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Abstract—In clustering, consensus clustering aims at pro-
viding a single partition fitting a consensus from a set of
independently generated. Common procedures, which are mainly
statistical and graph-based, are recognized for their robustness
and ability to scale-up. In this paper, we provide a complementary
and original viewpoint over consensus clustering, by means of
algebraic definitions which allow to ascertain the nature of
available inferences in a systematic approach (e.g. a knowledge
base). We found our approach on the lattice of partitions, for
which we shall disclose how some operators can be added with
the aim to express a formula representing the consensus. We
show that adopting an incremental approach may assist to retain
significant amount of aggregate data which fits well with the set
of input clusterings. Beyond that ability to model formulae, we
also note that its potential cannot be easily captured through
such a logical system. It is due to the volatile nature of handling
partitions which finally impacts on ability to draw some valuable
conclusions.

I. INTRODUCTION

This paper deals with data clustering or, more exactely,
with the partitions that result from several clustering operations
on a given data set. It discusses the way by which these par-
titions may be combined, to provide a single partition, which
better reflects the organization of data into meaningful sub-
populations. This task is well known as ensemble clustering
or consensus clustering. In this work, our only input is a set of
partitions over a same data set (i.e. we disregard initial object
features and the techniques that are used for providing the
partitions).

This paper takes an original viewpoint, by treating the
consensus task within an algebraic structure gathering all
possible partitions over the data set : the partition lattice. More
precisely, we contribute by addressing the following questions:

• we express the optimal combination of partitions, by
means of algebraic operators on partitions ; we relate
the algebraic operators and their associated semantics
(i.e. a logical view)

• we discuss how such an expression may be efficiently
computed. To this aim, we present the properties of the
algebraic operators in the partition lattice, and provide
experimental results on these operators, in terms of
efficiency.

Because the algebraic framework is not as commonly used for
ensemble clustering as the statistical or graph-based ones, the
paper first provides (in Section 2) the necessary background.

The reasons we explore the algebraic way to ensemble
clustering may be summarized as follows :

• semantics and expression of consensus : an alge-
braic presentation can help understand the semantics
mechanisms involved when combining partitions and,
as a consequence, legitimate that a partition be the
consensus-based representative of input partitions;

• expression of consensus and its efficient computation :
this work aims at contributing to the more general goal
of providing efficient ways of expressing and comput-
ing the many machine learning tasks that manipulate
partitions. Currently, despite their ubiquitous presence
in classification tasks, partitions are unfortunately not
first-class citizens of programming environnements.
As a result, these matters are usually bypassed through
ad hoc encoding of partitions and of their combina-
tions, thus ignoring potentially useful properties better
achievable in the partition lattice.

Our main result is about the study of the formal conditions
that allow for infering from knowledge over aggregates within
a partition through dedicated operators. Handling algebraically
such items means that at any time, what is acknowledged
as valid remains true whatever the applied operation and
any further operand. Monotonicity property then labels such
logical system while their calculus is accurately achieved by a
dedicated algebra. As we shall point out, the partition lattice,
algebra over partitions, has not it and as a direct consequence,
it hinders reliability of any drawn inference. Nevertheless, it
is worth noting that it is not an end in itself as we shall see
in Section III. The one that follows, emphasises relevance of
algebraic calculus for operational use.

Clustering a data set into sub-populations is a fundamental,
widely studied research track, both as a general data analysis
topic and in many applied contexts (bioinfomatics [1], audio-
visual data analysis [2],. . . ). This task is much studied because
there appears to be no technique seems to fit all problems, and
even evaluation itself it is complex task, since there often is
no clear ground truth. The number of clusters is often difficult
to determine. Models and techniques proposed in the literature
optimize various criteria for achieving various forms of intra-
class homogenity, and the search for these optima involves a
large variety of algorithms. In many cases, several runs of a
same (local) optimization algorithm would lead to different
partitions of the data set.

