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Thermosolutal convection in a horizontal porous layer heated from below
in the presence of a horizontal through flow

D. V. Lyubimov,l'a) T. P. Lyubimova,2 A. Mojtabi,3 and E. S. Sadilov®
Theoretical Physics Department, Perm State University, Perm 614990, Russia
2Institute of Continuous Media Mechanics UB RAS, Perm 614013, Russia
3Institut de Mecanique des Fluides, Toulouse 31062, France

In this paper, we study the effect of a homogeneous longitudinal through flow on the onset of
convection in a horizontal porous layer saturated by a binary fluid and heated from below or above.
The layer boundaries are subjected to a constant heat flux. The investigation is made by taking the
Soret effect into account. It is found that in the case of positive separation ratio when the denser
component moves toward the cooler wall, through flow has no effect on the stability threshold but
exerts an orientating effect on the convective patterns. For negative separation ratio, a strong
destabilization occurs of the spatially homogeneous state with respect to long-wave disturbances.
The stability range for long-wavelength convective rolls is defined.

I. INTRODUCTION considering the influence of horizontal through flow on the
long-wave modes of instability under conditions of fixed

Thermosolutal convection in a porous medium is a clasthermal flux at the boundaries and the present study seems to

sical example of the problems that reveal the interaction obe the first work on this subject.

different instability mechanisms. A great number of works in ~ The problem under consideration can find many indus-

this field of research are devoted to investigations into therial applications related to such processes as ingress of

equilibrium stability of a binary mixture in a vertical tem- moisture into thermal insulation materials, spread of wastes

perature gradient. In this case, the instability may occur foin the soil, or food processing. The solution of this problem

heating both from below and from aboVé=or the case of will help scientists to take up the challenge of radioactive

double diffusive convection, in which inhomogeneity of the and chemical waste disposal and purification of contami-

concentration field is caused by the generation of a concernated soils.

tration difference at the boundaries, the problem of mechani-

cal equilibrium stability is investigated in Ref$-6. These

works show that, as in the case of a homogeneous binalﬂ'f MATHEMATICAL FORMULATION

mixture, the monotonic and the oscillatory instability may We consider an isotropic and homogeneous plane hori-
arise for heating both from below and from above. For the;gntal porous layer heated from below and saturated with a
case in which the concentration inhomogeneity occurs due tginary mixture. There is a through flow of the binary mixture
a thermodiffusion effect, stability of the mechanical equilib- jn a horizontal direction. The problem is examined by taking
rium of a binary mixture in a horizontal porous layer is stud-jnto account the Soret effect. Let us introduce a Cartesian
ied in Refs.7 and8 for high thermal conductivity boundaries rectangular coordinate system such thatzteis is directed
and in Refs.9 and 10 for low thermal conductivity bound- vertically upward and the- andy-axes along the horizontal
aries(in the conditions of fixed thermal fluxA distinguish-  plane. The origin of the coordinates is located at equal dis-
ing feature of the problem with fixed thermal flux at the tance from the horizontal boundaries of the layer. We assume
boundaries is that under such conditions, the long-wave inthat the Darcy law is valid and that Oberbeck—Boussinesq
stability may exist in a wide range of parameters. Throughapproximation is applicable: The thermophysical properties
flow in the horizontal direction leads to a shift of distur- of the binary fluid are considered constant except for the
bances and to a transformation of the monotonic instabilitydensity in the buoyancy term, which linearly varies with the
into oscillatory instability. The influence of horizontal local temperature and mass fraction.

through flow on the stability of the horizontally homoge- Thus, the governing conservation equations for mass,
neous state at fixed temperatures at the boundaries is consitbomentum, energy, and chemical species with the Soret ef-
ered in Refs11l and12 for the case of homogeneous binary fect taken into account are

fluid, in Ref. 13 for a porous medium saturated by a single-

component fluid, and in Refl4 for a porous medium satu- -=Vp- Zi+ (gB:T+gB:C)E,=0, (1)
rated with a binary fluid. Thus far, there have been no works p K
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ac R ) velocity U/e is called reference frame Bn this reference
e Tu VC=DVC+aDVT, (3 frame, an additional term vanishes from Eg)].
Let the units of length, time, velocity, temperature, con-
centration, and pressure be defined as follows:
oD an Bran 72
D’ h Be K

V.G=0. (4)

