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Abstract

Direct Numerical Simulations (DNS), Evolution Equation Modelling (EEM) and Experimental results from

the literature (EXP) are presented and analyzed for an expanding propane/air flame. DNS results are ob-

tained thanks to the in-house finite-difference code HAllegro. Computed (DNS/EEM) and measured (EXP)

equivalent radii RP and RS , mean stretch k and consumption velocity S C , as well as sample front shapes, are

compared using to the same post-processing methodology. Small perturbations in the EEM input parameters

induce comparatively small shifts in the compared results, showing the robustness of the approach. When

slightly adapting only one O(1) parameter for the EEM strategy (the effective turbulent forcing amplitude

felt by the flame), DNS and EEM show quite fair agreement one with the other and also with EXP, except for

one of the experiments at early times. In the context of expanding flames, this validated EEM methodology

can constitute a reliable tool to compute realisticly large sized flames.

Keywords: Expanding premixed flames, Evolution equation Modelling, Direct Numerical Simulation

1. Introduction

Expanding flames contitute a basic fundamental configuration for pre-mixed laminar and turbulent gaseous

combustion. They have been (and are still) extensively studied under varying conditions (pressure, temper-

ature, fuel, Lewis number...) both experimentally and numerically, for instance to determine laminar flame

velocities and/or Markstein lengths (see e.g. [1] or [2]).

In many practical applications, turbulent pre-mixed flames can be considered as a collection of locally

laminar flames: the flamelet regime [3], where turbulence does not susbtantially modifies the internal struc-

ture of the laminar flame. Furthermore, for sufficiently moderate turbulence, the flame is only wrinkled and

the turbulent expanding flame front can be considered as a slightly deformed (“wrinkled” or “corrugated”)

sphere.

In [4], turbulent 3D expanding air/methane, air/propane and air/hydrogen flames are measured at atmo-

spheric pressure. An internal combustion engine-like configuration, with an optically accessible cylindrical

combustion chamber has also been considered in [5, 6, 7]. Reference [8] (which results will also be com-

pared with those of present paper) is interested in the dynamics of an expanding propane/air flame, again in

an engine–like configuration.

To investigate the expanding flame behaviour, one can numerically solve the full set of 3D Navier-Stokes

reactive equations (see for instance [9, 10, 11] or the recent work [12]). However, for realistically large sizes,

and because of the very small spatio-temporal scales involved both from turbulence and chemical reaction,

the required computional effort may become impractical.
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Instead of using “brute force” simulations, one can try instead to take advantage of the scale separation

(the flame front is very thin) and solve an evolution equation for the flame front only. Since only the flame

surface needs to be parameterized, one spatial dimension is removed from the computation. Moreover, all

pertinent physical parameters can be lumped into few ones; here, as this will be specified on the sequel, only

three (plus one) physical parameters are needed : namely the density contrast α, the Markstein length Lu,

the laminar flame velocity S L
0
. To mimic turbulent flow, and since the EEM (Evolution Equation Modeling)

approach does not solve for the flow, a synthetic turbulent forcing u′ must also be supplied. The aim of

the paper is to tentatively assess a chosen EEM strategy for 3D expanding flames (from reference [13])

by comparing its results with present DNS (Direct Numerical Simulations) and available experimental data

from the literature.

For the DNS calculations, we used the in-house compressible code HAllegro while experimental results

are those of [4] and [8]. These experiments were considered because i) we are mainly interested on the effect

of weak (u′/S L ∼ 1) turbulence on the flame. ii) the configuration is quite straightforward to compute (an

expanding stoichiometric propane/air flame at room pressure) ; iii) we have access to the experimental data

and we can use the same post-processing strategy for our DNS results.

The paper is organized as follows. Basic definitions of the set–up and of experimental outputs, i.e.

the quantities profiles that will be actually compared to the DNS and EEM computations, are introduced

section 2. Section 3 presents the system of governing equations solved by the in–house code HAllegro.

The DNS and EXP post-processing procedure, based on polynomial interpolation [4], and its limitations, as

well as the influence of BC treatment on the shape of the computed flame, are also tested on preliminary

laminar benchmarks. The numerical set–up for turbulent wrinkled flames computation is finally presented

at the end of the section. The EEM approach, similar to the one from [13], is outlined section 4, as well

as the adopted numerical strategy (Exponential Time Differencing Runge-Kutta method, or ETDRK, in the

Fourier–Legendre basis) to solve it. The way to mimic external “turbulent” forcing by a Passot–Pouquet

spectrum and a proposed equation for the mean flame radius can also be found there.

Section 5 shows comparisons and analysis of DNS/EEM/EXP results. Also included is robustness testing

of the EEM strategy when slightly varying some input parameters. Concluding remarks and perspectives end

the paper section 6.

2. Basic definitions, Markstein law

In this section, we introduce the basic quantities that are experimentally determined and that will be used

as comparison for numerical modelling (DNS and EEM).

2.1. Basic definitions, general case

A three-dimensional spherical flame can be triggered by spark electrodes in a turbulent pre-mixture

of e.g. air/propane. Experimental techniques such as PIV and laser tomography may then give access to

pictures of flame surface and burnt gas production.

If the flame front is sufficiently thin, and separates burnt gas (refered to with b subscript in the sequel)

from fresh (unburned) mixture (refered to with u subscript), two experimentally accessible characteristic

radii, respectively denoted RS and RP can be introduced. They are based on burnt gas surface S (equation

(1a) ) and two-dimensional flame section perimeter L (equation (1b)) :

S = πR2
S (1a)

L = 2πRP (1b)
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Figure 1: Experimentally determined equivalent flame radii RS and RP; equations (1a) and (1b).