For these reasons, the last decade saw the rise of a new
research track, ensemble clustering, which builts criteria and
techniques for aggregation multiple partitions into a single,
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better partition. The computation of these input partitions may
have been trying to optimized antogonistic criteria. A a side
remark, our paper does not cover alternative clustering, an
extension of ensemble clustering for producing multiple, non-
redundant partitions.

There are two main alternative criteria when building a
consensus partition :

• background knowledge, provided by an expert and
related to the applicative field producing the data
set, may help formulate assumption on the partition
generation mechanism and, hence, on the respective
likelihoods of various possible partitions;

• the optimal partition may be defined and seeked as a
trade-off among the input partitions (e.g. [3], [4]).

An algebraic presentation of the problem aims at con-
tributing to the understanding of the semantics of mechanisms
involved when combining partitions. In social choice theory, a
consensus is defined as an arrangement or combination of a set
of profiles describing individuals, such that this combination
represents as faithfully as possible as many profils as possible.

In our situation, input partitions are individual profiles and
one may consider that there exist a preference relation and
that seeking a consensus partition is equivalent to seeking a
partition which maximally compatible which the input partition
set. A proper mixing procedure is then applied to reconcile
the various “point of view”. A main purpose of this paradigm
is that it can supply constraints on decision procedures that
organize the way by which partitions may be combined. In this
regard, it is also interesting to note that well-known median
procedure originates from Kemeny-Young voting procedure
[5].

II. ABOUT PARTITION LATTICE

In this section, we review basics on order theory and
lattices such that we are able in the next section to build upon
those formal background and propose new operators to achieve
consensus.

A. Preliminaries

1) Posets and lattices: A partially ordered set, usually
coined poset, (E,≤) is a set E where elements may be
comparable by a relation ≤ having the following properties:

1) x ≤ x (reflexivity)
2) x ≤ y and y ≤ x⇒ x = y (antisymmetry)
3) x ≤ y and y ≤ z ⇒ x ≤ z (transitivity)

where x, y, z are elements in E.

In the following, we assume all the considered posets have
an upper bound denoted > and a lower bound ⊥. A proper
order relation < can be easily derived from ≤ when discarding
reflexivity. We then denote by ≺ the cover relation for (E,≤)
such that x ≺ z iff there does not exist any element y ∈ E
such that x < y < z. Relation ≤ is then the transitive and
reflexive closure of ≺ in E.

To follow on posets, we denote by sup(x, y) , {z | x ≤
z, y ≤ z} the upper bound of x and y in E, and inf(x, y) ,

{z | z ≤ x, z ≤ y}. Then, if available, we define the lowest
upper bound and the greatest lower bound of those sets:{

x ∨ y , inf sup(x, y)
x ∧ y , sup inf(x, y)

Operators ∨ and ∧ are both idempotent, commutative and
associative. And when they are defined for any pair (x, y) ∈
E2, then (E,∨,∧) is a well-known algebraic structure called
lattice. (E,∨) and (E,∧) are then both semi-lattices.

The following equivalence supports lattice’s axioms:

x ≤ y ⇔
{
x ∨ y = y
x ∧ y = x

Finally, we denote by filter a closed subset of a lattice under
the ∧ operator, and conversely, an ideal is a closed subset
of E under ∨. ↑(p) , {x | p ≤ x} is the principal filter
generated by the principal element p, and mainly consists in
range [p,>]. The dual notion of ↑(p) is the principal ideal
↓(p) , {x | x ≤ p} generated by p.

2) A logical perspective: Properties of the ≤ order relation
are similar to those from the entailment mechanism in any
propositional logic (L,`). The logical consequence (or entail-
ment) reveals true statements in L, called conclusion, from
other ones, called premises, by a deduction mechanism `. In
other words, given propositional formula φ, ψ ∈ L, φ ` ψ
states that “ψ logically follows from φ” or “φ proves ψ”. From
this entailment mechanism, we derive equivalences between
logical statements when both φ ` ψ and ψ ` φ hold.