Here, G is the filtration rate,C is the mass fraction of the h,
denser componentK is the coefficient of permeability,
Bt Bc are volume coefficients of thermal and solutal expan-The equatiqns and boundary conditions in dimensionless
sions, o is the ratio of the heat capacity of a unit volume of form are written as
porous medium saturated with a fluid to that of homogeneous  _ Vp-G+R(T+C)&,=0, (6)
fluid, x.s is the effective thermal diffusivity is the porosity,
D is the mass-diffusion coefficient of the denser component 4t JT
diffusion, « is the Soret coefficien§, is the unit vector of bE +0-VT+ Pea_x = LeV7T, (7)
the z-axis, and the rest of the notation is standard.
The problem is assumed to satisfy the following bound- JC 9C
ary conditions: at the solid boundaries of the layer, the nor- — +({-VC+Pe— = V2C - SV2T, (8)
mal component of the filtration velocity vanishes, the heat at X
flux is fixed, the flux of the substance is absent, and the mass

flow rate along thex-axis is fixed, V-u=0, 9)
z=-h, hw=0, z=-1, 1w=0,
T T 6  o=-1 Z=-s (10
z 7w Y 9z 24

1 1
f (Uuy,dz=0, j (u),dz=0.
-1 -1

Problem(6)—(10) is characterized by the following dimen-
whereh is the half-thickness of the layew is the vertical sionless parameters:
component of the filtration velocityA is the magnitude of

h h
f (ugydz=2Uh, f (u),dz=0,
-h -h

the prescribed temperature gradiedt,is the through flow R= MZ

velocity, and notation(: - -y;=lim,_..(1/1"2,---df), where vD

f=x,y is introduced for the procedure of averaging over the

horizontal coordinates. Pe :U_h'
Note that according to Eq€2) and(3), the concentration D

disturbances are transported by the fluid flow with the veloc-

ity u/e, i.e., with an average velocity of the fluid flow in _X (11)

pores, whereas the temperature disturbances are transported D’

with the velocityu/o. This difference is related to the fact

that during transport of the mixture, the fluid motion occurs Be

only in pores, and during heat transfer, the heat is transported S=- O‘E’

not only through the fluid but also through the porous matrix.

In a homogeneous fluid, such a difference in velocities is o

absent. b= "

The through flow velocity is conveniently derived from
the filtration velocity,G=U’ + U€,, where€, is the unit vector where Pe is the Peclet number, having the meaning of dimen-
of the x-axis (in the following, the prime mark will be omit- sionless through flow velocity, Le is the Lewis number, &d
ted). After such substitution, the integral condition in E) is the separation ratio; the paramefeis related to the Ray-
becomes uniform, though in Eqél)—<(3), additional terms leigh number commonly used for a porous meditg,
appear. Nonuniformity in Eq(1) can be readily eliminated =4gB8:AK/(vy) by the equatiorR=Ra,Le/4.
through redefining the pressure, and additional terms in Egs. Problem(6)—(10) allows for a simple stationary solution,
(2) and(3) can pe removed by choosing an appropriate frame §=0 T=-z C=-Sz 12)
of reference(without further transformation of velocity
However, this cannot be simultaneously accomplished ir{the values of temperature and concentratioz=ad in the
both Egs.(2) and(3). In the following, the reference frame convectionless state are used as the reference values of tem-
moving along thex-axis with velocity U/o will be called perature and concentratipn
reference frame Ain this reference frame an additional term The solution(12) describes the state of homogeneous
vanishes from Eq(2)], and the reference frame moving with through flow at uniform vertical gradients of temperature and



concentration. Since, in this case, the fluid motion occurs 30
along the isotherms and isolines of concentration, the tem- R
perature and concentration fields are not disturbed. In the .
following sections, we will investigate the stability of this
state against small disturbances and weakly nonlinear re- .
gimes.

I1l. LINEAR STABILITY OF THE BASIC STATE
A. Disturbances with finite wavelength 28]
Let us make a linear stability analysis of the base state
stability to plane disturbances with finite wavelength. By lin-
earizing Eqs(6)—(9) in the vicinity of the base sta{d2) and
neglecting pressure and the horizontal velocity components,

we obtain the system of equations 21 .
Aw=RA (9 +c), (13
FIG. 1. Neutral curves in the case of positive separation ratlw=dt0, Le
o0 A2 9 =100, S=0.1, and different values of Peclet numbét) Pe=0,(2) Pe
bE +Pe =LeVio+w, (14)  =0.111,(3 Pe=0.333, and4) Pe=1.11.
o, ) _
i Pea_x =V -8Ved+Sw, (150 of the parameter Pe. When through flow is abg@e=0,
the instability is monotonic, and it is the long-wave distur-
with the boundary conditions bances that are most dangerdaarve 1 in Fig.1). At non-
99 Jc zero values of the Peclet number, the character of the insta-
z=-1,1w=0, . =0, pe =0. (16) bility changes to an oscillatory one so that, in this case, at all
z Z

