X(Fqs).

Suppose that the graph G∞ does not contain any finite d-regular strongly connected com-
ponent. Then, by proposition 20, for any s ≥ 1, one also has |||Ans ||| = o(dn). We deduce

that ]C̃n(Fqs) = o(dn) and it follows by lemma 1 that all βs’s vanish.
Suppose now that the graph G∞ admits at least one finite d-regular strongly connected

component. By theorem 19, this component is unique and we denote it by GΣ. By proposi-
tion 20, either Σ ⊂ X(Fqs) in which case |||Ans ||| = ]Σ × dn + o(dn), or Σ 6⊂ X(Fqs) in which
case |||Ans ||| = o(dn). Due to hypothesis (H), we deduce that, for s ≥ 1:

Σ ⊂ X(Fqs) ⇔ ]C̃n(Fqs) = ]Σ× dn + o(dn),
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and
Σ 6⊂ X(Fqs) ⇔ ]C̃n(Fqs) = o(dn). (23)

We denote by r ≥ 1 the smallest integer such that Σ ⊂ X(Fqr). Then we have C̃n(Fqr) =
]Σ× dn + o(dn) and

dn

gn
=

dn

]C̃n(Fqr)
× ]C̃n(Fqr)

gn
=

1

]Σ + o(1)
× ]C̃n(Fqr)

gn
. (24)

Since both right hand side sequences admit a limit, so do the left hand side one. Let ` =
limn→+∞

dn

gn
. If this limit is zero then by lemma 1 every λi(T ), and thus every βi(T ), vanishes

and the theorem is proved. We suppose now that ` > 0. From (23) and (24), one has for any
s ≥ 1:

λs(T ) = lim
n→+∞

]C̃n(Fqs)
gn

= lim
n→+∞

(
]C̃n(Fqs)

dn
× dn

gn

)
=

{
]Σ× ` if Σ ⊂ X(Fqs)
0 if Σ 6⊂ X(Fqs).

(25)

We now conclude in three steps. First, by minimality of r, we have Σ ⊂ X(Fqs) if and only
if r | s. In particular,

λr(T ) = ]Σ× ` and ∀s | r, s 6= r, λs(T ) = 0.

The last vanishing implies that βs(T ) = 0 for s strictly dividing r, thus

λr(T ) = rβr(T ) = ]Σ× ` (26)

hence βr(T ) 6= 0. Second, for k ≥ 2, Σ ⊂ Fqkr , then thanks to (25) and (26):∑
d|kr
d 6=r

dβd(T ) = λkr(T )− rβr(T ) = ]Σ× `− ]Σ× ` = 0.

Therefore βs(T ) = 0 for every s strictly divisible by r. Last, for s which neither divides r nor is
divisible by r, then Σ 6⊂ X(Fqs), hence by (23) and lemma 1, we have λs(T ) = 0 and, a fortiori,
βs(T ) = 0. This concludes the proof. �

Theorem 22 is a good tool to compute the defect of a recursive tower. As in section 3.4, let
us consider the BGS tower as an example.

Corollary 23. Consider Bezerra-Garcia-Stichtenoth’s tower defined in section 3.4 over Fq.
Then:

(i) one has

β3 =
2(q2 − 1)

3(q + 2)
, βr = 0, r 6= 3, λ3 =

2(q2 − 1)

(q + 2)
;

(ii) the defect δBGS of this tower, as defined in [TV02], is given by

δBGS = 1− 2(q2 − 1)

(q + 2)
√
q3 − 1

;

(iii) the zeta function of this tower, as defined in [TV02], is given by

ZBGS(T ) =
1

(1− T )β3
.
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Remark – Assertion (ii) states that for q large, we have δBGS = 1− 2√
q

+ o
(

1√
q

)
, so

that the tower is good, but far from being optimal in the sense of [TV02] (see section
1.1).

Proof — This tower is known to be irreducible from [BGS08]. What proposition 3.1 in [BGS05]
states in our context is that some explicit set Ω ⊂ P1(Fq3) of cardinal q(q+1) is forward complete
and outside the singular graph Gsing. Since it is finite, it is complete by lemma 13. The graph GΩ

is thus d-regular; it must also be strongly connected since otherwise there would be more than
two strongly connected components in G∞, contradicting theorem 19. Since Ω ⊂ P1(Fq3) but
Ω * P1(Fq), we have β3 6= 0. By proposition 15, assumption (H) in theorem 22 holds true since
d = q, hence there exists by theorem 22 at most one r such that βr is non-zero, i.e. βr = 0 for
r 6= 3.

