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AN ALGEBRAIC SOLUTION FOR THE CANDECOMP/PARAFAC
DECOMPOSITION WITH CIRCULANT FACTORS

J. H. DE M. GOULART∗† AND G. FAVIER∗

Abstract. The Candecomp/PARAFAC decomposition (CPD) is an important mathematical
tool used in several fields of application. Yet, its computation is usually performed with iterative
methods which are subject to reaching local minima and to exhibiting slow convergence. In some
practical contexts, the data tensors of interest admit decompositions constituted by matrix factors
with particular structure. Often, such structure can be exploited for devising specialized algorithms
with superior properties in comparison with general iterative methods. In this paper, we propose
a novel approach for computing a circulant-constrained CPD (CCPD), i.e., a CPD of a hypercubic
tensor whose factors are all circulant (and possibly tall). To this end, we exploit the algebraic
structure of such tensor, showing that the elements of its frequency-domain counterpart satisfy
homogeneous monomial equations in the eigenvalues of square circulant matrices associated with its
factors, which we can therefore estimate by solving these equations. Then, we characterize the sets
of solutions admitted by such equations under Kruskal’s uniqueness condition. Simulation results
are presented, validating our approach and showing that it can help avoiding typical disadvantages
of iterative methods.

Key words. Candecomp/PARAFAC decomposition, canonical polyadic decomposition, tensor
decomposition, circulant matrices, homogeneous monomial equations
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1. Introduction. The Candecomp/PARAFAC or canonical polyadic decompo-
sition (CPD) [19, 6] is a mathematical tool of great utility in many practical appli-
cations [4, 22]. Basically, it consists of a generalization of bilinear decompositions
of matrices to higher-order tensors. In addition, unlike its bilinear counterparts, it
is essentially unique under mild conditions. Therefore, it is naturally well suited for
the analysis of data sets constituted by observations of a function of multiple discrete
indices, as encountered in signal processing [30, 16, 15, 17], data mining [2, 27] and
biomedical engineering [1]; see [4, 22] for other examples.

The attractive properties of the CPD are, however, accompanied by difficulties.
Namely, its computation is generally a difficult non-convex optimization problem and,
furthermore, determining the minimal number of terms that are necessary to decom-
pose a tensor, which corresponds to its rank, is NP-hard [20]. Notwithstanding these
difficulties, there are several methods which try to fit a best rank-R approximate CPD
model to the data tensor of interest [34, 22].

In the general case, when no assumption is made about the matrix factors in-
volved in the decomposition, one usually resorts to iterative methods for estimating
them. Among these methods, the so-called alternating least-squares (ALS), which was
originally and independently proposed in [6, 19], is the most used. Another popular
algorithm is the classical Levenberg-Marquardt optimization method for nonlinear
least-squares problems [26]. However, given the nature of the CPD computation
problem, which is generally formulated as the minimization of a least-squares objec-
tive function, iterative methods are evidently subject to convergence towards local
minima. Moreover, they often suffer from slow convergence speed, and therefore may
require a large amount of computing time.
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Conceivably, when the matrix factors of a CPD are known to have special struc-
ture, as, e.g., Toeplitz, circulant or Vandermonde, one could take this into account to
formulate specialized algorithms which avoid the disadvantages of iterative methods.
Indeed, such strategy has been followed in some works, motivated by the pertinence
of structural constraints in several practical contexts. For instance, [21] proposes
a non-iterative method for the estimation of a third-order CPD in which a banded
circulant factor is involved. Similarly, [31] develops methods which can recover in a
non-iterative fashion banded (and possibly Toeplitz or Hankel) factors of a tensor.
Another recent example of a structurally constrained CPD estimation method is [32],
where Vandermonde matrix factors are considered. As examples of applications where
some structurally constrained CPD arises, we can mention the blind identification of
single-input single-output (SISO) finite impulse response (FIR) channels via the use
of high-order statistics [17] and the estimation of parameters of Wiener-Hammerstein
nonlinear systems from the kernels of equivalent Volterra systems [21]. Constrained
structures have also been exploited for estimating other tensor models. For instance,
in [14] the third-order core tensors of block Tucker models are characterized by matrix
slices having Hankel and Vandermonde forms, which is taken into account for deriving
a specialized parameter estimation algorithm.

In this paper, we develop a novel algebraic approach for computing a circulant-
constrained CPD (CCPD), which consists of a CPD of a hypercubic tensor whose
factors are all circulant (and possibly tall). This approach relies on the resolution of
a system of homogeneous monomial equations, which are directly obtained from the
multidimensional Fourier transform of the tensor to be decomposed and follow from
the well known Fourier eigenstructure property of circulant matrices. In the (ideal)
noiseless setting, this yields an exact solution for the decomposition. We also show
how to specialize this approach to a symmetric CCPD, whose factors are all identical.
In contrast to the existing methods [21, 31], which can be used to estimate circulant
factors of a CPD, our approach does not impose additional constraints over these
factors (apart from Kruskal’s standard uniqueness condition) and is capable of taking
into account the entire structure of a CCPD, symmetric or not. These differences come
from the fact that [21, 31] rely on subspace analysis of a matrix unfolding of the tensor
of interest. We note also that, due to the permutation ambiguity which is inherent
to the CPD, our approach is as well valid for estimating factors with any structure
that can be transformed into a Toeplitz-circulant structure via post-multiplication by
a permutation matrix, as, e.g., “Hankel-circulant”matrices. As another contribution,
we formulate a version of the ALS algorithm which constrains the estimated factors
of a CPD to be circulant, and thus is more appropriate as a reference for comparison
with our algebraic approach.

The contents of this paper are organized as follows. Section 2 briefly reviews
important concepts and definitions related to tensors, the CPD, its basic properties
and the main existing methods for its computation. Then, the proposed approach
is developed in §3, after recalling the fundamental property of circulant matrices on
which it is based. Some simple illustrative examples of the application of our approach
are provided in §4, for enhancing the understanding of the developed analysis. Next, §5
presents and discusses some simulation results through which the proposed approach
is compared with several other methods. Finally, concluding remarks are given in §6.
Notational conventions: Matrices and column vectors are denoted by boldface
capital and boldface lowercase letters, respectively. The columns of a M×R matrix A
are denoted by a1, . . . , aR, and it is said to be tall if M > R. We denote the transpose,
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Hermitian transpose and Moore-Penrose pseudoinverse of A by, respectively, AT ,
AH and A†, and the R × R identity matrix by IR. The operator vec(·) maps A ∈
CM×R into a = [aT1 . . . aTR]

T ∈ CRM , and diag(·) maps a vector v ∈ CM into an
M×M matrix which contains its elements on the main diagonal and zeros everywhere
else. Given v,w ∈ C

M , the Hadamard product v ⊙ w ∈ C
M yields their element-

wise multiplication. The Kronecker product between matrices A ∈ CM1×R1 and
B ∈ CM2×R2 is denoted by A ⊗ B ∈ CM1M2×R1R2 , while their Khatri-Rao (i.e.,
columnwise Kronecker) product, which is only defined if R1 = R2 = R, is denoted by
A ⋄ B ∈ CM1M2×R. We use δi1,...,iP to denote the generalized Kronecker delta, i.e.,
δi1,...,iP = 1 if i1 = i2 = · · · = iP and δi1,...,iP = 0 otherwise.

2. Review of the CP decomposition.

2.1. Basic definitions. Formally, a tensor of order P is an element of a tensor
product among P vector spaces [25]. However, once a certain basis is chosen for each of
these spaces, a tensor can be represented by a multidimensional array of numbers from
a field (usually R or C). We denote a P th order tensor of dimensions M1 × · · · ×MP

over C by a capital calligraphic letter T , and its corresponding space by CM1×···×MP .
Its elements are denoted by lowercase letters, tm1,...,mP

, having indices m1, . . . ,mP

which satisfy mj ∈ {1, . . . ,Mj}, or, alternatively, by the notation [T ]m1,...,mP
.