Pe+# 0, the disturbances with finite wavelength are most dan-

Here,d andc are the disturbances of temperature and congde€rous. It should be noted that for a critical value of the

centration, respectively, anti, is the Laplace operator with ParameteR, there is a finite limit ak— 0, which does not
respect to the horizontal coordinates. depend on Pe but differs from the stability threshold at Pe

For normal disturbances dependingandt aseMek*  =0. Thus, we are dealing here with the crossover effect: The
(whereX is the complex increment ardis the wave num-  result of a sequence of limiting transitions, -P®, k—0,
bern, we obtain a system of linear differential equations withdepends on the order of their realization. A detailed consid-
constant coefficients. The characteristic equation of this syseration of this phenomenon will be given in the section con-
tem is a bicubic one. By solving this equation, constructingcerning long-wave disturbances.
the fundamental system, and satisfying boundary conditions, ~Actually, the phase velocit{Fig. 2) does not vary wittk
we obtain the cumbersome transcendental equation\for and is very close to the value of Pe, suggesting that the
The condition that the real part of the increment should peoscillatory character of the instability should be attributed to
equal to zero defines the boundary of linear stability of thethe transport of solute by the base flow.
base state. The equation ferhas been numerically solved.

At zero value of the Soret parameter, the equation for

concentration disturbances splits off and, as can be easily o000
shown, has only decaying solutions. After substitutior\of kPe .
-ikPe/b for \ (i.e., after passing to reference fram@ and 0.998 |
scale transformation, the obtained problemvigry reduces |
to the classical problem on equilibrium stability of the po-
rous layer heated from below. This means thasa0, the 0.996
critical value of the Rayleigh number is independent of the :
Peclet number, although the instability in the laboratory ref- 0.994 —
erence frame is of an oscillatory nature and the phase veloc- | 3
ity of disturbances coincides with the transport velocity of
thermal disturbances. 0.992 2
4\
1. Case of positive separation ratio 0.990 ‘ : ‘ ‘
Now, let us discuss the results of the calculation for posi- 0 0.1 02 03 K04

tive values of the separation ratio. Figuteand?2 show the . . .

. FIG. 2. Phase velocity of neutral disturbances vs wave number in the case of
neutral cgrveR(k) and the dependence of pha;e velocity Ofpositive separation ratio 4=10, Le=100,5=0.1 and different values of
neutral disturbances on the wave number for different valueBeclet numbertl) Pe=0.111(2) Pe=0.333, and3) Pe=1.11.
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FIG. 3. Wave number of critical disturbances as éfunction oj Peclet numbeg| 5. Neutral curves in the case of negative separation ratio and heating
in the case of positive separation ratiobat10, Le=100, ans=0.1. from below atb=10, Le=100,S=-0.02, and different values of Peclet

number:(0) Pe=0,(1a and 1p Pe=0.333, and2) Pe=1.11.

The dependence of the wave number of the most dan-
gerous disturbancels,, on the Peclet number is nonmono-
tonic (Fig. 3). With an increase of the through flow velocity, consider the case of heating from bel¢R>0). The neutral
kn, first increases, then starts to decrease, and, at some val@rves of stability for this case are given in Fig. In the
Pe=Pg, goes to zero. This value of Pe will be defined laterabsence of through flow at preset values of the paramsters
in the section dealing with long-wave asymptotics. At Pel-€, andb, the instability is of an oscillatory character with its
> Pe,, the long-wave disturbances are most dangerous. ~ [OWer level showing double degeneracy: the waves propagat-
The critical valueR,, of the parameteR, corresponding N9 I the negative and positive direction of thems_ are
to the minimum on the neutral curve, as a function of the€dual- Atthe values of Pe other than zero, this equality is lost
Peclet number is plotted in Figl. As can be seen, at Pe and the oscnlatory_level splits into two levelsee curves la _
<Pe,, the value ofR,, increases with the growth of Pe: at and 1BH. Note that in the laboratory reference frame, the di-

Pe> Pe,, the instability threshold is independent of the F,e_rection of waves corresponding to the most dangerous distur-
clet number bances coincides with the direction of through flow. As in the

case of positiveS, the crossover phenomenon can be ob-
served: All neutral curves corresponding to nonzero values
of the Peclet number have a limit kt— 0, which does not

Let us discuss the results for negative values of the sepalepend on the Peclet number and differs from the long-wave
ration ratio. As we know, in the absence of through fidf  limit at Pe=0. However, a8< 0 for low levels of instability,
at negative values of the Soret coefficient, the instability canhe long-wave limit is lower than in the case of zero through
occur on heating both from below and from above. We firstflow and, as a result, at B0, the instability maintains the
long-wave character.

