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Abstract 

Current-controlling loudspeakers has been investigated since a significant time and is known as quite 
appreciated by demanding audiophiles. Today’s new market research clearly moves to investigate on 
adequate innovative designs together with simple theoretical solutions to deal with their residual non-linear 
properties. Hence, this paper aims to present a compact analytical approach allowing to synthesize the 
harmonic distortion hindering the audio quality of electrodynamic loudspeakers, while considering 
separately the influence of the changes of their main constitutive parameters. As a great convenience the 
relevant compact way to shape Taylor polynomials provides simple expressions describing the first five 
harmonic distortion lines on the whole spectrum: Proceeding so clearly highlights the critical influence of 
each given parameter. Besides consistency when compared with numerical analysis operated with the 
Simulink® software, this approach may be easily implemented with a standard spreadsheet application. We 
also highlight the interest to refer the acceleration of the diaphragm to that of the gravity reference level. 

0 INTRODUCTION 

Sound processing with current driven loudspeakers depends critically on high quality transducers together 
with their relevant and adequate circuitry. Although nowadays this approach is far from being spread in 
today’s audio industry, the development of high-quality miniaturized devices based on new materials is 
bound to start a significant change towards current drive policy. Moreover, besides cogent technical 
developments, strong simplifications regarding classical analytical approaches are most welcome to foster 
the mandatory engineering work enabling to reach production stage. 

The main purpose of this paper is to present a compact and articulate analytical model of current driven 
loudspeakers so as to assess their remaining non-linear shortcomings. Displacement, speed and acceleration 
(quantity directly associated with the resulting sound pressure) of the voice coil can be easily characterized 
up to their first fifth-order harmonic distortion components along the whole spectrum.  To cover the latter, 
numerical simulations require numerous calculations to deal with a specific isolated flaw. On the other 
hand, any ith-order harmonic distortion line (HD i) is classically referred to by way of plotting its respective 
acceleration level as a logarithmic ratio with that of the fundamental level. Conversely, we highlight in this 
paper the interest to depict each component together with the fundamental as a logarithmic ratio with the 
gravity acceleration level, allowing the observer to assess at a glance the spectral pattern of any ith-order 
harmonic distortion. 

Straightforward models for coupling loudspeakers with electronics software are quite simple since based on 
RLC circuits [1]. Yet, despite picturing the impedance versus frequency relationship, such models are 
obviously unable to allow for the numerous shortcomings of loudspeakers, especially their nonlinear 
limitations. Indeed, nonlinear behaviours are out of reach of such models since neither electromechanical 
properties nor physical quantities, such as displacement, velocity, acceleration and force may be accurately 
accounted for. Since a long time, current drive of loudspeakers proved a well established way to reduce non 
linear distortion. However, despite numerous works and a significantly probing literature [2,3], quite few 
devices are nowadays available on the market.  
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As a matter of fact the following fundamental mechanical and electrical equations describing a generic 
transducer can be written as [3,4,6]: 
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As regards Eq.1, x is the displacement of the voice coil (m), Bl the force factor (T.m) of the motor system, i 
the driving current, Mm, the equivalent mass of the moving voice coil [kg], fm the mechanical damping 
parameter and drag force [N.s.m−1], km the suspension stiffness [N.m−1], and Le the voice coil inductance. 
The left member includes the useful drive force due to the Lorentz interaction, acting together with an 
extraneous component, the solenoid force (also referred to as the reluctance force), stemming from the 
stocked energy within the moving coil [3,4,5,6]. 

Considering Eq.2, Re is the voice coil electrical resistance [Ω], and e the fem [V] observed at the transducer 
terminals during operation. Although valuable to assess the electrical behaviour of the system, Eq.2 
becomes factually useless in the advantageous case of a current-drive policy since the designer has only to 
optimize the left member of Eq.1 so as to drive flawlessly the moving coil. Then, the physical behaviour of 
a generic electrodynamic loudspeaker is exclusively imposed by Eq.1 and naturally devoid of the numerous 
non linear distortions stemming from the unfortunate compound of both Eq.1 and 2 addressing the voltage 
drive policy [7,8,9]. Although the only advantage under voltage drive is a natural damping in the resonance 
region of the spectrum (owing to the motional impedance), effective filtering solutions can be nowadays 
considered to promote current-drive [3,6], as is shown in the appendix illustrating a mere generic scheme. 
Then, one could acknowledge that the widespread voltage drive policy stems from commonly established 
practice and classical electronic convenience only. 

1  HIGHLIGHTING THE RATIONALE OF THE APPROACH  

Predominance and self-governing property of Eq.1 are clearly highlighted with the straightforward 
electrical schemes depicted in Fig. 1: indeed Eq. 2 entails most untoward compounded electromotive forces  
(inductive and motional emfs), whereas any ideal current-drive policy makes the behaviour of the transducer 
independent of such extraneous e.m.fs. Therefore, the sources of non linearity associated with the latter are 
naturally rejected with a functional current-drive. However, to be operational, an adequate filtering policy 
has to clear out the resonance regime together with prospective untoward high frequencies. 
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B

dt

di
LiRe letet ⋅++⋅= .)()(

 

Fig. 1: Natural rejection of nonlinear components due to Eq.2 with an ideal current-drive policy 
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Considering the displacement of the diaphragm and its derived quantities (speed and acceleration), the 
natural behaviour of the transducer only depends on Eq.1, where the nonlinear harmonic components stem 
from relevant effects regarding both parameters in the left member (Bl, Le), and those included in the right 
one (km, fm). Since representative of the effective sound pressure the acceleration is the pivotal quantity. 

For the purpose of comparison between numerical and analytical results, we refer to the special case of a 
commercialized midrange loudspeaker (Morel  EM 428) as a reference model, considering its nominal 
parameters [10] together with its measured nonlinear characteristics obtained by way of a standard 
calibrating Klippel® apparatus [11].  