Each geometric dimension of a tensor is called a mode. Given a tensor T ∈
CM1×···×MP , for each mode p we can arrange its elements in a matrix unfolding
Tp ∈ CMp×MP ...Mp+1Mp−1...M1 with elements [Tp]mp,j = tm1,...,mP

, where [22]

j = 1 +

P
∑

q=1
q 6=p

(mq − 1)

q−1
∏

r=1
r 6=p

Mr.

A P th order tensor T whose all modes have the same dimensionM is called hypercubic

and is denoted by T ∈ CM(P )

, where M (P ) is a shorthand for M × · · · ×M , with P

occurrences of M . A hypercubic tensor T ∈ CM(P )

is said to be symmetric whenever
its elements are invariant to any permutation π(m) = (π1, . . . , πP ) of their indicesm =
(m1, . . . ,mP ), i.e., tm1,...,mP

= tπ1,...,πP
. The n-mode product [7] of T ∈ CM1×···×MP

by a matrix A ∈ CK×Mn , denoted by T ×nA, yields a M1×· · ·×Mn−1×K×Mn+1×
· · · ×MP tensor S such that

(2.1) sm1,...,mn−1,k,mn+1,...,mP
=

Mn
∑

mn=1

ak,mn
tm1,...,mn,...,mP

⇔ Sn = ATn.

From (2.1), it can be shown that, for m 6= n and A,B of appropriate dimensions,

(2.2) (T ×n A)×n B = T ×n (BA) and (T ×m A)×n B = (T ×n B)×m A

hold. Another important operator is the outer product (or tensor product [25]),
which is defined as follows. Let T ∈ CM1×···×MP and S ∈ CK1×···×KQ be tensors of
orders P and Q, respectively. Their outer product, denoted by T ◦ S, yields a tensor
V ∈ CM1×···×MP×K1×···×KQ (of order P +Q) that can be expressed in scalar form as

vm1,...,mP ,k1,...,kQ
= tm1,...,mP

sk1,...,kQ
.

Note that this definition includes as a particular case the well known outer product
between two vectors, which yields a matrix.
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Let ωM , exp(j2π/M) and FM be the M ×M Fourier matrix, given by

(2.3) FM =
1√
M















1 1 1 . . . 1

1 ωM ω2
M . . . ωM−1

M
...

...
... . . .

...

1 ωM−2
M ωM−4

M . . . ω2
M

1 ωM−1
M ωM−2

M . . . ωM















.

The multidimensional discrete Fourier transform (MDFT) of T ∈ CM1×···×MP , which
we denote by Y = MDFT{T }, is defined as

(2.4) Y = T ×1 F
H
M1

×2 F
H
M2

· · · ×P FH
MP

∈ C
M1×···×MP .

In scalar form, we have

yk1,...,kp
=

(

P
∏

p=1

1
√

Mp

)

M1
∑

m1=1

. . .

MP
∑

mP=1

tm1,...,mP
ω
−(m1−1)(k1−1)
M1

. . . ω
−(mP−1)(kP−1)
MP

,

for kp ∈ {1, . . . ,Mp}, p ∈ {1, . . . , P}. Analogously, we define the inverse multidimen-
sional discrete Fourier transform (IMDFT) of Y ∈ CM1×···×MP as

(2.5) T = Y ×1 FM1 ×2 FM2 · · · ×P FMP
∈ C

M1×···×MP ,

and denote it by T = IMDFT{Y}. In scalar form, this relation can be written as

tm1,...,mp
=

(

P
∏

p=1

1
√

Mp

)

M1
∑

k1=1

. . .

MP
∑

kP=1

yk1,...,kP
ω
(m1−1)(k1−1)
M1

. . . ω
(mP−1)(kP−1)
MP

,

with mp ∈ {1, . . . ,Mp}, p ∈ {1, . . . , P}. Note that, due to (2.2), the computation of
(2.4) or (2.5) can be done with P matrix multiplications, whose ordering is irrelevant.

2.2. The CP decomposition. The CP decomposition (CPD) or CP model of
a tensor T ∈ C

M1×···×MP is defined by

(2.6) T =

R
∑

r=1

a(1)r ◦ · · · ◦ a(P )
r ,

where a
(p)
r is the r-th column of the matrix factor A(p) ∈ CMp×R. The minimal value

of R such that T can be written as in (2.6) is called the rank of T . It is clear from
(2.6) that the CPD can be seen as a generalization of the decomposition of a matrix
into a sum of rank-one matrices; in fact, a P th order tensor is said to have rank one
precisely when it can be written as an outer product of P vectors. Also, as in the
matrix case, every tensor admits a decomposition of the form (2.6) [9]. Using the
definition of the outer product, the CPD can be expressed in scalar form as

(2.7) tm1,...,mP
=

R
∑

r=1

P
∏

p=1

a(p)mp,r
,

where a
(p)
m,r is the m-th element of a

(p)
r . By defining the P th order identity tensor

I ∈ CR(P )

, whose elements satisfy ir1,...,rP = δr1,...,rP , from (2.7) we can deduce that

(2.8) T = I ×1 A
(1) ×2 · · · ×P A(P ).
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Here, we will also use the convenient Kruskal’s notation [23], expressing (2.8) as

(2.9) T =
q
A(1), . . . ,A(P )

y
.

A useful fact is that the unfolding Tp of T can be written as

(2.10) Tp = A(p)
(

A(P ) ⋄ · · · ⋄A(p+1) ⋄A(p−1) ⋄ · · · ⋄A(1)
)T

.

Finally, if a CPD of a symmetric tensor S is constituted by identical factors, i.e.,

(2.11) S =
q
A, . . . ,A

y
∈ C

M(P )

,

where A ∈ CM×Rs , it is called a symmetric CPD of S [8, 3]. If Rs is the minimal
value for which (2.11) holds, it is called the symmetric rank of S.

2.3. Uniqueness of the CPD. The CPD (2.9) is said to be essentially unique
if any other CPD of T with factors B(p) ∈ CMp×R, i.e., T =

q
B(1), . . . ,B(P )

y
, is

such that B(p) = A(p)Π∆p, where Π ∈ RR×R is a permutation matrix and the
matrices ∆p ∈ CR×R, p ∈ {1, . . . , P}, are diagonal and satisfy ∆1 . . .∆P = IR.
Basically, this definition allows us to disregard the trivial column permutation and
scaling ambiguities that are inherent to the model. With it at hand, we can state
a fundamental result on the uniqueness of the CPD, which was first established by
Kruskal [23] for third-order tensors and then generalized by Sidiropoulos and Bro
[29] for any order. Before, however, another concept must be introduced: the k-rank
(named after Kruskal) of a matrix A, denoted by kA, is the largest integer such that
every set containing kA columns of A is linearly independent [23].

Theorem 2.1 ([29]). Let T ∈ CM1×···×MP be given by (2.9), where A(p) ∈
C

Mp×R, with P > 2 and R > 1. If the matrix factors A(p) are such that their k-ranks
satisfy kA(1) + · · ·+ kA(P ) ≥ 2R+ P − 1, then the CPD is essentially unique.

It should be noted that the condition involved in Theorem 2.1 is sufficient but
not necessary. Note also that, unlike matrix decompositions, whose uniqueness can
only be established by imposing special constraints—such as, e.g., orthogonality—on
their factors, the CPD requires much less constraining assumptions.

2.4. CPD computation. Given a data tensor D ∈ CM1×···×MP , the compu-
tation of a CPD of D is generally stated as searching for factors A(p) ∈ CMp×R,
p ∈ {1, . . . , P}, that jointly minimize an error criterion, which is often formulated as

J
(

A(1), . . . ,A(P )
)

=
∥

∥

∥
D − T

(

A(1), . . . ,A(P )
)
∥

∥

∥

2

F
,(2.12)

where T
(

A(1), . . . ,A(P )
)

is given by (2.9) and ‖ · ‖F stands for the Frobenius norm,

defined as ‖T ‖F ,
√

vec(Tp)H vec(Tp), for any p ∈ {1, . . . , P}. The choice of R
is clearly critical, but in practice it is usually unknown. Furthermore, computing R
is NP-hard [20]. Consequently, a CPD is often computed by searching for the best
rank-R approximation of T , given a choice of R. Yet, this problem is ill-posed in
general, because a tensor may not have a best rank-R approximation [12]. In that
case, one can find factors which yield an arbitrarily low approximation error, although
their columns contain meaningless elements with very large magnitude [28, 33].

