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INFINITESIMAL AND B∞-ALGEBRAS, FINITE SPACES,

AND QUASI-SYMMETRIC FUNCTIONS

LOÏC FOISSY, CLAUDIA MALVENUTO, AND FRÉDÉRIC PATRAS

Abstract. Finite topological spaces are in bijective correspondence
with preorders on finite sets. We undertake their study using combi-
natorial tools that have been developed to investigate general discrete
structures. A particular emphasis will be put on recent topological and
combinatorial Hopf algebra techniques. We will show that the linear
span of finite spaces carries generalized Hopf algebraic structures that
are closely connected with familiar constructions and structures in topol-
ogy (such as the one of cogroups in the category of associative algebras
that has appeared e.g. in the study of loop spaces of suspensions).
The most striking results that we obtain are certainly that the linear
span of finite spaces carries the structure of the enveloping algebra of
a B∞–algebra, and that there are natural (Hopf algebraic) morphisms
between finite spaces and quasi-symmetric functions. In the process,
we introduce the notion of Schur-Weyl categories in order to describe
rigidity theorems for cogroups in the category of associative algebras
and related structures, as well as to account for the existence of natural
operations (graded permutations) on them.

1. Introduction

Finite topological spaces, or finite spaces, for short, that is, topologies on
finite sets, have a long history, going back at least to P.S. Alexandroff [2].
He was the first to investigate, in 1937, finite spaces from a combinatorial
point of view and relate them to preordered sets. Indeed, finite spaces
happen to be in bijective correspondence with preorders on finite sets and
it is extremely tempting to undertake their study using the combinatorial
tools that have been developed to investigate general discrete structures.
However, quite surprisingly, such an undertaking does not seem to have
taken place so far, and it is the purpose of the present article to do so.

A particular emphasis will be put on recent topological and combinatorial
Hopf algebra techniques. We will show that the set of finite spaces carries
naturally (generalized) Hopf algebraic structures that are closely connected
with usual topological constructions (such as joins or cup products) and fa-
miliar structures in topology (such as the one of cogroups in the category of
associative algebras, or infinitesimal Hopf algebras, that have appeared e.g.
in the study of loop spaces of suspensions and the Bott-Samelson theorem
[8, 7]). Let us mention that the operation underlying the Hopf algebra co-
product is less standard and amounts to the “extraction” of open subsets
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out of finite spaces (Definition 18). The most striking results that we obtain
are certainly that, first, the linear span F of finite spaces carries the struc-
ture of the enveloping algebra of a B∞–algebra (Theorem 19). Second, that
there is a (surjective, structure preserving) Hopf algebra morphism from F
to the algebra of quasi-symmetric functions (Theorem 21). In the process,
we introduce the notion of Schur-Weyl categories to describe rigidity theo-
rems for cocommutative cogroups in the category of associative algebras (or,
equivalently, infinitesimal bialgebras) and related structures such as shuffle
bialgebras or their dual bialgebras. Here, rigidity has to be understood in
the sense of Livernet [20]: a generalized bialgebraic structure, such as a
cogroup in the category of associative algebras, is rigid if it is free as an
algebra and cofree as a coalgebra.

Let us point out that operations such as cup products are usually defined
“locally”, that is, inside a chain or cochain algebra associated to a given
topological space, whereas the structures we introduce hold “globally” over
the linear span of all finite spaces. Although we will not investigate system-
atically in the present article this interplay between “local” and “global”
constructions, it is certainly one of the interesting phenomena showing up
in the study of finite topological spaces.

From the historical perspective, a systematic homotopical investigation of
finite spaces did not occur till the mid-60’s, with breakthrough contributions
by R.E. Stong [34] and M.C. McCord [23, 24]. These investigations were
revived in the early 2000s, among others under the influence of P. May; we
refer to [3] for details. These studies focussed largely on problems such as
reduction methods (methods to remove points from finite spaces without
changing their strong or weak homotopy type and related questions such
as the construction of minimal spaces, see e.g. [5, 13]), as such they are
complementary to the ones undertaken in the present article.

The article is organized as follows: in the next two sections, we review
briefly the links between finite spaces and preorders, introduce the Com−As
structure on finite spaces and study its properties (freeness, involutivity,
compatibility with homotopy reduction methods). Sections 4 and 5 revisit
the equivalent notions of free algebras and cofree coalgebras, cocommutative
cogroups in the category of associative algebras and infinitesimal bialgebras
[7, 21, 20]. We extend in particular results of Livernet and relate these
algebras to shuffle bialgebras and their dual bialgebras. In the following
section, we show how these ideas apply to finite spaces, showing in particular
that their linear span carries the structure of a cofree connected coalgebra
and, more precisely, is the enveloping algebra of a B∞–algebra. The last
section investigates the links between finite topologies and quasi-symmetric
functions.

In the present article, we study “abstract” finite spaces, that is, finite
spaces up to homeomorphisms: we identify two topologies T and T ′ on the
finite sets X and Y if there exists a set map f from X to Y inducing an
isomorphism between T and T ′. The study of “decorated” finite spaces
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(that is, without taken into account this identification) is interesting for
other purposes (e.g. enumerative and purely combinatorial ones). These
questions will be the subject of another article [14].

All vector spaces and algebraic structures (algebras, coalgebras...) are
defined over a field K of arbitrary characteristic. By linear span of a set
X, we mean the vector space freely generated by X over this ground field.
Unless otherwise stated, the objects we will consider will always be N-graded
(shortly, graded) and connected (connectedness meaning as usual that the
degree 0 component of a graded vector space is the null vector space or is
the ground field for a graded algebra, coalgebra or bialgebra). Because of
this hypothesis, the two notions of Hopf algebras and bialgebras will agree
(see e.g. [19]); we will use them equivalently and without further comments.

The authors acknowledge support from the grant CARMAANR-12-BS01-
0017. L. Foissy and F. Patras acknowledge visiting support from Sapienza
Università di Roma.

2. Topologies on finite sets

2.1. Notation and definitions. Let X be a set. Recall that a topology
on X is a family T of subsets of X, called the open sets of T , such that:

(1) ∅, X ∈ T .
(2) The union of an arbitrary number of elements of T is in T .
(3) The intersection of a finite number of elements of T is in T .

When X is finite, these axioms simplify: a topology on X is a family
of subsets containing the empty set and X and closed under unions and
intersections. In particular, the set of complements of open sets (the closed
sets for T , which is automatically closed under unions and intersections)
defines a dual topology T ∗ as T ∗ := {F ⊂ X, ∃O ∈ T , F = X − O}. We
will write sometimes σ for the duality involution, σ(T ) := T ∗, σ2 = Id.

Two topologies T , T ′, on finite sets respectively X and Y , are homeo-
morphic if and only if there exists a bijective map f between X and Y such
that f∗(T ) = T ′ (where we write f∗ for the induced map on subsets of X
and Y ). We call finite spaces the equivalence classes of finite set topolo-
gies under homeomorphisms and write T for the finite space associated to
a given topology T on a finite set X. In order to avoid terminological am-
biguities, we will a finite set X equipped with a topology a finite topological
set (instead of finite topological space).

Every finite space T can be represented by a (non-unique) topology T n

on the set [n] := {1, ..., n} (in particular, [0] = ∅); we call T n a standard
representation of T . The duality involution goes over to finite spaces, its
action on finite spaces is still written σ (or with a ∗).

Let us recall now the bijective correspondence between topologies on a
finite set X and preorders on X (see [12]).
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(1) Let T be a topology on the finite set X. The relation ≤T on X is
defined by i ≤T j if any open set of T which contains i also contains
j. Then ≤T is a preorder, that is to say a reflexive, transitive rela-
tion. Moreover, the open sets of T are the ideals of ≤T , that is to
say the sets I ⊆ X such that, for all i, j ∈ X:

(i ∈ I and i ≤T j) =⇒ j ∈ I.

(2) Conversely, if ≤ is a preorder on X, the ideals of ≤ form a topology
on X denoted by T≤. Moreover, ≤T≤

=≤, and T≤T
= T . Hence,

there is a bijection between the set of topologies on X and the set
of preorders on X. A map between finite topologies (i.e. topologies
on finite sets) is continuous if and only if it is preorder-preserving.

(3) Let us define for each point x ∈ X the set Ux to be the minimal open
set containing x. The Ux form a basis for the topology of X called
the minimal basis of T . The preorder that has just been introduced
can be equivalently defined by x ≤T y ⇔ y ∈ Ux. Notice that the
opposite convention (defining a preorder from a topology using the
requirement x ∈ Uy) would lead to equivalent results.

(4) Let T be a topology on X. The relation ∼T on X, defined by i ∼T j
if i ≤T j and j ≤T i, is an equivalence relation on X. Moreover,
the set X/ ∼T is partially ordered by the relation defined on the
equivalence classes i by i ≤T j if i ≤T j. Consequently, we shall
represent preorders on X (hence, topologies on X) by the Hasse
diagram of X/ ∼T , the vertices being the equivalence classes of ∼T .