Nonlinear parameters can be described by way of Taylor classical truncated power-series [12, 13] that may 
be conveniently limited to the fifth order. Here, the following compact formulation allows us to describe 
harmonic distortions up to the fifth spectral line. To this end, the displacement can be described according 
to the following series: 
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On the other hand, considering the dependence of a given nonlinear parameter noted λλλλ against a static value 
referred to as x (displacement in steady state), λλλλ can be approached with a power-series expansion such as: 

 ( ) 5
5

4
4

3
3

2
210 xxxxxx ⋅+⋅+⋅+⋅+⋅+= λλλλλλλ   [USI]  (4) 

For a given regime fitted with a fundamental frequency, the first fifth powers of the displacement 1<k<5 
can be expressed with: 
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As each coefficient noted xi
k related with Eq.5 can be easily determined by way of a classical truncated 

product, the set of relevant values is summed up in Table I. 

 

Displacement X Xk= x1
k.e1.ψψψψ + x2

k.e2.ψψψψ + x3
k.e3.ψψψψ + x4

k.e4.ψψψψ + x5
k.e5.ψψψψ 

Order I X 1  x1
1= X1 x2

1= X2 x3
1= X3 x4

1= X4 x5
1= X5 

Ordrer II X 2 x1
2=0 x2

2= X1
2 x3

2=2X1X2 x4
2= X2

2+2X1X3 x5
2=X1X4+2X2X3 

Order III X 3 x1
3=0 x2

3=0 x3
3= X1

3 x4
3=3X1

2X2 x5
3=2X1

2X3+3X1X2
2 

Order IV X 4 x1
4=0 x2

4=0 x3
4=0 x4

4= X1
4 x5

4=4X1
3X2 

Order V X 5 x1
5=0 x2

5=0 x3
5=0 x4

5=0 x5
5= X1

5 

Table I: Coefficients values relative to the first fifth powers of the displacement X 

2 HARMONIC COMPONENTS OF DISPLACEMENT DUE TO THE FO RCE FACTOR 

Aside from Bl expanded according to Eq.4, we consider Eq.1 with linear parameters. The successive 

derivatives of the displacement (the speed
•
X , and the acceleration

••
X picturing the sound pressure) are 

developed so as to conform with respective left and right members (LM  and RM ) of Eq.1 rewritten as: 
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Here, RM  exclusively fitted with linear quantities, is classically processed as: 
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Gathering the relevant terms yields: 
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where specific polynomial quantities may be defined with: 
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Then, considering a current excitation signal such as;  i = i0.e
j ωωωωt = i0.e

ψψψψ, Eq.6 may be written as: 
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In this notation coefficients noted b’ relative to X(jω) are given for each power with b’ i = bi/2
i , considering 

so coefficients bi (0≤i≤5) measured in steady state [6]. Then, assuming as relevant the identification of each 
component to a given harmonic frequency, the quantities summed up in Table I allow us to point out : 

Mm.X1.P1 = b0.i0
  [fundamental frequency]   (11) 

Mm.X2.P2 
 = 0+ b’1.i0.X1
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 = 0+ b’1.i0 X3  + b’2.i0.2.X1.X2
 + b’3.i0.X1

3 
Mm.X5.P5 

 = 0+ b’1.i0.X4  + b’2.i0.(X2
2+2.X1.X3)

 + b’3.i0.3.X1
2.X2

 + b’4.i0.X1
4 

Mm.X6.P6 
 = 0+ b’1.i0.X5  + b’2.i0.(X1.X4+2.X2.X3)  + b’3.i0.(2X1

2.X3+3.X1.X2
2)  + b’4.i0.4X1

3.X2      + b’5.i0.X1
5 

Such a writing is noticeably simplified when considering auxiliary coefficients ck =b’k.i0/M m together with 
inverted polynomial quantities such as: 
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Then the set of relations Eqs.11 allows each component to be successively determined from its former ones: 

X1 = F1.[c0]        (13) 
X2 = F2.[c1.X1]  

X3 = F3.[c1.X2 + c2.X1
2] 

X4 = F4.[c1.X3 + c2.2.X1.X2
 + c3.X1

3] 
X5 = F5.[c1.X4 + c2.(X2

2+2.X1.X3)
 + c3.3.X1

2.X2
  + c4.X1

4] 
X6 = F6.[c1.X5 + c2.(X1.X4+2.X2.X3) + c3.(2X1

2.X3+3.X1.X2
2)  + c4.4X1

3.X2 + c5.X1
5] 

Such components may be also determined on their own, with for instance as regard the first fourth lines: 

X1 = [c0].F1        (14) 
X2 = [c0.c1].F1.F2

 

X3 = [c0
2.c2].F1

2.F3 + [c0.c1].F1.F2.F3 
X4 = [c0

3.c3].F1
3.F4 + 2.[c0

2.c1.c2].F1
2.F2.F4 + [c0

2.c1.c2].F1
2.F3.F4  + [c0.c1

3].F1.F2.F3.F4 

X5 and X6 are not described in Eqs.14 due to their useless intricate shape besides being accessible with 
Eqs.13 for the purpose of illustration. 

2.1 Application case and numerical specification to assess the results 

As the sound pressure hinges on the acceleration of the diaphragm [1, 3, 6] any relevant use of the latter 
results must consider the following transformations (for a given component regarding the nth order). 

 n
22

n n- XA ⋅⋅= ω    [m/s²]  (15) 

At first we consider the reference transducer whose measured Bl static coefficients and nominal parameters 
are respectively  summed up in Table II and Table III . Then, a moderate current regime is considered with 
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a 100 mA amplitude for the purpose of comparison of calculated acceleration values. Besides, results are 
also investigated with a numerical simulation operated with the Simulink® software [6].  

