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Flow streamline based Navier–Stokes Characteristic Boundary

Conditions: modeling for transverse and corner outflows

Eric Albin, Yves D’Angelo & Luc Vervisch

INSA de Rouen, CORIA - CNRS 76801 St Etienne du Rouvray, Rouen, France

Abstract

Some limitations of three dimensional Navier-Stokes Characteristic Boundary Conditions (3D-

NSCBC) are discussed for flows traveling in a direction that is oblique to the boundary. To

limit errors generated at boundaries with flows having any arbitrary direction, it is proposed

to organize the wave decomposition in a coordinate system that is attached to the local flow

streamline crossing the boundary, because some modeled expressions are not frame independent.

Compared to previous 3D-NSCBC, the modified strategy accounting for oblique waves is found

to improve the outflow treatment for transverse outgoing vortices, up to vortices crossing an

outflow corner. The method is also applied to an expanding laminar flame.

Keywords: Boundary conditions, Direct Numerical Simulation, Large Eddy Simulation

1. Introduction

In 1987, Thompson [1] introduces multi-dimensional boundary treatment for Euler equa-

tions. He makes use of a characteristic formulation of hyperbolic conservation equations: out-

coming waves are computed from their analytic expressions, while incoming waves amplitudes

are prescribed zero values. Poinsot and Lele [2] extend this procedure to Navier-Stokes equa-

tions and introduce the so–called NSCBC treatment (for Navier-Stokes Characteristic Boundary

Conditions). They assume the fluid to be locally inviscid, non reactive, and without transverse

convective terms. They insist upon the number of boundary conditions needed to be set in order

to get a well–posed problem. Yoo et al [3, 4] include transverse, diffusive and reactive terms

in the modeling of ingoing waves. Recently, Lodato et al [5] apply this methodology to Large

Eddy Simulation (LES) [6] and introduce a particular strategy for edges and corners, leading to a

3D-NSCBC modeling. However, the use of the Lodato et al. BC provides some improvements at

edges and corner, but does not fully address the coordinate system issue discussed in this work.

In 2009, Liu & Vasilyev [7] state a different multi-dimensional characteristic formulation, that

separates and will then treat differently characteristic wave convective terms from others, con-

sidered as “source terms”. Due to acoustic incoming — i.e. from the outside — waves, these

“source terms” are specifically damped with the help of adjusted coefficients for acoustic trans-

verse waves not to be reflected. As in the present work, these authors suggest that observed spu-

rious reflections of acoustic waves at outflows are mainly caused by inappropriate treatment of

compressible boundaries, especially in the presence of multidimensional non-linearities. Many

other developments have been devoted to boundary conditions for more or less compressible

flows [8, 9, 10, 11].
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The characteristic form of the Euler equations, serving as a basis to develop compressible

boundary conditions, is coordinate system independent; however, isolated terms (corresponding

to a given component) cannot be frame invariant. Their isolated modeled expression therefore

depends on the chosen coordinate system and it is shown that the choice of the flow streamline

as coordinate system is an interesting compromise to express the modeled expressions at bound-

aries. A modified 3D-NSCBC strategy is discussed, in which the characteristic wave amplitude

propagation is expressed in the frame attached to the flow streamline, to avoid the development,

and eventually ease the evacuation, of spurious acoustic perturbations generated at boundaries.

Kim & Lee [12] also introduced change of coordinate system to apply NSCBC treatment for

complex geometry outlets. However, their change of coordinate system was linked to the local

geometry, not to the local streamline. For sake of brevity and to facilitate reading, only rect-

angular computational domains and cartesian orthonormal vector basis are considered, but the

method can readily be generalized to any coordinates.

The following test cases are considered: an outgoing vortex with a mainstream that is oblique

relative to the outlet boundary and an expanding 2D laminar flame, with a curved reactive front

approaching a corner. Finally, the particular problem of an outgoing vortex flowing through a

corner is analyzed. This last canonical problem combines the difficulty arising from interaction

of two outgoing flows, inducing two ingoing waves close to the corner.

The paper is organized as follows. Section 2 states the governing equations in primitive vari-

ables formulation and its characteristic decomposition. It also briefly reminds how non reflecting

outflows are handled by 3D-NSCBC. In section 3, limitations of NSCBC and 3D-NSCBC for

non reflecting outflows are evidenced for two test cases. Section 4 further analyses these short-

comings by interpreting 3D-NSCBC as an acoustic forcing acting on the fluid that is not frame

independent. In the light of these results, some improvements are proposed to capture the perti-

nent local acceleration felt by the fluid, leading to a better prediction of flow crossing boundaries.

2. Characteristic equations for compressible flows

2.1. Primitive variables formulation

Primitive variables formulation of multi-component Navier-Stokes equations may be cast in

vector form as (Ndim = 2 or 3 space dimensions):

∂Q̂

∂t
+

Ndim∑

j=1

d̂ j = D̂ + Ŝ (1a)
∂Q̃

∂t
+

Ndim∑

j=1

d̃ j = D̃ + S̃ (2a)

d̂ j =



d̂
j

i
= Û j

∂Ûi

∂x̂ j

+
1

ρ

∂P

∂x̂ j

δ̂i j

d̂
j

4
=
∂ρÛ j

∂x̂ j

d̂
j

5
= γP

∂Û j

∂x̂ j

+ Û j

∂P

∂x̂ j

d̂
j

k
= Û j

∂Yk

∂x̂ j



(1b) d̃ j =



d̃
j

i
= Ũ j

∂Ũi

∂x̃ j

+
1

ρ

∂P
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δ̃i j

d̃
j

4
=
∂ρŨ j

∂x̃ j

d̃
j

5
= γP

∂Ũ j

∂x̃ j

+ Ũ j

∂P

∂x̃ j
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j

k
= Ũ j

∂Yk

∂x̃ j



(2b)