Figure 1 presents a typical sample contour of experimentally obtained flame surface contour. From a mea-

sured image, radius RS can be determined by computing the number of pixels associated with burnt gas. For

RP, it is necessary to evaluate the flame length. One should first determine which pixels belong to the flame

front, then smooth the contour before evaluating its length [4]. These two radii can be related to consumption

speed S C , mean turbulent flame velocity S T (the mean displacement speed) and mean stretch k, that will be

defined below.

For a cylindrical-in-average or spherical-in-average turbulent flame, the mean turbulent velocity S T can

be computed as [4, 14, 1]

S T =
ρb

ρu

dRS

dt
= (1 − α)

dRS

dt
(2)

where α denotes the density contrast α =
ρu − ρb

ρu

. Equation (2) can be obtained by mass conservation

through the (infinitely thin) flame front. The consumption rate of the fresh mixture S C (the mean burning

velocity) can similarly be expressed as

S C =
ρb

ρu

(
RS

RP

)ξ
dRS

dt
(3)

with ξ = 1 for cylindrical-in-average flames and ξ = 2 for spherical-in-average flames. Note that equation

(3) assumes that the front is infinitely thin. If a non-zero (thermal) thickness lt is assumed for the 3D front

(i.e. if lt/Rp is not≪ 1), another expression can be derived for S C [15, 16]

S C =
ρb

ρu

(
RS

RP

)2
dRS

dt

(
1

1 + (lt/Rp)2

)
(4)

The local flame stretch κ can be defined as [17, 4, 16]

κ ≡
1

δS

∂δS

∂t
(5)

where δS is a local element of front surface. From equation (5), one can deduce the mean flame stretch k as

[18]

k =
1

S u

dS u

dt
(6)
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with S u the total flame front surface. It is linked to Rp according to [15, 16]

k =
ξ

RP

dRP

dt
(7)

with again ξ = 1 for cylindrical-in-average flames and ξ = 2 for spherical-in-average flames.

From asymptotic theory and experiments, the consumption rate S C can be related to mean flame stretch

k according to [15, 17, 16]

S C = S 0
L − Luk (8)

where Lu is a Markstein length and S 0
L

is the laminar (unstretched) flame velocity.

2.2. Laminar case

In the laminar case, for 2D and 3D expanding flames, the front is perfectly circular or spherical. Hence,

the above introduced radii are identical : RS = RP = R and the stretch k (mean or local) is equal to k =
ξ

R

dR

dt
.

Markstein law (8) becomes

dR

dt
=

S 0
L

1 − α
− Lb

ξ

R

dR

dt
(9)

where Lb = Lu/(1 − α) denotes the “second Markstein length” [17]. Equation (9) can be cast in separate

variables form as
dR

dt
=

S 0
L

1 − α
·

1

1 + ξLb/R
(10)

This equation admits a closed form solution — the Lambert function of an exponential [19] — or may be

more conveniently solved numerically. These analytical results as well as experiments from [8] will be used

to validate preliminary DNS results for the laminar case, as it will be shown section 5.

3. DNS of expanding flames

3.1. Governing equations, numerical strategy, BCs

The set of governing equations are the fully compressible reactive Navier–Stokes equations, that can be

cast as

−
∂ρ

∂t
=
∂ρU j

∂x j

(11)

−
∂ρUi

∂t
=
∂ρUiU j

∂x j

+
∂P

∂xi

−
∂τi j

∂x j

(12)

−
∂ρE

∂t
=

∂

∂x j

(U j(P + ρE)) −
∂

∂x j

(
λ
∂T

∂x j

)
−
∂τi jUi

∂x j

− S̃ 5 (13)

−
∂ρYk

∂t
=
∂ρU jYk

∂x j

−
∂

∂x j

(
D
∂Yk

∂x j

)
− S̃ k (14)

in conservative form and with usual notations. Temperature T is deduced from total energy ρE = ρCVT +

ρ Ui
2 /2. Pressure is computed from perfect gas law P = ρrT and power law is assumed for dynamic

viscosity µ ∼ T 0.76. Heat diffusion coefficient λ and scalar conductivity D are deduced from dynamic

viscosity µ by assuming fixed values of Prandtl and Schmidt numbers. The stress tensor τi j is given by its
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Newtonian fluid expression (with δi j the Kronecker delta) : τi j = µ

(
∂Ui

∂x j
+
∂U j

∂xi

)
− 2

3
µ
∂Uk

∂xk
δi j. The terms S̃ k

and S̃ 5 represent source terms due to combustion. Chemistry is simplified assuming single step Arrhenius

kinetics; pre-exponential factor is tuned with respect to local equivalence ratio in order to fit the correct value

of the laminar flame velocity [20].

The DNS solver we employed is the in-house parallel solver HAllegro [21, 22]. It is based on a 6th-

order compact explicit finite difference scheme, applied on hybrid collocated/staggered grids, coupled to a

low-storage third-order Runge-Kutta algorithm to march in time. Within the context of the present work,

the main advantages of the solver are i) increased robustness, compared with a pure collocated strategy, i.e.

the possibility of using coarser grids while preserving the same accuracy; ii) the unambiguous definition of

boundary points, compared with a pure staggered strategy, allowing for straightforward acoustic outflow BC

treatment. For the expanding flames we computed, non reflecting outflow treatment of [23] demontrated

robustness and very low influence on flame shape, while the non-reflecting strategy of [24] makes the flame

become square, as will be shown figure 3a.