Table II: Force factor coefficients entailing the investigated nonlinear behaviour of the transducer 
 

Morel ®   Midrange EM 428-8ΩΩΩΩ ∅∅∅ ∅ 4", ∅∅∅ ∅ 2.1" voicecoil 

Nominal parameters Theoretical values Measured values 

Mass Mm 6,55 g 6,529 g 

Mechanical damping  fm 0,86 kg/s 1,239 kg/s 

Rigidity  km 1136 N/m 1938 N/m 

Resonance Freq. F0 66,29 Hz 86,7 Hz 

Force factor Bl 5,4 T.m 5,934 T.m 

Resistance DC Re 5,4 Ω 5,41 Ω 

Inductance (para) Le 0,36 mH 0,356 mH 

Mechanic Quality factor Qm 3,03 2,871 

Table III: Theoretical and measured nominal parameters of the EM 428 reference transducer 

According to Table II , the pattern associated to the force factor against displacement is depicted in Fig.2, 
where both even and odd parts are also illustrated. The operational range is voluntarily exceedingly spanned 
so as to highlight the relevant parts to be considered. 

 

Fig. 2: Static changes measured for the force factor against displacement (Klippel® testing bench) 

On the other hand, Simulink® is a block diagram environment for multidomain simulation and Model-Based 
Design. It supports system-level design, simulation, automatic code. and continuous test. Then, as the 
representative equations of a transducer depend both on time and displacement, such a numerical solver can 
take into account all the involved parameters. All physical quantities, such as displacement, speed and 
acceleration, can be advantageously modelized considering any parameter described according to Eq.4. 
Then, nonlinear quantities can be coupled with articulate function blocks allowing to account for the 
evolutive parameters [Bl(x), km(x), L e(x), fm(v)]. As depicted in Fig.3, the model relies on processing the 

b0  [N/A] b1  [N/(A.mm)] b2  [N/(A.mm2)] b3 [N/(A.mm3)] b4  [N/(A.mm4)] b5  [N/(A.mm5)] 

5,9305 0,069300 -0,23512 -0,081449 0,011269 0,0042478 
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running displacement x(t) as a feedback data for computing sequentially each other parameter. Indeed, the 
numerical scheme illustrated in Fig.3 is fitted for the current supply mode [6]. As enabled with this 
Simulink® model, the current excitation signal can be processed, yielding both displacement, speed, and 
acceleration values in sampled time. Such behaviours are simulated before processing with a classical Fast 
Fourier Transform. As in the literature, the 0dB reference line level is that of the fundamental. Then, 
fundamental spectral lines can be investigated together with their respective sets of harmonics due to 
nonlinear distortions. Here, aside from Bl all the other lumped parameters are considered at their rest 
position. 

 

Fig. 3: Simulink® nonlinear numerical evolutive model for a current driven loudspeaker 

2.2  Comparison and assessment of the acceleration values 

Considering the abovementioned conditions, respective results regarding both analytic and numerical 
approaches are depicted in Fig.4. Aside from the first low frequency values associated with the sixth line, 
results are in good agreement. As an illustration of the acceleration reference level associated with the 
fundamental, several sampled values are summed up in Table IV. 
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Fig. 4: Behaviour of the first six harmonic lines according to both analytic and Simulink® approaches 
 

 

 
 
 
Table IV: Acceleration reference values associated to the fundamental (current 100 mA) 

The physical meaning regarding the lines pattern shown in Fig.4 will be discussed hereafter since classical 
representations referred to the fundamental have clearly to be argued.     

 
3 INVESTIGATING ON THE HARMONIC DISTORTION DUE TO T HE SOLENOID FORCE 

Considering the extraneous driving force within the left member of Eq.1, the mechanism can be assessed on 
its own so as to compare its untoward effects with the other sources of distortion. An exclusive 
solenoid drive would yield: 

 xk
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A very simple way to deal with such an interaction is to regard the quadratic character of the driving current 
in Eq. 16, with i(t)= i 0.cos(ωωωωt) and cos2(ωωωωt) = ½.[1+cos(2ωωωωt)] . The static component acts in continuously 
taking back the voice coil, and is superimposed with the fluctuation at the double-frequency. On the other 
hand, Table V illustrates the measurements values relative to the inductance power series coefficients.  

 

 
 
 
Table V : Inductance nonlinear coefficient values  

Then, assuming a significant current value with i0 = 1 A, at the first order, the entailed static displacement 
noted Xst would be close to: 

A1 (m/s²) 

F = 10 Hz 

A1 (m/s²) 

F = 31,62 Hz 
A1 (m/s²) 

F = 100 Hz 
A1 (m/s²) 

F = 316,23 Hz 
A1 (m/s²) 

F = 1000 Hz 
A1 (m/s²) 

F = 3162 Hz 

1,22 13,74 230,97 97.69 91,48 90,91 

l0 mH l1 [mH/mm]  l2 [mH/mm2] l3 [mH/mm3] l4 [mH/mm4] l5 [mH/mm5] 

0,35099 -0,016090 -0,0079749 0,00058492 0,00018508 7,1582.10-6 
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According to Table III , the double-frequency fluctuation is superposed with a static displacement value 
given with: Xst = - 5,2.10-7 m.  Now, for the purpose of comparison the forces involved with both Lorentz 
useful mechanism and the solenoid extraneous one can also be evaluated. A quasi-static regime with a unity 
current yields a Lorentz force FL = Bl.i ≈≈≈≈ + 5,93 N moving forward the diaphragm. On the other hand, with 
[dLe/dx = -0,016 H/m], the solenoid force noted FS features a peak to peak absolute value given with: 

 FS   = N 008,0l1
2
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dx
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i e     (18) 

Such a tiny value, about a 0,35% magnitude of the Lorentz force allows us to posit a quasi linear behaviour 
as regards the double-frequency component superimposed with the static backward displacement. Then 
considering the double angular frequency ϖϖϖϖ =2.ωωωω, the solenoid distortion component can be written: 
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As a result, the relevant acceleration (quantity to be considered for the audio signal), is given with: 
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Results of both Eq. 19 and 20 are compared with the Simulink® numerical simulation as depicted in Fig. 5 
for two different values of the driving current. 