Q̂ =



Q̂i = Ûi

Q̂4 = ρ

Q̂5 = P

Q̂k = Yk


, Ŝ =



Ŝ i

0

Ŝ 5

Ŝ k


(1c) Q̃ =



Q̃i = Ũi

Q̃4 = ρ

Q̃5 = P

Q̃k = Yk


, S̃ =



S̃ i

0

S̃ 5

S̃ k


(2c)
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D̂ =


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∂x̂ j

0

(γ − 1)


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∂Ûi
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1

ρ
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∂x̂ j



(1d) D̃ =



1

ρ

∂̃τi j
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1
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∂q̃
j
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

(2d)

where the “hat” ( .̂ ) superscript refers to a boundary geometry based frame while the “tilde” ( .̃ )

superscript refers to the local streamline direction based frame. In the frame R̂ = (O, x̂1, x̂2, x̂3),

the components of the velocity vector U are denoted Ûi (for i ∈ J1,NdimK) while they are de-

noted Ũi (for i ∈ J1,NdimK) in R̃ = (O, x̃1, x̃2, x̃3). Q̂ and Q̃ are the primitive variable vectors of

velocity components Ûi and Ũi (for i ∈ J1,NdimK), density ρ, pressure P and mass fractions Yk,

k ∈ J1,NsK (Ns the number of species). Vectors d̂ j, D̂ and Ŝ (or d̃ j, D̃ and S̃) respectively repre-

sent convective (and pressure for velocity), diffusive and source terms. Using usual notation, it

is assumed that τ̂i j = µ(∂Ûi/∂x̂ j + ∂Û j/∂x̂i) − (2/3)µ div Û δ̂i j; µ = µo (T/To)0.76; q̂
j

5
= λ∂T/∂x̂ j;

q̂
j

k
= D∂Yk/∂x̂ j; λ = µCp/Pr and D = µ/S ck (the reader may replace the ‘hat’ superscript by the

‘tilde’ superscript to get τ̃i j, q̃
j

5
, q̃

j

k
formulas). In following non-reactive cases, all source terms

are zeros. In reactive cases, Ŝ i and S̃ i are zero while Ŝ 5 = S̃ 5 and Ŝ k = S̃ k are given by an

Arrhenius law.

From rotational invariance, these conservation equations are formally the same by changing

the coordinate system. However, as it shall be precised below, boundary condition modeling

based on characteristic formulation is not frame independent. Next subsection details the mod-

eled characteristic formulations for these two different frames. The variables expressed in the

reference coordinate system used for computing discretized equations are without superscript.

2.2. Characteristic variables formulation

Convective terms d̂
j

I
can be expressed from advective terms of characteristic variables for-

mulation [1, 2, 5, 13, 14], as given by systems (3) and (5). By substituting L̂
j

I
expressions into d̂

j

I

ones, one can recover equation (1b) for convective terms. The same characteristic formulation

can be written in the local streamline direction based frame R̃, due to the rotational invariance.

d̂
j

i= j
=
L̂

j

5
− L̂

j

4

2ρc
(3a)

d̂
j

i, j
= L̂
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i
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j

4
=
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j
+ d̂
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j

4
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(3d)

d̂
j

k
= L̂

j

k
(3e)

d̃
j

i= j
=
L̃

j

5
− L̃

j

4

2ρc
(4a)

d̃
j

i, j
= L̃

j

i
(4b)

d̃
j

4
=
L̃

j

j
+ d̃

j

5

c2
(4c)

d̃
j

5
=
L̃

j

5
+ L̃

j

4

2
(4d)

d̃
j

k
= L̃

j
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(4e)
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L̂
j

i= j
= Û j

(
c2 ∂ρ

∂x̂ j

−
∂P

∂x̂ j

)
(5a)

L̂
j

i, j
= Û j

∂Ûi

∂x̂ j

(5b)

L̂
j

4
= (Û j − c)


∂P

∂x̂ j

− ρc
∂Û j

∂x̂ j

 (5c)

L̂
j

5
= (Û j + c)


∂P

∂x̂ j

+ ρc
∂Û j

∂x̂ j

 (5d)

L̂
j

k
= Û j

∂Yk

∂x̂ j

(5e)

L̃
j

i= j
= Ũ j

(
c2 ∂ρ

∂x̃ j

−
∂P

∂x̃ j

)
(6a)

L̃
j

i, j
= Ũ j

∂Ũi

∂x̃ j

(6b)

L̃
j

4
= (Ũ j − c)


∂P

∂x̃ j

− ρc
∂Ũ j

∂x̃ j

 (6c)

L̃
j

5
= (Ũ j + c)


∂P

∂x̃ j

+ ρc
∂Ũ j

∂x̃ j

 (6d)

L̃
j

k
= Ũ j

∂Yk

∂x̃ j

(6e)

As already mentioned, we shall denote x̃i the basis vectors based on the local streamline

direction. We choose x̃1 = U/U, with U the local velocity. This defines a frame R̃. The basis

vectors based on the geometry of the local boundary (defining a frame R̂), are denoted x̂i, as

shown in figure 1. Vector x̂1 is the outgoing normal to the computational domain.