(5) Duality between topologies is reflected by the usual duality of pre-
orders: i ≤T ∗ j ⇔ j ≤T i. In particular, the Hasse diagram of T ∗ is
obtained by reversing (turning upside-down) the Hasse diagram of
T .

(6) A topological space is T0 if it satisfies the separation axiom accord-
ing to which the relation ∼ is trivial (equivalence classes for ∼ are
singletons, that is, for any two points x, y ∈ X, there always ex-
ists an open set containing only one of them). At the level of ≤T

this amounts requiring antisymmetry: the preorder ≤T is then a
partial order. In other terms, finite T0-spaces are in bijection with
isomorphism classes of finite partially ordered sets (posets).

For example, here are the topologies on [n], n ≤ 3:
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The two topologies on [3], q
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∨1
32
and

q

∧qq 12 3 , are dual.
A finite space will be represented by an unlabelled Hasse diagram. The

cardinalities of the equivalence classes of ∼T are indicated on the diagram
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associated to T if they are not equal to 1. Here are the finite spaces of
cardinality ≤ 3:

1 = ∅; q ; q q , q

q

, q2 ; q q q, q

q

q, q

qq

∨ ,
q

∧qq , q
q

q

, q2 q , q

q

2 , q

q2 , q3 .

The (minimal) finite space realization, up to weak homotopy equivalence, of
the circle and of the 2-dimensional sphere (see e.g. [4])

•

--
--
--
•

��
��
��

•

--
--
--
•

��
��
��

• • •

--
--
--
•

��
��
��

• •

are examples of self-dual finite spaces.
The number tn of topologies on [n] is given by the sequence A000798 in

[31]:

n 1 2 3 4 5 6 7 8 9 10
tn 1 4 29 355 6 942 209527 9 535 241 642 779 354 63 260 289 423 8 977 053 873 043

The set of topologies on [n] will be denoted by Tn, and we put T =
⊔

n≥0

Tn.

The number fn of finite spaces with n elements is given by the sequence
A001930 in [31]:

n 1 2 3 4 5 6 7 8 9 10
fn 1 3 9 33 139 718 4 535 35 979 363 083 4 717 687

The set of finite spaces with n elements will be denoted by Fn, and we

put F =
⊔

n≥0

Fn. The vector space with basis given by the set of all finite

spaces is written F and its (finite dimensional) degree n component, the
subspace generated by finite spaces with n elements, Fn. We will be from
now on interested in the fine structure of F in relation to classical topological
properties and constructions.

2.2. Homotopy types. The present section and the following survey the
links between finite spaces and topological notions such as homotopy types.
We refer to Stong’s seminal paper [34] and to Barmak’s thesis [3] on which
this account is based for further details and references.

For a finite topological set, the three notions of connectedness, path-
connectedness and order-connectedness agree (the later being understood
as connectedness of the graph of the associated preorder).

For f, g continuous maps between finite topological sets X and Y , we set

f ≤ g ⇔ ∀x ∈ X, f(x) ≤ g(x) for the order of Y.

This preorder on the (finite) mapping space Y X is the one associated to
the compact-open topology. It follows immediately, among others, that
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two comparable maps are homotopic and that a space with a maximal or
minimal element is contractible (since the constant map to this point will
be homotopic to any other map – in particular the identity map).

For the same reason, given a finite topological set X, there exists a ho-
motopy equivalent finite topological set X0 which is T0 (the quotient space
X/ ∼T considered in the previous section, for example). Therefore, since
[2], the study of homotopy types of finite spaces is in general restricted to T0

spaces. Characterizing homotopies (inside the category of finite topological
sets) is also a simple task: two maps f and g are homotopic if and only if
there exists a sequence:

f = f0 ≤ f1 ≥ f2 ≤ .... ≥ fn = g.

In the framework of finite topological sets, a reduction method refers to
a combinatorial method allowing the removal of points without changing
given topological properties (such as the homotopy type). Stong’s reduction
method allows a simple and effective construction of representatives of finite
homotopy types [34]. Stong first defines the notions of linear and colinear
points (also called up beat points and down beat points in a later terminol-
ogy): a point x ∈ X is linear if ∃y ∈ X, y > x and ∀z > x, z ≥ y. Similarly,
x ∈ X is colinear if ∃y ∈ X, y < x and ∀z < x, z ≤ y. It follows from the
combinatorial characterization of homotopies that, if x is a linear or colinear
point in X, then X is homotopy equivalent to X − {x}.

Together with the fact that any finite topological set is homotopy equiva-
lent to a T0 space, the characterization of homotopy types follows. A space
is called a core (or minimal finite space) if it has no linear or colinear points.
By reduction to a T0 space and recursive elimination of linear and colinear
points, any finite topological set X is homotopy equivalent to a core Xc that
can be shown to be unique up to homeomorphism [34, Thm. 4].

2.3. Simplicial realizations. Another important tool to investigate topo-
logically finite spaces is through their connection with simplicial complexes.
We survey briefly the results of McCord, following [24, 3].

Recall that a weak homotopy equivalence between two topological spaces
X and Y is a continuous map f : X → Y such that for all x ∈ X and all
i ≥ 0, the induced map f∗ : πi(X,x) 7−→ πi(Y, f(x)) is an isomorphism (of
groups for i > 0). The finiteness requirement enforces specific properties
of finite spaces: for example, contrary to what happens for CW-complexes
(Whitehead’s theorem), there are weakly homotopy equivalent finite spaces
with different homotopy types.

The key to McCord’s theory is the definition of functors between the
categories of finite topological sets and simplicial complexes (essentially
the categorical nerve and the topological realization). Concretely, to a fi-
nite topological set X is associated the simplicial complex K(X) of non
empty chains of X/ ∼T (that is, sequences x1 < ... < xn in X/ ∼T ).
Conversely, to the simplicial complex K(X) is associated its topological
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realization |K(X)|: the points x of |K(X)| are the linear combinations

x = t1x1 + ... + tnxn,
n
∑

i=1
ti = 1, ti > 0. Setting Sup(x) := x1, McCord’s

fundamental theorem states that:

Sup : |K(X)| 7−→ X/ ∼T

is a weak homotopy equivalence. In particular, |K(X)| is weakly homotopy
equivalent to X. Notice also that K(X) and K(X∗), resp. |K(X)| and
|K(X∗)| are canonically isomorphic: a finite space is always weakly homo-
topy equivalent to its dual.

3. Sums and joins

We investigate from now on operations on finite spaces. Besides their
intrinsic interest and their connections to various classical topological con-
structions, they are meaningful for the problem of enumerating finite spaces
(see e.g. [32, 30, 12]). They will also later underly the construction of B∞-
algebra structures.

Notation. Let O ⊆ N and let n ∈ N. The set O(+n) is the set {k + n |
k ∈ O}.

Definition 1. Let T ∈ Tn and T ′ ∈ Tn′ be standard representatives of
T ∈ Fn and T ′ ∈ Fn′.

(1) The topology T .T ′ is the topology on [n+n′] for which open sets are
the sets O⊔O′(+n), with O ∈ T and O′ ∈ T ′. The finite space T .T ′

is T .T ′.
(2) The topology T ≻ T ′ is the topology on [n + n′] for which open sets

are the sets O ⊔ [n′](+n), with O ∈ T , and O′(+n), with O′ ∈ T ′.
The finite space T ≻ T ′ is T ≻ T ′.

We omit the proof that the products T .T ′ and T ≻ T ′ are well-defined
and do not depend on the choice of a standard representative.

The first product is the sum (disjoint union) of topological spaces.
The second one deserves to be called the join. Recall indeed that the join

A ∗ B of two topological spaces A and B is the quotient of [0, 1] × A × B
by the relations (0, a, b) ∼ (0, a, b′) and (1, a, b) ∼ (1, a′, b). For example,
the join of the n and m dimensional spheres is the n + m + 1-dimensional
sphere. When it is defined that way, the join is not an internal operation on
finite spaces. However, recall that the join of two simplicial complexes K
and L is the simplicial complex K ∗ L := K

∐

L
∐

{σ ∪ β, σ ∈ K, β ∈ L}
and that the join operation commutes with topological realizations in the
sense that (up to canonical isomorphisms) |K ∗ L| = |K| ∗ |L|. It follows
therefore from McCord’s theory that, up to a weak homotopy equivalence,
the product ≻ is nothing but (a finite spaces version of) the topological join.
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We extend linearly the two products defined earlier to F . Note that these
products define linear maps from Fm ×Fn to Fm+n for all m,n ≥ 0.