 

Fig. 5: Assessment of the solenoid effect 

As the manifestation of the effect occurs at twice the shown frequency, it is clear from Fig.5 that the 
extrema appearing at 44,45 Hz corresponds quite closely (88,90 Hz) but not exactly with the mechanical 
resonance frequency of the transducer (86,7 Hz). As a most important point that markedly differs from the 
other distortion sources, the solenoid effect doesn’t abate as the frequency is increased.  

4 INVESTIGATING ON THE RIGIDITY  

The stiffness or rigidity parameter km may be investigated either while considering its own power-series or 
that of its opposite quantity the so-called compliance Cm=1/km. Measured coefficient values for the stiffness 
are summed up in Table VI . 
 
 
 

k0 [N/mm]  k1 [N/mm2] k2 [N/mm3] k3 [N/mm4] k4 [N/mm5] k5 [N/mm6] 

1,579 0,33332 0.058674 0.036590 0.025980 0 
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Table VI: Nonlinear coefficient values for the suspension stiffness  

Symmetry properties can be analysed the same way than that of the force factor, leading then to specific 
harmonic components as will be discussed hereafter when dealing again with the force factor analysis. 

4.1 Harmonic components of displacement due to rigidity  

Considering again Eq.6, the right member (RM) is now nonlinear, and Eq.7a has to be processed according 
to the power series describing the stiffness fitted with values noted k’ and defined as: 
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Then Eq.6 can be reformulated as: 
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Then, with regards to Table I, displacement values can be determined and each component identified 
according to the aforementioned way:    (23) 

 Mm.X1.P1 = Bl.i0
  [fundamental frequency] 

 Mm.X2.P2= -[k’ 1.X1
2]         

 Mm.X3.P3= -[2.k’ 1.X1.X2+ k’ 2.X1
3] 

 Mm.X4.P4
 = -[k’ 1.(X2

2+2.X1.X3) + k’ 2.(3.X1
2.X2) + k’ 3.X1

4] 

 Mm.X5.P5
 = -[k’ 1.(X1.X4+2X2.X3) + k’ 2.(2.X1

2.X3+3.X1.X2
2) + k’ 3.(4.X1

3.X2) + k’ 4.X1
5]  

As before, for the purpose of simplification, auxiliary coefficients can be defined such as: 

  ϕϕϕϕ = Bl.i0/Mm Relative mass strength  [N/kg]   (24) 

and: 
m

i
i

i M

k 1
2

 g
−⋅=    [N/(mi+1.kg)]   (25) 

Then each component may be written as follows according to its former ones:    
        (26) 
 X1 = F1.[ ϕϕϕϕ ] 

 X2 = F2.[ g1. X1
2 ]  

 X3 = F3.[ g1.2.X1.X2
  + g2.X1

3 ] 

 X4 = F4.[ g1.(X2
2+2.X1.X3)

  + g2.3.X1
2.X2

 + g3.X1
4 ] 

 X5 = F5.[ g1.(X1.X4+2.X2.X3) + g2.(2X1
2.X3+3.X1.X2

2)  + g3.4X1
3.X2 + c5.X1

5 ] 

Those components may also be defined on their own, considering for instance the first four ones (the fifth 
one is not described as such, owing to a useless cumbersomeness):   (27) 

 X1 = ϕϕϕϕ.F1 

 X2 = ϕϕϕϕ2. g1.F1
2.F2 

 X3 = ϕϕϕϕ3. [2.g1
2.F2  + g2] 

 X4 = ϕϕϕϕ4. [g1.(F2
2.g1

2 +2.F3.( 2.g1
2.F2 + g2)) + 3.g1.g2.F2  + g3] 
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4.2 Application cases and comparison with numerical results 

As before, acceleration values are determined with Eq.15, and relevant specifications regarding the 
considered driving current. In a first case, with all parameters aside km being considered at rest (cf. Table 
III ), the driving current is fixed with a 100 mA amplitude value. Then, with the classical way to refer all 
harmonic component levels to the fundamental values, Table VII  makes clear the most significant level 
values regarding this special case. 

 

 

 

 

Table VII: Level values of the fundamental line with a 100 mA current driving 

Moreover, the behaviour of the first fifth components is depicted on Fig.6. Here, the analytic model seems 
less fitting with the numerical approach whose values are ensured with another calculation developed with 
the Mathematica  software. Indeed, at a frequency close to 25 Hz the fifth component values (then at 125 
Hz)  shows off a discrepancy between calculated levels reaching up to 7 dB. Aside from this noticeable 
local divergence the analytic model seems to behave properly.  

 

Fig. 6: Behaviour of the first five harmonic components regarding nonlinear stiffness (with 100 mA) 

Hence, in order to fathom about the degree of prospective discrepancy to be expected, an other case is 
investigated with a significantly increased current value, now fixed at 250 mA. Then, relevant results are 
plotted and made clear in Fig.7. Since the purpose of this illustration is only to detect eventual flaws of the 
analytic model, fundamental level values are not given (being considered useless in this case). 

A1 (m/s²) 

F = 10 Hz 

A1 (m/s²) 

F = 31,62 Hz 

A1 (m/s²) 

F = 100 Hz 

A1 (m/s²) 

F = 316,23 Hz 

A1 (m/s²) 

F = 1000 Hz 

A1 (m/s²) 

F = 3162 Hz 

1,505 17,391 181,87 96,22 91,35 90,88 



Versatile Analytic Approach to assessing non linear distortion…       2013 

p-11/23- 

 

Fig. 7: Behaviour of the first five harmonic lines regarding nonlinear stiffness (with 250 mA) 

Considering now Fig.7, as the driving current is significantly increased several noticeable discrepancies 
show up at low frequency values as regard both fourth and fifth harmonic components, with local 
inaccuracies reaching up to 10 dB. However, on the whole the analytic approach behaves properly and most 
especially as the frequency is increased.  