The calculation of derivatives in the R̃ frame is straightforward, once the gradient vector ∇φ

of any φ variable is known in the computational frame R,

∂φ

∂x̃i

= ∇φ · x̃i (7)

For instance, the velocity derivative ∂Ũ2/∂x̃1 may be computed from derivatives ∂Ui/∂x j esti-

mated with a sixth order collocated Padé scheme [15] and from coordinates x̃ j1 and x̃i2 of vectors

x̃1 and x̃2 in R :

∂Ũ2

∂x̃1

= ∇(U · x̃2) · x̃1 =

Ndim∑

k=1

Ndim∑

l=1

x̃i2

∂Ui

∂x j

x̃ j1 (8)

For simplicity a two-dimensional cartesian grid is used with frame R, but extension of present

methodology to three space dimensions is straightforward. If the outflow boundary is constituted

by a unique face or plane, it is further assumed that this frame coincides (up to ±π/2 rotations)
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Figure 1: Schematic of characteristic wave projections in two coordinate systems: Left, geometry based frame R̂. Right,

local streamline based frame R̃. The grey area is the computational domain and the dark line its boundary.
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with the previously introduced geometry based frame R̂. This may not be true for instance

at outflowing corners and/or edges, when there is locally more than one outflowing face (see

subsections 4.3 and 4.4). We then choose to define the local normal vector at a corner (or an

edge) as the mean of the normal vectors to the adjacent facets to the node. In this case, local

geometry based frame R̂ and the computing reference system of coordinates R may differ.

For the sake of clarity, figure 1 shows a 2D scheme of possible characteristic wave projec-

tions, yielding to different boundary condition treatment procedures.

In a first vision (see figure 1a), adopted by NSCBC and linked to the geometry, characteristic

wave amplitudes propagate along the two directions defined by vectors x̂1 and x̂2. Entropy (L̂
j

i= j
)

and transverse velocity (L̂
j

i, j
) characteristic waves are convected at speeds Û1 and Û2, along

basis vectors x̂1 and x̂2. Acoustic characteristics of amplitudes L̂
j

4
and L̂

j

5
propagate towards x̂j

directions with respectively Û j − c and Û j + c velocities.

In a second vision (see figure 1b), tentatively adopted in the present work, characteristics now

propagate in directions defined by the local velocity of the flow. Entropy (L̃
j

i= j
) and transverse

velocity (L̃
j

i, j
) waves are advected at speed Ũ1 ≡ U, along x̃1. In local flow direction, acoustic

waves (L̃1
4

and L̃1
5
) propagate at U − c and U + c. In the direction normal to the flow x̃2, L̃2

4
and

L̃2
5

propagate respectively at +c and −c.

Wave amplitudes L̂
j

I
or L̃

j

I
may be expressed in frame R̂ or R̃ whilst primitive variables

conservation are expressed in frame R. Convective terms di =
∑Ndim

j=1
d

j

i
in R may be expressed as

functions of convective terms d̂i =
∑Ndim

j=1
d̂

j

i
or d̃i =

∑Ndim

j=1
d̃

j

i
and wave amplitudes L̂

j

I
or L̃

j

I
, as

d1 = d̂1 x̂11 + d̂2 x̂12 =
L̂

j

5
− L̂

j

4

2ρc
x̂1 j + L̂

2
1 x̂11 + L̂

1
2 x̂12 =

L̃
j

5
− L̃

j

4

2ρc
x̃1 j + L̃

2
1 x̃11 + L̃

1
2 x̃12 (9a)

d2 = d̂1 x̂21 + d̂2 x̂22 =
L̂

j

5
− L̂

j

4

2ρc
x̂2 j + L̂

2
1 x̂21 + L̂

1
2 x̂22 =

L̃
j

5
− L̃

j

4

2ρc
x̃2 j + L̃

2
1 x̃21 + L̃

1
2 x̃22 (9b)

d4 = d̂4 =
1

c2

(
L̂1

1 + L̂
2
2 + d5

)
=

1

c2

(
L̃1

1 + L̃
2
2 + d5

)
(9c)

d5 = d̂5 =
1

2
(L̂1

4 + L̂
1
5 + L̂

2
4 + L̂

2
5) =

1

2
(L̃1

4 + L̃
1
5 + L̃

2
4 + L̃

2
5) (9d)

dk = d̂k = L̂1
k + L̂

2
k = L̃1

k + L̃
2
k (9e)

x̂i j and x̃i j being the i-th coordinate of vectors x̂j and x̃j in the R coordinate frame. The term,

d5 =
1

2

Ndim∑

j=1

(L̂
j

4
+ L̂

j

5
) =

1

2

Ndim∑

j=1

(L̃
j

4
+ L̃

j

5
) = U · ∇P + ρc2

∇P · U (10)

is clearly coordinate system independent, as
∑Ndim

j=1
L̂

j

j
=

∑Ndim

j=1
L̃

j

j
= c2U ·∇ρ−U ·∇P, d4 = d̂4 =

d̃4 = ∇ · (ρU), d5 = d̂5 = d̃5 = γP∇ ·U +U ·∇P and dk = d̂k = d̃k = U ·∇Yk. The acceleration in
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the inviscid context may be written:

∂U

∂t
= −

Ndim∑

j=1

L̃
j

5
− L̃

j

4

2ρc
x̃ j −

Ndim∑

j=1
j,i

L̃
j

i
x̃i (11)

thus
Ndim∑

j=1

L̃
j

5
− L̃

j

4

2ρc
x̃ j = (U · ∇) U +

1

ρ
∇P −

Ndim∑

j=1
j,i

L̃
j

i
x̃i (12)

The LHS of (12) is usually modeled independently of the boundary plane contribution,
∑Ndim

j=1, j,i
L̂

j

i
x̂i

or
∑Ndim

j=1, j,i
L̃

j

i
x̃i, whereas such terms do not have rotationaly invariant expressions. The impact

of this observation on BC is now investigated.