3.2. Laminar case, post-processing

To ensure a coherent comparison between numerical and experimental results, we made use of the same

post-processing procedure — in particular the same interpolation (smoothing) procedure for determining

the flame front — as the one used in [4, 15]. We shall evidence in this subsection some experimental and

numerical shortcomings : on the one hand, the post-processing interpolation procedure does not allow to

correctly capture the flame front under a 2 mm radius; on the other hand, the numerical boundary condition

treatment (the popular NSCBC and 3D-NSCBC) may induce a square-shaped front when approaching the

outflow boundaries.

We hence tested the procedure on laminar flames, both for cylindrical and spherical fronts. We performed

three computations : i) a cylindrical flame with usual NSCBC outlets [24], ii) a cylindrical flame with

3DNSCBC outlets [23, 25], iii) a spherical 3D flame with 3DNSCBC. Since we would like to test the

present procedure mainly for the turbulent case, we do not exploit any symmetries in the computations. The

mixture is ignited by forcing at initial time a Gaussian profile for temperature and composition at the center

of the computational domain.

Figure 2 represents temperature contours for each of these three cases. The points (∼ pixels, for a

corresponding measurement) where T (in Kelvins) stands in the interval [1076; 1223] are reproduced as +.

The used smoothing procedure [4] consists in polynomial interpolation to determine the RP radius.

At initial time t = 0, figure 2 shows a significant discrepancy between the simulated front and the

smoothed front. At small radii, the flame front is not sufficiently resolved (too few points/pixels to mark

it) and it seems that at these early times the smoothing procedure is not able to find a suitable front shape

and position. At larger times and radii, the resolution is sufficient and the value of RP reliable. From these

preliminary results, and as in the experiments [4] , we considered that the front shape and position was

correctly captured by the smoothing procedure only above a radius value of 2 mm.

Figure 3 presents ten equally spaced (in time) contours for the three aforementioned configurations. For

cylindrical flames, the flame radius increases at a constant rate as shown in figure 3b. In the spherical case,

figure 3c shows that the flame speed tends to increase with time.

Figure 4 shows flame radius time evolution R(t) for CH4/air laminar flames in the 2D and 3D expanding

cases. As expected, in this laminar case, the two computed radii RS and RP were found numerically equal

to R. For the three computational cases (2D with NSCBC or 3DNSCBC, 3D with 3DNSCBC), we plot

the computed radius against experimental results from [4] and [8]. From equations (2), (3) and (7), we can

compute consumption velocity S C , mean velocity S T and stretch k. Time evolutions for S C , S T and k are

shown figure 5 and as a function of R(≡ RS ≡ RP) figure 6.
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Figure 2: Radii RP and RS determination by front flame smoothing (same procedure as in [15]) : (a,d) cylindrical flame with NSCBC

outlets ; (b,e) cylindrical flame with 3D-NSCBC outlets [23, 25], (c,f) spherical flame with 3D-NSCBC outlets (equatorial section).

Only above 2 mm is the flame front correctly resolved.
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Figure 3: Temperature iso-contours time evolutions : (a) cylindrical flame with NSCBC outlets in a 5.7×5.7cm2 computational domain

(8002 grid points), ∆t = 1.05ms. (b) (4cm)2 (6002 grid points), cylindrical flame with 3D-NSCBC outlets in a ∆t = 0.789ms. (c)

spherical flame sections with 3DNSCBC outlets in a (1.125cm)3 computational domain, ∆t = 0.3ms

Figure 7 shows consumption velocity S C as a function of k. Again, all these computed quantities are

compared with experimental results from [4] and [8].

As expected [4], flame radius increases faster in the cylindrical configuration and the influence of bound-
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Figure 5: Time evolution of mean velocity S T , consumption speed S C and stretch k for computed CH4/air 2D and 3D laminar expanding

flames. As in figure 4, experimental points are those of Renou [4] and Lecordier [8].
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Figure 6: Evolution of mean velocity S T , consumption speed S C and stretch k as a function of flame radius for computed CH4/air 2D

and 3D laminar expanding flames. Same comparisons as in figure 5.
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ary condition treatment remains small. In the cylindrical case, the flame comsumption velocity tends quite

quickly to its limit (planar) value S 0
L
= 0.407m/s, while in the spherical case S C stays at a lesser level during

the evolution, as also noticed experimentaly in [4] and [8].

Very good agreement is obtained between DNS results of the spherical case and experimental results

from [8], as is the observed trend for larger radii. However, results from [4], even if compatible at large

times/radii, do not as fairly match neither DNS nor results from [8]. Estimation of S C or k is very sensitive

to the smoothing procedure used to compute dR/dt from raw data [19] and also to measurement frequency.

This may be the main cause of the observed discrepancies. Another possible source of inaccuracy at early

times may rely in the ignition device ( PRECISER LES DIFFERENCES entre les deux since reference XXX

made use of .... while reference YYY employed ....

Figure 7 shows that consumption velocity is an affine function of stretch k. However, a short transient

is observed before Markstein law is verified (cf. large values of k, i.e. small values of radius or time). This

may be due to our Gaussian initialization procedure used for initiating the DNS. Notice that this transient

is shorter in the DNS than in the experiments. Table 1 reports the best fits of laminar velocity S 0
L

and first

Markstein length Lu obtained to match Markstein law (8) (the straight lines in figure 7.) By extrapolation

Configuration S 0
L
(cm/s) Lu(µm)

Cylindrical, NSCBC 41.22 92.3

Cylindrical, 3DNSCBC 40.96 98.5

Spherical, 3DNSCBC 41.02 138

Experimental, spherical, from ref. [8] 41.46 148

Experimental, spherical, from ref. [4] 45.40 341

Table 1: Laminar flame velocity S 0
L

and first Markstein length Lu for computed and measured expanding flames.

to zero stretch, DNS give a value of S C close to less than 1% from the expected value of S 0
L
= 0.407m.s−1.