5 IMPROVING THE HARMONIC LINES REPRESENTATION  

In the first part of this paper, the classical way that hinges on taking the fundamental level as a reference has 
been used with the only purpose of comparison between numerical and analytic results. However, such a 
practice proves unsuitable for understanding the relative influence of the sources of distortion. Then, in the 
following we take as reference the acceleration level of the gravity constant (9.81 m/s²) as is classical in 
many a technical field of physics. As a first consequence one can assess the relative importance of the 
former cases that can be compared. 

5.1  Investigating on the relative influence of the harmonic two 

As an illustration, we consider the former distortion cases (with a 100 mA current driving) associated with 
the second harmonic components. Then, the effects respectively due to the force factor, the stiffness and the 
solenoid interaction, can be plotted while considering the gravity constant as the acceleration reference 
value. Results are depicted in Fig.8, while taking account of the reference transducer data [10].  
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. 

Fig. 8: Comparison between the relative effects of the second harmonic distortion lines  

Straightforward acoustic considerations [1,6] allow to highlight the audible threshold with the following 
equivalence [0dBSL⇔ -51dBg]. It is clear from Fig.8 that with such a low 100mA current value the solenoid 
effect is negligible while the force factor effect is predominant at low frequencies. Then, although unusual 
in the state of the art, taking the choice of a given acceleration value as a reference improves the 
understanding of the relative effects. 
 
6 INVESTIGATING ON THE HARMONIC DISTORTION DUE TO T HE DRAG FORCE 

The mechanical resistance of driver suspension losses can be investigated with a view to designing specific 
metrological devices. Although the transducer considered for the illustration is not fitted for such a 
metrological purpose, it is of interest to assume the behaviour of its fm parameter as a nonlinear function of 
the speed of the diaphragm (v) and to determine the entailed distortion effect. To our knowledge such an 
investigation is in no way a classical approach described in the literature. 

6.1  A simple law accounting for the Drag force 

At first a general power-series function of speed can be considered to describe the mechanical damping 
parameter and drag force as follows: 

 ( ) ε+⋅+⋅+⋅+⋅+⋅+= 5432 vfvfvfvfvfff 543210vm     (28) 

Although devoid of physical meaning, such a writing could be assessed with a speed observed at steady 
state. Then, considering back the physical meaning the coefficient f1 is a rather insignificant quantity, just 
allowing for some sort of unsymmetrical interaction that we shall neglect in the following illustration. 
Conversely, f2 is the prominent factor taking account of the drag force that is clearly a function of the 
volumetric mass (ρρρρ) of the fluid flowing around the transducer. Then with a clear physical meaning, Eq.28 
could be written as: 

( )
222 vvfvfff ⋅⋅⋅⋅=⋅+⋅+= ρε

2
1

Cith           w x220 Svm
 [N/(m/s)]   (29) 

In such a relation, Cx is a classical drag coefficient that we will take as the unity, and S the active surface of 
the diaphragm (57 cm² for the EM 428 transducer). Hence a general analytic rationale can be developed. 

6.2 Harmonic components of displacement due to Drag force 

At first let’s consider the auxiliary quantities Y and Yi defined with: 

 Yi = X1  Y2 = 2.X2  Y3 = 3.X3 Y4 = 4.X4 Y5 = 5.X5   (30) 



Versatile Analytic Approach to assessing non linear distortion…       2013 

p-13/23- 

 εψψψψψ +⋅+⋅+⋅+⋅+⋅= ⋅⋅⋅⋅⋅ 5
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4
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3

2
2

1
1 eYeYeYeYeYY  

Then, as regards speed we have: 

 YjX ω=
•

 ,with: 22
2

YX ⋅−=
•

ω , 33
3

YjX ⋅−=
•

ω  , 44
4

YX ⋅=
•

ω , 55
5

YjX ⋅=
•

ω   (31) 

On the other hand, the fm coefficient against displacement and successive derivatives is such as: 

 ( ) ε+⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅=
••••• 5

55

4

44

3

33

2

221100 2
1

2
1

2
1

2
1

2
1

2
1

XXXXXXm fffffff   (32) 

With a driving current noted i = i0.e
j ωωωωt = i0.e

ψψψψ, the relevant part of Eq.1 can be formulated as: (33) 
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In this writing the auxiliary parameters  f’ i = (1/2i).fi allow a simplified notation. Moreover, as before while 
considering the quantities arranged in Table I, we have the following identifications:  (34) 

 Mm.X1.P1 = Bl.i0
  [fundamental frequency] 

 Mm.X2.P2= [f’ 1.ω2.X1
2]         

 Mm.X3.P3= [f’ 1.ω2.2.X1.Y2+ f’ 2.jω3.X1
3] 

 Mm.X4.P4
 = [f’ 1.ω2.(Y2

2+2.X1.Y3) + f’ 2.jω3.(3.X1
2.Y2) - f’ 3.ω4.X1

4] 

 Mm.X5.P5
 = [f’ 1.ω2.(X1.Y4+2Y2.Y3) + f’ 2.jω3.(2.X1

2.Y3+3.X1.Y2
2) - f’ 3.ω4. 4.X1

3.Y2 - f’ 4.jω5.X1
5] 

As regards Eq.24. in the same way as the prior analysis (relative to km), such a writing may be reformulated 
as the following set of relations:    (35) 

 X1 = F1.[ ϕϕϕϕ ] [fundamental frequency] 

 X2 = F2.[ h1.ωωωω2.X1
2 ]  

 X3 = F3.[ h1.ωωωω2.4.X1.X2
  + j.ωωωω3.h2.X1

3 ] 

 X4 = F4.[ h1.ωωωω2.(4.X2
2 + 6.X1.X3)

 + j.ωωωω3.h2.6.X1
2.X2

 - h3.ωωωω4.X1
4 ] 

 X5 = F5.[ h1.ωωωω2.(4.X1.X4+12.X2.X3) + j.ωωωω3.h2.(6X1
2.X3+12.X1.X2

2) - h3.ωωωω4.8.X1
3.X2  - h4.jωωωω5.X1

5 ], 

with auxiliary parameters defined as: 
m

i
i

i M

f 1

2
 h ⋅=     (36) 