2.3. Summary of 3D-NSCBC for non reflecting outflows

In 3D-NSCBC [4, 5], for outflows, the coordinate system is aligned with the normal vector

to the outflowing facet (or plane). As already mentionned, the variables relative to this geometry

based frame are denoted with .̂ superscript. For outflows, all wave amplitudes L̂
j

I
(see equations

(5)) are computed from the internal side of the computational domain, except the acoustic term

L̂1
4
, able to propagate at velocity Û1 − c along direction x̂1 normal to the outflow plane. In [2],

the amplitude L̂1
4

is specified by equation

L̂1
4 = η4(P − Pout

∞ ) (13)

The introduced coefficient η4 allows to relax the outflow pressure towards a prescribed value

Pout
∞ . Yoo et al. [3] and Lodato et al. [5] included some additional transverse terms:

L̂1
4 = η4(P − Pout

∞ ) + η̂1(T̂out
4 − T̂4) + T̂4 (14)

Thanks to an asymptotic Low Mach analysis [3], the relaxation coefficient η̂1 is chosen equal

to the local mean Mach number Û1/c. The T̂
out
4

term analyticaly prescribes the transverse terms

at the outflow. Yoo & Im [4] complete this treatment by adding diffusive and reactive transverse

terms :

L̂1
4 = η4(P − Pout

∞ ) + η̂1(T̂out
4 − T̂4) + T̂4 + D̂4 + Ŝ4 (15a)

T̂4 = −

Ndim∑

j=2

d̂
j

5
− ρcd̂

j

1
(15b)

D̂4 = D5 − ρcD̂1 (15c)

Ŝ4 = S 5 − ρcŜ 1 (15d)

3. Shortcomings of NSCBC and 3D-NSCBC treatments

Two canonical test cases are now discussed to illustrate specific perturbations appearing with

NSCBC and 3D-NSCBC treatments in the case of oblique flows at boundaries. The sixth order

accurate in space and third order in time Direct Numerical Simulation code ‘Allegro’ [16] is used

with a single-step chemistry cast as in [17]. In all test cases performed in this article, the time

step is set by a CFL condition with ∆t = 0.4 ·maxi ∆xi/(|Ui| + c).
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3.1. Laminar expanding premixed flame

The test case proposed by Yoo and Im [4] is reproduced. A laminar 2D expanding stoichio-

metric premixed flame is computed over a 38δL × 38δL square domain with 200 mesh points

in every direction. In the reactive flow case, the characteristic flame speed and thickness δL are

used to make results dimensionless. All BCs (including corners) are non reflecting outflows and

the zero viscous flux conditions at boundaries [18, 4] is used: ∂q̂1
5
/∂x̂1 = 0, ∂q̂1

k
/∂x̂1 = 0 and

∂̂τ21/∂x̂1 = 0.

a)
b

)

Figure 2: Expanding laminar flame: a) Fuel mass fraction iso-values and velocity vector field with NSCBC outflow; (b)

same isovalues with 3D-NSCBC outflow treatment.

The difficulties arisen in this test case are mainly twofold: i) the front is a thin reactive zone,

involving diffusive and reactive terms that should be accounted for close to the boundaries 1; ii)

since the flow is isotropically expanding, local velocity directions are diverging from the local

normal to the boundary facets. Figure 2 shows fuel mass fraction and velocity vectors evolution,

for respectively NSCBC and 3D-NSCBC outflow treatment. With “standard” NSCBC outflow

[2], as shown in figure 2a), the flame shape tends to become square when reaching the boundaries.

Velocity decreases at corners, and the velocity field is not uniformly expanding. Only when

velocity components are almost normal to the boundaries of the computational domain is the

NSCBC treatment efficient. For 3D-NSCBC [4, 5], the flame remains more circular, even if its

shape clearly tends to become square in the end (see figure 2b). In [4], the authors suggest this

behavior is mainly due to the relaxing pressure term η4(P − Pout
∞ ). However, even when η4 = 0

(cf. figure 2), a square-shaped behavior is still found close to the boundaries.

3.2. Outgoing vortex

A 2D vortex is convected from left to right and exits the square 10RV × 10RV computational

domain. The initial condition (16), taken from a potential flow solution [5, 19], is a solution of the

Euler equations. This isothermal vortex test case is a well known test for boundary conditions [4];

1Taking into account diffusive D̂4 and reactive Ŝ4 terms (see equation (15a)) is crucial, by omitting these terms, the

computation becomes unstable at domain corners.
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it has been retained since it often reveals spurious distortions at boundaries due to the presence

of transverse terms that are difficult to handle in the Euler or Navier-Stokes equations.