The above equivalence relation supports, by the way of the
quotient space L/ ∼L, a set of logical statements that make
the Lindenbaum-Tarski algebra and consequently, it defines a
lattice. Then, it allows to map a propositional calculus to an
algebra such as the entailment becomes the underlying partial
order relation of the lattice1.

Moreover, deducing all new facts by ` from a given
premiss in the logical framework, is analogous to achieving the
reflexive and transitive closure of the element in the premiss.
To this end, it is required to compute principal filter ↑(p) of the
principal element p in the premiss. By definition, for all x, y
in ↑(p), we have both p ≤ x and p ≤ y. As an immediate
consequence, and given the definition of the (∧) operator,
property p ≤ x ∧ y holds, i.e. x ∧ y belongs to ↑(p).

B. Focus on the partition lattice and its algebra

We denote by Ω the finite ground set of a partition
thereafter mapped to Nn = {1..n}. A cluster c ⊆ Ω is then
the short representation of the pairwise associations (up to the
equivalence relation) between elements in c. A set partition on
Ω is an union of clusters that are both collectively exhaustive
and mutually exclusive. Two special partitions are > = {Ω}
and ⊥ = {{e}e∈Ω}. For ease of reading we may not use the
set standard writing of partitions but rather ‘|’ as a separator
between clusters, such like P = 12|3|456|78|9 on N9.

The set of partitions ΠΩ defined on the same ground set Ω
is equipped with the refinement relation, defined as follows:

P ≤ Q iff ∀p ∈ P, ∃ q ∈ Q, p ⊆ q
1We usually call algebraisation the process of mapping a class of logical

systems with shared connectors and features to a calculus in an algebra.
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For instance, given P = 12|3|45|6 and Q = 123|456, then P
is finer than Q such that every pairwise association of elements
in P is preserved in Q. And one may state that Q “is deduced”
from P wherever P holds, either as an assumption in a problem
or as an actual output from any processing. Moreover, the
refinement relation ≤ is independent from the labeling of the
ground set Ω. Indeed, given any permutation σ over Ω and
two partitions P , Q in ΠΩ, if P ≤ Q holds, then Pσ ≤ Qσ
holds as well.

Algebraic operations in the set partition lattice (ΠΩ,∨,∧)
are then interpreted as follows:

• P ∧ Q outputs partition M (coined meet) such that
every cluster of M is simultaneously contained both
in P and Q;

• P ∨Q outputs partition J (coined join) such that every
cluster in P or Q is contained in J .

For instance, given P = 12|345|67 and Q = 123|45|67, then
P ∧Q = 12|3|45|67 and P ∨Q = 12345|67.

From the logical point of view, P and Q are assumed to
be the premises of a usual reasoning mechanism with regular
introduction rules of connectives. Then, it allows to compute
P ∧ Q and P ∨ Q. Also, the statement P ∧ Q ≤ P ∨ Q is
tautologic.

C. Logical algebraic aspects of the calculus over partition

Given P = 12|3|4, Q = 1|23|4 and R = 13|2|4, it
becomes clear that these partitions are all atomic proprositions,
i.e. there exists no other partitions refining them, except ⊥. The
following relationship then occurs:

P ∨Q = P ∨R = 123|4

Semidistributivity laws (see [6]) for (∨,∧) are defined by:{
x ∨ y = x ∨ z ⇒ x ∨ y = x ∨ (y ∧ z) (SD∨)
x ∧ y = x ∧ z ⇒ x ∧ y = x ∧ (y ∧ z) (SD∧)

Yet, P ∨ (Q ∧ R) = P ∨ ⊥ 6= 123|4 infringes (SD∨).
That means the partition 123|4 provides several decomposition
under (∨), hence there is no single and minimal representation
in terms of atomic partitions such as ∀P ∈ ΠΩ:

P =
∨
a∈A

a =
∨
b∈B

b⇒ P =
∨

(a,b)∈A×B

(a ∧ b)

Whenever this property is valid in an algebraic structure, this
allows for rewriting every element as an invariant set of
atoms. Otherwise, this entails that a particular element can
be equipped with many different explanations. From a logical
viewpoint, any partition is the shortened representation of a
sequence of aggregation operations. Apart from its maximal
representation (see below) which links all clustered elements
together, several models are then available to provide slightly
different semantics of the same element.