While experiments from [8] are at less than 2% from this value, measurements from [4] are around 12%.

Also notice that the obtained slope (i.e. the Markstein length Lu) from DNS is fully compatible with ex-

periments from [8] (138 vs. 148 µm). As expected [17], the computed values from the cylindrical case

perceptibly differ from the one obtained in the cylindrical case.

This preliminary computations in the laminar case allowed us to validate the adopted computational

strategy to simulate the expanding front. We are now ready to compute turbulent expanding flames.

3.3. DNS of turbulent wrinkled flames

In [11], a 3D expanding flame was computed in a (5 mm)3 cube, with a 1283 equally spaced grid. The

employed numerical method was based on a finite-difference collocated Padé scheme for space derivative

and third–order Runge–Kutta scheme in time. To save CPU resources, single–step chemistry was used.

Resulting spatial resolution was around 40µm. Since our in-house code HAllegro is essentially staggered

(except at the boundaries), we were able to use a spatial grid size of around 60µm, corresponding — thank to

the hybrid colocated/staggered arrangement [22] — to an equivalent (effective) size of less than 40µm. Our

grid consisted in 4803 nodes for a physical domain of (30 mm)3. In preliminary 1D and 2D tests, this spatial

resolution was sufficient to retrieve a correct value of the laminar flame velocity from the computations [21]

.

In the present study, xe consider a stoichiometric air/propane pre-mixture and we wish to impose a 3-

mm integral length and an initial turbulent intensity of u′/S L = 0.8 (u′ being the rms value of turbulent

velocity fluctuations). To this aim, we first generate a Passot–Pouquet [26] spectrum on a smaller 2403
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grid, corresponding to 1/8 of the total computational domain (the choice of a smaller grid was induced by

computational resource constraints). Figure 8a shows this “1/8” grid, an iso-level of the initial velocity field

|u| = u′, colored by vorticity modulus. This grid is duplicated in order to fill in the whole computational

domain (see figure 8b). This initial condition freely evolves through code iterations during 1.2 ms with

periodic boundary conditions, in order to obtain an acceptable approximation of decaying homogeneous

isotropic turbulence [21]. The boundary conditions are then changed to 3DNSCBC acoustic outflows. As

in the laminar case, the pre-mixture is ignited in the center thanks to a Gaussian profile in temperature and

composition (cf. figure 8c). Flame expansion is computed until a physical time of 7.28 ms is reached. Total

CPU cost was 70 000 hours on 512 4.7 GHz processors. Figures 9a to 10h represents iso-contours of reaction

rate during flame expansion. Vorticity iso-levels are also presented.

(a) Initial velocity field on the “1/8”

grid

(b) Duplication of the velocity field

on the whole domain

(c) Ignition at t = 0, after 1.2 ms of

free evolution of the velocity field

Figure 8: Initialization procedure (before ignition) for a propane/air stoichiometric 3D expanding flame.

Notice that, due to not high enough initial values of outflowing velocities, negative velocities can appear

at the outlets and spurious oscillations were indeed obtained at the outlets after 3.16 ms. A local filtering

procedure was used to temporarily damp turbulence at the outflows and stabilize the computation. This local

filtering does not seem to significantly affect flame/turbulence interaction during front expansion, as also

confirmed by preliminary 2D tests [21].

To perform the analysis of this simulation, we realize three sections of temperature iso-levels (at 500 K

VERIFIER AVEC ERIC XXXX), corresponding to the coordinates plans xOy, xOz and yOz, and monitor

their time evolution on figures 11a, 11b and 11c. We can observe that the contours are much closely packed

near the ignition kernel. Early flame velocities are small, as expected, due to large curvature of initial

front. For post–processing, we again made use of the same methodology employed for the laminar case

(section 3.2) and experiments from [4]. Results presentation — determination of equivalent radii RP and

RS , consumption velocity S C , mean turbulent speed S T and average stretch k — and analysis is post-poned

section 5 to compare it with the Evolution Equation Modelling (EEM) strategy presented next section and

experimental results.
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(a) t = 0, .49ms (b) t = 1.46ms

(c) t = 2.43ms (d) t = 3.40ms

Figure 9: Three dimensional simulation of a propane/air stoichiometric expanding flame. Iso-contours of vorticity (blue to red) and of

reaction rate (green). Physical times shown range from 0.49 to 3.40 ms (continued in figure 10).

4. EEM strategy

The Evolution Equation Modeling (EEM) approach consists in building (and solving) an equation for the

flame surface dynamics only, and not computing the 3D reactive flow. Of course, since it does not solve for

turbulence nor flame/turbulence interaction, it cannot replace the full 3D reactive equations. It is therefore

limited to simple geometrical configurations. However, in the present context of 3D spherical–in–average

expanding flame, we wish here to solve for a simple equation, adjust only one parameter and try to provide

pertinent information on flame dynamics.

13



(e) t = 4.37ms (f) t = 5.34ms

(g) t = 6.31ms (h) t = 7.28ms

Figure 10: Three dimensional simulation of a propane/air stoichiometric expanding flame. Iso-contours of vorticity (blue to red) and of

reaction rate (green). Physical times range here from 4.37 to 7.28 ms.

4.1. Chosen Evolution Equation

In [27], it was shown that the unburned to burnt density contrast1 α ≡ (ρu−ρb)/ρu may be used as expan-

sion parameter to derive evolution equations. In this perturbative approach, if α ≪ 1, the Landau–Darrieus

hydrodynamic instability mechanism of spontaneous wrinkling is weak. Reference [27] was the first to

propose a leading–order, weakly non-linear equation for flame shape dynamics : the so-called Michelson–

1Notice that 0 < α < 1. This parameter naturally appears in the governing equations and has already been introduced section 2.1.
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Figure 11: DNS of an expanding flame : sections of iso-levels of temperature as a function of time. Each contour is separated by a time

step of 0.6 ms.