The cost function (2.12) is clearly nonlinear in the parameters, and thus the so-
lution is, in general, computed iteratively. To perform this task, the most commonly
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used algorithm is the alternating least-squares (ALS) [19]. Basically, it consists in se-
quentially updating the estimate of each factor, fixing the other ones to their previous
estimates. Hence, the original nonlinear problem is tackled by considering a sequence
of linear ones, which can be solved using the least-squares estimator. Although this
strategy is conceptually simple and has led to useful results in many applications,
there is no proof of its convergence. Nonlinear optimization schemes, such as the
Levenberg-Marquardt (LM) method, are also often employed [9, 34]. Unlike the ALS,
techniques of this nature rely on a solid mathematical framework, but may also lead
to local minima and/or converge very slowly. It should be emphasized that both these
approaches rely on an a priori choice of R, which can be set in practice by applying
techniques such as those of [5, 11]. Moreover, they are subject to computing spurious
factors if the data tensor does not admit a best rank-R approximation.

3. Algebraic solution for a circulant-constrained CPD. In the following,
we provide a formulation of the problem addressed in this work, namely, the estima-
tion of a CCPD. Then, we describe the proposed approach, which is based on the
resolution of a system of monomial equations that can be obtained through a multi-
linear transformation of the tensor to be decomposed, provided that its rank is known
a priori. After that, we study the solutions admitted by such equations. Finally, we
specialize our analysis to the case where the CCPD is symmetric.

First, however, we briefly review some important properties of circulant matrices.
Definition 3.1. A matrix C ∈ CM×R is said to be circulant with generating

vector c = [c0 c1 . . . cM−1]
T ∈ CM , which is denoted by C = circR(c), if

(3.1) C =
[

c ΠMc . . . ΠR−1
M c

]

,

where ΠM is the following M ×M permutation matrix:

(3.2) ΠM =











0 . . . 0 1
1 . . . 0 0
...

. . .
...

...
0 . . . 1 0











.

Although no restriction has been placed over the dimensions M and R, in the
sequel we consider only square and tall matrices, as will be explained in §3.1. Square
circulant matrices possess a very special property that is well known: they all share
the same eigenvectors, which are simply the columns of the Fourier matrix [18]. Since
these columns form an orthogonal basis for CM , it follows that any circulant matrix
C ∈ CM×M can be diagonalized by the Fourier matrix, or, equivalently,

(3.3) C = FMΛFH
M ,

where FM is defined in (2.3) and Λ is a M × M diagonal matrix containing the
eigenvalues of C. Another direct consequence of this particular eigenstructure is that,
if we rewrite (3.3) as FH

MC = ΛFH
M , then from the first column of the latter identity

we have that FH
Mc = λ/

√
M , where λ is such that diag(λ) = Λ. In other words, c

and λ/
√
M form a DFT pair. As property (3.3) applies only for square matrices, we

now introduce a definition which will facilitate the treatment of tall circulant factors.
Definition 3.2. Let C = circR(c) ∈ C

M×R with M ≥ R. We define the

circulant completion of C as the square matrix C̆ ∈ CM×M given by

C̆ =

{

[

C ΠR
Mc ΠR+1

M c . . . ΠM−1
M c

]

, if M > R

C, if M = R,



PARAFAC DECOMPOSITION WITH CIRCULANT FACTORS 7

where ΠM is as defined by (3.2).
From the above definition, it follows that anyM×R circulant matrix with M ≥ R

is such that its circulant completion can be decomposed as in (3.3).
By noting that ΠM itself is circulant, we can also state the following useful prop-

erty, whose proof will be omitted due to the lack of space.

Proposition 3.3. Let ΠM be as defined by (3.2). Then, Πk
M = Π

(k)M
M for all

k ∈ Z, where (·)M denotes the modulo M operator.1 Consequently, there exist only
M distinct matrices of the form Πk

M , namely, Π0
M ,ΠM , . . . ,ΠM−1

M . Moreover, Πk
M

admits the eigendecomposition

(3.4) Πk
M = FM diag

(

1, ω−k
M , . . . , ω

−k(M−1)
M

)

FH
M .

3.1. General CCPD. Let T be a hypercubic P th order tensor of dimensions
M × · · · × M . Suppose that T admits a CCPD, i.e., that there exist P complex
circulant matrices C(p) ∈ CM×R, p ∈ {1, . . . , P}, such that T can be written as

(3.5) T =
q
C(1), . . . ,C(P )

y
∈ C

M(P )

.

Our goal is then to determine the circulant factors of (3.5), up to trivial ambiguities.
A distinguishing feature of the CCPD (3.5) is that its rank is upper bounded by

M , as opposed to the general CPD (2.9), whose rank can exceed the dimensions of the
tensor [22]. Such conclusion can be reached by noting that, if the factorsC(p) ∈ CM×R

in (3.5) are such that R > M , then from Definition 3.1 and Proposition 3.3 we have

c
(p)
M+m = c

(p)
m for all p and m ≥ 1, where c

(p)
m denotes the mth column of C(p). Clearly,

this “joint repetition” would imply the existence of linearly dependent terms in the
decomposition, and therefore R would not be minimal. Because of this fact, in what
follows we assume that M ≥ R, without loss of generality.

3.1.1. Derivation of the monomial equations. The first step in the deriva-
tion of our approach consists in showing how property (3.3) can lead to a set of
monomial equations from a hypercubic tensor T which is known to admit a CCPD.
Taking the MDFT of T , we have

(3.6) Y = T ×1 F
H
M ×2 F

H
M · · · ×P FH

M ∈ C
M(P )

.

Applying properties (2.2) and (2.8), it can be deduced from (3.5) and (3.6) that

(3.7) Y =
q
FH

MC(1), . . . ,FH
MC(P )

y
∈ C

M(P )

.

But, since each C(p) ∈ CM×R is a circulant matrix with M ≥ R, we can decompose
its circulant completion as C̆(p) = FMΛpF

H
M , where Λp = diag(λp) is the diagonal

matrix of eigenvalues of C̆(p). Therefore,

FH
MC̆(p) = diag(λp)F

H
M

=
[

λp ⊙ f∗M,1 λp ⊙ f∗M,2 . . . λp ⊙ f∗M,M

]

,(3.8)

where fM,m is the m-th column of FM = FT
M and the ∗ superscript stands for complex

conjugation. Thus, considering the first R columns of (3.8), we have

(3.9) FH
MC(p) =

[

λp ⊙ f∗M,1 λp ⊙ f∗M,2 . . . λp ⊙ f∗M,R

]

.

1∀k ∈ Z,M ∈ N, (k)M = m ⇔ k = lM +m for some l ∈ Z, with 0 ≤ m < M .
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In particular, as already mentioned, the first column of the identity (3.9) means that

(3.10) DFT
{

c(p)
}

=
λp√
M

⇐⇒ IDFT

{

λp√
M

}

= c(p),

where c(p) is the generating vector of C(p).
Relations (3.7) and (3.9) provide the key for deriving the equations that we shall

use to estimate the CCPD (3.5). More specifically, by substituting (3.9) into (3.7) and
resorting to the scalar form (2.7) of the CPD, the elements of Y are seen to satisfy

(3.11) ym1,...,mP
=

(

1√
M

)P P
∏

p=1

λp,mp

R
∑

r=1

ω
−(r−1)(m1+···+mP−P )
M ,

where λp,m is the m-th element of λp. Hence, the elements of the frequency-domain
counterpart of T satisfy P th order monomial equations whose unknowns are the
eigenvalues of the circulant completions of its matrix factors.

Remark 3.4. It is interesting to note that the above development can be gener-
alized to handle any CPD T =

q
A(1), . . . ,A(P )

y
such that each A(p) ∈ C

M×R can

be completed to form a square matrix Ã(p) ∈ C
M×M satisfying Ã(p) = V(p)ΛpZ

(p),
where V(p),Z(p) ∈ CM×M are known a priori, V(p) is nonsingular and Λp is diagonal
(and unknown). In that case, one computes Y = T ×1(V

(1))−1 · · ·×P (V(P ))−1, whose

elements are then given by ym1,...,mP
=
∏P

p=1 λp,mp

∑R

r=1

[

Z(1)
]

m1,r
. . .
[

Z(P )
]

mP ,r
.