P(R) = Po · exp

−
γ

2

(
CV
cRV

)2

·exp
−

(
R

RV

)2 
(16a)

ρ(R) =
P(R)

rTo

(16b)

U(R) = CV

R

R2
V

· exp
−

1

2


R

RV



2

︸                    ︷︷                    ︸
Uθ(R)

−→eθ + Û in
1 x̂1 + Û in

2 x̂2 (16c)

where −→eθ is the ortho-radial vector of the cylindrical basis. In the outgoing vortex case, the vortex

radius RV and the sound velocity c are used as scaling parameters. The maximum tangential

velocity is denoted by Um
θ
= Uθ(RV ). The mesh is composed of 100 × 100 grid points and

fluid is atmospheric air. Right BC (including corners) is non reflecting outflow, while up and

down faces are periodic. A mean flow (the mainstream) normal to the right outlet face — the

normal direction of which being indexed as 1 — is imposed : Û in
1
/c = 0.1 and Û in

2
= 0. To

a)
b

)
c)

Figure 3: Outgoing vortex (see [5]) computations (U in
1
/c = 0.1 and Um

θ
/c = 0.0066). a) iso-U1, “standard” NSCBC

outflow of [2]; b) iso-U1, 3D-NSCBC outflow treatment [4, 5], mainstream normal to the outflow; c) iso-U1, 3D-NSCBC

outflow, mainstream has a transverse component.

evidence non physical acoustic reflection at the outflows when the mainstream is not normal to
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the computational boundaries, the same computation is done but with an oblique mean velocity

such that Û in
1
/c = Û in

2
/c = 0.1. The vortex intensity in both cases is such that Um

θ
/c = 0.0066.

Figure 3 shows velocity component U1 when the vortex crosses the right boundaries, re-

spectively with the normal or the oblique (at 45 degrees) mean velocity. For both calculations,

η̂1 = Û1/c and T̂
out
4
= 0.

With a mean velocity normal to the right boundary (cf. figure 3b), as already reported in [5],

the 3D-NSCBC pertinently lower acoustic reflection, compared with a standard NSCBC (fig-

ure 3a). However, when the mainstream is not normal to the right boundary (figure 3c), the

vortex is significantly warped at outlet vicinity. This behavior does not change for weaker vortex

intensities, or for other values of the relaxation coefficient η̂1 (taking e.g. U/c, with U local

velocity norm at outlet, max U/c, max Û1/c or even parametric arbitrary values). Hence, flow

acceleration at the boundary seems not perfectly modeled by 3D-NSCBC when the mainstream

is no more normal to the boundary.

4. Transverse flow non reflecting outlet

4.1. Modeled acoustic force

The physics described by systems (3) or (4) should be independent of the chosen coordinate

system. In fact, we shall demonstrate in the sequel that the choice of a particular coordinate

system becomes crucial as soon as some amplitudes L̂
j

I
or L̃

j

I
are modeled.

The conservation equations for momentum in (1) or (2) may be re-written as

ρ
dÛ1

dt
+
∂P

∂x̂1

=
∂̂τi j

∂x̂ j

+ ρŜ 1 +

f̂ac︷                                          ︸︸                                          ︷
1

2c

L̂
1
4 − (Û1 − c)


∂P

∂x̂1

− ρc
∂Û1

∂x̂1


 (17a)

ρ
dŨ1

dt
+
∂P

∂x̃1

=
∂̃τi j

∂x̃ j

+ ρS̃ 1 +
1

2c

L̃
1
4 − (Ũ1 − c)


∂P

∂x̃1

− ρc
∂Ũ1

∂x̃1




︸                                          ︷︷                                          ︸
f̃ac

(17b)

When the wave amplitude L̂1
4

(resp. L̃1
4
) can be computed by its analytic expression (6c), i.e.

inside the computational domain, the above term f̂ac (resp. f̃ac) — homogeneous to a volumic

force — is zero. When this wave amplitude L̂1
4

is modeled by a 3D-NSCBC outflow boundary

treatment, this non–zero term can be interpreted as a force (of acoustic origin) acting on the fluid

from the outside of the domain. Substituting L̂1
4

(wave intensity expressed in the geometry based

frame) by their modeled expressions ((13) or (14) with η4 = 0, η̂1 = Û1/c and T̂
out
4
= 0), into

equation (17a), we obtain respectively expressions (18a) and (18b) for the acoustic force f̂ac.

Note that this interpretation is also valid in 3D.

These forces, denoted respectively as vectors f̂0
ac and f̂1

ac, can be interpreted as models of

acoustic forces, exerted from the exterior on the fluid, and added respectively by NSCBC model-

ing of [2] or 3D-NSCBC modeling [5]. Notice the presence of transverse terms in f̂1
ac compared
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with f̂0
ac,

f̂0
ac =

1-Û1/c

2


∂P

∂x̂1

− ρc
∂Û1

∂x̂1

 x̂1 (18a)

f̂1
ac =

1-Û1/c

2


∂P

∂x̂1

− ρc
∂Û1

∂x̂1

−
Û2

c


∂P

∂x̂2

− ρc
∂Û1

∂x̂2

 − ρc
∂Û2

∂x̂2

 x̂1 (18b)

However, from the results of figure 3c, when the mainstream is not normal to the outlet face,

it seems that this 3D-NSCBC approximated force f̂1
ac is not effectively able to correctly reproduce

the “real” (physical) force that allows a vortex going through the domain with no deformation.

It is thus anticipated that the asymptotic analysis of [4] shows that η̃1 = Ũ1/c is a good choice

for T̃
out
4
= 0, but solely when the reference frame is aligned with the direction of the local

mainstream. With above notations, this would mean R̃ ≡ R̂ (see figure 1).

In the local streamline based frame R̃ where Ũ2(= Ũ3) = 0 and also T̃
out
4
= 0, if we now

subsitute L̃1
4

into equation (17b) by its modeled expression

L̃1
4 = η̃1(T̃out

4 − T̃4) + T̃4 + D̃4 + S̃4 (19a)

T̃4 = −

Ndim∑

j=2

d̃
j

5
− ρcd̃

j

1
(19b)

D̃4 = D5 − ρcD̃1 (19c)

S̃4 = S 5 − ρcS̃ 1 (19d)

(with η4 = 0), we obtain a new acoustic force, denoted f̃2
ac :

f̃2
ac =

1-Ũ1/c

2


∂P

∂x̃1

− ρc
∂Ũ1

∂x̃1

− ρc
∂Ũ2

∂x̃2

 x̃1 (20)

Note that transverse terms corresponding to x̃2 (and x̃3) vanish, and that this force is now parallel

to x̃1. In these equations, the relation (7) is used in the solver to compute the derivatives in the

streamline frame.