By a slight abuse of notation, we will allow ourselves to denote finite
spaces using the notation (X, Y ,...) that was reserved till now for finite
topological sets. Similarly, we will not discuss systematically the fact that
some constructions on finite spaces have to be done by choosing finite topo-
logical sets representatives of the corresponding finite spaces, performing the
construction on these representatives, and then moving back to the corre-
sponding homeomorphism classes.

Examples.

q

qq

∨1
32
. q
q

2
1 = q

qq

∨1
32
q

q

5
4 , q

qq

∨1
32
≻ q

q

2
1 = q∨

qq

q

q

∧
1

32

5

4

.

The join of two circles (see in the previous section the minimal finite space
representation of a circle) is a 3-sphere:

•

--
--
--
•

��
��
��

•

--
--
--
•

��
��
��

•

--
--
--
•

��
��
��

• •

Proposition 2. These two products are associative, with ∅ = 1 as a
common unit. The first product is also commutative. They are compatible
with the duality involution:

X∗.Y ∗ = (X.Y )∗, Y ∗ ≻ X∗ = (X ≻ Y )∗.

The proof is left to the reader.

Definition 3. Let X ∈ F, different from 1. Notice that X is connected
(or .-indecomposable) if and only if it cannot be written in the form X =
X ′.X ′′, with X ′,X ′′ 6= 1.

(1) We shall say that X is join-indecomposable if it cannot be written in
the form X = X ′ ≻ X ′′, with X ′,X ′′ 6= 1.

(2) We shall say that X is irreducible if it is both join-indecomposable
and connected.

Examples. Here are the irreducible spaces of cardinality ≤ 4:

q ; q2 ; q3 ; q4 , q q

q q

� .

The triple (F , .,≻) is a Com−As algebra, that is an algebra with a first
commutative and associative product and a second, associative, product
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sharing the same unit. This is a particular example of a 2-associative algebra
[21], that is to say an algebra with two associative products sharing the same
unit.

From now on, unless otherwise stated, space means finite space.

Theorem 4. (1) The commutative algebra (F , .) is freely generated
by the set of connected spaces.

(2) The associative algebra (F ,≻) is freely generated by the set of join-
indecomposable spaces.

(3) The Com− As algebra (F , .,≻) is freely generated by the set of ir-
reducible spaces.

Proof. Notice first the important property that the join-product of two non
empty spaces is a connected space.

1. Any space can be written uniquely as a disjoint union of connected
spaces.

2. Let X be an arbitrary space, and let us choose one of its representatives
(still written X). Notice first that X = Y ≻ Z if and only if Y <T Z (in
the sense that, for arbitrary y ∈ Y, z ∈ Z, y <T z). That is,

X = Y ≻ Z ⇔ X = Y
∐

Z and Y <T Z.

Let us assume that X = X1 ≻ X2 ≻ ... ≻ Xn = Y1 ≻ Y2 ≻ ... ≻ Ym

with the Xi and the Yj join-indecomposable. Then, X1 ∩ Y1 is not empty
(this would imply for example that Y1 ⊂ X2 ≻ ... ≻ Xn >T X1, and
similarly X1 >T Y1, which leads immediately to a contradiction). Moreover,
X1∩Y1 <T X1∩(Y2 ≻ ... ≻ Ym). A contradiction follows if X1∩Y1 6= X1, Y1

since we would then have

X1 = (X1 ∩ Y1) ≻ (X1 ∩ (Y2 ≻ ... ≻ Ym)).

We get X1 = Y1 and X2 ≻ ... ≻ Xn = Y2 ≻ ... ≻ Ym, and the statement
follows by induction.

3. Let us describe briefly the free Com − As algebra CA(S) over a
set S of generators (we write . and ≻ for the two products). A basis
B = S

∐

BC
∐

BA of CA(S) with BC =
∐

n≥2
BC,n, BA =

∐

n≥2
BA,n can

be constructed recursively as follows (in the following BA,1 = BC,1 := S and
the . product is commutative so that a.b = b.a):

• BC,n :=
∐

n1+...+nk=n
{a1. ... .ak, ai ∈ BA,ni

}

• BA,n :=
∐

n1+...+nk=n
{a1 ≻ ... ≻ ak, ai ∈ BC,ni

}.

Now, let X be a space, then one and only one of the three following cases
holds

(1) X is irreducible.
(2) X is .-indecomposable and join-decomposable, and then it decom-

poses uniquely into a productX = X1 ≻ ... ≻ Xk of join-indecomposable
spaces.
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(3) X is .-decomposable and join-indecomposable, and then it decom-
poses uniquely into a sum X = X1 ∪ ... ∪Xk of connected spaces.

It follows by induction that the set of spaces identifies with the basis of the
free Com−As algebra over irreducible spaces: writing S for the latter set,
the first case in the previous list corresponds to the case X ∈ S; the second
to X ∈ BA with the Xi in BC or S; the third to X ∈ BC with the Xi in BA

or S. �

As an application, it is possible to obtain the numbers pn, qn and rn
of, respectively, connected, join-indecomposable and irreducible spaces of
cardinality n, by manipulating formal series. This gives:

n 1 2 3 4 5 6 7 8 9 10
pn 1 2 6 21 94 512 3 485 29 515 314 474 4 255 727
qn 1 2 4 14 62 373 2 722 24 591 275 056 3 860 200
rn 1 1 1 2 17 167 1 672 18 127 226 447 3 398 240

The sequences (pn), (qn) and (rn) are A001928, A046911 and A046909 of
[31], see also [35].

4. Schur-Weyl categories

We will show, in forthcoming sections, that F carries various bialgebraic
structures. Rigidity theorems in the sense of [20] apply, making F a cofree
Hopf algebra and the B∞-enveloping algebra of a B∞-algebra (see Theo-
rem 19).

There are various ways to give an algebraic and combinatorial charac-
terization of cofree Hopf algebras, following ideas that are scattered in the
litterature and seem to originate in the Bott-Samelson theorem, according
to which H∗(ΩΣX;K) = T c(H∗(X;K)), where Σ is the suspension func-
tor acting on topological spaces and Ω the loop space functor, and in the
work of Baues on the bar/cobar construction [6], [18, p. 48]. The pa-
per [21] addresses the problem explicitly, but other approaches follow from
[7, 16, 27, 20], and no unified treatment seems to have been given up to
date. We take the opportunity of the present article and the existence of
such structures on finite spaces to present such a short and self-contained
treatment. In the process, we extend the results of Livernet [20] on cocom-
mutative cogroups in the category of associative algebras and infinitesimal
bialgebras and our study in [15] of natural operations on shuffle bialgebras.

In the present section, we focus on free associative algebras and cofree
coassociative coalgebras. Recall that we work with graded connected struc-
tures: in the following, V ect stands for the category of connected graded
vector spaces V =

⊕

n∈N
Vn, where V0 = 0 is the null vector space; if V and

W are two objects of V ect, a morphism f : V −→ W in V ect is a linear
map, homogeneous of degree 0, that is to say f(Vn) ⊆ Wn for a ll n ≥ 0. We
write |v| = n if v is a (non-zero) homogeneous element of degree n in V . The
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category of connected graded vector spaces augmented with the ground field
K in degree 0 will be written V ect+ (i.e., for V =

⊕

n∈N
Vn ∈ V ect+, V0 = K);

if V and W are two objects in V ect+, a morphism f : V −→ W is a linear
map, homogeneous of degree 0, such that f|K = IdK . We write ǫ for the

canonical projection to V0 = K, T (V ) =
⊕

n∈N
T n(V ) :=

⊕

n∈N
V ⊗n ∈ V ect+,

T (V ) :=
⊕

n∈N∗

V ⊗n ∈ V ect and call T (V ) the tensor space over V (resp.

T n(V ) the space of tensors of length n over V ). We use the shortcut nota-
tion v1...vn for v1 ⊗ ... ⊗ vn ∈ V ⊗n and will call sometimes v1...vn a word
(of length n) over V . Notice that the grading of T (V ) by the length differs
from the grading T (V ) =

⊕

n∈N
Tn(V ) canonically induced by the grading of

V (Tn(V ) being generated by words v1...vk where the vis are homogeneous
with |v1|+ ...+ |vk| = n).

We are now in the position to recall the definition of the algebra of graded
permutations. This algebra plays the role, for the categories of bialgebras
that we are going to study, that the descent algebra plays for usual bial-
gebras (graded connected commutative or cocommutative bialgebras), see
[26]. This point of view was developed in [15] for shuffle bialgebras and is
extended here to other, naturally equivalent, categories. We write Sk for
the symmetric group on k elements.

Definition 5. Let us fix k ∈ N. Let σ ∈ Sk and d : [k] −→ N>0. We
define a linear endomorphism of T (V ) by:

Φ(σ,d) :

{

v1 . . . vl −→ vσ(1) . . . vσ(l) if k = l and |vσ(i)| = d(i) for all i,
−→ 0 if not.