Sivashinsky (MS) equation, or more simply Sivashinsky equation. Since then, many other attempts and

techniques to improve this equation or to propose other kinds of EEM equations can be found in the litera-

ture : e.g. higher order expansions in α for MS type equations [28, 29, 30], second order in time equations for

transients or acoustics [31, 32] non perturbative approaches [33, 34], asymptotic expansion based on flame

aspect ratio [35], 3D planar equations [36, 37, 38], equations dealing with non connected or non stellate

front topology [39, 40, 41].

In the context of 3D expanding flames [13, 42, 43], many of the proposed equations can be seen as dif-

ferent extensions of Michelson–Sivashinsky equation. For reasons specified later on, the chosen asymptotic

EE is the one proposed and analysed in [13]. It reads

1

S 0
L

∂F

∂t
= Ω(α)


H(F )

RM

−
1

Kn

C(F )

R2
M

 + a(α)
‖∇SF ‖

2

2R2
M

+ CT + u′ (15)

F (R, θ, ϕ) = R − RM denotes the front deformation (in spherical coordinates, θ the co-latitude and ϕ the

longitude), R is the instantaneous flame radius (depending on t, θ, and ϕ), RM is the mean flame radius, so

that at any time the mean value of F on the sphere is zero. This equation has a Michelson-Sivashinsky like

structure and each term can be physically interpreted :

i) The operator H(.) and C(.) are respectively the “hydrodynamic” and “curvature” operators : they

are linear and diagonal in the Fourier-Legendre basis (see below); H represents the contribution of

the Landau-Darrieus instabilibity, due to streamlines deflection; C accounts for the influence of front

local curvature on local burning velocity. The used expressions in present work are given (in the

Fourier–Legendre basis) equations (22 –23).

While H has essentially no refererence scale [29], C introduces a reference lenght, ∼ 1/Kn, with Kn

the neutral wavenumber, linked to Markstein length, [29].

ii) The symbol ∇S denotes the surface gradient ∇S (.) ≡ (∂(.)/∂θ, 1/ sin θ∂(.)/∂ϕ). This term in the RHS

of equation (15) corresponds to the Huygens geometrical non-linearity, expressing that the front tends

to essentially propagate normally to itself.

iii) The symbol CT stands for “counter terms”, that are present to ensure that front deformation field F is

“genuine”. It should not correspond to a (small) shift of the origin position, nor to a (small) shift of
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the mean front radius. This property will be naturally enforced by cancelling the first coefficients of

the Legendre-Fourier expansion of F (see section 4.3).

iv) The external forcing u′ has to be prescribed and should mimic the effect of (weak) turbulence on the

front. This shall be specified section 4.2.

v) the coefficientsΩ(α) and a(α) (see also note 2) can be modified to meet asympotic (α −→ 0+) or linear

limit behaviours. In the planar 2D case [30], they can also be tuned to quantitatively reproduce DNS

results.

Equation (15) appears as simple3 and in a sense minimal in its structure — each building block has

to be present to pertinently describe the physics. As mentioned above, and shown section 4.3, it is first-

order in time, a quite clear (and simple) physical meaning can be associated to each present term4, and it

is computationaly easy to handle in the Fourier-Legendre spherical harmonics basis. Moreover, it is also

robust against educated changes in the modelling [13]. As mentioned in the introduction, it requires few

(3+turbulent forcing) and easy to change input parameters. Since it provides an equation for the whole

deformed sphere — including the poles —, it has also been refered to as “accurate” in reference [43]5.

Note however that equation (15) needs be supplemented with an evolution equation for the mean surface

[13] (i.e. here for the mean front radius RM). In [29, 13], it is assumed that this mean radius evolves as

dRM

dt
=

S 0
L

1 − α
(16)

i.e. wrinkling does not affect flame propagation velocity. In most flamelet-based RANS or LES modelling

[16], it is assumed that the effective turbulent consumption rate is proportional to the flame surface density

or density of wrinkling (ibidem, eq. (5.4)). In the quasi-planar case, it can be asymptotically derived, for a

large Zel’dovitch number and a unit Lewis number [30]), that for steady flame shapes the speed at which the

front advances on average towards the fresh mixture is proportional to the flame surface increase. Using this

argument, for large radii expanding flames6 (i.e RM ≪ Markstein lengths), equation (16) can be combined

with this quasi-planar limit to yield

dRM

dt
=

S 0
L

1 − α
AS (17)

with AS =
S (t)

4πR2
and S (t) the actual flame surface area. Here, we are here interested in initially small radii

flames (RM ranging from 2 mm to 2 cm, to be compared with Markstein lengths ∼ 100 µm), hence curvature

and stretch effects are important at early times. Combining equations (17) — for large wrinkled expanding

flames — and (10) — for laminar stretched flames, and ξ = 2 in the spherical case — we propose

dRM

dt
=

S 0
L

1 − α
·

1

1 + 2Lb/RM

· AS (t) (18)

2Modifying a(α) > 1 may also be a way of taking into account the incluence of orthoradial velocity on non linear term [28]
3It is a differential-like equation in the Fourier-Legendre basis, even if the elliptic operator H(.) is non local in space.
4Of course, combustion physics is richer than that ! But, as this will be outlined in the paper, the main features will be captured by

the modelling.
5This reference proposed an interesting Fourier-Fourier modeling on large equatorial sectors, but not including poles.
6Notice that the “large” flames we are interested in in the present paper are quite far away from a fractal behaviour (RM ∼ tν, with

ν ≃ 1.5) ; cf. e.g. [44].
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as evolution equation for the mean flame front RM . When AS −→ 1 (i.e. in absence of wrinkling), equation

(18) yields (10), while when RM is noticeably larger than Lu (for larger radius flames), one gets equation

(17).