Hence, here again each component can be expressed on its own, with for instance the first four components 
explicitly given with:     (37) 

 X1 = F1.[ ϕϕϕϕ ] [fundamental frequency] 

 X2 = F1
2.F2.ϕϕϕϕ2.ωωωω2.[h1] 

 X3 = F1
3.F3.ϕϕϕϕ3.ωωωω3.[F2.4.ωωωω2.h1 + j.h2] 

 X4 = F1
4.F4.ϕϕϕϕ4.ωωωω4.[4.F2

2.ωωωω2.h1
3 + 24.F2.F3.ωωωω2.h1

2 + 6.jωωωω.h1.h2.(F2 +F3) - h3] 

6.3  A prospective application 

As a prospective application one could investigate on the volumetric mass that could be measured thanks to 
a transducer optimized to this end. The mass being a conservative quantity, the static pressure around the 
transducer could be the quantity under experiment. As an illustration with air, ρρρρ = 1,23 kg/m3 at the 
atmospheric pressure, taking Cx as the unity and S = 57 cm², as regard Eq.29 and Table III  (f0=1,239 kg/s) 
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we have f 2= (½.ρρρρ.Cx.S) = 3,506.10-3 N/(m/s)3. Then if the static pressure were to be increased the 
coefficient fm would behave according to Fig. 9. 

 

Fig. 9: Influence of the static pressure on the drag force part of the fm coefficient  

6.3.1 Harmonic components of acceleration due to the Drag force 

With Eq.15 and taking account of the exclusive evenness associated with Eq.29, the set of Eqs.36 yields 
the three following harmonic components: 

 A1 = -F1.ϕϕϕϕ.ωωωω2    (38)   

 A3 = -9.F1
3.F3.ϕϕϕϕ3.j.ωωωω5.h2   (39) 

 A5 = 150.F1
6.F3.F5.ϕϕϕϕ5.ωωωω8.h2   (40) 

Then, special cases may be investigated involving both this analytic approach and relevant numerical 
Simulink  computations.  

6.3.2 Comparison between analytical and numerical results 

Considering h2 given with Eq.36, if Pa is the atmospheric pressure and P the pressure experimented with, a 
given static pressure condition entails: 

  f 2= (½.ρρρρ(P/Pa).Cx.S) = (P/Pa).3,506.10-3  [N/(m/s)3]  (41) 

At first, it is clear that the fundamental is devoid of any useful information about the drag force, then about 
the static pressure. Conversely, according to Eq.39, the characterisation of the third line  could be directly 
indicative of the pressure. Moreover, the sensitivity of a prospective device stemming from such an 
approach would be directly function of the third power of the current value, insofar as the other 
shortcomings (generating their part within this third component) would be duly rejected by way of any 
differential metrological approach in the state of the art [14]. 

In a first case we take as before a quite low value for the driving current with 100 mA. Moreover the chosen 
relative static pressure value is also not that much noticeable with only twice the atmospheric pressure as 
is plotted in green in Fig.9. Then, according to the aforementioned interest about the gravity reference level, 
analytical and numerical results can be compared and made clear with Fig.10. 
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Fig. 10: Influence of the drag force through the third and fifth components (P = 2 bar , I = 0.1A) 

Indeed, the gravity reference way to represent the specific pattern relative to each component is not flawed 
with the pattern of the fundamental, as is unfortunately the case with the classical way to refer to the level 
of the latter. Then, Fig.10 allows a genuine observation about the real level featured by the harmonic 
components. Here the extremum associated with the third component (at the specific frequency 3x86,7Hz) is 
relevant with the maximum value characterizing the sensitivity of a device whose operation would be 
fostered by our rationale. Here, with the relatively moderate value of the driving current, the signal would 
be just close to the audible threshold.  

More explicitly, considering the preceding notations together with Eq.39, the third acceleration component 
analysis may also be stated as the product of a specific metrological constant (Ka) by a relevant function of 
frequency (ϒϒϒϒ(ωωωω)) so as to highlight the parameter of sensitivity for a dedicated sensor (S  )[(m/s²)/(kg/m3)]. 

 [ ] ρω ⋅⋅⋅⋅⋅⋅⋅⋅⋅= 3
03

3
1

5
x4

3

3 SC
8

9
-A ij

M

B

m

l FF ,  or: A3 = Ka.ϒϒϒϒ(ωωωω).i0
3.ρρρρ   or: A3 = S .ρρρρ  (42) 

Then aside from those technical prospective considerations, it is necessary to get back to the assessment of 
the analytical approach, with a second case to be investigated with both approaches considering a more 
significant current value: Here, the current is now set to 250 mA while maintaining the static pressure value 
at twice the atmospheric pressure. 

Then, a pertinent comparison between analytical and numerical results is allowed while considering the 
patterns of the harmonic components depicted in Fig.11. 
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Fig. 11: Influence of the drag force through components 3 and 5, for a 2 bar static pressure (0.25A) 

As expected, the relevant level of the acceleration signal are noticeably increased with the driving current, 
suggesting that some degree of freedom would be allowed as regards the design of a specific sensor. In this 
way it is clear that harmonic components of both third and fifth orders are substantially enhanced. 

7 GETTING AHEAD TO IMPROVE HARMONIC LINES REPRESENT ATION  

As a major improvement, taking the gravity as a reference proves to be of help for interpreting the 
behaviour of harmonic distortion. A second provision may be considered while plotting each component 
according to its own real (eventually audible) frequency value. Fig.12 translates in this way the data 
depicted in Fig.4. 
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Fig. 12: Real behaviour of each harmonic component displayed according to their own frequency in 
the case of a nonlinear force factor and a 100 mA driving current 

As real frequency values are directly displayed on such a representation, physical properties are made much 
clearer. At first, whatever the component a maximum shows up at the natural mechanical frequency of the 
transducer. Then, as a prominent property each harmonic component shows off a second maximum exactly 
arranged at its own specific place as the product of the fundamental resonance frequency by the considered 
order of said component. Now, considering the fifth component, as is also clear with Fig. 4., a quite 
peculiar singularity occurs around the special frequency value [42.6 x 5 = 213 Hz]. Such a "Moot 
Extremum" point was closely observed with both the analytic and numerical approaches, up to now without 
any obvious physical meaning nor mathematical justification as regards the set of Eqs.13 [6, 15]. 