The composition of graded permutations is given as follows: for all (σ, d) ∈
Sk ×Hom([k],N>0) and (τ, e) ∈ Sl ×Hom([l],N>0),

Φ(σ, d) ◦Φ(τ, e) =

{

Φ(τ ◦ σ, d) if k = l and d = e ◦ σ,
0 if not.

Notations. We put S =
∐

k≥0

Sk × Hom([k],N>0), and S = V ect(S),

the vector space generated by S. The composition of S, linearly extended,
makes S an algebra.

Following the method used in [25] to study nonlinear Schur-Weyl duality,
we want to characterize natural transformations of the functor

(1) T (V ) :=
⊕

n∈N

Tn(V ) :=
⊕

n∈N

V ⊗n

viewed as a functor from V ect to V ect+. Concretely, we look for V ∈ V ect-
indexed families of graded linear maps µV from Tn(V ) to Tn(V ) where n is
an arbitrary integer such that, for any map f of graded vector spaces from
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V to W ,

(2) Tn(f) ◦ µV = µW ◦ Tn(f).

Let us say that such a family µV satisfies graded Schur-Weyl duality in
degree n (by extension of the classical case, where the ground field is of
characteristic 0 and the problem is restricted to invertible endomorphisms
f of a given non graded vector space V ).

Proposition 6. Let SW be the vector space spanned by families of linear
maps that satisfy the graded Schur-Weyl duality in degree n, where n runs
over N∗. The SW is canonically isomorphic to S. Moroever, the compo-
sition of natural transformations makes SW an algebra, and the canonical
isomorphism from SW to S is an algebra isomorphism.

Proof. The action of S on the tensor spaces T (V )s is natural (it commutes
with an arbitrary T (f)): S is, as an algebra, canonically embedded in SW .

Let µ be a family of linear maps satisfying the graded Schur-Weyl duality
in degree n. For any finite sequence d = (d1, . . . , dn) of elements of N>0, let
us put Xd = V ect(x1, . . . , xn), where |xi| := di for all i. For an arbitrary
family a1, . . . , an of elements of a graded vector space V with |ai| = di for
all i, the map f(xi) := ai extends uniquely to a linear map from Xd to V .
Then:

µV (a1 . . . an) = µV ◦ T (f)(x1 . . . xn) = T (f)(µXd
(x1 . . . xn)),

so the knowledge of the elements xd := µXd
(x1...xn) for any d determines

entirely µ.
Let us fix d. As xd ∈ Tn(Xd), we can write:

xd =
∑

σ:[n]−→[n]

aσ,dxσ(1) . . . xσ(n).

Let i ∈ [n]. We define fi : Xd −→ Xd by fi(xj) = xj if i 6= j and 0 if i = j.
Then:

0 = µXd
◦ Tn(fi)(x1 . . . xn) = Tn(fi)(xd) =

∑

σ:[n]−→[n]
i/∈σ([n])

aσ,dxσ(1) . . . xσ(n).

Hence, if σ([n]) ( [n], aσ,d = 0, so:

xd =
∑

σ∈Sn

aσ,dxσ(1) . . . xσ(n) =
∑

(σ,e)∈S

aσ,eΦ(σ,e◦σ)(x1 . . . xn).

which implies that:

µ =
∑

(σ,e)∈S

aσ,e◦σ−1Φ(σ,e),

and finally SW = Φ(S). �

Building on these results, we define Schur-Weyl categories.
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Definition 7. A Schur-Weyl category is a category C with a forgetful
functor F to V ect+ (i.e. whose objects are naturally equipped with a struc-
ture of graded vector spaces), with a functor P to V ect, and with natural
isomorphisms:

∀C ∈ C, I(C) : T ◦ P (C) ∼= F (C)

(i.e. the objects of C are naturally isomorphic to tensor spaces). In partic-
ular, due to Proposition 6, the objects of C are naturally equipped with an
action of S.

Recall now the definition of various algebraic structures on the tensor
spaces T (V ). We point out that the Proposition 6 shows that these struc-
tures (which can be described as the composite of natural endomorphisms
of the functors Tn with the natural isomorphisms Tm+n

∼= Tm ⊗ Tn) are
naturally defined. More generally, the Proposition shows that the definition
of natural (graded) algebraic structures on the tensor spaces is constrained
by the graded Schur-Weyl duality phenomenon: in concrete terms, one has
to use permutations to define such structures. At last, notice that these
structures will lift automatically to Schur-Weyl categories.

• The tensor algebra over V is the tensor space over V equipped with
the concatenation product:

v1...vn · w1...wm := v1...vnw1...wm,

the tensor algebra is the free associative algebra over V .
• The tensor coalgebra over V is the tensor space over V equipped
with the deconcatenation coproduct ∆, so that

∆(v1...vn) :=

n
∑

i=0

v1...vi ⊗ vi+1...vn,

it is the cofree connected coassociative coalgebra over V (the general
structure of cofree coalgebras is more subtle, see [19]).

• The shuffle algebra over V is the tensor space over V equipped with
the shuffle product:

v1...vn w1...wm :=
∑

σ

xσ−1(1)...xσ−1(n+m),

where x1...xn+m := v1...vnw1...wm and σ runs over the (n,m)-shuffles
in Sn+m, that is over the permutations such that: σ(1) < ... <
σ(n), σ(n + 1) < ... < σ(n+m). It is the free shuffle algebra over V
(see below for a definition).

• The unshuffle coalgebra over V is the tensor space over V equipped
with the unshuffle coproduct:

δ(v1...vn) :=
∑

I,J

vi1 ...vik ⊗ vj1 ...vjn−k
,
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where I = {i1, ..., ik}, J = {j1, ..., jn−k} run over all partitions of
[n] into two disjoint (and possibly empty) subsets. It is the cofree
unshuffle coalgebra over V (see below for a definition).

Recall that, given an arbitrary coproduct map ∆ from X to X ⊗ X
in V ect+, the associated vector space of primitive elements is defined by
Prim(X) := {x ∈ X,∆(x) = x ⊗ 1 + 1 ⊗ x}. For the deconcatenation
coproduct on T (V ), we have Prim(T (V )) = V , whereas for the unshuffle
coproduct, over a field of characteristic 0, Prim(T (V )) = Lie(V ), the free
Lie algebra over V , see e.g. [28].

5. Schur-Weyl categories of bialgebras

The objects of a Schur-Weyl category C are naturally equipped with these
four algebra and coalgebra structures. Let us go now one step further and
investigate tensor spaces from the point of view of bialgebras. The four
algebra/coalgebra maps give rise to three interesting bialgebra structures.

5.1. Shuffle bialgebras. Recall first from [29] that the shuffle product
is characterized abstractly in V ect by the identity involving the left and
right half-shuffles ≺,≻ (with =≺ + ≻):

(3) x ≺ y = y ≻ x, (x ≺ y) ≺ z = x ≺ (y ≺ z + y ≻ z).

This definition is extended to V ect+ by requiring x ≺ 1 = x, 1 ≺ x = 0, see
e.g. [15] for details.

Definition 8. (1) A shuffle bialgebra is a commutative Hopf algebra
whose product, written is a shuffle product (that is, can be written

=≺ + ≻ in such a way that ≺ and ≻ satisfy the identities (3))
and, for x, y ∈ Ker ǫ, the extra axiom:

∆(x ≺ y) = x ≺ y ⊗ 1 + 1⊗ x ≺ y + x⊗ y + x ≺ y′ ⊗ y′′

+ x′ ≺ y ⊗ x′′ + x′ ⊗ x′′ y + x′ ≺ y′ ⊗ x′′ y′′,

where we use Sweedler’s notation ∆(x) = x1 ⊗ x2 = x⊗ 1 + 1⊗ x+
x′ ⊗ x′′. We shorten this axiom as:

∆(x ≺ y) = x1 ≺ y1 ⊗ x2 y2.

(2) If A and B are two shuffle bialgebras, a morphism of shuffle bialge-
bras f : A −→ B is a Hopf algebra morphism from A to B, homoge-
neous of degree 0, such that for all x, y ∈ Kerǫ:

f(x ≺ y) = f(x) ≺ f(y), f(x ≻ y) = f(x) ≻ f(y).

The tensor space T (V ) is equipped with the structure of a shuffle bialgebra
by the deconcatenation coproduct ∆ and the left and right half-shuffle maps
≺, ≻ (they add up to ) defined recursively by:

x1 ≺ y1 := x1y1, x1...xn ≺ y1...ym := x1(x2...xn y1...ym),

x1 ≻ y1 := y1x1, x1...xn ≻ y1...ym := y1(x1...xn y2...ym).
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Theorem 9. A shuffle bialgebra B is isomorphic as a shuffle bialgebra to
T (Prim(B)), where Prim stands for the functor of primitive elements from
the category SB of shuffle bialgebras to V ect. Furthermore, the category SB
is a Schur-Weyl category.