In the absence of through flow, for the most dangerous
disturbances, the disturbance frequencl-at0 tends to zero
according to the square law, so that the phase velocity goes
to zero. At Pe£0, the phase velocity in reference frame A
also goes to zero, as will be shown later. Thus, in the labo-
29 ratory reference frame, the phase velocity of the most dan-
gerous disturbances will coincide with the transport velocity
J of the thermal disturbances, which is equal to/ReThe
dependence of the phase velocity of disturbances on the
wave number is shown in Fig.

Thus, with heating from below and for a positive sepa-
ration ratio, the effect of the instability is of a solutal nature
and through flow has a stabilizing effect, whereas for nega-
tive separation ratio, the most dangerous disturbances are
27 I I \ thermal disturbances, on which through flow exerts a desta-

0 2 4 6 bilizing action.

Now, consider the case of heating from above. For a
FIG. 4. Critical Rayleigh numbeR,, as a function of Peclet number in the Negative separation ratio and in the absence of through flow,
case of positive separation ratiokst 10, Le=100, ands=0.1. heating from above may give rise to monotonic instability.

2. Case of negative separation ratio

30
Rm

28 —




4 normal disturbances in that the Peclet number is replaced by

olk | the combination Pe cas, where¢ is the angle between the
1b wave vector and the direction of through flow. Thus, the
2 5 results for space disturbances coincide with the results for

plane disturbances corresponding to the lower value of the
Peclet number. This implies that f8>0 when through flow
exerts a stabilizing effect on the plane disturbances, the space
disturbances are more dangerous than the plane ones. From
2a the results obtained, it might be concluded that the most
a dangerous perturbations are the longitudinal rolls, i.e., the
0 convective rolls whose axes are parallel to the through flow
, direction. Such disturbances are not affected by through flow.
Thus, in the case of positive thermal diffusion, through flow
-4 T T \ does not change the stability threshold but exerts an orien-
0 0.2 0.4 0.6 tating effect on the convective patterns: the loss of problem
k isotropy in a horizontal plane leads to the inequality of con-
FIG. 6. Phase velocity of neutral disturbances vs wave number in the case dfective rolls with different orientations. In the case of nega-
negative separation ratio and heating from belowbatlO, Le=100,S  tive thermal diffusion when through flow has a destabilizing
=-0.02, and different values of Peclet numbi@ Pe=0,(1a and 1bPe  offect on the plane disturbances, these disturbances become
=0.333, and2a Pe=1.11. . . .
most dangerous. Hence, it appears that through flow in this
case, apart from the orientation effethe roll axes have

Its low level di he Ravleiah b ith th orthogonal orientation with respect to the direction of
ts low level, corresponding to the Rayleigh number with t ethrough flow, has a destabilizing effect.

lowest absolute value, is not degenerate. Therefore, at non-
zero vglues qf .the Peclet numbgr and for a positive Separgs | gng-wave linear theory
tion ratio, splitting of the levels is not observed but distur-
bances acquire an oscillatory character. The calculations As follows from the above numerical results, long-wave
show that in this case, through flow has a destabilizing effecglisturbances are, in some cases, the most dangerous and,
and, at all values of the Peclet number, the long-wave distutherefore, we pay particular attention to the problem of sta-
bances are the most dangerdsse Fig.7). bility of the base state with respect to long-wave distur-
The results described refer to plane disturbances. Howbances. The analysis is conveniently performed on the basis
ever, itis easy to demonstrate that we can app|y the ana|og &f the differential equations considered for the amplitudeS of
the Squire theorem to the problem under consideration. Informal disturbances rather than on the basis of the charac-
deed, in Egs(13)—(15), expressed in terms of disturbances teristic equation. Let us consider neutral disturbances, i.e.,
of temperature, concentration, and vertical velocity compoassume that=-iw. All the unknown quantities are ex-
nent, the derivatives with respect to the horizontal coordiPressed as a wave-number power series,
nates enter either the Laplace operator or the combination