On the other hand, the falling off regarding each harmonic component at high frequencies is easily 
quantified, at first while perusing the figure, but more precisely with the analytic approach applied on both 
sides of the decade [10kHz - 100kHz]. Then, asymptotic level lessening values, all with a -40 dBg fall apart 
from the former one, are characterized as follows: 

 Fundamental behaviour : invariant level 
 Asymptotic fall of harmonic component 2: -40 dBg/decade 
 Asymptotic fall of harmonic component 3: -80 dBg/decade 
 Asymptotic fall of harmonic component 4: -120 dBg/decade 
 Asymptotic fall of harmonic component 5: -160 dBg/decade 
 Asymptotic fall of harmonic component 6: -200 dBg/decade 

As an a priori non obvious property only limited to the harmonic components investigation (since it would 
be false with a study on intermodulation generation), the set of Eq.13 clearly indicates that any given 
alteration regarding a component noted n, (due to a given change of relevant coefficient), should not 
interact with any former component (n-1 for instance).  

Furthermore the way to display each component against its own frequency confirms its interest when 
considering the abovementioned Fig.6 associated with the stiffness analysis. Expanding each frequency 
scale as before, Fig.13 can be considered with a view to getting specific conclusions and understanding 
about the effective behaviour of the system. 

 

Fig. 13: Behaviour of each harmonic component displayed according to its own frequency in the case 
of a nonlinear stiffness parameter and a 100 mA driving current 
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As in the former case, all components display a first maximum at the fundamental mechanical frequency of 
the transducer. Again, each harmonic component is fitted with a second maximum exactly arranged at its 
own specific place as aforementioned. 

As a major difference when compared with the force factor investigation, here the level abatement while 
increasing frequency is quite more marked although with the same property  (-40 dBg fall marking one apart 
from the former one). Hence we have: 

 Fundamental behaviour : invariant level 
 Asymptotic fall of harmonic component 2: -80 dBg/decade 
 Asymptotic fall of harmonic component 3: -120 dBg/decade 
 Asymptotic fall of harmonic component 4: -160 dBg/decade 
 Asymptotic fall of harmonic component 5: -200 dBg/decade 

Such a behaviour discrepancy is quite naturally explained while considering the shift order stemming from 
the left member of Eq.10 (while multiplying by the current) as regards the analysis of the force factor.  

8 SPECIAL BEHAVIOUR WHILE INVESTIGATING ON A PARAME TER EVENNESS 

Considering now the constitutive coefficient involved within the power-series relative to the nonlinear 
parameters, even and odd parts can be isolated according to the straightforward following relation standing 
for Eq.4: 
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   (43) 

Then, a most interesting point can be underlined if we artificially consider only the even part of such a 
parameter. As regards the force factor Bl and the former representation given in Fig.12, zeroing the odd 
coefficients with b1=b3=b5=0 in Table II , entails the results depicted in Fig. 14.  

 

Fig. 14: Calculated behaviour of the harmonic components displayed according to their own 
frequency in the case of an evened nonlinear force factor and a 100 mA driving current 

Dashed line are the result of the analytic approach while same symbols as those used before are 
representative of the numerical results. It is clear from Fig.14 that the even components, 2, 4, and 6, (still 
represented in dotted lines for the purpose of comparison), are totally rejected.  
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Another most noticeable point concerns the abovementioned "Moot Extremum" point associated with the 
second order discontinuity that was assigned to the fifth component. Then, zeroing the odd coefficients 
made this point disappear as a sharp discontinuity, being now replaced by a smooth minimum. So as to 
check upon it, other numerical computations (still operated with Simulink ) were carried out for this point 
together with an apt set of other ones closely arranged around it: As a result, both analytic and numeric 
approaches brought evidence about this major change in the pattern of this component. Moreover, after 
trying the respective effects of selectively zeroing coefficients b1 and b3, the smoothing change proved to be 
clearly attributed only to b1. At this point, Fig.14 displayed without such a discontinuity makes clear a 
trough-like set of minima highlighted with a falling off dashed line. 

Since in no way experimental measurements (and especially thermal ones) are up to now available, we can 
only assume that the whole physical meaning could be probably explained by way of a minimum entropy 
generation as the driven system with its electromagnetic energy storage properties generates its harmonic 
lines [16,17,18]. Then, thanks to the thermal know-how of the laboratory this hypothesis will be 
investigated in the future of this work.  

9 CONCLUSION 

This paper has presented a simple analytic approach allowing to investigate on the harmonic distortion of 
electrodynamic loudspeakers. As a prominent advantage such an approach allows a quick representation of 
the components as regards analysis up to the fifth one. The approach is concomitantly supported with  
numerical computations carried out with a Simulink® model. For the purpose of comparison the measured 
parameters of a midrange generic transducer have been chosen. Although slight discrepancies may appear, 
the analytic approach proved to be valuable. Moreover it allows us to analyse the evenness property of a 
given influence parameter, and an example has been discussed with the force factor. On the other hand, the 
approach proved to be able to account for nonlinear parameters function of the speed of the diaphragm. 
Then, as a prospective investigation a metrological application is given as regards the drag force 
measurement and any parameter relevant with it.  