The first part of the Theorem is a rigidity theorem (recall that T (V ) is
free as a shuffle algebra and cofree as a coassociative coalgebra in V ect+)
and a consequence of a more general result [10, Prop. 15]. Another, direct,
proof of this result, based on compositions in the free magmatic algebra,
was obtained in [9][Appendix A]. Unfortunately, in spite of many important
insights on the behaviour of shuffle bialgebras, the proof is not entirely
conclusive (the composition of formal power series argument at the end of
the Appendix does not apply). As the author pointed out recently to one of
us, an alternative strategy of proof can however be developed sticking inside
her magmatic approach.

The precise form of the Theorem, as stated here (including a construction
of a natural isomorphism from T (Prim(B)) to B, as required in a Schur–
Weyl category) is obtained in [15][Thm. 6.7] (the proof contains the effective
construction of the natural isomorphism).

5.2. Unshuffle bialgebras. Dually, one can split the unshuffle coproduct
δ = δ≺ + δ≻ on T (V ): for xX = xx1...xn, x, ..., xn ∈ V ,

δ≺(x) := x⊗ 1, δ≻(x) := 1⊗ x;

δ≺(xX) := xX1 ⊗X2, δ≻(xX) := X1 ⊗ xX2,

where we use Sweedler’s notation δ(X) = X1 ⊗ X2. Notice that V =
Prim≺(T (V )), where

Prim≺(T (V )) := {b ∈ T (V ), δ≺(b) = b⊗ 1}.

The left and right half-unshuffles δ≺, δ≻ satisfy the identities:

(4) δ≺ = τ ◦ δ≻, (δ≺ ⊗ Id) ◦ δ≺ = (Id⊗ δ) ◦ δ≺,

where τ stands for the switch map τ(x⊗ y) = y ⊗ x, and, on Ker(ǫ),

(5) (ǫ⊗ Id) ◦ δ≺(x) = 0, (Id⊗ ǫ) ◦ δ≺(x) = x,

where we recall that ǫ stands for the augmentation (the canonical projection
to the ground field) in V ect+.

Definition 10. (1) Using the shortcut δ≺(x) = x≺1 ⊗ x≺2 (and sim-
ilarly for δ≻), an unshuffle bialgebra is a bialgebra equipped with a
coassociative cocommutative coproduct δ = δ≺ + δ≻ satisfying the
above identities and an associative product · such that furthermore,
for x, y ∈ Ker ǫ:

(6) δ≺(x · y) = x≺1 · y1 ⊗ x≺2 · y2.
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(2) If A and B are two unshuffle algebras, a morphism of unshuffle alge-
bras f : A −→ B is a bialgebra morphism from A to B, homogeneous
of degree 0 such that:

δ≺ ◦ f = (f ⊗ f) ◦ δ≺, δ≻ ◦ f = (f ⊗ f) ◦ δ≻.

The tensor space equipped with the concatenation product and the two
half-unshuffles δ≺, δ≻ described previously is an unshuffle bialgebra.

The two notions of shuffle bialgebras and unshuffle bialgebras are strictly
dual (in the graded sense - the graded dual of a vector space V =

⊕

n∈N
Vn in

V ect+ being the direct sum of the duals V ∗ =
⊕

n∈N
V ∗
n ).

The rigidity theorem for unshuffle bialgebras follows by duality (this was
first observed in [9][Appendix B]): they are isomorphic to free associative
algebras and cofree unshuffle coalgebras. The natural isomorphisms defin-
ing Schur-Weyl duality can be obtained by dualizing the constructions in
[15], in particular Corollary 3.3 on which the later proof of the structure
theorem for shuffle bialgebras relies in that article. Let us sketch the proof
of the analogue of this Corollary - the rest of the construction of the natural
isomorphisms is left to the reader, we refer to [15] for details.

Let f, g be two endomorphisms of T (V ) in V ect+. We set:

f ≺ g(x) := f(x≺1 )g(x
≺
2 ), f ≻ g(x) := f(x≻1 )g(x

≻
2 ),

f g(x) := f ≺ g(x) + f ≻ g(x).

The two half-products ≺ and ≻ define the structure of a noncommutative
shuffle algebra (or dendrimorphic) algebra on End(T (V )), that is they sat-
isfy the identities

(f ≺ g) ≺ k = f ≺ (g k), (f g) ≻ k = f ≻ (g ≻ k),

(f ≻ g) ≺ k = f ≻ (g ≺ k).

The first of these identities follows directly, for example, from (δ≺⊗Id)◦δ≺ =
(Id ⊗ δ) ◦ δ≺, and similarly for the others. Let us write now π for the
projection from T (V ) to V orthogonally to the other components.

Lemma 11. We have, in End(T (V )),

(7) Id = ǫ+
∑

n∈N∗

π ≺ (π ≺ (...(π ≺ π)...)).

Indeed, forX := v1...vn ∈ V ⊗n, δ≺(X) equals v1⊗v2...vn plus a remainder
term R such that π ⊗ Id(R) = 0. We get: Id = ǫ+ π ≺ Id, from which the
Lemma follows by a perturbative expansion. Let us mention that the latter
equation can investigated systematically, see for example [11].

When written in End(B), for B an arbitrary unshuffle bialgebra, the
equation (7) defines (implicitely) π. The iterated products π ≺ (π ≺ (...(π ≺
π)...)) are then the analogues, on B, of the projections from T (V ) to the
summand V ⊗n orthogonally to the other components.
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Theorem 12. An unshuffle bialgebra B is isomorphic as an unshuffle
bialgebra to T (Prim≺(B)). Furthermore, the category UB of unshuffle bial-
gebras is a Schur-Weyl category.

5.3. Infinitesimal bialgebras. The coproduct ∗ in the category As of
(unital) associative algebras in V ect+, or free product, is obtained as follows:
let H1 = K ⊕H1,H2 = K ⊕H2 be two such algebras, then:

H1 ∗H2 := K ⊕
⊕

n∈N∗

(H1 ∗H2)
(n) := K ⊕

⊕

n∈N∗

[(1,H⊗n)⊕ (2,H⊗n)],

where (1,H⊗n) (resp. (2,H⊗n)) denotes alternating tensor products of H1

and H2 of length n starting with H1 (resp. H2). For example, (2,H⊗4) =
H2⊗H1⊗H2⊗H1. The product of two tensors h1⊗ ...⊗hn and h′1⊗ ...⊗h′m
in H1 ∗H2 is defined as the concatenation product h1⊗ ...⊗hn⊗h′1⊗ ...⊗h′m
when hn and h′1 belong respectively to H1 and H2 (or to H2 and H1), and
otherwise as: h1 ⊗ ...⊗ (hn · h′1)⊗ ...⊗ h′m.

When H1 = T (V1) and H2 = T (V2), one gets H1 ∗ H2 = T (V1 ⊕ V2).
Moreover, by universal properties of free algebras, the linear map ι from V
to T (V ) ∗ T (V ) defined by

(8) ι(v) := (1, v) + (2, v)

induces an algebra map from T (V ) to T (V )∗T (V ) which is associative, unital

(ι(x) = (1, x) + (2, x) + z with z ∈
⊕

n≥2
(H1 ∗ H2)

(n)) and cocommutative.

Equivalently, T (V ) is a cocommutative cogroup in As.

Definition 13. (1) An infinitesimal bialgebra is, equivalently
• A cogroup in the category of associative unital algebras in V ect+,
• An associative unital algebra with product · and a coassociative
counital coalgebra with coproduct ∆ in V ect+ such that further-
more, with the notation ∆(x) = x1 ⊗ x2,

(9) ∆(x · y) = x · y1 ⊗ y2 + x1 ⊗ x2 · y − x⊗ y

(2) If A and B are two infinitesimal bialgebras, a morphism of infini-
tesimal bialgebras f : A −→ B is a linear map from A to B, homo-
geneous of degree 0, both an algebra and a coalgebra morphism.

The equivalence between these two definitions is not widely known: it is
due to Livernet [20]; it is similar (in all respects) to the equivalence between
cocommutative cogroups in the category of commutative algebras in V ect+

and bicommutative bialgebras. The equivalence follows from the observation
that the structure map φ : H −→ H ∗H of such a cocommutative cogroup
is entirely determined by its restriction ∆ to its image on the component
(1,H ⊗H) ∼= H ⊗H of H ∗H. Namely,

(10) φ(a) =
∑

n≥1

(1,∆
[n−1]

(a)) + (2,∆
[n−1]

(a)),
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where ∆
[n−1]

stands for the iterated (coassociative) coproduct from H to

H
⊗n

. Using the notation ∆(x) = x1 ⊗ x2 (and more generally ∆
[n−1]

(x) =
x1 ⊗ ...⊗ xn), the coproduct ∆ satisfies the identity

(11) ∆(x · y) = x⊗ y + x · y1 ⊗ y2 + x1 ⊗ x2 · y

so that, for ∆(x) := ∆(x)+x⊗1+1⊗x, with the notation ∆(x) = x1⊗x2 we
get the identity (9). Note that in the case of T (V ), ∆ is the deconcatenation
coproduct.