3.1.2. Characterization of the derived equations and of its solutions.
The set of equations (3.11) for mp ∈ {1, . . . ,M}, p ∈ {1, . . . , P}, might lead to a
solution for the computation of the CCPD (3.5), if we can compute the eigenvalues of
the circulant completion associated with each factor. To this end, it is important to
first determine which equations of the form (3.11) are relevant, since the summation of
complex exponentials can vanish for some multi-indices (m1, . . . ,mP ), which clearly
renders the corresponding equations irrelevant. Thus, the next result establishes a
necessary and sufficient condition for the non-nullity of that summation.

Proposition 3.5. Let M,R ∈ N such that M ≥ R and M > 1, m1, . . . ,mP ∈
{1, . . . ,M} and Q be defined as

(3.12) Q ,
M

gcd(M,m1 + · · ·+mP − P )
,

where gcd(·, ·) yields the greatest common divisor of its arguments. Then, we have

(3.13)

R
∑

r=1

ω
−(r−1)(m1+···+mP−P )
M 6= 0

if and only if one of the following (mutually exclusive) conditions are met:
(i) Q = 1;
(ii) Q does not divide R.

Proof. Defining v , (m1 + · · · +mP − P )/gcd(M,m1 + · · · +mP − P ) ∈ N and
using (3.12), we can obtain from (3.13) the equivalent relation

(3.14)

R
∑

r=1

ω
−(r−1)v
Q 6= 0.
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From (3.14), it is now evident that (i) implies (3.13), since ω1 = 1. On the other hand,
if (ii) is true, then we necessarily have Q > 1. In this case, (3.14) corresponds to a
sum of R Qth roots of unity raised to a power v that is co-prime with Q by definition,
which yields zero if and only if R = lQ for some positive integer l. Hence, (ii) also
implies (3.13). Note that the last argument also establishes the only if part of the
proof, since in this part we have to show that the sum in (3.13) vanishes if Q > 1 and
Q divides R. We observe also that, when these conditions hold, we have l ∈ {1, . . . , d}
where d is the greatest integer that divides M and satisfies d < M , since Q divides
M and R ≤ M .

Proposition 3.6. In the special case where M = R (i.e., the factors are square),
condition (i) is necessary and sufficient for (3.13) of Proposition 3.5. Moreover, we
can write it alternatively as

(3.15) ∃ l ∈ N such that m1 + · · ·+mP − P = lM.

Proof. The condition (ii) of Proposition 3.5 is immediately ruled out whenM = R,
since Q divides M by definition. The fact that the condition (i) and (3.15) are
equivalent is trivial, and thus the proof is complete.

We now focus on the characterization of the solutions to equations (3.11). First,
we claim that there can be no “spurious” solution, in the sense that every solution to
(3.11) provides a CPD of the desired form. This is assured by the following lemma.

Lemma 3.7. Let T be a tensor such that the elements of Y = MDFT{T }
are given by (3.11), for some M,R satisfying M ≥ R and some set of M -tuples
{(λp,1, λp,2, . . . , λp,M )}Pp=1. Then, another set of M -tuples {(µp,1, µp,2, . . . , µp,M )}Pp=1

denotes a solution to the equations of the form (3.11) if and only if it is associated
with P circulant M ×R matrix factors constituting a CCPD of T .

Proof. The if part is clear from the analysis conducted to obtain the system of
equations. For the only if part, we note that every solution {(µp,1, µp,2, . . . , µp,M )}Pp=1

can be injectively associated with P circulant M × R matrices G(1), . . . ,G(P ) whose
circulant completions are given by Ğ(p) = FM diag(µp,1, µp,2, . . . , µp,M )FH

M . By con-
struction, those matrices are such that MDFT

{

JG(1), . . . ,G(P )K
}

= Y, because the

eigenvalues of Ğ(1), . . . , Ğ(P ) jointly satisfy the system of equations (3.11). Now,
taking the IMDFT of both sides, we obtain JG(1), . . . ,G(P )K = T , as claimed.

It should be noted that, in general, (3.11) admits infinitely many solutions. In
light of the above result, this is of course expected, because of the ambiguities that are
inherent to the CP model. In particular, if the factors C(p) in (3.5) satisfy Kruskal’s
uniqueness condition, Theorem 2.1 tells us that the CPD is essentially unique, i.e.,
with only column scaling and permutation ambiguities on its factor matrices. This
implies that the different solutions of (3.11) should also be related with each other
accordingly. Our next result shows that such relation is rather simple.

Theorem 3.8. Let T ∈ C
M(P )

, with P ≥ 3 and M > 1, be a hypercubic tensor
of the form (3.5), whose factors C(p) are circulant M ×R matrices, with R > 1, that

satisfy Kruskal’s condition
∑P

p=1 kC(p) ≥ 2R+ P − 1. Let {(λp,1, λp,2, . . . , λp,M )}Pp=1

denote the solution of (3.11) corresponding to the eigenvalues of the circulant comple-
tions of those factors and assume that {(µp,1, µp,2, . . . , µp,M )}Pp=1 is another possible

solution of (3.11). Then, there are P complex scalars αp satisfying
∏P

p=1 αp = 1 and
an integer r ∈ {0, . . . , R − 1} such that, for all p ∈ {1, . . . , P} and m ∈ {1, . . . ,M},
we have µp,m = αpω

−r(m−1)
M λp,m.
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Proof. From Lemma 3.7, we have that the M -tuples {(µp,1, µp,2, . . . , µp,M )}Pp=1

can be associated with circulant factorsG(1), . . . ,G(P ) such that T =
q
G(1), . . . ,G(P )

y
.

More precisely, {(µp,1, µp,2, . . . , µp,M )}Pp=1 are the eigenvalues of Ğ(1), . . . , Ğ(P ). But,
since we assume that the factors satisfy Kruskal’s uniqueness condition, we have

(3.16) G(p) = C(p)Π∆p

for some permutation matrix Π ∈ RR×R and some diagonal matrix ∆p ∈ CR×R, with
the constraint ∆1 . . .∆P = IR. Since by definition every column of C(p) is of the
form Πr

Mc(p), where ΠM is given by (3.2) and c(p) is the generating vector of C(p),
we have from (3.16) that there exists r ∈ {0, . . . , R− 1} such that

(3.17) g(p) = αpΠ
r
Mc(p),

where g(p) is the generating vector of G(p) and αp = [∆p]1,1. Due to the circulant
structure of G(p), we can also write

(3.18) G(p) = αpΠ
r
MC(p).

Now, substituting (3.4) in (3.17) and premultiplying both sides by
√
MFH

M , we obtain

√
MFH

Mg(p) = αp

√
MFH

MFM diag
(

1, ω−r
M , . . . , ω

−r(M−1)
M

)

FH
Mc(p).

But, since G(p) and C(p) are circulant, we have
√
MFH

Mg(p) = µp and
√
MFH

Mc(p) =

λp, where µp = [µp,1 . . . µp,M ]T and λp = [λp,1 . . . λp,M ]T . Using this
property and recalling that FM is unitary, we can rewrite the above equation as

µp = αp diag
(

1, ω−r
M , . . . , ω

−r(M−1)
M

)

λp, which, in scalar form, corresponds to µp,m =

αpω
−r(m−1)
M λp,m. To complete the proof, we observe that the constraint ∆1 . . .∆P =

IR implies
∏P

p=1 αp = 1 and that the constant r ∈ {0, . . . , R − 1} is the same for all
p ∈ {1, . . . , P}, since the same permutation Π applies to all factors in (3.16).