The input parameters of the modelling are as follows : the density contrast α, the laminar flame velocity

S 0
L

and the Markstein length Lu. From these, one can deduce the neutral wavenumber Kn [45]

Kn =
α

2(1 − α)LC

≃
α

2(1 − α)Lb

=
α

2Lu

(19)

One should also provide an external forcing term u′, mimicking turbulence, that will be specified next

subsection.

4.2. External forcing

To mimic the effect of turbulence on the front, an additive forcing u′ (∼ the radial velocity component

of the unburned mixture at the front) can be introduced. Since for weak turbulence, the flame acts as a

band-pass filter for wave numbers (around K = Kn), a simple uncorrelated white noise would do the job

[13, 45, 46, 36]. However, a more realistic turbulent forcing would be both correlated in space and time

[29]. In the present study, since we wanted to compare EEM results with DNS and experiments, we made

the EEM evolve in the same (statistically speaking) Passot-Pouquet “ turbulent” flow as the one used to

initialize turbulence in the DNS, possibly with the same or different random seeds used to generate it. To

mimic turbulence temporal decay, we simply made the velocity components exponentially decrease with

time, as it will be precised section 5. Notice that — at this stage — the modelling does not include flame

retroaction on turbulence.

4.3. Numerical strategy

In the spectral Fourier-Legendre space, the evolution equation (15) can formally be cast as

∂vlm

∂t
= Lvlm + Nlm (20)

where L is a linear operator and Nlm denotes the Fourier-Legendre coefficient of the non linear term of (15),

including the external forcing; vlm denotes the l − m coefficient (in the spherical harmonics basis Ym
l

) of F

(equation (15)) and

Lvlm ≡
h(l)

RM

−
1

Kn

c(l)

R2
M

, (21)

with

h(l) = 2l(l − 1)/(2l + 1) (22)

and

c(l) = (l − 1)(l + 2) (23)

as specifed in reference [13]. As mentioned section 4.1 (item iii)), the first terms are forced to zero (v00 =

v10 = v11 = 0) to ensure “genuine” deformations only.

A quite convenient way to numerically solve equations of the same kind as (20) is to use Exponential

Time Differencing Runge-Kutta (ETDRK) methods [47, 48, 49, 50]. If h denotes the (assumed constant)

time step size, the first order and fourth order schemes [49] can respectively be written as

vn+1 = eLhvn +
eLh − 1

L
Nn (24)
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and

an = vneLh/2 +
eLh/2 − 1

L
Nn, Na = N(an) (25a)

bn = vneLh/2 +
eLh/2 − 1

L
Na, Nb = N(bn) (25b)

cn = aneLh/2 +
eLh/2 − 1

L
(2Nb − Nn), Nc = N(cn) (25c)

vn+1 = vneLh +
Nn

L3h2

(
−4 − Lh + eLh

(
4 − 3Lh + L2h2

))

+
2 (Na + Nb)

L3h2

(
2 + Lh + eLh (−2 + Lh)

)

+
Nc

L3h2

(
−4 − 3Lh − L2h2 + eLh (4 − Lh)

)
(25d)

When computing terms of the form (ez − 1)/z with |z| → 0 numerical cancellation errors may lead to

unacceptable inaccuracy or instability [49]. Following [49, 48], in order to avoid these errors for small

values of |Lh|, the numerical evaluation of (ez − 1)/z makes use of a contour integral in the complex plane

around z = 0. Preliminary tests on one–dimensional Michelson–Sivashinsky equation [21] showed it was

more convenient to use the ETDRK4 method in terms of stability and CPU effort. Since we compare our

EEM computation (less than 2 CPU hours) to heavier DNS computations ( ∼ 70 000 CPU hours), we did not

try to use fast and/or parallel spherical harmonics tools [51, 52]

In order to compare the EEM simulations with the DNS computations, we projected the velocity radial

component from the 4803 DNS grid (∼ 100 106 points) to a coarser 1003 = 106 grid, in order to compute

the input forcing u′ to the EE. The EE is then solved on a Fourier-Legendre grid of 1313 × 1312 (≃ 1.7 106)

colocation points. For the 3 cm flame, the computational cost was a little more than 2 CPU hours on a 3 GHz

Xeon processor.

5. Results and discussion

To reproduce an expanding stoichiometric propane/air flame at room pressure and temperature, the nu-

merical value of the density contrast was taken as α = 0.85.

For our 3D EEM simulation, the numerical value of the neutral wavenumber Kn is depending on the nu-

merical values of the density contrast α and of the first Markstein length (equation (19). To obtain a suitable

numerical value for the Markstein length Lu, we plot on figure 7 consumption velocity S C (equation (3)) vs

mean flame stretch k (equation (7)) for experimental results from [4] and from present DNS calculation. To

get a consistent comparison, we performed some equatorial sections of the DNS profiles — as it is actually

done in the experiments — and extract S C and k from them. Table 2 gathers the obtained results, along

with the deduced laminar flame velocity (value of S C extrapolated at zero stretch). For our mixture, from

literature, the unstretched laminar flame velocity is S 0
L
= 0.407 m.s−1. In this turbulent case, these values

are quite difficult to determine experimentally [16] and are subject to statistical variation. They indeed no-

ticeably differ from one section (including experiment) to another. Still, the obtained results are compatible

with the values determined in the laminar case (cf. table 1, S 0
L
≃ 0.41 m.s−1 and Lu ≃ 140 µm), specifically

for large radii (small values of k).