Conversely, the identity (11) is enough to ensure that (with the notation

∆
[0]
(x) = x = x)

∆
[k]
(x · y) =

k
∑

i=1

x1 ⊗ ...⊗ xi ⊗ y1 ⊗ ...⊗ yk+1−i

+

k+1
∑

i=1

x1 ⊗ ...⊗ xi · y1 ⊗ ...⊗ yk+2−i,

from which it follows that φ, as defined by the equation (10) defines a
cogroup structure on H.

Theorem 14. An infinitesimal bialgebra B is isomorphic as an infinitesi-
mal bialgebra to T (Prim(B)). Furthermore, the category IB of infinitesimal
bialgebras is a Schur-Weyl category.

The first rigidity statement is Berstein’s structure theorem for cocommu-
tative cogroups in categories of associative algebras [7, Cor. 2.6] and Thm.
2.6 of [21]. It implies that an infinitesimal bialgebra is free as an associa-
tive algebra and cofree as a coassociative coalgebra. The second statement
follows from the proof of Theorem 2.6 in [21].

5.4. Equivalence between Schur-Weyl categories of bialgebras. We
already noticed that any object of a Schur-Weyl category is naturally equipped
with the structures of an associative algebra, of a shuffle algebra, of a coasso-
ciative coalgebra and of an unshuffle coalgebra. The same arguments show
that it is naturally equipped with the structure of a shuffle bialgebra, of an
unshuffle bialgebra and of an infinitesimal bialgebra.

The three structure theorems for shuffle, unshuffle and infinitesimal bial-
gebras imply the fundamental structure theorem:

Theorem 15. The categories of shuffle bialgebras, unshuffle bialgebras
and infinitesimal bialgebras are isomorphic over V ect+. They are all equipped
with a natural action of the algebra of graded permutations S.

By isomorphic over V ect+, we mean that the three categories are equiv-
alent, and that the natural equivalences can be realized as natural isomor-
phisms of graded vector spaces (concretely, an object of any of the three
categories viewed as an element of V ect+ can be equipped naturally with
the other two bialgebra structures).
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Proof. Let us define for example the equivalence between the category of
infinitesimal bialgebras and the category of shuffle bialgebras. Let A be
an infinitesimal bialgebra. Denoting by V the graded space of primitive
elements, there exists a unique morphism of infinitesimal bialgebras fA :
A −→ T (V ). As T (V ) is also a shuffle bialgebra, via the bijection fA, A
becomes an infinitesimal bialgebra in a unique way. This defines the image
of A by the equivalence. �

Let us show concretely how this process can be realized in practice on the
example of infinitesimal bialgebras and unshuffle bialgebras – we will explain
later on how this example allows an improvement of the understanding of
one of Berstein’s key notions: the one of the underlying algebra of a cocom-
mutative cogroup in the category of associative algebras in V ect+.

Let H be such a cocommutative cogroup. The structure map φ : H −→
H ∗H gives rise to two “half-coproducts” δ≺, δ≻ from H to H ⊗H defined
as follows. Let h1 ⊗ ...⊗ hn ∈ (H ∗H)(n), we set:

π1(h1 ⊗ ...⊗ hn) := 1h1⊗...⊗hn∈(1,H⊗n)h1 · h3 · ... · hn−1 ⊗ h2 · h4 · ... · hn

π2(h1 ⊗ ...⊗ hn) := 1h1⊗...⊗hn∈(2,H⊗n)h2 · h4 · ... · hn ⊗ h1 · h3 · ... · hn−1

if n is even and otherwise

π1(h1 ⊗ ...⊗ hn) := 1h1⊗...⊗hn∈(1,H⊗n)h1 · h3 · ... · hn ⊗ h2 · h4 · ... · hn−1,

π2(h1 ⊗ ...⊗ hn) := 1h1⊗...⊗hn∈(2,H⊗n)h2 · h4 · ... · hn−1 ⊗ h1 · h3 · ... · hn.

Then,

δ≺(h) := π1 ◦ φ(h), δ≻(h) := π2 ◦ φ(h).

Maps πi, i = 1, 2, 3 from H ∗ H ∗ H to H ⊗ H ⊗ H are defined similarly.
That is, distinguishing notationally between the three copies of H by writing
H ∗H ∗H = H1∗H2 ∗H3, π1 acts non trivially on h1⊗ ...⊗hn ∈ H1∗H2 ∗H3

if and only if h1 ∈ H1, and so on.

Proposition 16. The half-coproducts δ≺, δ≻ together with the associative
product define (functorially) on H the structure of an unshuffle bialgebra.

The identity δ≺ = τ ◦ δ≻ follows from the cocommutativity of φ. The
identity (δ≺ ⊗ Id) ◦ δ≺ = (Id⊗ δ) ◦ δ≺ follows by observing that both maps

act as π1◦φ
[3] onH, where φ[3] is the iterated coproduct fromH toH∗H∗H.

The identity (6) follows from the fact that φ is a morphism of algebras.
Berstein’s notion of underlying Hopf algebra of a cogroup in As [7] is

obtained by composing this functor with the forgetful functor from unshuffle
bialgebras to classical bialgebras. Proposition 16 unravels why this notion
of underlying Hopf algebra of a cogroup could prove in the end instrumental
in his work (compare our approach to Berstein’s original one).
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6. B∞–algebras and finite spaces

The notion of B∞–algebra was introduced by Getzler and Jones in the
category of chain complexes [18], we consider here the simpler notion of
B∞–algebra in the subcategory V ect.

A B∞–algebra structure on V is, by definition, a Hopf algebra structure
on T (V ) equipped with the deconcatenation coproduct. That is, an asso-
ciative algebra structure on T (V ) such that the product is a coalgebra map
[18, p. 48]. Since T (V ) is cofree as a counital coalgebra in V ect+ for the
deconcatenation coproduct, the product map from T (V ) ⊗ T (V ) to T (V )
is entirely characterized by its projection to the subspace V . This yields
another, equivalent, but less tractable and transparent, definition, of B∞–
algebras in terms of structure maps Mp,q : V ⊗p ⊗ V ⊗q 7−→ V, p, q ≥ 0
satisfying certain compatibility relations that can be deduced from the as-
sociativity of the product – we refer again to [18] for details. It is natural to
call the cofree Hopf algebra T (V ), for V a B∞–algebra, the B∞–enveloping
algebra of V . The following corollary shows how Theorem 15 induces au-
tomatically various characterizations of B∞-enveloping algebras (compare
with [21], where the third characterization was obtained).

Corollary 17. The following statements are equivalent (as usual all un-
derlying vector spaces belong to V ect+):

(1) H is a Hopf algebra, cofree over the space of its primitive elements
V = Prim(H).

(2) H is the B∞-enveloping algebra of a B∞-algebra V .
(3) H is a Hopf algebra and can be equipped with the structure of an

infinitesimal bialgebra whose coproduct is the coproduct of H.
(4) H is a Hopf algebra and can be equipped with the structure of a

shuffle bialgebra whose coproduct is the coproduct of H.

Let us show now how these ideas apply to finite topologies.
Notations. Let X be a finite set, and T be a topology on X. For any

Y ⊆ X, we denote by T|Y the topology induced by T on Y , that is to say:

T|Y = {O ∩ Y | O ∈ T }.

Definition 18. Let T ∈ Tn, n ≥ 1. For T ∈ Fn, the equivalence class
of T in F, we put:

∆(T ) :=
∑

O∈T

T|[n]\O ⊗ T|O ∈ F ⊗ F .

We let the reader check that this definition does not depend on the choice
of a representative of T in T. The coproduct extends linearly to F , the
linear span of finite spaces.

Theorem 19. (1) (F , .,∆) is a commutative Hopf algebra.
(2) (F ,≻,∆) is an infinitesimal bialgebra.
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(3) F is the B∞–enveloping algebra of a B∞–algebra; more precisely it
is a commutative cofree Hopf algebra.

(4) It can be equipped with the structure of a shuffle bialgebra or of an
unshuffle bialgebra.

Proof. In the Theorem, all structures are defined in V ect+.
The last two assertions follow from Theorem 15 together with Corollary

17.
Let T ∈ Tn, n > 0. The coassociativity of ∆ follows from the observations

that:

• if O is open in T , then the open sets of O are the open sets of T
contained in O,

• if O ∈ T and O′ ∈ T|[n]\O, then O ⊔O′ is an open set of T ,
• if O1 ⊆ O2 are open sets of T , then O2 \O1 ∈ T|[n]\O1

.