— 2
P&/ ox). This means that the equation for the amplitudes of ~ @ = Kop+Kwy+ -+, (17)
normal space disturbances differs from the equation for plane
R=Ry+ kR + kR, + -+, (18
R'1207 W:W0+kwl+k2W2+-~~ , (19
-160 —
13:190+k131+k2132+"' , (20)
-200
P=po+kpy+Kipy+ oo (21)
-240 —
1 c=co+ke +Koc,+ o+ . (22
-280 . .
| In these expansions, we take into account the fact that at
_N k=0, the oscillatory disturbances are absent, iwg=0.
-3207 From the zero- and first-order expansions of Egs.
(13)—<(15) with boundary condition$16), we obtain
5L e B
0 0.1 0.2 0.3 0.4 0.5 Wp=0, Uy(-bw;+Pa=0, co(-w,+Pa=0. (23

k

. : . . . From Eg.(23), it can be seen that eithep=0, J,# 0,
FIG. 7. Neutral curves in the case of negative separation ratio and heating . .
from above ab=10, Le=100S=-0.02, and different values of Peclet num- @1=P€b (such dlsturban(_:es will be C"%”ed thermak 9
ber: (0) Pe=0 and1) Pe=0.333. =0, ¢y # 0, w;=Pe(these disturbances will be called soljtal



It should be noted that in the absence of through flow, In the case of anomalous Soret effect and<<8<0,
i.e., at Pe=0, we have,=0; moreover, both), andc, differ expressiong27) and(28) have determinate signs at any Pe-
from zero. In the next order of the expansion, we obtain theclet number, namelyR,>0 for thermal disturbances and
following expression foRy: R, <0 for solutal disturbances. Therefore, the most danger-
3Le ous disturbances are the long-wave ones, with heating both
Ry= —————. (24) from below and from above.
LeS+1+S The case in which the disturbances with nonzero but
At Pe+0 in the second-order expansion, we obtgin  Small wave number are most dangerous can be described by

=3Le for thermal disturbances am$=3/S for solutal dis- ~ the long-wave theory after making a number of assumptions
turbances. The quantitid®, and o, are found to be equal to €oncerning the problem parameters. These assumptions will
zero. Thus, in the case 60 at LeS> 1, the more danger- e different for different situations according to which dis-
ous disturbances are the solutal ones, and 8l ethe ther-  turbances, thermal or solutal, are the most dangerous. For
mal ones are the more dangerous. In the casg<o0, the Solutal disturbances, we assume that the Lewis Le and Peclet
long-wave instability is caused by thermal disturbances of’® numbers are large,

heating from below and by solutal disturbances on heating

from above.
In the third-order expansion, we define the correction for |  _ Le_, _Pey
e= 2 1 P - ] (30)
frequencyws, k k
Sle(Le+1)
w3=————— (25) . .
Peb-1) and for thermal disturbances, we use the assumption of small
separation ratics and Peclet Pe numbers
for the thermal level and
—_ ﬂ 26
“3= " pab-1) (26) S=Sk, Pe= Pek. (3D)
for the solutal level. Let us consider the first case, in which we will use the
In the fourth-order expansion, we define the correctionSame expansions in the small paramétes we used before,
for Ry, except for the series expansion with respect to frequency

(17), which is now changed to the following expression:
R=Ble- Zgeern-aieterDd -Se)b?
2 35 " P(b- 1)

7
(27) 0=K w_;+ko, +Kwy+ - . (32
for thermal disturbances and

no8 _2S+1 (1+901-Se
277S 35%e ~ SPE(b-1)2

From the first two orders of series expansions of Egs.
(28) (13)—(15) with the boundary conditiongl6), we obtain

for solutal disturbances.

Let us analyze Eqg27) and (28) for the case 06> 0. Wo=0, do(-bw_,+Pey)=0, cPe,=0. (33
At small values of the Peclet number, the signRyfis de-
fined by the last terms in Eq§27) and (28). It can be seen
that, at L&&>1, R, is negative for solutal disturbances and is
positive for thermal disturbances. At §e& 1, the signs of the
correctionR, are opposite to those at 82-1. Thus, for any
relation of Le&s to 1 for a lower branch of the long-wave
instability of S>0, the quantityR, is negative and conse-
quently more dangerous are the disturbances with a finite
wavelength. With an increase of the Peclet number, the sign 2 2
of R, can change. Thus, for solutal disturbances, as is clear R,= 1 839e5,+85b-1) P&, - 21le,(S+ 1), (34)
from Eq. (28), this occurs at 78 Le?, + (b- 1)°P€,