To take into account the temporal decay (with a characteristic time τ) of turbulence intensity, we multi-

plied the computed forcing u′ by an exponential factor e−t/τ with τ = 13 ms. This behavior was determined
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Table 2: Determination of laminar flame velocity S 0
L

and of the first Markstein length Lu from data of figure 7 .

Case S 0
L
(cm/s) Lu (µm)

DNS cut (a) 44.7 154

DNS cut (b) 41.4 123

DNS cut (c) 39.3 107

Experiment [4] 35.9 107

from the (non reactive) isotropic turbulent flow simulation, used to initialize the flow before ignition. How-

ever, the presence of the flame modifies the turbulent flow, and this is not taken into account by the present

EEM approach. As this will be presented subsection 5.1, a better agreement was obtained when decreasing

the effective forcing felt by the flame by a factor β = 0.6. Combined with the turbulence decay rate, the ac-

tual forcing u′a implemented in the simulation is u′a = u′ × βe−t/τ. Moreover, in [29, 30], in the context of 2D

planar flames, the coefficient a(α) in the Michelson-Sivashinsky equation (equivalent to the a(α) in equation

(15) was tuned as a function of α in order to fit the front winkling amplitude and successfully reproduce

DNS results.

To test the sensitivity of the results to the input parameters values — which are not precisely known —,

we ran different EEM simulations by slightly changing some parameters around their nominal or assumed

value. These parameters were respectively a(α) — appearing in equation (15) —, the Marsktein length Lu

— linked to Kn via equation (19) — and u′/S L — the effective intensity of the forcing felt by the flame, via

the β parameter.

The original value for a(α) (≡ 2/(2 − α) ≃ 1.739 for α = 0.85) was modified to its fitted value in the

planar case from [29, 30] to give a f it(α) ≃ 2.071 for α = 0.85.

The numerical value for Lu was taken as 100, 120 and 138 µm respectively, since the measured values

for this parameter show a quite important dispersion (as it is well known [16]) but still of the order of

100 µm. The β parameter was also tuned from 1.0 to 0.6. This parameter may be seen as a correction

for retroaction effect of the flame on turbulence, which is not taken into account in the present approach.

Indeed, a laminar expanding flame radius R essentially grows like dR/dt = S b = ρuS 0
L
/ρb (cf. equations

(2) or (9)). Fixed vortices of size l would then be consumed in a time ∼ l/S b, whereas a real flame would

consume them in a time ∼ l/S 0
L

since gas expansion pushes away the vortices in the radial direction at a

speed S b − S 0
l
. A way of taking into account gas expansion would be to elongate (of a factor ρu/ρb) in the

radial direction the (non moving) vortices seen by the flame [29]. The intensity decrease of the synthetic

forcing (via the β parameter) may constitute a simple way to take into account this “Doppler effect” on the

flame propagation. In the context of the present paper, we did not attempt any change of modelling for the

curvature and hydrodynamic operators expressions C and H (equations (22 –23); see [13]).

To ensure the robustness of the approach to statiscal variation, we also changed the random seed parame-

ters (used by the pseudo-random numbers generator) for the initial Passot-Pouquet spectrum, corresponding

to the four EEM samples in figures 12–16).

5.1. Comparison with DNS and experimental results

We quantitatively compared the resuts obtained with the EEM strategy to the outputs from experiments

[4] and present DNS results (section 3).

Figures 12 show the results obtained with the a priori “nominal” values of the parameters — that are in

fact somewhat arbitrary — corresponding to Lu = 138 µm, a(α) = 2/(2 − α) ≃ 1.74 (from reference [13]

and β = 1. Figures 12–(a) to 12–(f) respectively show temporal evolution of radii RP and RS , mean stretch
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k, consumption speed S C and mean turbulent velocity S T as functions of RS , and S C as a function of k. The

results from the experiments (quoted as EXP) as those of [4]. The four equatorial sections from EEM are

obtained thanks to four different random seeds for the passot-Pouquet spectrum. Results obtained by DNS

refer to three different perpendical sections of the 3D expanding simulation. While results between DNS

and EXP are quite in line (except for difficult-to-determine outputs like S C , S T and k), results from EEM,

even if compatible, are slightly shifted to higher values, indicating the external forcing felt by the flame may

be too large.

To correct this too large “turbulence”, we decreased the β parameter (from 1. to 0.6). Similar results

are presented on figures 13. Quite fair agreement is now obtained beteween EEM, DNS and EXP results,

in particular at large radii and small stretch. DIspersion of results between the 3 sections of the (one-shot)

DNS result is compatible with EXP and EEM results.

To check the robustness and well–posedness of the modelling — do small changes in the input parameters

induce small changes in the outputs ? — we made some parameters vary. We first made vary the value of

Marstein length Lu, which in known to be difficult to determine [16], down to 120 and 100 µm. The results,

similar to the one of figures 13 are shown figures 14 and 15. They indicate a quite low sensitivity of the

results to this parameter and this may be seen as a comforting argument to the EEM approach, since

A CREUSER: OU ENTRE le LU DANS LE MODELE...

As already mentioned, the coefficient a(α) was also increased to its “planar best-fit” value of 2.07 [30]

for α = 0.85, corresponding to equation (26):

a(α) = 1 +
1

2
α +

3

8
α2 +

4

3

(
(1 − α)−1/4 − (1 +

α

4
+

5α2

32
)

)
(26)

The results, similar to the one of figures 13 are shown figures 16. We also tried to increase the value of a

even more, up to the arbitrary value of 2.5, without noticing any qualitative change in the results. For the

sake on brevity, these results are not shown here.