We get then:

(∆⊗ Id) ◦∆(T ) =
∑

O∈T , O′∈T|[n]\O

(T|[n]\O)|([n]\O)\O′ ⊗ (T|[n]\O)|O′ ⊗ T|O

=
∑

O∈T , O′∈T|[n]\O

T|[n]\(O⊔O′) ⊗ T|O′ ⊗ T|O.

Putting O1 = O and O2 = O ⊔O′:

(∆⊗ Id) ◦∆(T ) =
∑

O1⊆O2∈T

T|[n]\O2
⊗ T|O2\O1

⊗ T|O1
= (Id⊗∆) ◦∆(T ).

This proves that ∆ is coassociative. It is obviously homogeneous of degree
0. Moreover, ∆(1) = 1⊗ 1 and for any T ∈ Tn, n ≥ 1:

∆(T ) = T ⊗ 1 + 1⊗ T +
∑

∅(O([n]

T|[n]\O ⊗ T|O.

So ∆ has a counit.
Let T ∈ Tn, T

′ ∈ Tn′ , n, n′ ≥ 0. By definition of T .T ′:

∆(T .T ′) =
∑

O∈T ,O′∈T ′

(T .T ′)|[n+n′]\O.O′ ⊗ (T .T ′)|O.O′

=
∑

O∈T ,O′∈T ′

T|[n]\O.T
′
[n′]\O′ ⊗ T|O.T|O′

=
∑

O∈T ,O′∈T ′

(

T|[n]\O ⊗ T|O
)

.
(

T ′
|[n′]\O′ ⊗ T|O′

)

= ∆(T ).∆(T ′).

Hence, (F, .,∆) is a graded connected commutative Hopf algebra.
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By definition of T ≻ T ′:

∆(T ≻ T ′) =
∑

O∈T ,O 6=∅

(T ≻ T ′)|[n+n′]\(O≻[n′]) ⊗ (T ≻ T ′)|O≻[n′]

+
∑

O′∈T ′,O′ 6=[n′]

(T ≻ T ′)|[n+n′]\O′(+n) ⊗ (T ≻ T ′)|O′(+n)

+(T ≻ T ′)|[n+n′]\[n′](+n) ⊗ (T ≻ T ′)[n′](+n)

=
∑

O∈T ,O 6=∅

T|[n]\O ⊗ T|O ≻ T ′

+
∑

O′∈T ′,O′ 6=[n′]

T ≻ T ′
|[n′]\O′ ⊗ T ′

|O′ + T ⊗ T ′

=
∑

O∈T ,O 6=∅

(

T|[n]\O ⊗ T|O
)

≻ (1⊗ T ′)

+
∑

O′∈T ′,O′ 6=[n′]

(T ⊗ 1) ≻
(

T ′
|[n′]\O′ ⊗ T ′

|O′

)

+ T ⊗ T ′

= (∆(T )− T ⊗ 1) ≻ (1⊗ T ′) + (T ⊗ 1) ≻ (∆(T )− 1⊗ T ′) + T ⊗ T ′

= ∆(T ) ≻ (1⊗ T ′) + (T ⊗ 1) ≻ ∆(T )− T ⊗ T ′.

Hence, (F,≻,∆) is an infinitesimal Hopf algebra. �

7. A family of morphisms to quasi-symmetric functions

7.1. The Hopf algebra of quasi-symmetric functions. Let us give
some reminders on quasi-symmetric functions. Let A = K[[x1, x2, . . .]]
be the algebra of commutative formal series in the infinite countable set
of indeterminates xn, n ≥ 1. A formal series f ∈ A is quasisymmetric
[17, 33] if for all strictly increasing maps f : N>0 −→ N>0, the coefficients
of xa11 . . . xann and xa1f(1) . . . x

an
f(n) in f are equal, for all a1, . . . , an ∈ N. The

subalgebra of quasisymmetric formal series is denoted by QSym. For ex-
ample, if a = (a1, . . . , an) is a composition, that is to say a finite sequence
of elements of N>0, then the following formal series is quasisymmetric:

Ma =
∑

i1<...<in

xa1i1 . . . xanin .

By convention, M∅ = 1. These elements form a basis of QSym, called the
monomial basis. Moreover, QSym is a Hopf algebra [22] for the coproduct
defined by:

∆(M(a1,...,an)) =

n
∑

i=0

M(a1,...,ai) ⊗M(ai+1,...,an),

for all compositions (a1, . . . , an).
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7.2. Linear extensions of a finite topology. In this section, we will
write without further comment T for a representative of the finite space T .

Definition 20. Let T be a topology on a finite set E.

(1) A linear extension of T is a map f : E −→ N>0 such that for all
i, j ∈ E,

(i ≤T j) =⇒ (f(i) ≤ f(j)).

The set of linear extensions of T is denoted by Lin(T ).
(2) Let f be a linear extension of T .

(a) We shall say that f is standard if f(E) = [k] for a certain
integer k. The set of standard linear extensions of T is denoted
by LinStd(T ).

(b) We denote f(E) = {i1, . . . , ik}, with i1 < . . . < ik. We put:

P (f) = (|f−1(i1)|, . . . , |f
−1(ik)|).

Note that P is a map from Lin(T ) to the set of compositions.
(c) We put:

α(f) = |{(i, j) ∈ E × E | i <T j and f(i) = f(j)}|.

Recall that i <T j if i ≤T j and not i ∼T j. Note that α is a
map from Lin(T ) to N.

Remarks.

(1) In other words, linear extensions of T are continuous maps from E
to N>0, with the topology induced by the usual total order on N>0.

(2) If T and T ′ are homeomorphic, any homeomorphism induces a bi-
jection from Lin(T ) to Lin(T ′), which preserves α and P .

(3) If f ∈ Lin(T ) and g : N>0 −→ N>0 is strictly increasing, then
g ◦ f ∈ Lin(T ). Moreover, α(g ◦ f) = α(f) and P (g ◦ f) = P (f).

(4) For all f ∈ Lin(T ), there exists a unique f ′ ∈ LinStd(T ), such that
there exists a strictly increasing g : N>0 −→ N>0 with g ◦ f ′ = f .
This f ′ is denoted by Std(f).

Theorem 21. Let q ∈ K. We put:

φq :







F −→ QSym

T −→
∑

f∈Lin(T )

qα(f)
∏

i∈E(T )

xf(i),

where E(T ) is the set underlying T . This defines a surjective Hopf algebra
morphism from (F , .,∆) to QSym. Moreover, for all finite spaces T :

φq(T ) =
∑

f∈LinStd(T )

qα(f)MP (f).

Proof. By the first remark above, φq(T ) does not depend on the choice of the

representative T of T , so φq(T ) is well-defined, with values inK[[x1, x2, . . .]].
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By the second remark above, if T is a finite space:

φq(T ) =
∑

f∈LinStd(T )

qα(f)
∑

g:[max(f)]−→N>0,
strictly increasing

∏

i∈E(T )

xg◦f(1) . . . xg◦f(max(f))

=
∑

f∈LinStd(T )

qα(f)M(|f−1(1)|,...,|f−1(max(f))|)

=
∑

f∈LinStd(T )

qα(f)MP (f).

So φq takes indeed its values in QSym.

Let T1,T2 be representatives of two finite spaces T 1,T 2 such that E(T1)∩
E(T2) = ∅. The set underlying T1.T2 is E(T1)⊔E(T2). If fi : E(Ti) −→ N>0

for i = 1, 2, we put:

f1 ⊗ f2 :











E(T1.T2) −→ N>0

i −→

{

f1(i) if i ∈ E(T1),

f2(i) if i ∈ E(T2).

Then:

Lin(T1.T2) = {f1 ⊗ f2 | (f1, f2) ∈ Lin(T1)× Lin(T2)}.

Moreover, α(f1 ⊗ f2) = α(f1) + α(f2), as, if i ≤T1.T2 j, then (i, j) ∈ E(T1)
2

or (i, j) ∈ E(T2)
2. We obtain:

φq(T 1.T 2) =
∑

f1∈Lin(T1),f2∈Lin(T2)

qα(f1)+α(f2)
∏

i∈E(T1)⊔E(T2)

xf1⊗f2(i)

=
∑

f1∈Lin(T1),f2∈Lin(T2)

qα(f1)+α(f2)
∏

i∈E(T1)

xf1(i)
∏

i∈E(T2)

xf2(i)

=





∑

f1∈Lin(T1)

qα(f1)
∏

i∈E(T1)

xf1(i)









∑

f2∈Lin(T2)

qα(f2)
∏

i∈E(T2)

xf2(i)





= φq(T 1)φq(T 2).

This shows that φq is multiplicative.