A non-trivial partition, say P = 1234|567, as such is
unable then to track down the right ordered sequence of
atomic facts that led to it. Looking at first cluster of P ,
the next two clustering scenarii, 〈(1, 3); (1, 4); (2, 4)〉 and
〈(2, 3); (1, 2); (3, 4)〉 are equally plausible while fully decorre-
lated!

Atoms set of a lattice E are defined by A(E) , {x ∈ E |
⊥ ≺ x} and similarly coatoms Ac(E) are elements covered by
>. The Birkhoff’s representation theorem (see [7]) allows for
describing elements of a distributive lattice as a set of atomic
ones, i.e. prime under (∨) operator and give its basis.{

x ∨ y ⇔ Ax ∪Ay
x ∧ y ⇔ Ax ∩Ay

It then generates the lattice (A(E),⊆) which inherits all
algebraic properties of the original lattice (E,≤).

Theorem The partition lattice is not distributive [8]

Since the proper representation of a cluster is an equiva-
lence relation (reflexive, symmetric, transitive) over Ω, tran-
sitive closure of a set is not preserved under application of
set-theoretic union operator. The following formula returns a
maximal representation of a whole partition in terms of atoms,
though this drops unnecessarily symmetric pair of elements.

Ax , I(x) ∩A(E)

and each atom in Ax subsume x by the order relation.

So, given any non-atomic partition P and its set-theoretic
representation AP , there exists a great number of B ( AP ,
each one is probably the original model of the partition. The
current paradox is that calculus is in principle feasible through
set-theoretic operations over Ω2 even though it depends on
assigned model to “read” a partition. Also, achieving a (∨)
operation in the set representation has critical side effects:
given two non-atoms P,Q and assuming w.l.o.g. they have
several equivalent models, then AP∨Q = AP ∪AQ∪X where
X can be any other set-written partition.

Let’s look back to a logical formalism: if one makes
a negated statement, for instance ¬R, and from P and Q,
infering P ∧Q, and then P ∨Q. But if A¬R ⊂ AP∨Q, we are
likely to discard this inference. Finally, the partition resulting
from ‘P and Q’ is true but ‘P or Q’ is not!

A solution is then to promote another kind of inference.
Abductive reasoning is a (non-monotonic) logical framework
which roughly addresses the issue of infering the “best” model
from the set of those which all draw the same conclusion,
according to some context. This may be used to strip away
any ambiguity, namely to reduce side effects when applying
(∨). Our consensus function presented in the next section, shall
merely carry out this principle.

Up to now, we can safely affirm that we are trying to
deal with an odd logical system in comparison with the well-
established classical propositional logic whose its algebraic
counterpart are distributive lattices. Moreover, provided extra
operators in such lattices, namely the implication (→) and
the difference (−), are defined as Galois connection and their
computation depend on, (∧) and (∨):{

z ∧ x ≤ y ⇐⇒ z ≤ x→ y
x ≤ y ∨ z ⇐⇒ x− y ≤ z

where x → y refers to greatest substractive proposition
allowing to infer y from x. In a way similar, x − y refers
to the smallest additive proposition allowing to infer y from
x. Algebraically speaking, z is defined as the relative pseudo-
complement and there are two for each operators (∨) and (∧).
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III. CONSENSUS PARTITION

The consensus partition we seek should be obtained
through basic combinations of input partitions on the lattice,
so that is as close as possible to these input partitions. Besides,
the efforts required to transform each input partition into this
consensus partition should be as similar as possible, in terms
of atomic operations.

To the extent that a median element has to be drawn
through basic combinations on the lattice, a self-evident way
is to seek an element being enough close to its contributors.
Also, effort to transform each of these into its median should
require a similar number of atomic operations. This is pos-
sible whenever the underlying lattice is distributive and also
uniquely complemented.