P 105LES+ 1)(LeS—- 1)
" 2(b-1)2S(20LeS-S-1)°

From Eq.(33), it can be seen that;=0, 9,#0, and w_;
=Pe,/b. From the second-order expansion, we d&t
=3Le. The quantities,, ws, andR; are found to be equal to
zero. From the fourth-order expansion, we derive corrections
R, and wy,

(29)
(b-1)Pe,(S+1)
For preset values of the parametére=100,S=0.1,b W= SLe, + (b- 12PE.]’ (39)
=10), formula (29) gives the value of about 5.68 for Pe. At -2 1
large values of Pe, long-wave disturbances are the most dan- By combining the expressions obtained for the expan-
gerous, which agrees with the numerical results presented sion termsR and w, we arrive at the approximate formulas
Fig. 3. for the neutral curve and oscillation frequency,




1 21leS(Le-1) - 1)k*+21S(b - 1)°P€ + 8S(b - 1)°Pek® + 85Le’k’
7% Le?k? + (b - 1)%P¢& ’

R~ (36)

(b-1)PgS+1)
qLek®+ (b-1)%Pe]
The neutral curveR(k), defined by formulg36), is shown in Fig.8. The location of the minimum for this curve is specified
by the following expression:

kzm:(b—1)|Pd[ /2_15+1_(b—1)|Pd] -
Le 8 Sle Le

which agrees well with the numerical results obtained in the previous section in the framework of linear theory for finite-length
waves(see Fig.8).
In the case of thermal disturbances, similar expansions lead to the following expressions:
R 121b°Le[1 - S(Le + DIK* + 21(b - 1)’LePé€ + 8(b — 1)°PEk* + 8b%k*
b’k? + (b - 1)°P€ '

w = P&k -

(37

(39

_Pe (b-1PelLeSiLe+1) 2Pe/AB

I < (40 Rom= (S+SLe+1)(SLe?*+ S e+b+b9?’ 43

b~ bbb+ (b-1)%P&]
The neutral curveR(k), defined by formulg39), is given in  and for the wave number of most dangerous perturbations,
Fig. 9. The location of the minimum is defined by we obtain

_ _ B 1/4

As mentioned in the previous section, the lirRitk) at ~ AS one can see from Eqé13) and(44), Ry, is proportional
k— 0 is different for Pe=0 and Pe0; moreover, the differ- to the Peclet number arkd, is proportional tovPe. For the
ence is finite at any small values of the Peclet number. HowParameter values used in the calculations, form(4&s and
ever, as follows from the numerical results presented abové44) yield
the instability threshold to most dangerqus perturbations wi'Fh R, ~ 27.03+0.980Pe, k,~ 0_21&5& (45)
small but nonzero wave number obtained for small Pe is
close to the critical value obtained for Pe=0, i.e., there is novhich well corresponds to the numerical data presented in
jump for Ry Figs.3 and4.

The dependence’ (P andk,(Pe at small values of
Peclet number can be analytically studied. For this, we as-
sume that the parameter Pe is the quantity of the second 30 —

order of smallness when the wave number is the quantity of R
the first order. The calculations similar to those described
above lead to the following results. In the leading order of 29.5 7
expansion, we come to the formulé®4) for R,. From the
next orders, we find the®; =0, and forR,, we obtain 29 -
AK' + BPE
k?(S+9Le+1)(SLec+Se+b+b9 28.5 —
where 2
A=16bSe + 8FLe? + 8FLe* + 16263 + 160 FLe? 287 1
+ 1609 e? + 16bFLe + 850 + 165k + 8b2, yrs
: ‘ \ ‘ \ ‘ \ ‘ \
B=S(- 420S+ 2102S— 42bSL e + 21S— 42b + 21h? 0 01 02 03 04
—42le + 2159 e + 21b*SLe + 21Le + 2b’Le + 21). FIG. 8. Neutral curve in the case of positive separation ratib=t0, Le

L . . =100,S=0.1, and Pe=1.111) analytical results obtained from long-wave
M'mm'meon in Eq.(42) with respect to the wave num-  |ipeqr theory and(2) numerical results obtained from finite wavelength
ber gives calculations.