Corollary 3.9. If M = R, then Π = Πr
M , where r is the same integer as in

(3.18), and ∆p = αpIR for all p.
Proof. From Kruskal’s condition, kC(q) > 1 must hold for at least some q ∈

{1, . . . , P}. Let us consider two distinct columns of G(q), which can be written as

g
(q)
k = αq,kΠ

m
Mc(q) and g

(q)
l = αq,lΠ

n
Mc(q) for some m,n ∈ {0, . . . ,M − 1}, with

l > k and αq,k, αq,l 6= 0. As G(q) is circulant, we also have g
(q)
l = Πl−k

M g
(q)
k , which

implies Πn
Mc(q) = βΠl−k+m

M c(q), with β = αq,k/αq,l. Now, if β 6= 1, then kC(q) ≤ 1,
contradicting our hypothesis. Using the same reasoning for all couples of columns of
G(q), we deduce that ∆q = αqIR. Moreover, since all circulant matrices commute,
we have from (3.18) that G(q) = αqC

(q)Πr
M . Substituting these results in (3.16) with

p = q, it follows that Π = Πr
M , which in turn implies ∆p = αpIR for all p.

Remark 3.10. As seen above, when M = R the permutation matrix of (3.16)
must be circulant. Conversely, all the M distinct circulant permutations of the original
factors yield an equivalent CCPD. In other words, if {(λp,1, λp,2, . . . , λp,M )}Pp=1 is

a solution for (3.11), then so is any set {(ω0
Mλp,1, ω

−r
M λp,2, . . . , ω

−r(M−1)
M λp,M )}Pp=1

with r ∈ {0, . . . ,M − 1}. Indeed, from Proposition 3.6 we know that, when M =
R, every nonzero equation of the form (3.11) is associated with indices m1, . . . ,mP

that satisfy m1 + . . . + mP − P = lM for some l ∈ N, and hence
∏P

p=1 λp,mp
=

ω
−r(m1+...+mP−P )
M

∏P

p=1 λp,mp
=
∏P

p=1 ω
−r(mp−1)
M λp,mp

.
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Table 1
Summary of the AS method.

Inputs: Hypercubic tensor T ∈ CM(P )
to be decomposed and the rank R of the CCPD.

Outputs: Circulant M × R complex matrix factors C(1), . . . ,C(P ) (or C, in the symmetric case).
1. Compute Y = MDFT{T }.
2. Find the relevant equations using Proposition 3.5 (or Proposition 3.6, if M = R).
3. Solve the relevant equations (3.11) (resp., (3.20)) for λp,m (resp., λm).
4. Reconstruct the factors C(1), . . . ,C(P ) (resp., C) by resorting to property (3.3).

3.2. Symmetric CCPD. The symmetric case can be derived from the previous
subsection by considering that C(1) = · · · = C(P ) = C ∈ CM×R, which yields

(3.19) T = JC, . . . ,CK ∈ C
M(P )

.

As we shall see, this simplifies the set of solutions of equations (3.11). First, let us
rewrite those equations as

(3.20) ym1,...,mP
=

(

1√
M

)P P
∏

p=1

λmp

R
∑

r=1

ω
−(r−1)(m1+···+mP−P )
M ,

where the first subscript of the eigenvalues has been dropped, since they all refer
now to the same circulant completion, C̆. This particularization clearly renders some
of the equations (3.20) redundant, because the MDFT of a symmetric tensor is also
symmetric. Moreover, assuming that Kruskal’s condition holds, i.e., that kC ≥ (2R−
1)/P + 1, we can show that the set of solutions of (3.20) is finite, having at most
PM elements. Once again, this is demonstrated by exploiting the link between these
solutions and the set of factors which can yield a symmetric CCPD of T , as follows.

Theorem 3.11. Let T be given by (3.19), where C ∈ CM×R, with M ≥ R > 1,
is circulant. If kC ≥ (2R − 1)/P + 1, then the equations (3.20) admit at most PM
different solutions.

Proof. The proof is similar to that of Theorem 3.8, with the difference that we
must now have α1 = · · · = αP , since the CCPD (3.19) is symmetric. Due to the
constraint ∆1 . . .∆P = IR, the only possible distinct values for α are the P th roots
of unity, i.e., α = ωp

P for p ∈ {0, . . . , P −1}. Combining this with the existence of only
M distinct values for the integer r in (3.17), we are left with at most PM distinct
solutions for (3.20).

Remark 3.12. From the result of Corollary 3.9 we conclude that, if a symmetric
CCPD with square factors is essentially unique, then (3.20) admits exactly PM solu-
tions, since every combination of one of the P distinct matrices ωp

P IR with one of the
M distinct matrices Πr

M yields an equivalent symmetric CCPD.

3.3. The AS method. As we have shown, any solution of the equations (3.11)
provides a set of P factors which jointly fulfill (3.5), as desired. Therefore, we conclude
that the resolution of such equations provides an exact solution for the CCPD in the
noiseless case. In the presence of noise, evidently, only an approximate solution of
(3.11) can be sought.

Table 1 summarizes the approach proposed in this paper, which we shall refer to
as an algebraic solution (AS) for the CCPD. With regard to the first step, we point
out that Y can be computed in an efficient way, through a multidimensional FFT
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algorithm [13]. The second step can be performed by verifying for all combinations
of indices m1, . . . ,mP ∈ {1, . . . ,M} which of them satisfy one of the conditions of
Proposition 3.5, if M > R, or the condition of Proposition 3.6, if M = R. It is
evident that, since for each combination of indices these conditions depend only on
P , R and M , their assessment can be done a priori and reused for several different
hypercubic tensors of same order, rank and dimension. Step 3 is the core of the
method, being discussed below. Finally, step 4 consists in simply reconstructing the
desired factors from the estimated eigenvalues of their circulant completions.

The resolution of the set of monomial equations (i.e., step 3 of Table 1) is a
central matter in our approach. However, discussing computational methods for the
resolution of polynomial systems, which have been employed to solve practical prob-
lems (see, e.g., [24] and references therein), is outside the scope of this paper. Here,
we consider only some simple examples of the systems (3.11) and (3.20), where the
solution of the monomial equations can be easily derived in a direct, non-optimal,
manner. This derivation is done in §4, which provides an illustration of our theoret-
ical results. Moreover, the derived procedures will be used for numerical evaluation
purposes in §5. This kind of ad hoc approach, which we shall refer to as AAS (ad-hoc
algebraic solution), is of very low computational cost and can always be derived, as
long as some assumptions about the non-nullity of certain eigenvalues hold. These
assumptions hold generically for hypercubic tensors T of the form (3.5) having tall
or square factors, and therefore little generality is lost. Although the accuracy of the
AAS estimate is degraded in the presence of noise, it can be effectively and efficiently
refined with iterative algorithms, as will be illustrated by the experimental results
presented in §5. Indeed, these results show that iterative algorithms initialized with
the AAS estimate can avoid local minima and converge relatively fast, performing
substantially better than when randomly initialized.

3.4. Comparison with existing estimation algorithms for structured
CPDs. To the best of our knowledge, no previous work has developed an approach
capable of exploiting the structure of a CCPD completely. However, the estimation
of banded circulant factors of a CPD can be done with the use of some existing
algorithms, which are briefly described in the following.

In [21], a non-iterative algorithm which decomposes a third-order tensor having
one banded circulant factor is proposed, whose extension to higher-order cases is
trivial. Basically, a basis for the column space of the structured factor is obtained
from the SVD of a matrix unfolding of the tensor, and then a matrix with the desired
structure is found by solving a system of linear equations constructed from this basis.
Then, the other factors are estimated by computing R best rank-one approximations
of (P −1)th-order tensors,2 where P is the order of the tensor of interest. A drawback
of this method is that it cannot simultaneously take into account the structure of
multiple factors. Furthermore, the circulant factor must be of a particular banded
form which limits its rank.

A similar strategy proposed in [10] and then further developed in [31] is able to
jointly estimate banded structured factors of a CPD non-iteratively. It applies to both
Toeplitz and Hankel-structured factors. However, at most structured P − 1 factors
can be found by solving the resulting system of linear equations, because the matrix
unfolding whose SVD is computed induces a partition of the factors into two sets, of

2It should be noted that the best rank-one approximation of a tensor is a well posed problem, as
opposed to finding the best rank-R approximation [12], but requires the use of an iterative algorithm
if this tensor has order greater than two.
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which only one has the structure taken into account when constructing such system.
Moreover, when jointly estimating Ps > 2 structured factors, an iterative algorithm
must be used to solve a rank-one approximation problem of a Psth-order tensor.