Corollary the partition lattice is not uniquely complemented
[8]

A typical example is the powerset lattice (2Ω,⊆), i.e. the
lattice of all subsets of a set Ω, that is distributive. There
is a bijection between its atoms set A(2Ω), i.e. singletons
{1}, {2}, {3}, . . ., and its coatoms set Ac(2Ω), i.e. Ω\{1},
Ω\{2},Ω\{3}, figuring a natural matching between comple-
mented elements.

Conversely, the relative complement of a partition is never
achievable regardless of the chosen operator. Apart from trivial
cases, there are always several solutions from which one can
select a complement, as a suitable algebraic criterion is missing
to properly pick a single complement.

From there, there are two alternative solutions:

• explicitly model the set of contexts in which a partition
is valid;

• “refine” the original definition of extra operators based
on (∨,∧).

For simplicity sake, we retain the second solution. Yet, we
discuss below the first approach, on the basis of the Urquhart’s
representation theorem, broadening the scope of Birkhoff one
to non-distributive lattice [9])

1) First approach: The lack of the distributivity axiom
implies the vanishing of the duality between conjunctive
and disjunctive formulae over lattice elements figured by De
Morgan’s inference rules:

P ∨Q = ¬(¬(P ∧Q))

Given that an atomic partition P and its filter ↑(P ), that
together form the subset of ΠΩ which contains all deductible
partitions from P , what are its complemented elements in
the set ΠΩ − ↑(P )? Since P is true, then any partition
Q ∈ ΠΩ − ↑(P ) should be false since they are orthogonal,
i.e. P ∧Q = ⊥. Then, every element in the closed set ↓(Q) is
in turn false. Moreover, ↑(P )∩↓(Q) = ∅ is trivially consistent
although ↑(P ) ∪ ↓(Q) ( ΠΩ.

It is then suitable to pick every coatom, elements relatively
complemented to P , as maximal base points to generate ideals
to entirely span ΠΩ. In our case, coatoms are binary partitions
that enable enumerating any partition Q that negates P . From
there, we aim at designing the opposite duality to somewhat

“negate” an already negated partition and capture De Morgan’s
rules, following this pattern:

P ∨Q = g(f(P ∧Q))

where f and g express two sorts of negation-like operations.
Once that duality has been designed, it is possible to build,
through each negation, a pair of implication operators (→,←)
and a couple of difference operators (\, /).

2) Second approach: As it would appear impossible to
build a single solution for one or other equation defining extra
operators, we choose to narrow down the solution domain to
a subset with the right properties.

The difference operator is commonly defined as:

P −Q = inf{R | P ≤ Q ∨R}

This requires computing P ∨
∧
s∈S s, where S denotes the set

of solutions {R | P ≤ Q∨R}. This does not enable choosing
a single solution, due to the lack of the distributivity property.
A straightforward remedy is to add a further clause enforcing
that R ∈ 2P .

The following properties hold:

P ∨Q =

{
P ∨ (Q− P )
Q ∨ (P −Q)

}
= (P −Q) ∨ (Q− P )

The returned partition is a boolean function (0-1) over clusters
of P . Preserved clusters are those which are not a strict
subset of a cluster of Q. The operation then wholly covers
aggregates over both operands and has the same identities that
its counterpart in 2Ω.

There results a similar pattern for the implication operator.
By applying the same clause we obtain:

P → Q = Q− P

Using them concurrently is then unnecessary. Given the
partition lattice equipped with the implication operator
(ΠΩ,∨,∧,→), the following properties hold:

• R→ (P ∨Q) = (R→ P ) ∨ (R→ Q)

• R→ (Q→ P ) = (Q→ P ) ∧ (R→ P )

The second law states (by associativity over ∧) that iterated
application of several implications over P is independent
of the order in which they are performed and ensures the
parallelization of the computation.