The L̃1
4

is now calculated according to

L̃1
4 = (1 − Ũ1/c)

−γP
∂Ũ2

∂x̃2

 (21)

in order to reproduce an acoustic force f̃2
ac compatible with the asymptotic analysis of [4]. All

other amplitudes L̃
j

I
are determined through their analytic expressions (6). We shall call this

proposed boundary treatment “3D-NSCBC-TO” , for Transverse Outflow. This last expression

reduces to 3D-NSCBC in the case of a mainstream flow normal to the boundary face.

This attempt to adapt 3D-NSCBC outflow treatment was first tested in the case of a two–

dimensional outgoing vortex passing through a corner. Anticipating on subsections 4.2, 4.3 and

figures 5, 4 and 9, where all methods are systematically compared, we observed a much more

satisfying behavior than with 3D-NSCBC. The shape of the exiting vortex remains cylindri-

cal at boundary vicinity, while it was significantly warped with 3D-NSCBC. However, we also
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observed a weak numerical instability after outlet crossing, indicating that 3D-NSCBC-TO mod-

eling introduces errors in the x̃2 direction. This corner makes pressure, density and velocity to

oscillate in the whole domain while a back-flow develops after the vortex has left the compu-

tational domain. When simulating an ignition kernel, these oscillations appear along outflows

at the first iterations. This may be explained by the fact that the amplitude L̃2
4

should not be

computed from the outside of the domain, since it brings information from the inside, as shown

in figure 1. This suggests to look for a numerically stabilized modification to this first attempt. It

is hence proposed in a second step to compute all amplitudes L̂
j

I
except L̂1

4
. This last one is now

specified in order to reproduce the same acceleration as with 3D-NSCBC-TO treatment along

the normal vector x̂1:

L̂1
4 = L̂1

5 + 2ρcL̂2
1 − (L̃1

5 − L̃
1
4 + 2ρcL̃2

1 )̃x1 · x̂1 − (L̃2
5 − L̃

2
4 + 2ρcL̃1

2 )̃x2 · x̂1 (22)

Equation (22) can be obtained after projection of the acceleration vector ∂Ũ/∂t along x̂1:

ρ


∂Ũ1

∂t
x̃1 +

∂Ũ2

∂t
x̃2

 = ρ

∂Û1

∂t
x̂1 +

∂Û2

∂t
x̂2

 (23)

and by omitting reactive and diffusion terms in ∂Ûi/∂t and ∂Ũi/∂t expressions. Note that if

x̃i ≡ x̂i, equation (22) yields again 3D-NSCBC.

This modified second proposed strategy shall be referred to as 3D-NSCBC-TOM, for Trans-

verse Outflow Modified. Notice that 3D-NSCBC-TOM is introduced to suppress the instability

of the 3D-NSCBC-TO treatment while modeling the same fluid acceleration in the x̂1 direction.

To validate this modeling strategy for characteristic wave propagation, results are compared with

3D-NSCBC in the three 2D test cases discussed above.

4.2. Transverse outgoing vortex

A first validation has consisted in a configuration similar to figure 3. An outgoing vortex

is convected through the right boundary, with a normal mainstream (figure 4). In this case,

relaxation coefficients are respectively specified by η̂4 = Û1/c and η̃4 = Ũ1/c for the 3D-NSCBC

or 3D-TOM outflows. The referential R̃ is dynamically computed from the local velocity by

a)
b

)

Figure 4: Outgoing vortex with mainstream normal to the right outflow (Û in
1
/c = 0.575, Û in

2
/c = 0.575 et Um

θ
/c = 0.121).

a) iso-U2, 3D-NSCBC outflow ; b) iso-U2, 3D-NSCBC-TOM outflow.
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x̃1 = U/U. The results obtained with both methods are almost indistinguishable and 3D-NSCBC

is hence the effective limit of 3D-NSCBC-TOM, when the mainstream is normal to the boundary.

Note that in Lodato et al. [5], the relaxation coefficient η̂4 = Û in
1
/c is constant along the outflow

and is estimated from the input mainstream value. Since Um
θ
<< Û in

1
in this case, this static set-

up of coefficient gives nearly the same behavior (not shown here) than the used dynamic set-up.

Nevertheless, this static set-up has been found to generate less disturbances on density fields and

a)
b

)
c)

d
)

e)
f)

Figure 5: Outgoing oblique vortex (Û in
1
/c = Û in

2
/c = 0.1 and Um

θ
/c = 0.0066). a) iso-U1, 3D-NSCBC; b) iso-U1,

3D-NSCBC-TOM; c) iso-U2, 3D-NSCBC; d) iso-U2, 3D-NSCBC-TOM; e) iso-Q criterion and density (grey gradients),

3D-NSCBC; f) iso-Q criterion and density, 3D-NSCBC-TOM.
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will then be used in following vortex cases. In next vortex test cases, relaxation coefficients are

then prescribed by η̂4 = Û in
1
/c and η̃4 = ||U

in||/c with Uin = Û in
1

x̂1 + Û in
2

x̂2 ; the streamline based

frame R̃ is statically prescribed by x̃1 = Uin/||Uin||.