The value of Markstein lenght

The visual resemblance is striking

6. Concluding remarks, future work

References

[1] X. Gu, M. Haq, M. Lawes, R. Woolley, Laminar burning velocity and Markstein lengths of methane–air

mixtures, Combustion and flame 121 (1-2) (2000) 41–58.

[2] D. Bradley, R. Hicks, M. Lawes, C. Sheppard, R. Woolley, The measurement of laminar burning

velocities and markstein numbers for iso-octane-air and iso-octane-n-heptane-air mixtures at elevated

temperatures and pressures in an explosion bomb, Combustion and flame 115 (1) (1998) 126–144.

[3] N. Peters, Laminar flamelet concepts in turbulent combustion, Symposium (International) on Com-

bustion 21 (1) (1988) 1231 – 1250, 21st Symposium (International) on Combustion. doi:DOI:

10.1016/S0082-0784(88)80355-2.
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[21] E. Albin, Contribution à la modélisation numérique des flammes turbulentes : comparaisons dns-eem-

expériences., Ph D Thesis.

21



[22] E. Albin, Y. D’Angelo, L. Vervisch, Using staggered grids with characteristic boundary conditions

when solving compressible reactive navierstokes equations, International Journal for Numerical Meth-

ods in Fluids (2011) n/a–n/adoi:10.1002/fld.2520.

URL http://dx.doi.org/10.1002/fld.2520

[23] C. S. Yoo, H. G. Im, Characteristic boundary conditions for simulations of compressible reacting flows

with multi-dimensional, viscous and reaction effects, Combustion Theory and Modelling 11 (2) (2007)

259–286.

[24] T. Poinsot, S. Lele, Boundary conditions for direct simulations of compressible viscous flows, Journal

of computational physics 101 (1) (1992) 104–129.

[25] G. Lodato, P. Domingo, L. Vervisch, Three-dimensional boundary conditions for direct and large-eddy

simulation of compressible viscous flows, Journal of Computational Physics 227 (10) (2008) 5105–

5143.

[26] T. Passot, A. Pouquet, Numerical simulation of compressible homogeneous flows in the turbulent

regime, Journal of Fluid Mechanics 181 (1987) 441–466. doi:10.1017/S0022112087002167.

[27] G. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames. I- Derivation of basic

equations, Acta Astronautica 4 (1977) 1177–1206.

[28] Sivashinsky, G.I., Clavin, P., On the nonlinear theory of hydrodynamic instability in flames, J. Phys.

France 48 (2) (1987) 193–198. doi:10.1051/jphys:01987004802019300.
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Figure 12: Comparison of DNS, EEM and experimental results from [4]. Time evolution of radii RP (a) and RS (b); evolution of stretch

k (c), consumption speed S C (d) and mean turbulent velocity S T (e) as a function of RS ; evolution of S C as a function of k (f). The set

of used input parameters is : Lu = 138µm, a(α) = 2/(2 − α) ≃ 1.74 (from reference [13], β = 1.
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Figure 13: Comparison of DNS, EEM and experimental results from [4]. Time evolution of radii RP (a) and RS (b); evolution of stretch

k (c), consumption speed S C (d) and mean turbulent velocity S T (e) as a function of RS ; evolution of S C as a function of k (f). The set

of used input parameters is : Lu = 138µm, a(α) = 2/(2 − α) ≃ 1.74 and β = 0.6.
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Figure 14: Comparison of DNS, EEM and experimental results from [4]. Time evolution of radii RP (a) and RS (b); evolution of stretch

k (c), consumption speed S C (d) and mean turbulent velocity S T (e) as a function of RS ; evolution of S C as a function of k (f). The set

of used input parameters is : Lu = 120µm, a(α) = 2/(2 − α) ≃ 1.74, β = 0.6.
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Figure 15: Comparison of DNS, EEM and experimental results from [4]. Time evolution of radii RP (a) and RS (b); evolution of stretch

k (c), consumption speed S C (d) and mean turbulent velocity S T (e) as a function of RS ; evolution of S C as a function of k (f). The set

of used input parameters is : Lu = 100µm, a(α) = 2/(2 − α) ≃ 1.74, β = 0.6.
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Figure 16: Comparison of DNS, EEM and experimental results from [4]. Time evolution of radii RP (a) and RS (b); evolution of stretch

k (c), consumption speed S C (d) and mean turbulent velocity S T (e) as a function of RS ; evolution of S C as a function of k (f). The set

of used input parameters is : Lu = 120µm, a(α) ≃ 2.07 (best fit for planar flames, cf. [30]) and β = 0.6.
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(a) t = 2.01ms (b) t = 3.33ms

(c) t = 4.65ms (d) t = 5.44ms

(e) t = 6.49ms (f) t = 7.28ms

Figure 17: Sample numerical simulation of an expanding flame by the EEM approach. To ease readability, the mean radius has been re-

scaled to max size for each figure. The corresponding times are respectively 2.01, 3.33, 4.65, 5.44, 6.49 and 7.28 ms. The corresponding

mean radii are (in mm) 3.58, 6.26, 9.23, 11.1, 13.7 et 15.5. The set of used input parameters is : Lu = 138µm, a(α) = 2/(2 − α) ≃ 1.74

and β = 0.6. This figures are to be compared with the results from figures 9–10).
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Figure 18: EEM strategy : two equatorial sections of the expanding front for two different realizations of Passot-Pouquet forcing

(corresponding to samples 1 and 2 of figures 13) for Lu=138 µm, β = 0.6 and a = 1.74. The time interval between two isolines is

∆t = 0.376ms). These figures are to be compared with DNS results of figure 11.30