3.010 1 /g g
R . J (E+G-Vc—Vic+SViﬁ—Sw+ Ped—x)dzzo,
3.005 —| -1
| (54)
3.000 . : o
| which play the role of the resolution condition in all orders
of expansion except for the zero order.
2.995 — )
| In zero order ofé, we obtain
2.990 — Wo = Ov 730 = 9(t'X'Y): Co= g(t,XvY)a Po= RO(0+ f)Z
| (55
2985 7 . . . . . .
| As in the linear theory, the disturbances are divided into two
2980 ‘ | ‘ ‘ ‘ classes: Thermal and solutal. For thermal disturban&e8,
000 005 010 015 020 025 and the main part of temperature disturbances satisfies the
k equation
FIG. 9. Neutral curve obtained from long-wave linear theory in the case of bf9_9 _ a0 6
positive separation ratio &t=10, Pe=15=0.01, and Pe=0.222. aty - Pe&xl' (5 )

For solutal disturbance$)=0, and the main part of solutal

disturbances satisfies the equation
IV. WEAKLY NONLINEAR ANALYSIS

. 43 43
A. Long-wave disturbances —=-Pe_—. (57)
ity X,

The results of the linear theory given above allow us to_l_h i ref f A the th | disturb
define the boundary of the stability state, in which convec-_, tjst In reteren dcethrgmel » (e Ietr.ma ais dur apbce(js r;re ?hua—
tion is absent. To specify the character of motion excitatiorp > anonary an eIr slow evolution 15 described by the

(soft or hard excitationand to investigate the stability of t!meStZ’.tE‘"'f' ,where?s the ;olutal disturbances are quasista-
supercritical modes, it is necessary take into account the noﬁ'—oni?]/ n rete_rgnlce ralr_1t1ed ' i for btained
linear terms in the equations of heat and admixture transfer. € nontrivial amplitude equations Ief,c are obtane

This analysis will be restricted to the case of long-wave dis" the fourth-order expansion in terms &fBy dropping the

turbances. Recall that the long-wave disturbances are mogFta'ls of simple and cumbersome calculations, we give here

dangerous at negative values of the separation ratio, and vﬁéﬂy the final form of the amplitude equations for solutions

are dealing here just with this case. Omogeneous 1y,
The amplitude equations describing convection in the g0 _SLe(Le +1) #°0

long-wave approximation are conveniently constructed by M;  Peb-1) e’ (58)
the multiple scale method. We use an expansion in terms of
the formal small parametef, 90 R.P0 &0 6 o/ an)\d
b0 B0, 0 6 o ()
V. =06Vy, (46) dy 3 Xy Xy S X \dXg
_ |96, Sle(le+1) 6, £g
Jd Jd J - ot - Peb- 1) 19X3 (59
Ezgz.,.gg.,...., (47 3 1
! 2 for thermal disturbances in reference frame A, and
R=Ro+ Ry + Ry + -+, (48 % __ (S*D 7% (60
ﬁtg S:’db— 1) (9X1,
U=Ug+ 8y + Py + -+, 49
o T T R (49 %  SRFE, e 61 a<a§)3
T TS oY« aT @\ o
9=+ 80+ FOp+ -+, (50) My 3¢ TTaxp 5Sdxg\dxg
ac S+1 4%
~ [ =24 ——31} (61)
P=po+ dpy+ &Pyt oo, (51) ity Peb-1) o3
B £ for solutal disturbances in reference frame B. Here, the fol-
C=Co+ dy+ 5T+ - (52 |owing notation is used:

fer across the layer, we obtain the relations 120l 3 + ?S(Le +1)

By integrating the equation of heat and admixture trans- { 1 {160 11 }
vy=Le
3

Jl <baﬁ+ﬁ VI+ Pe@ LeV? & W)dZ 0, (53 b 7
— i - -w|dz=0, ~Slle+1 1- —
S\t x Ste+ D) pep- et O 0] [



1/40 11S+1\ (S+1) 1 impose restrictions on the tangential velocity. Such a way of
» 5215696/ s PE(b- 1) obtaining two-dimensional convective flows in a porous me-
dium is used in Refl5.

120Le B. Disturbance with small wave number

We shall restrict our considerations to finding solutions  Let us perform a weakly nonlinear analysis for this case,
for thermal disturbances. The solution of E&9) can be making the same assumptions for the problem parameters as
written as 6= fa(k,t,)expi(kx — wtz)dk, where the Fourier we did in the linear long-wave theory for consideration of
amplitude is a function of slow timg andw andk obey the  disturbances with a nonzero but small wave number.
dispersion relationw=wsk3. Substitution of this solution Thus, for solutal disturbances, we assume that
into Eq. (59) leads to the appearance of secular terms. The
condition at which they are absent is derived from the equa- | 4 Pe zp;tl. (65)
tion for the Fourier amplitudes, which in the general case is & o
rather cumbersome, and is essentially simplified in the
monochromatic approximatio=a coskx, - wts). Substitu- [N €xpansion$49)—52), the initial terms in the series expan-
tion of this expression into Eq59) leads to the equation for Sion with respect to the small parameter are changed in the

X(S_e—l)—li}.