As a noticeable point we have also shown the interest to figure out the acceleration results linked to the 
entailed audio reproduction, as referred to the gravity constant. Moreover, by way of expanding the display 
of each component to its real perceived frequency, we have highlighted a specific characteristic as regard 
two observable distinct maxima respectively occurring: for the first, at the natural mechanical frequency of 
the fundamental, and for the second one, showing off at the same value times the order of the considered 
component. We expect to provide an articulate energetical interpretation of such component patterns in the 
next coming future.  
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APPENDIX 
The transfer function from drive voltage to displacement shows off a natural electrical damping on the Q 
factor of the system under operation. Then, doubts cast upon the efficiency of the current-drive policy are 
most often based just on the lack of such natural damping usually entailing an oversized Q that results as a 
consequence [3,6]. In other words, low damping factors associated with current-drive are a crucial problem 
and are probably the major reason why current drive is still not adopted by the industry. However, effective 
solutions based on active and passive processing as well as driver and enclosure techniques may be 
considered as an alternative to the natural filtering of current brought about by the motional impedance. 
Moreover, operative filtering schemes can be properly operated (and even quite enhanced, insofar as the 
resonance drift may be compensated against temperature).  

As a fundamental requisite the Thévenin impedance seen by the driver (due to the amplifier and passive 
circuits) has to remain close to infinity (Norton source). Then, one has to discard any solution involving 
circuit arms connected directly in parallel with the driver, that could untowardly lower the impedance in a 
given part of the spectrum. 

A simple generic scheme is depicted in Fig.15 with a view to rejecting the mechanical resonance while 
subjecting the voltage to current conditioner to an optimized transconductance function.  
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Fig. 15: Generic simple scheme allowing to reject the mechanical resonance 
 

For the purpose of basic experiments integrated power amplifiers can be tested (TI  OPA 549 for instance). 
As regards Fig.15, the transconductance ratio characterizing the converter that feeds the transducer is 
defined with: 

 ( )( )3B2
B

R/RZ1
R
1 ++⋅=

inV

I  (A/V)  (44) 

Now, the nominal parameters (Table III ) of the Morel  EM 428 reference transducer can be considered so 
as to adjust the components values. Then, resulting behaviours regarding impedances (network and 
transducer) together with the transconductance ratio as regard amplitude and phase shift curves are depicted 
in Fig. 16. 

 

 
Fig. 16: Respective behaviours of the reference transducer and filtering network 

Considering such a basic design, one has to adjust R2>>RB since the R2 value acts on the whole spectral  
behaviour aside from the resonance regime. Moreover, as regards the stability of the amplifier, RB has to be 
kept with a quite low value with RB =1ΩΩΩΩ in the given example. As regards Fig.16, a symmetric behaviour 
can be observed with regard to the transducer and the filtering network. Component values are chosen so as 
to get an electrical Q close to 0.45, allowing then to compensate precisely for the transducer behaviour. 

As a result, while calibrating the input voltage with a 0.2VRMS level, the filtering efficiency can be 
compared with two other cases as depicted in Fig. 17 illustrating the acceleration of the diaphragm against 
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frequency. Indeed the behaviour of a simple unfiltered design supplying a unity current is plotted in black, 
while the natural filtering characterizing a voltage drive (1VRMS) is plotted in brown. As is shown by the red 
curve representing the behaviour of the filtering design, the system operates properly. As a matter of fact 
any further filtering function (at high frequencies) can be easily compounded to such a system with a 
classical feedforward scheme. 

 

Fig. 17: Compared behaviours with fundamental schemes (respectively unfiltered I-drive and V-drive 
naturally filtered with the motional impedance of the Morel   EM 428) 
 

However, any industrial project should consider operational schemes out of such a mere theoretical stance. 
Indeed, due to its size (and cost) the abovementioned inductance L2 (80mH) could not really be considered 
with an air-cored copper device, but would require either a ferrite coil structure or a virtual implantation. In 
this way, with the latter, temperature drift self-compensation solutions are under experiment in the 
laboratory together with more sophisticated filtering schemes. 
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Figures captions 

Fig. 1: Natural rejection of nonlinear components due to Eq.2 with an ideal current-drive policy 

Fig. 2: Static changes measured for the force factor against displacement (Klippel® testing bench) 

Fig. 3: Simulink® nonlinear numerical evolutive model for a current driven loudspeaker 

Fig. 4: Behaviour of the first six harmonic lines according to both analytic and Simulink® approaches 

Fig. 5: Assessment of the solenoid effect 

Fig. 6: Behaviour of the first five harmonic components regarding nonlinear stiffness (with 100 mA) 

Fig. 7: Behaviour of the first five harmonic lines regarding nonlinear stiffness (with 250 mA) 

Fig. 8: Comparison between the relative effects of the second harmonic distortion lines  

Fig. 9: Influence of the static pressure on the drag force part of the fm coefficient  

Fig. 10: Influence of the drag force through the third and fifth components (P = 2 bar , I = 0.1A) 

Fig. 11: Influence of the drag force through components 3 and 5, for a 2 bar static pressure (0.25A) 

Fig. 12: Real behaviour of each harmonic component displayed according to their own frequency in 
the case of a nonlinear force factor and a 100 mA driving current 

Fig. 13: Behaviour of each harmonic component displayed according to its own frequency in the case 
of a nonlinear stiffness parameter and a 100 mA driving current 

Fig. 14: Calculated behaviour of the harmonic components displayed according to their own 
frequency in the case of an evened nonlinear force factor and a 100 mA driving current 

Fig. 15: Generic simple scheme allowing to reject the mechanical resonance 

Fig. 16: Respective behaviours of the reference transducer and filtering network 

Fig. 17: Compared behaviours with fundamental schemes (respectively unfiltered I-drive and V-drive 
naturally filtered with the motional impedance of the Morel   EM 428) 

 

 

 

Tables captions 

Table I: Coefficients values relative to the first fifth powers of the displacement X 

Table II: Force factor coefficients entailing the investigated nonlinear behaviour of the transducer 

Table III: Theoretical and measured nominal parameters of the EM 428 reference transducer 

Table IV: Acceleration reference values associated to the fundamental (current 100 mA) 

Table V : Inductance nonlinear coefficient values  

Table VI: Nonlinear coefficient values for the suspension stiffness 

Table VII: Level values of the fundamental line with a 100 mA current driving 

 

 

 

 

 

 

 