We conclude that, in comparison with previous approaches, the main advantages
of the AS are the absence of additional constraints over the factors, which need not
be banded, and its ability to take into account the complete structure of the CCPD.
In addition, its specialization to the symmetric case is straightforward, while this
constraint would have to be imposed a posteriori in [21, 31]. On the other hand,
the algorithms of [21, 31] can directly handle CPDs consisting not only of structured
factors, and are also attractive for relying on numerically robust linear algebra tech-
niques. A quantitative comparison involving the AS approach and these algorithms
will be presented in §5, by means of numerical simulations.

4. Illustrative examples. We now consider some simple examples.

Example 4.1. Let C(1),C(2),C(3) ∈ C3×2 be circulant matrices with generating
vectors c(1), c(2) and c(3), respectively, and consider the CCPD T =

q
C(1),C(2),C(3)

y
.

We can obtain from the nonzero elements of Y = MDFT{T } 27 equations in the 9

unknowns of interest, which are the eigenvalues of C̆(1), C̆(2) and C̆(3). In particular,

(4.1) λ1,1λ2,1λ3,1 =
ỹ1,1,1
2

,

where ỹm1,m2,m3 , 3
√
3 ym1,m2,m3 . We know also that an infinite number of solutions

exist, which is a consequence of the scaling ambiguity. Yet, since λp/
√
3 is the DFT

of c(p), under the assumption that λ1,1λ2,1λ3,1 6= 0 we can conclude that the value of
each λp,1 determines the scaling of its associated factor C(p). In this case, we can
eliminate that ambiguity by imposing the values of all but one λp,1. For instance, if
we choose λ2,1 = λ3,1 = 1, then (4.1) can be directly solved for λ1,1. Next, we can use,
for example, the equations

λ1,1λ2,1λ3,2 =
ỹ1,1,2

1 + ω−1
3

→ λ3,2, λ1,2λ2,1λ3,1 =
ỹ2,1,1

1 + ω−1
3

→ λ1,2,

λ1,1λ2,3λ3,1 =
ỹ1,3,1

1 + ω−2
3

→ λ2,3, λ1,1λ2,2λ3,1 =
ỹ1,2,1

1 + ω−1
3

→ λ2,2,

λ1,1λ2,1λ3,3 =
ỹ1,1,3

1 + ω−2
3

→ λ3,3, λ1,3λ2,1λ3,1 =
ỹ3,1,1

1 + ω−2
3

→ λ1,3

to find the values of the other eigenvalues, as indicated. With those eigenvalues at
hand, the reconstruction of the desired factors is trivial via relation (3.3). We empha-
size that other choices of equations are possible for obtaining a solution and that the
procedure described above is by no means guaranteed to be optimal in any sense.

After resolving the scaling indeterminacy, obtaining the corresponding solution is
straightforward in the Example 4.1, provided that λ1,1λ2,1λ3,1 6= 0. This simple ap-
proach can be employed in general, but other instances may involve more complicated
procedures and may require the non-nullity of other eigenvalues. Nonetheless, when
applicable, the resulting procedure is computationally inexpensive, and thus may be
used to initialize more complicated methods, as shown in the next section.

Example 4.2. For the symmetric case where P = M = R = 3, defining
ỹm1,m2,m3 ,

√
3ym1,m2,m3 and disregarding redundant equations due to symmetries,

we have the following equations: λ3
1 = ỹ1,1,1, λ

3
2 = ỹ2,2,2, λ

3
3 = ỹ3,3,3 and λ1λ2λ3 =
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Table 2
Summary of the evaluated methods.

Acronym Algorithm Initialization Acronym Algorithm Initialization
AAS ad-hoc AS — CPTOEP [31] —
ALS ALS random CPTOEP-ALS ALS CPTOEP

AAS-ALS ALS AAS CPTOEP-CALS CALS CPTOEP
CALS CALS random CPTOEP-LMAS LM CPTOEP

AAS-CALS CALS AAS TPARAFAC1 [21] —
LMAS LM random TPARAFAC1-ALS ALS TPARAFAC1

AAS-LMAS LM AAS TPARAFAC1-LMAS LM TPARAFAC1

ỹ1,2,3. One can promptly see that we now have three uncoupled equations for calculat-
ing the three unknowns λ1, λ2, λ3. However, the coupled equation in λ1λ2λ3 constrains
the possible solutions, so that there can be at most 9 instead of 27 solutions, which
correspond precisely to the maximum number of PM solutions stated by Theorem
3.11.

Remark 4.3. If it is known a priori that C ∈ RM×R and λ1 6= 0, we can choose a
real solution for the equation involving λP

1 , which is guaranteed to exist due to (3.10).
This allows suppressing the scaling ambiguity whilst obtaining a real factor C.

5. Numerical simulations. In order to evaluate the proposed approach and
compare it with existing ones, we present now two Monte Carlo simulation scenarios.
In the first one, we measure the performance of several estimation methods when
used to compute non-symmetric CCPDs whose factors are randomly generated. The
second scenario illustrates the practical applicability of our approach by comparing
its performance with those of existing ones in a homogeneous Wiener-Hammerstein
identification problem, where a CPD structurally close to a symmetric CCPD arises.

Table 2 lists the methods considered in our comparison. The acronym LMAS
stands for “Levenberg-Marquardt algorithm applied to the AS”, since the LM scheme
is employed to solve the monomial equations. The algorithms referred to as CPTOEP
and TPARAFAC1 are those proposed in [31] and [21], respectively. Note that we have
evaluated the performance of iterative algorithms with random initialization and also
with initialization given by the non-iterative ones, yielding combinations which are
denoted by the hyphen-separated acronyms. For instance, AAS-LMAS consists in
employing the LMAS algorithm initialized by the output of AAS.

First of all, however, we formulate a modified ALS algorithm for third order
tensors which constrains the factors to be circulant. Since we are interested in factors
with such structure, this version, which we shall call CALS (for circulant-constrained
ALS), is a more appropriate reference for our evaluation than the standard ALS.

5.1. CALS algorithm. Let CM×R ⊂ CM×R be the subspace of circulantM×R
matrices, and consider the basis {Em}Mm=1, where the generating vector of Em is the
canonical basis vector em of CM . Clearly, any matrix C(p) ∈ CM×R with generating

vector c(p) = [c
(p)
1 . . . c

(p)
M ]T can be written as

(5.1) C(p) =

M
∑

m=1

c(p)m Em = unvecR

(

Ec(p)
)

,

where E = [vec (E1) . . . vec (EM )] ∈ CRM×M and the unvecR operator is such that
unvecR(a) = [a1 . . . aR] ∈ CN×R for every vector a = [aT1 . . . aTR]

T ∈ CRN with
a1, . . . , aR ∈ CN . Hence, if a third-order tensor T is given by (3.5), from (2.10) and
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Table 3
The CALS algorithm.

Inputs: T ∈ CM×M×M , rank R of the CCPD and initial generating vectors c
(1)
0 , c

(2)
0 , c

(3)
0 .

Outputs: Estimated generating vectors c(1), c(2), c(3).
i = 1
repeat

c
(1)
i

= 1
R
ET (IR ⊗T1) vec

{

[

(

circR

(

c
(3)
i−1

)

⋄ circR

(

c
(2)
i−1

))T
]†

}

c
(2)
i

= 1
R
ET (IR ⊗T2) vec

{

[

(

circR

(

c
(1)
i

)

⋄ circR

(

c
(3)
i−1

))T
]†

}

c
(3)
i

= 1
R
ET (IR ⊗T3) vec

{

[

(

circR

(

c
(2)
i

)

⋄ circR

(

c
(1)
i

))T
]†

}

i = i+ 1
until convergence

(5.1) we deduce that its unfolding T1 is given by

T1 = C(1)
(

C(3) ⋄C(2)
)T

= unvecR

(

Ec(1)
)(

C(3) ⋄C(2)
)T

.