_Le,

the amplitudea, following way:
Ja Ry 3 =8l + &P+ -, (66)
b— - —k’a+ yk'a+ —Lek*a®*=0. 62
A, 3 a+ yk'a 10 ek*a (62)
=60+ PO+ -+, (67)

At R,<39k? all solutions to the amplitude equation
(62) tend to zero, whereas in the case of fulfillment of the
inverse inequality, i.e., above the neutral curve, all solutions ~P=P1+ &P+ =+, (68)
tend to a stationary one,

c=6c,+ &Pyt . (69)

1 /10
a== K ELG(RZ_ 39%K7). (63 The low-order solution for temperature and concentration is

written as (here, we present only such quantities that are
Hence, it appears that thermal disturbances are excitéighportant for further discussion

softly and obey an ordinary root law. The stability of these

solutions against disturbances with another wave number can %, =0, c;=£&t,xy), 9=0, H=46(txy). (70

be analyzed in the framework of the same system of Egs.

(58) and (59). For disturbances representedeise (2=, In the fifth order, we obtain the following system of the
whereq is the wave number of disturbances aflds their ~ amplitude equations in reference frame B:

frequency related to by the dispersion equatio) = wsq°,

i i i i 70 90 17
we obtain the following expression for the incremant Le_, 2 +(b- 1)Pe,— - __g -0, (71)
axg X, Sox]
q2< o1 2
A=— 2’yk __Rz_'yq f (64)
b 3 9 R,S#PE 8 I >0
_ _ —t S+, +(S+1)—5=0. (72)
From Eg. (64), it follows that \<0 for any q if R, dty 3 oxy 21dxg axq

>6yk% Thus, at sufficiently large supercriticality, the sta- . _ _ .

tionary thermal wave is stable. The stability region in the\We seek a solution to this system in the following form:
planeR,-k is bounded from below by the line corresponding o o

to a twofold supercriticality. ¢=Feloem+cc, o=0eoem+cc, (73

Similar results are obtained for the solutal wave. In the

case considered above, the separation ratio is negative, al Hd fmall_y obta!n _the dependenBg(k), wh|c_h Is similar to

the plane disturbances are most dangerous. For a positi\; aF obtam_ed V\_"t.h'r.] the fr_amework of the linear theory. The
separation ratio, as we know, the most dangerous distu -ef'”?dRz IS m'”'m'zed with respect to the wave number_
bances are spatial ones. However, such disturbances can %@d’ in the following, all calc_ulat|ons are carrle_d OUt. for this
suppressed by setting vertical, closely spaced, impermeabl\éy,""ve number. After comple_tlng all thes_e manlpulauons, we
and thermally nonconducting boundaries to the flow region.get. the seventh-order amplltude equation, which after tran-
It should be noted that in the case of homogeneous quidftC”pt'On takes the following form:

such practice is incorrect because, under the no-slip condi- oy 2

tion at the solid boundaries, the flow will change its pattern ~ —— -y — &*—— + |y|?y=0, (74)
to a three-dimensional one. In porous media, realization of 97« ax2

two-dimensional flow modes by means of setting spatial con-

straints is possible because the boundary conditions do nethere



= Ol 50 + P2(3p% + 902, — 28)] + i (p? + q2) (50 + 4p°qZ, + 3p2B)

= 7 1 (75)
VA {5a5, + PA(3p? + 907, — 2B) 1 + (P + ) (50, + 4p°C, + 3p%B)?
|
5 — 59(S+1) 2((b_ 1)Pe, onset of crossover: Arbitrarily small through flow causes
dn=pP(VB-p), B= ETZ p= ﬁTz drastic destabilization of long-wave disturbances such that

the critical Rayleigh number is shifted by a finite value.
(76) However, this instability is limited by very long waves. The
This equation is a particular case of the complex Ginsburg_existence of strong instability with respect to long-wave dis-

Landau equation and has the following quasistationary solulurbances leads to unusual properties of the nonlinear sta-
tionary regimes. It is knowH that in the case of long-wave

tlon: instability of a horizontal layer heated from below in condi-
=P (77)  tions of fixed heat flux at the boundaries, all long-wave sta-
tionary regimes are unstable. Our investigation provides con-
¥ =1-qg?cosk, (78 clusive evidence for the existence of stable stationary
regimes in the presence of through flow.
Q=0¢’sink. (79
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