Now, the number of rational points of C̃n over Fq3 is given by equation (21) for r = 3. Here,
the sum is o(qn) since (H) holds true as already stated. As for the norm part, condition (ii) of
proposition 20 for S = P1(Fq3) holds true for Σ = Ω. Thus condition (iii) holds also true for
c = ]Ω, so that (21) for s = 3 reduces to

]C̃n(Fq3) = ]Ω× qn + o(qn).

Finally, the genus of C̃n is given in [BGS05], so that (i) is proved. Items (ii) and (iii) follow
immediately by definitions of δBGS and ZBGS(T ). �

4.4 Several non-zero βr’s

Following [HST13], let us call positive parameter of a tower T an integer r ∈ N∗ such that βr(T ) 6=
0. Theorem 22 states that, under the desingularization hypothesis, the set of positive parameters
of a recursive tower contains at most one element.

Recently, this set has been studied by some authors (see e.g. [Leb09, Leb10, HST13, BR12]).
They prove that there exist towers of function fields with a set of positive parameters arbitrarily
large. For example, Hess, Stichtenoth and Tutdere [HST13] pullback a known good recursive
tower by a well chosen curve. More precisely, let (X,Γ) be a correspondence as in section 1.2,
let T = (Cn)n≥1 the associated tower. Let π : Y → X be a finite surjective morphism, with Y
absolutely irreducible. We define the pullback π∗T = (Dn)n≥1 of the tower T by π by D1 = Y
and Dn+1 = Dn ×Cn Cn+1. Let us point out that the pullback tower may not be recursive in our
sense. One way to convince ourselves of this is precisely to remark that this tower may have a
set of positive parameters with more than one element, while it is easily seen that if T satisfies
the desingularization assumption, then so does π∗(T ). We prove:

Corollary 24. Let (X,Γ) be a correspondence satisfying the hypothesis of theorem 22. Let
π : Y → X be a finite surjective morphism of degree d, with Y absolutely irreducible. Then the
pullback tower π∗(T (X,Γ)) has a set of positive parameters with at most d elements.

Proof — Thanks to theorem 22, the recursive tower T (X,Γ) possesses either zero, or only one

non-vanishing βr. Note first that for any r ≥ 1, the trivial bound Nr(D̃n) ≤ d×
(∑

s|rNs(C̃n)
)

implies

0 ≤ Nr(D̃n)

g(D̃n)
≤ d×

∑
s|r

Ns(C̃n)

g(C̃n)
× g(C̃n)

g(D̃n)
≤ d×

∑
s|r

Ns(C̃n)

g(C̃n)
. (27)
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Suppose first that T (X,Γ) possesses no non-vanishing βs: for any s, the sequence Ns(C̃n)

g(C̃n)
goes

to zero as n goes to infinity. Let r ≥ 1. All terms of the right hand side in (27) goes to zero as
n goes to infinity, so that the pulled back tower satisfy λr(π

∗(T (X,Γ))) = 0.

Suppose now that βr0(T (X,Γ)) 6= 0 (hence all other βr vanish). Let r ≥ 1. In case r is not
divisible by r0, one proves in the same way using formula (27) that λr(π

∗(T (X,Γ))) = 0. In case
r = k × r0, we need the sharper bound

Br(D̃n) ≤
∑

s|r, sd≥r

ds

r
×Bs(C̃n),

which implies

0 ≤ Br(D̃n)

g(D̃n)
≤

∑
s|r, sd≥r

ds

r
× Bs(C̃n)

g(C̃n)
× g(C̃n)

g(D̃n)
≤

∑
s|r, sd≥r

ds

r
× Bs(C̃n)

g(C̃n)
. (28)

In our case r = k × r0, suppose that k > d. Then any index s in the right-hand sum of (28) will
be strictly greater that r0, hence the right hand side goes to zero as n goes to infinity, so that
the left hand side also. �
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