In the partial order context, the following properties hold:

P ≤ Q⇒
{
R→ P ≤ R→ Q
P → R ≥ Q→ R

This means that implication is an order-preserving operation,
whenever they are placed as conclusions and order-reversing
if placed as premises.

We shall now apply this operator as a pre-filter on the
given set of partitions to be processed and build a consensus
partition by applying several algebraic combination over the
input partitions.

Arrow [10] describes a set of three axiomatic properties
that should be applied by any consensus method. He proved
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that these criteria cannot be achieved at the same time (often
referred to as the Arrow’s paradox). It is widely agreed to
consider a relaxed viewpoint on one property or even to
infringe one or several ones. These criteria are the following:

• Independence of irrelevant alternatives: two elements
x, y ∈ Ω must be clustered regardless of other ele-
ments in Ω − {x, y} and such clustering process of
outlined position on its couple by the input partitions
in P;

• Pareto optimality: if all partitions unanimously agree
on a couple x, y ∈ Ω, then it should be also the case
in the resulting partition;

• Non-didactorship: the resulting partition must take
into account all the features expressed in every parti-
tion and not from a specific subset P ′ ⊂ P , disclaim-
ing aggregates in the partitions from P − P ′.

Let a consensus function is denoted f : Πn
Ω → ΠΩ. A

straightforward function which fulfils these prerequisites is the
unanimity function:

u(P) =def

∧
Pi∈P

Pi

Yet, this is likely to return uninformative or inconclusive results
as it does not save enough aggregates. Thus, these properties
must be relaxed to improve the result. The following function
achieves a better trade-off, as it unionizes the set of consensus
unanimously computed for each formed majority on P :

m(P) =def

∨ ∧
{S∈2P ||S|≥|P|/2}

S

Our proposal consists in, first, computing, a set P ′ so that
each included partition is the filtered version of its counterpart
in P . Then, applying implication on each couple of partitions
wholly records maximal aggregates, whenever one is strictly
included in a bigger one. Denoting P as a family of sets,
P naturally generates an hypergraph H whose (hyper)edges
are clusters. Given that H′ is processed from P ′, it takes the
form of a Sperner family where connectivity depends on the
preservation of every edge/cluster:

∀e, f ∈ H′, e 6⊂ f, f 6⊂ e

Moreover, this preprocessing step thus achieves an abductive
inference, providing for each partition a minimal model for
the whole set, according to our will to preserve all aggregates
which appear in at least one partition.

Preserved aggregates in the consensus is the outcome of
performing binary intersection between each filtered partition
and is then equivalent to computing the intersection between
each edge and union those ones in a single partition. Let it be
denoted alg(P) (for algebraic) and denoted as follows :

alg(P) =def

∨
{(x,y)∈2P′}(x ∧ y)

P ′ = {
∧
{yi∈P−x}(yi → x) | x ∈ P}

Let us illustrate this on a toy example. Given the set of
partitions P:

• P1 = 147|2|356

• P2 = 1234|57|6

• P3 = 126|3|47|5

• P4 = 123|4567

• P5 = 124|35|67

and the multiset Pm = P ∪ {P1}.

Overall outcomes are summarized in the following table:

Partition set u(.) m(.) alg(.)
P ⊥ 12|3|4|5|6|7 12|3|47|56
Pm ⊥ 1247|3|5|6 1247|356

Fig. 1. Comparison of the trial results for each method

Regarding results for the first version of the dataset, our
proposal alg performs clearly better than the majority function
and gave also consistent results regarding the order relation. It
also aggregates a greater number of elements and every cluster
remain consistent with a subset from P . It achieves similar
results even with duplication of the first partition. It is worth
noting that it is because no cluster shall be taken away, then
P1 is freely combinable with filtered clusters of remaining
partitions and then we get alg(Pm) = p1∨alg(P). Moreover,
such a behaviour is potentially harmful if the number of
duplicate partitions highly grows.

The major advantage of our proposal is that it is more
permissive than the majority function and includes in the result
more aggregates featured by a minority number of partition
without discarding those agreed by the remaining ones.