Figure 5 shows density field, isolines of velocity components and isovalues of Q criterion

(i.e. the 2nd invariant of the velocity gradient tensor, see [20]), for the outgoing vortex flowing

transversely through the right exit (Û in
1
= Û in

2
). The Q criterion is positive at vortex center (where

rotational energy is concentrated), then becomes negative at the rim (where flow is sheared)

and vanishes at infinity (no velocity gradient). The results of figure 5 evidence a significant

improvement of the expected behavior of the non reflecting outlet: 3D-NSCBC-TOM brings (in

this case) much less distortion of the presented isovalues.

A parametrical study is now conducted to investigate the behavior of 3D-NSCBC-TOM out-

flows on a wider range of flow conditions. A vortex test with a mainstream U in
1
/c = 0.2, an

incidence angle α = 45˚, a tangential velocity Um
θ
/c = 0.06 and a grid refinement RV/∆x = 10 is

taken as a reference. The corresponding Reynolds number is Re= Um
θ

Rv/ν = 1740. The vortex

is initially located at the center of the domain. Periodic conditions are used for horizontal bound-

aries while NSCBC, 3D-NSCBC and the present 3D-NSCBC-TOM treatment are used for the

right boundary. Figure 6 plots the density field and some iso-Q criterion when the center of the

vortex reaches the outflow boundary for different incidence angles and for these different outflow

treatments. It shows that NSCBC outflows introduces an important level of distortions whatever

α = 0˚ α = 15˚ α = 30˚ α = 45˚

a)
b

)
c)

Figure 6: Outgoing oblique vortex with different incidence angles α = atan(U in
2
/U in

1
) (U1/c = 0.2 and Um

θ
/c = 0.061).

The density field (grey gradients) and iso-values of the Q criterion are plotted at time t = 2.5 · c/(10RV ). a) NSCBC. b)

3D-NSCBC. c) 3D-NSCBC-TOM.
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the incidence angle ; 3D-NSCBC strongly reduces these distortions for small incidence angles

but still generates strong disturbances for α > 15˚. The present 3D-NSCBC-TOM treatment

drastically decreases these distortions even for high incidence angles.

The accuracy of the solution is then measured when varying one of this four parameters for

NSCBC, 3D-NSCBC and the present 3D-NSCBC-TOM strategies. The maximum difference

between velocity U1 (resp. U2) and its analytic solution Uana
1

(resp. Uana
2

) defines a velocity

error which represents the quality of the solution. A maximum error can similarly be defined

between the simulated density ρ and its analytic solution ρana. Figure 7 plots the time evolution

of these spatial maximum errors for α = 0˚ and 45˚. Note that pressure field is relatively similar

to density field for all these simulations. The normalized pressure error (P− Pana)/Pin which has

been found identical to the normalized density error (ρ − ρana)/ρin is not plotted to facilitate the

reading. These curves contain most of previous observations : NSCBC outflows generates strong

errors whatever the incidence angle ; 3D-NSCBC and 3D-NSCBC-TOM are both accurate for

α = 0˚ ; for higher incidence angles, 3D-NSCBC generates strong distortions while maximum

errors of all properties are still very low with the presented 3D-NSCBC-TOM outflow.
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Figure 7: Evolution of some maximum errors during the exit of a vortex through a face for different outflow treatments.

Errors on velocities U1, U2 and density ρ are respectively plotted in blue, green dashed and red dotted lines ; the

present 3D-NSCBC-TOM strategy (diamond symbols) is compared to NSCBC and 3D-NSCBC strategies (crosses). a)

mainstream normal to boundary α = 0, e.g. Û in
2
= 0. b) mainstream transverse to boundary α = 45˚, e.g. Û in

2
= Û in

1
.

These maximum errors reach maximum values when the vortex is crossing the boundary.

Total maximum errors can therefore be defined as the temporal maximum of these spatial max-

imum errors for velocities U1, U2 and density ρ. We then performed 420 numerical simula-

tions of outgoing vortices to measure these maximum errors for a wide range of incident angle

(α ∈ [−90˚; 90˚]), a wide range of tangential vortex velocities (Um
θ
/U in

1
∈ [−2; 2]), different grid

resolutions (RV/∆x ∈ [2; 20]), different advection velocities U in
1
/c ∈ [0.01; 0.5] and for three

different outflow treatments. All these errors are plotted on figure 8.

Figure 8a that shows the influence of the incidence angle confirms that 3D-NSCBC-TOM

and 3D-NSCBC outflow are similar for a normal mainstream (α = 0˚). It also indicates that

maximum errors quickly increase for transverse mainstream with 3D-NSCBC and these errors

are always very high with NSCBC outflows. Errors on velocities, density and pressure are dras-

tically decreased for transverse flows with the present strategy. Nevertheless, some oscillations

appeared for too high incidence angles (|α| ≥ 60˚) with 3D-NSCBC outflows. Figure 8b demon-

strates that 3D-NSCBC-TOM reduces distortions even for strong vortices. Nevertheless, maxi-

mum errors may become important for too high tangential velocities but velocity errors are still

under 3% of U in
1

for the present strategy when all U1 velocities remain positive (|Um
θ
/U in

1
| ≤ 1).
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c) Û in
1
/c = 0.2, Um

θ
/c = 0.06, α = 45˚

 2  4  6  8  10  12  14  16  18  20
 0.0001

 0.001

 0.01

 0.1

 1

ρ ρρ(    −       ) / 

NSCBC
3D−NSCBC
3D−NSCBC−TOM

1
ana

V ∆

1(U −U    ) / U
(U −U    ) / U

in

ana

in

in
1

m
ax

im
um

 e
rr

or
s

grid resolution (           )