Now, if we assume C(3) ⋄C(2) is full-column rank (which always holds for full column-

rank C(2) and C(3)), we have unvecR
(

Ec(1)
)

= T1

[

(

C(3) ⋄C(2)
)T
]†

. Then, applying

vec on both sides and multiplying them by E† = 1
R
ET we obtain

(5.2) c(1) =
1

R
ET (IR ⊗T1) vec

{

[

(

C(3) ⋄C(2)
)T
]†
}

,

where we have used the property vec(ABCT ) = (C ⊗A)vec(B) with C = IR. Ex-
pression (5.2) provides an update rule for the generating vector c(1), instead of a
general factor matrix. This allows us to exploit the structure of C(1) for obtaining
better-estimated parameters. The resulting algorithm is summarized in Table 3.

5.2. General CCPD. Initially, we independently draw the entries of the P = 3
generating vectors c(1), c(2), c(3) ∈ CM from a standard Gaussian distribution, setting
[c(p)]1 = 1 for all p, though, to avoid the scaling ambiguity. Next, C(1),C(2),C(3) ∈
CM×R are constructed according to (3.1), and T is obtained with (3.5). The data
tensor is then generated via D = T + σNN , where N ∈ CM×M×M is a noise tensor,
whose elements are independently drawn from a standard Gaussian distribution and
normalized to ensure ‖N‖F = 1, and σN is a positive parameter used to impose the
desired level of SNR, which is defined as SNR = 10 log10 ‖T ‖2F /σ2

N dB. Once the

data tensor is available, we employ each estimation method to obtain estimates Ĉ(1),
Ĉ(2) and Ĉ(3) such that T̂ =

q
Ĉ(1), Ĉ(2), Ĉ(3)

y
yields the reconstructed tensor. The

resulting reconstruction error is then calculated with NMSET = ‖D − T̂ ‖2F /‖D‖2F .
We compute also the average normalized square error over the estimated generating
vectors, given by ε = (1/3)

∑3
p=1 ‖c(p)− ĉ(p)‖22×‖c(p)‖−2

2 . In order to circumvent the

permutation ambiguity, the estimates ĉ(p) are chosen as the corresponding columns
of the factors which, after being normalized so that [ĉ(p)]1 = 1, jointly minimize ε.

We compared all the methods of Table 2, except for those involving the algorithm
TPARAFAC1, since it cannot estimate non-banded factors. Although CPTOEP is
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also intended to compute banded factors, it can be easily applied to jointly estimate
non-banded circulant factors, by considering an appropriate basis for each structured
factor when constructing the system of equations. With this strategy, we first perform
the joint estimation of Ĉ(1) and Ĉ(2), then we estimate ĉ(3) in the least-squares sense
from the recovered third factor (see [31, Sec. 6.2]) and construct Ĉ(3) = circR(ĉ

(3)).
However, while this procedure succeeds in the tall case, it fails when the factors are
square, which seems to be due to the relaxation adopted to solve [31, eq. (28)].

As the estimates of ALS are not necessarily circulant, we first choose each ĉ(p)

as described above and then construct Ĉ(p) = circR(ĉ
(p)), imposing the structure a

posteriori. Concerning the use of the LM scheme to solve the monomial equations, we
note that the scaling indeterminacy implies the existence of degenerate critical points
in the parameters space, causing a near-singularity of the Jacobian matrix in some
iterations. The LMAS method avoids this by imposing λ2,1 = λ3,1 = 1, similarly to
what was done in Example 4.1. Note that this does not imply any loss of generality as
long as λ2,1λ3,1 6= 0, which holds with probability one in our simulations. The adopted
cost function is given by J(λ1,λ2,λ3) = ‖R‖2F /‖Y‖2F , where R = R(λ1,λ2,λ3) ∈
CM(P )

is a residue tensor whose elements satisfy

[R]m1,...,mP
= [Y]m1,...,mP

−M− 3
2 λ1,m1λ2,m2λ3,m3

R
∑

r=1

ω
−(r−1)(m1+m2+m3−3)
M .

For a fair comparison, all the iterative algorithms were assumed to converge whenever
(‖D−T̂i‖2F−‖D−T̂i−1‖2F )/‖D‖2F < 10−6, where T̂i denotes the estimated reconstructed
tensor at iteration i, or when the maximum number of 2000 iterations was reached.

The simulations were performed for two configurations: (a) M = 3, R = 2 and
(b) M = R = 3. In each configuration, the above described procedure was repeated
for 1000 Monte Carlo runs, with the SNR varying in [20, 80] dB, and the average ε
and NMSET were calculated. Before computing these averages, we discard, for each
method and each SNR level, the 1% of realizations with the highest ε, to avoid mis-
leading conclusions brought by the occurrence of a few outstandingly poor estimates
which were observed in practice. Table 4 summarizes the results. Note that, as CP-
TOEP was not able to estimate square non-banded factors, it was not included in
(b). To facilitate the comparison, we underline the lowest error(s) at each SNR level.
We can see that the average errors of AAS steadily drop as the SNR is increased.
The same is not true for the randomly initialized iterative methods, which perform
poorly due to frequent convergence to local minima. When initialized with the AAS,
nonetheless, they are able to refine it and attain lower average error levels, which
indicates that local minima are avoided. This behavior is also observed in (a) for
the methods initialized with CPTOEP, which provides a better initial estimate than
AAS, but at the expense of a higher computational cost, because of the simplicity of
the AAS procedure. Overall, AAS-LMAS, AAS-CALS and CPTOEP-CALS attain
the best performances in (a), while AAS-LMAS is the most accurate in (b).

5.3. HomogeneousWiener-Hammerstein system identification. Consider
the identification of a discrete-time Wiener-Hammerstein system consisting of a non-
linear homogeneous block F (x) = xP preceded by a linear time-invariant (LTI) FIR
filter w ∈ CLw and succeeded by another LTI FIR filter h ∈ CLh . It is well known
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that such system is equivalent to a P th-order homogeneous Volterra filter of the form

y(n) =

M
∑

m1=1

· · ·
M
∑

mP=1

[K]m1,...,mP

P
∏

p=1

u(n−mp),

where u(n) and y(n) are, respectively, its input and output, having a P th-order sym-

metric Volterra kernel K ∈ CM(P )

with memory M = Lw + Lh − 1 such that [21]

[K]m1,...,mP
=

L
∑

l=l0

[h]l

P
∏

p=1

[w]mp−l+1,

with L = min{Lh,m1, . . . ,mP } and l0 = max{1,m1 − Lw + 1, . . . ,mP − Lw + 1}.
In the identification problem, one is interested in estimating w and h from a set of
input/output samples. Due to the above described equivalence, this can be done by
first estimating the Volterra kernel K from input/output data and then computing its
CPD, which satisfies [21]

(5.3) K =
q
W diag(h), . . . ,W,W

y
,

where W = circLh
([wT 0T ]T ) ∈ CM×Lh . Note that the choice of which factor is post-

multiplied by diag(h) is irrelevant, due to the scaling ambiguity. From the discussion
of Remark 3.4, we have that the elements of Y = MDFT{K} are given by

(5.4) ym1,...,mP
=

(

1√
M

)P P
∏

p=1

λmp

Lh
∑

l=1

[h]l ω
−(l−1)(m1+···+mP−P )
M ,

Table 4
Simulation results for the general CCPD scenario.