IV. COMPUTATIONAL ISSUES

The partition combination operations described in the
previous section call for an effective implementation, when
instead of the toy example given above, we reach thou-
sands/millions of clusters/elements in the partitions manipu-
lated. Efficiency of the implementation depends on the data
model used to store in-memory several partitions of a set
and therefore query features we are interested in. Viewing
partitions as a set of subsets of Ω, we essentialy need to
compute sequences of set-theoretic union and intersection over
clusters of their respective operands.

We decide to manage and represent partitions through a
system of representatives, each being deterministically chosen
among their respective cluster so that an in-memory partition
is a Ω-word where query the representative of a set is a O(1)-
time operation. Two elements are clustered together in the
same partition if their share the same representative. Obviously,
while a partition has a single representation, the latter is useless
to deduce a particular partition since this mapping is surjective.
For instance, P = 123|45|6789 is encoded by the Ω-word
111446666.

Performing operations P ∨Q or P ∧Q generates a new Ω-
word, serialized view of the resulting partition and encoding of
the ∈-relation over Ω. Disregarding local optimization during
effective computation of an operator, performing generalized
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application of each one,
∨
Pi and

∧
Pi, costs (|P| − 1) ×

O(P opQ) where op ∈ {∨,∧}.

Considering for instance the majority function, given P ,
we have to perform o(2|P|) operations. However, the set P is
likely to be much smaller than Ω. In that case, the overall cost
of computing a formula depends more on the cost of a single
one rather than the whole.

To characterize the computational cost involved by the
present proposal, we report hereunder experimental results
operating on randomly drawn partitions. Given two partitions
P and Q, we assess the performance of increasing sequences
of (∨) operations. We generate a set of random partitions with
a Chinese Restaurant Process (CRP) [11]. As a noteworthy
property, the underlying distribution is said to be exchangeable,
i.e. the probability of a partition only depends on block sizes.
The expected number of blocks k grows as O(α log n), where
α is the scale parameter of the CRP. This mechanism is largely
used in Bayesian statistical techniques for clustering.

Computation of the (∨) operator is achieved by a dedicated
algorithm based on a tailored version of the so-called Union-
Find algorithm, related to connectivity problem in binary
graph. We implemented it through the pointer machine model
and the merge sets process is mimicked through pointers list
defined over set of cluster representatives which enable fast
rewriting by means of side effects.

Our protocol is based on incremental computation of an
increasing sequence of (∨) operations. We start from a random
partition P0 with |Ω| = 100 000 and having 20 clusters, then
generate the set {P0, P1, . . . , P5} where Pi+1 is got from
Pi by applying hundreds of permutations, without discarding
those already applied to generate Pi. Also, this process keeps
unchanged the size of clusters and their number in the newly
generated partition.
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Fig. 2. Several trials for generalized application of (∨) over {P0, . . . , P5}

Above, we achieved several trial on the same dataset,
starting with P0 ∨ P1 and ending with

∨
0≤i≤5 Pi. These

results suggest that computation of operators involved in our
proposal is not prohibitive and provides grounds for expecting
scaling up algebraic formulations of techniques manipulating
partitions intensivly to large-size partitions.

V. CONCLUSION

In this paper, we have developed a constructivist approach
within the context of defining new algebraic operators accord-
ing to those natural of the partition lattice structure and for
which there is no formal framework describing any expected
behaviour when combining them or the semantic explanation
of the duality binding them.

We have argued for the use of algebraic formulae to
achieve a consensus partition. We also briefly outlined a formal
framework without making usage of the distributivity, which
is a key axiom in the Lindenbaum-Tarski approach.

Explicitly identifying hypothetical contexts in which ex-
pressed aggregates within a partition are likely to be true
seems a promising way. Indeed, its achievement proceeds
from a normalisation step resulting in a loss of valuable
information, susceptible to specify the initial context. Then,
abductive reasoning would gain ability to outline interrelation
between several partitions by means of contexts validating or
disproving any particular partition, eventually improving the
partition combination process.
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