1
ana

2 2

R  /   x

d) α = 45˚, Um
θ
/c = 0.06, RV/∆x = 10

ρ ρρ(    −       ) / 

 0  0.1  0.2  0.3  0.4  0.5
 0.0001

 0.001

 0.01

 0.1

 1
1

1

NSCBC

3D−NSCBC−TOM
3D−NSCBC

ana in

2 2(U −U    ) /Uana in

in

ana

1

in

nomal velocity (           )

m
ax

im
um

 e
rr

or
s

11(U −U    ) /U

U  / C

Figure 8: Parametrical study of an outgoing vortex through a face. Comparisons of maximum errors of velocities and

density for different outflow treatments. Errors on velocities U1, U2 and density ρ are respectively plotted in blue, green

dashed and red dotted lines ; the present 3D-NSCBC-TOM strategy (diamond symbols) is compared to NSCBC and

3D-NSCBC strategies (crosses). a) influence of the incidence angle. b) influence of the spin to speed ratio. c) influence

of the grid refinement. d) influence of the mainstream velocity.

For higher tangential velocities, temporary negative velocities may generate some distortions but

simulations remain stable until |Um
θ
/U in

1
| < 2 for 3D-NSCBC and 3D-TOM treatments. Figure

8c shows that grid refinement does not have a significant importance to reduce these maximum

errors caused by the outflow treatment. Figure 8a demonstrates that NSCBC and 3D-NSCBC sat-

isfyingly solves this transverse moderate vortex for high Mach numbers (typically U in
1
/c > 0.4).

The present 3D-TOM strategy gives pertinent results even for low intensity mainstream. All

treatments become unstable for too low mainstreams, e. g. when U in
1
< Um

θ
.

4.3. Corner outflow

The behavior of 3D-NSCBC is now tested for a vortex that is convected through the upright

corner of the computational domain. Mainstream components are chosen as Û in
1
/c = Û in

2
/c =

0.2 ; vortex intensity is such that Um
θ
/c = 0.06. Figure 9 shows isovalues of the Q–criterion when

the vortex goes through the upright corner. In figure 9a, right and up boundaries are treated with

3D-NSCBC “standard” model, figure 9b presents results with 3D-NSCBC-TOM.

As already announced at the end of subsection 4.1, figure 9a shows vortex distortion when the

outflow is treated with 3D-NSCBC. In this case, the acoustic force introduced by 3D-NSCBC

outflow model is not a sufficiently good approximation of the “real” one, allowing a pertinent

non-reflecting outflow. The Q–criterion is particularly distorted in shear flow zones and after

vortex outlet crossing.
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)
c)

d
)

Figure 9: Outgoing vortex at upright corner (U1/c = 0.2 and Um
θ
/c = 0.06). a) density field (grey gradients) and Q-

criterion iso-lines, 3D-NSCBC; b) density field and Q-criterion iso-lines, 3D-NSCBC-TOM; c) iso-U2, 3D-NSCBC; d)

iso-U2, 3D-NSCBC-TOM.

In this case, 3D-NSCBC modeling induces quite large vortex deformations. With proposed

3D-NSCBC-TOM outflow treatment, the vortex is very moderately warped and the simulation is

numerically stable (compared to 3D-NSCBC-TO).

4.4. Expanding flame revisited

The expanding premixed laminar flame is computed with 3D-NSCBC-TOM. Figure 10 rep-

resents density, velocity vectors, temperature and reaction rate evolution for both 3D-NSCBC

and 3D-NSCBC-TOM strategies.

As already discussed in [4], quite early a square-shaped flame is obtained with 3D-NSCBC.

It is worth noticing that, with present 3D-NSCBC-TOM, the flame shape remains circular. In this

case, the flow acceleration seems quite pertinently modeled, even when the flow is not normal to

the outlet.

5. Concluding Remarks

Modified 3D-NSCBC outflow treatments for compressible Navier-Stokes multi-dimensional

computations, including outflow corners, have been discussed. By analyzing simple, but discrim-

inating, 2D test cases, namely exiting vortex (with an oblique mainstream velocity with respect
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Figure 10: 2D expanding laminar premixed flame. a, c, e: 3D-NSCBC. b, d, f: 3D-NSCBC-TOM. a, b: Temperature, c,

d: Density, e, f: Reaction rates and velocity vectors.

to the boundary) and expanding laminar flame, it is first shown that flow acceleration seems not

correctly taken into account when the mainstream exiting the computational domain is not nor-

mal to the outlet boundary. This evidenced the importance of the choice of the chosen coordinate

system when modeling characteristic wave amplitude propagation through NSCBC procedure.

This outflow treatment can be improved by decomposing characteristic wave amplitude propaga-

tion in a coordinate system aligned with the mainstream line, which is not necessarily normal to

the outlet boundary. It is important to note, however, that the streamlines decomposition concep-

tually privileges the entropy wave with respect to the acoustic waves and the targeted applications
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should be more directly related to combustion than aeroacoustics. By comparing these different

models, each of them may be interpreted in terms of different prescribed external acoustic forces

exerted on the fluid.

Along these lines a new strategy (3D-NSCBC-TOM) is proposed that noticeably improves

non reflecting outflow behavior, including outflowing corners. Transverse outflowing vortices

are much less warped at exit vicinity than with 3D-NSCBC treatment and the shape of an ex-

panding flame is much less square–like at boundary vicinity. Another challenging perspective for

3D-NSCBC would be to design a formulation that may allow a coordinate system-independent

modeling.
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