(a) M = 3, R = 2
ε (dB) NMSET (dB)

Method

SNR (dB)
20 30 40 50 60 20 30 40 50 60

ALS -22.6 -23.8 -31.6 -25.4 -27.1 -17.9 -20.0 -28.2 -21.3 -23.0
CALS -13.4 -11.7 -12.3 -14.6 -13.5 -14.1 -13.2 -13.1 -15.6 -14.0
LMAS -26.1 -29.5 -30.8 -29.1 -29.4 -24.2 -27.9 -29.4 -26.3 -26.7
AAS -8.9 -17.7 -27.7 -37.6 -47.6 18.2 -6.7 -22.2 -32.4 -42.3

AAS-ALS -22.8 -33.0 -42.9 -51.6 -59.3 -18.1 -28.2 -38.2 -46.9 -54.7
AAS-CALS -27.4 -37.5 -47.5 -57.4 -67.2 -25.6 -35.6 -45.6 -55.6 -65.4
AAS-LMAS -27.6 -37.7 -47.8 -57.7 -67.7 -25.8 -35.8 -45.8 -55.8 -65.8
CPTOEP -25.5 -35.6 -45.6 -55.6 -65.6 -23.9 -33.9 -44.0 -54.0 -64.0

CPTOEP-ALS -22.9 -33.3 -43.9 -54.2 -64.2 -18.2 -28.6 -39.2 -49.6 -59.6
CPTOEP-CALS -27.4 -37.5 -47.5 -57.4 -67.4 -25.6 -35.6 -45.6 -55.6 -65.6
CPTOEP-LMAS -27.5 -36.1 -39.7 -39.5 -39.6 -25.7 -34.4 -38.2 -38.7 -38.8

(b) M = R = 3
ε (dB) NMSET (dB)

Method

SNR (dB)
20 30 40 50 60 20 30 40 50 60

ALS -14.7 -16.6 -16.0 -16.7 -16.6 -9.2 -11.4 -11.8 -11.6 -11.8
CALS -22.7 -31.7 -39.5 -34.5 -40.1 -25.8 -35.8 -45.6 -52.6 -56.0
LMAS -13.1 -13.1 -12.4 -13.8 -12.4 -20.6 -21.9 -21.0 -21.6 -21.1
AAS -10.1 -18.1 -27.8 -37.7 -47.6 9.2 -12.2 -23.4 -33.6 -43.8

AAS-ALS -17.4 -28.2 -38.0 -45.7 -53.3 -12.8 -23.6 -33.5 -41.7 -50.1
AAS-CALS -22.2 -32.5 -40.5 -46.5 -53.8 -25.8 -35.8 -45.6 -54.6 -62.9
AAS-LMAS -21.0 -32.9 -43.1 -53.0 -63.1 -25.6 -35.9 -45.9 -55.8 -65.9
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where λm is the mth component of λ =
√
M DFT{[wT 0T ]T }. Note that the charac-

terization developed in §3.1.2 concerning the null elements of Y no longer applies to
(5.4), due to the weighting of the exponentials by the components of h. Nonetheless,
if we suppose that h is known a priori, we can still develop an AAS procedure to solve
(5.4) for the eigenvalues λm, from which the impulse response w can be recovered.

For simulation purposes, we consider the case where P = 3 and Lw = Lh = 3. The
elements of w and h are independently drawn from a standard Gaussian distribution,
except for [w]1, which is set as [w]1 = 1 to eliminate the scaling ambiguity. (Conse-
quently, (5.4) is nonzero with probability one for all (m1,m2,m3).) Then, we construct
K as in (5.3), from which the data tensor is obtained via D = K+σNN , where σN > 0
controls the SNR and N is a symmetric tensor whose elements nm1,m2,m3 with indices
satisfying m1 ≤ m2 ≤ m3 are independently drawn from a zero-mean Gaussian distri-
bution, while the others are set by symmetry. To evaluate the outcome of a method,
we measured the quantity NMSEw = ‖w− ŵ‖22/‖w‖22, where ŵ is the estimate of the
filter w, and also the reconstruction error NMSEK, which is calculated in the same
manner as that described in §5.2.

We evaluate in this scenario all methods of Table 2, except for those involving the
CALS algorithm, since (5.3) is not a CCPD. The employed AAS procedure consists
in computing λ1 from y1,1,1 and then recovering each other eigenvalue λm using the
equation for ym,1,1. Regarding LMAS, a specialization of the algorithm to solve the
equations (5.4) is used. The algorithms CPTOEP and TPARAFAC1 are applied
to estimate a single circulant factor, which is only possible because W is tall (and
banded, in the case of TPARAFAC1). As for ALS, ŵ is extracted from the column
that, among all columns of all factors, provides the estimate which minimizes NMSEw.

We repeated the experiment for 1000 realizations, with the SNR varying in [20, 80]
dB, and discarded the 1% worst realizations in terms of NMSEw for each method and
each SNR level. The obtained results are displayed in Table 5, in which the lowest
error(s) are again underscored. Observe that the results of ALS and LMAS with
random initialization are again quite unsatisfactory, which highlights the difficulties
faced in this nonlinear optimization problem. Despite them, the combination of these
algorithms with the non-iterative ones produces very accurate estimates, whose errors
are generally close together, except for some degradation of AAS-LMAS at 20 dB.
As in §5.2, CPTOEP and TPARAFAC1 provide more accurate initial estimates than
AAS, but at a higher computational cost.

Table 5
Simulation results for the Wiener-Hammerstein identification scenario.

NMSEw (dB) NMSEK (dB)

Method

SNR (dB)
20 30 40 50 60 20 30 40 50 60

ALS -23.7 -23.8 -23.8 -24.3 -23.7 -16.4 -16.7 -16.9 -17.4 -16.9
LMAS -3.9 -4.4 -5.9 -2.8 -4.9 20.4 15.4 15.6 25.1 15.7
AAS -4.1 -9.4 -16.7 -25.8 -35.7 9.7 1.0 -7.4 -18.1 -28.2

AAS-ALS -31.5 -42.1 -52.2 -61.2 -68.6 -24.0 -34.5 -44.7 -53.6 -61.0
AAS-LMAS -27.1 -43.9 -53.9 -63.9 -73.9 -22.3 -36.3 -46.3 -56.4 -66.4
CPTOEP -24.9 -35.9 -46.1 -56.1 -66.2 -17.2 -28.3 -38.4 -48.5 -58.5

CPTOEP-ALS -32.0 -42.5 -53.4 -64.2 -74.2 -24.5 -35.0 -45.9 -56.9 -66.9
CPTOEP-LMAS -33.9 -43.9 -53.9 -63.9 -73.9 -26.3 -36.4 -46.4 -56.4 -66.4
TPARAFAC1 -14.6 -32.8 -43.1 -53.1 -63.1 9.0 -25.6 -35.6 -45.5 -55.5

TPARAFAC1-ALS -31.9 -42.4 -53.2 -63.9 -73.9 -24.4 -34.9 -45.7 -56.5 -66.5
TPARAFAC1-LMAS -33.9 -43.9 -53.9 -63.9 -73.9 -26.3 -36.4 -46.4 -56.4 -66.4
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6. Concluding remarks. In this paper, we have proposed a novel approach for
the problem of estimating circulant factors of a CCPD. This approach is based on the
resolution of a system of homogeneous monomial equations which were derived by tak-
ing the multidimensional discrete Fourier transform of the tensor to be decomposed.
We have shown that, under the standard Kruskal’s uniqueness condition, all solutions
of these equations are related with each other in a simple way. We have also considered
the symmetric CPD with circulant factors, whose resulting monomial equations are
simpler and admit a finite number of solutions under the same uniqueness condition.

Numerical simulations were presented, where a simple ad-hoc solution of the
monomial equations is compared with estimates given by several methods—this in-
cludes two existing non-iterative algorithms, a LM scheme for solving the monomial
equations and a version of the ALS specialized for the CCPD, named CALS, which
we propose in the present paper. Such ad-hoc solution is inexpensive to calculate, but
is degraded in the presence of noise, since (i) it exploits only the minimum number
of equations required and (ii) it resorts to divisions and multiplications to eliminate
variables, which can produce large estimation errors. Nonetheless, by refining this
solution with iterative methods, a much better performance is attained than when
those methods are randomly initialized. This suggests that the AAS estimate often
lies in the region of attraction of a global optimum (note that multiple global minima
exist, due to the inherent indeterminacies of the CP decomposition), to where an
iterative algorithm can then converge, thereby avoiding local minima. Indeed, this
combination led to a noteworthy performance.

It should be emphasized, however, that our use of an ad-hoc procedure was mainly
intended for validating the proposed approach. Conceivably, more sophisticated meth-
ods for the resolution of the monomial equations could lead to better results, which
remains as a topic for future research. The authors envisage also an extension of the
proposed approach for computing other similarly structured CPDs, which brings the
possibility of addressing other practical problems. An example is the decomposition of
the third-order cumulant tensor derived in [17, Sec. 4], which can provide an estimate
of the impulse response of a linear communication channel.
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