Let T be a finite space. We put:

A = {(I, f1, f2) | I open set of T , f1 ∈ LinStd(T|E(T )−I), f2 ∈ LinStd(T|I)},

B = {(f, k) | f ∈ LinStd(T ), 0 ≤ k ≤ max(f)}.

We put:

F :

{

B −→ A
(f, k) −→ (f−1({k + 1, . . . ,max(f)}), Std(f|[k]), Std(f|{k+1,...,max(f)})).

This is well-defined: we put F (f, k) = (I, f1, f2).
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• Let i ∈ I and j ≥T i. Then f(i) ≥ k+1. As f ∈ Lin(T ), f(j) ≥ f(i),
so f(j) ≥ k + 1 and j ∈ I: I is an open set of T .

• By restriction, f1 is a linear extension of T|E(T )−I and f2 is a linear
extension of T|I .

Moreover, F is injective: if F (f, k) = F (g, l) = (I, f1, f2), then k = l =
max(f1). As f is standard, for all i ∈ E(T ):

• if i /∈ I, f(i) = g(i) = f1(i),
• if i ∈ I, f(i) = g(i) = f2(i) + k.

Finally, F is surjective: if (I, f1, f2) ∈ A, let f : E(T ) −→ N>0, defined by:

• if i /∈ I, f(i) = f1(i),
• if i ∈ I, f(i) = f2(i) + max(f1).

Let us prove that f ∈ Lin(T ). If i ≤T j in E(T ), then:

• If i ∈ I, as I is an open set of T , j ∈ I. As f2 ∈ Lin(T|I), then
f2(i) ≤ f2(j), so f(i) ≤ f(j).

• If i /∈ I and j ∈ I, then f(i) ≤ k < f(j).
• If i, j /∈ I, as f1 ∈ Lin(T|E(T )−I), f(i) = f1(i) ≤ f1(j) = f(j).

f is clearly standard, and F (f,max(f1)) = (I, f1, f2).
As a conclusion, F is bijective. Moreover, if F (f, k) = (I, f1, f2), as if

i ∈ I and j /∈ I, f(i) 6= f(j), then α(f) = α(f1) + α(f2), and P (f) is the
concatenation of P (f1) and P (f2). So:

(φq ⊗ φq) ◦∆(T ) =
∑

(I,f1,f2)∈A

qα(f1)+α(f2)MP (f1) ⊗MP (f2)

=
∑

(f,k)∈B

qα(f)M(|f−1(1)|,...,|f−1(k)|) ⊗M(|f−1(k+1)|,...,|f−1(max(f))|)

=
∑

f∈LinStd(f)

qα(f)∆(MP (f))

= ∆ ◦ φq(T ).

So φq is a Hopf algebra morphism.

Let (a1, . . . , ak) be a composition. Let T be the topology on a set A1 ⊔
. . . ⊔ Ak, with |Ai| = ai for all i, defined by x ≤T y if, and only if, x ∈ Ai

and y ∈ Aj , with i ≤ j. Then:

φq(T ) = M(a1,...,ak) +R,

where R is in the linear span of the Mb, with length(b) < k. By a triangu-
larity argument, φq is surjective. �
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Examples. Let a, b, c ≥ 1.

φq( qa) = M(a),

φq( q
q

a
b ) = M(a,b) + qabM(a+b),

φq( qa qb ) = M(a,b) +M(b,a) +M(a+b),

φq( q
q

q

a
b
c

) = M(a,b,c) + qabM(a+b,c) + qbcM(a,b+c) + qab+ac+bcM(a+b+c),

φq( q

qq

∨a
cb
) = M(a,b,c) +M(a,c,b) +M(a,b+c) + qabM(a+b,c)

+ qacM(a+c,b) + qab+acM(a+b+c),

φq(
q

∧qq ca b ) = M(a,b,c) +M(b,a,c) +M(a+b,c) + qacM(b,a+c)

+ qbcM(a,b+c) + qac+bcM(a+b+c),

φq( q
q

a
b
qc ) = M(a,b,c) +M(a,c,b) +M(c,a,b) +M(a,b+c)

+M(a+c,b) + qabM(a+b,c) + qabM(c,a+b) + qabM(a+b+c),

φq( qa qb qc ) = M(a,b,c) +M(a,c,b) +M(b,a,c) +M(b,c,a) +M(c,a,b) +M(c,b,a)

+M(a+b,c) +M(a+c,b) +M(b+c,a)

+M(a,b+c) +M(b,a+c) +M(c,a+b) +M(a+b+c).

Proposition 22. We define a product ≻q on QSym by:

M(a1,...,ak) ≻q M(b1,...,bl) = M(a1,...,ak ,b1,...,bl) + qakb1M(a1,...,ak−1,ak+b1,b2,...,bl).

Then (QSym,≻q,∆) is an infinitesimal bialgebra and φq is a morphism of
infinitesimal bialgebras from (F ,≻,∆) to (QSym,≻q,∆).

Proof. Let T 1,T 2 be two nonempty finite spaces in Tn, resp. Tm. Let
us prove that φq(T 1 ≻ T 2) = φq(T 1) ≻q φq(T 2). We choose standard
representatives T1,T2. Let f ∈ Lin(T1 ≻ T2). We put f1 = f|[n] and
f2 = f|{n+1,...,n+m}. If i ∈ [n] and j ∈ {n+1, ..., n+m}, then i ≤T1≻T2 j, so
f(i) ≤ f(j). Hence, max(f1) ≤ min(f2). We then define:

A< = {f ∈ LinStd(T1 ≻ T2) | max(f1) < min(f2)},

A= = {f ∈ LinStd(T1 ≻ T2) | max(f1) = min(f2)}.

We deduce from the preceding remark that LinStd(T1 ≻ T2) = A< ⊔ A=.
Let us consider the maps F< : LinStd(T1) × LinStd(T2) −→ A< and F= :
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LinStd(T1)× LinStd(T2) −→ A= defined by:

F<(f1, f2) :











[n+m] −→ N>0

i −→

{

f1(i) if i ≤ n,

f2(i− n) + max(f1) if i > n;

F=(f1, f2) :











[n+m] −→ N>0

i −→

{

f1(i) if i ≤ n,

f2(i− n) + max(f1)− 1 if i > n.

Both are clearly bijections. Moreover, if (f1, f2) ∈ LinStd(T1)× LinStd(T2):

• α(F<(f1, f2)) = α(f1) + α(f2) and:

α(F=(f1, f2)) = α(f1) + α(f2) + |f−1
1 (max(f1))||f

−1
2 (min(f2))|,

the last term corresponding to the pairs (i, j) ∈ [n]×{n+1, ..., n+m},
with f1(i) = max(f1) and f2(j − n) = min(f2), as for such a pair
(i, j), f(i) = f(j) and i <T1≻T2 j.

• If P (f1) = (a1, . . . , ak) and P (f2) = (b1, . . . , bl), then P (F<(f1, f2)) =
(a1, . . . , ak, b1, . . . , bl) and P (F=(f1, f2)) = (a1, . . . , ak + b1, . . . , bl),
so:

MP (F<(f1,f2)) + qakb1MP (F=(f1,f2)) = MP (f1) ≻q MP (f2).

This gives:

φq(T 1 ≻ T 2) =
∑

f∈A<

qα(f)MP (f) +
∑

f∈A=

qα(f)MP (f)

=
∑

(f1,f2)∈LinStd(T1)×LinStd(T2)

qα(f1)+α(f2)MP (f1) ≻q MP (f2)

= φq(T 1) ≻q φq(T 2).

As φq is surjective and (F ,≻,∆) is an infinitesimal bialgebra,we obtain that
(QSym,≻q,∆) is also an infinitesimal bialgebra. �

Remark. Theorem 4.1 of [1] gives an interpretation of the pair (QSym, ζQSym)
as a final object in the category of graded, connected Hopf algebras to-
gether with a character, where ζQSym is the character of QSym defined by
ζQSym(M(a1,...,ak)) = δk,1 for all composition (a1, . . . , ak) of length k ≥ 1.
With this formalism, φq is the Hopf algebra morphism in this category as-

sociated to the character ζq = ζQSym ◦ φq of F . For any finite space T , of
degree n,

ζq(T ) = qα((n)) = q|{(i,j)∈E(T )|i<T j}|.

In particular, ζ1(T ) = 1 for all T ; and for q = 0,

ζ0(T ) =

{

1 if T = qa1
. . . qak

for a certain (a1, . . . , ak),

0 otherwise.
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Remark. The map φq is not injective. For example, if T and T
′
are the

following two finite spaces:

•

--
--
--
• • •

��
��
��

•

--
--
--
• •

--
--
--
•

• • • •

then T 6= T
′
but φq(T ) = φq(T

′
) (this is a linear span of 204 terms).

However, it is possible to prove that if T and T ′ are two topologies on the
same set E, they are equal if, and only if, Lin(T ) = Lin(T ′).
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