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Abstract—Vehicular networks, besides supporting safety-
oriented applications, are nowadays expected to provide effec-
tive communication infrastructure also for supporting leisure-
oriented application including content sharing, gaming and In-
ternet access on the move. This work focuses on Vehicle to Infras-
tructure (V2I) scenarios, where multiple content providers own
a physical infrastructure of Road Side Units (RSUs) which they
use to sell contents to moving vehicles. Content provider/RSU
owners compete by adapting their pricing strategies with the
selfish objective to maximize their own revenues. We study
the economics of the price competition between the providers
by resorting to game theoretic tools. Namely, we formalize a
simultaneous price game among the operators further studying
the existence of Nash equilibria and their related quality in terms
of Price of Anarchy and Price of Stability. The proposed game
model is finally used to assess the impact onto the game equilibra
of several practical factors including the vehicles’ willingness to
pay, the traffic densities, and the configuration of the physical
networks of RSUs.

I. INTRODUCTION

The constant increase in the number of cars traveling along
the roads worldwide calls for effective means to improve the
road safety and the efficiency of the overall transportation
infrastructure. To this end, the research community, the in-
dustries and the governments all over the world are investing
much of their efforts and money on the development of
integrated Intelligent Transportation Systems (ITS) based on
wireless communication networks allowing vehicles, equip-
ment on the road, service centers and intelligent sensors to
exchange information in a prompt and cost effective way. In
this scenario, vehicles are geared with wireless communication
hardware, often referred to as On Board Units (OBUs), to sup-
port communication with other vehicles (Vehicle-to-Vehicle,
V2V) and with road infrastructure (Vehicle-to-Infrastructure,
V2I). In this last case, the devices composing the roadside
infrastructure are often called RoadSide Units (RSUs).

A broad classification of the applications which are enabled
by vehicular networks can be found in [8] where a distinc-
tion is made between applications targeting safety, transport
efficiency, and information/entertainment. Safety applications
include, as an example, collision warning services, transport
efficiency application may include lane merging assistance,
and navigation services, whereas information/entertainment

application range from file sharing among vehicles to Internet
access on the move.

In this work, we focus on the vehicle-to-infrastructure (V2I)
communication paradigm for VANETs to support content
distribution to moving vehicles. Namely, we consider the
case where multiple content providers coexist and compete
in a given geographical area. Each content provider owns
a physical infrastructure of RSUs which she uses to sell
contents to moving vehicles. Content provider/RSU owners
compete by adapting their pricing strategies with the selfish
objective to maximize their own revenues. In such a scenario,
we ask ourselves the following simple question: if competing
providers wish to select the pricing strategy in order to provide
or collect data to/from passing vehicles, what kind of strategies
should they follow? The answer is far from being trivial as it
predictably depends on several factors including the vehicles’
willingness to pay, the traffic densities, the configuration of
the physical networks of RSUs, and the strategic interaction
among the content providers.

We tackle this problem by considering a basic model with
a duopoly of competing content providers. We study the
economics of the competition between the two providers
by resorting to game theoretic tools [17], [12]. We take a
constructive approach by first analyzing the best response of
strategy for one operator when the pricing strategy of the other
one is given. Then, we extend the analysis to the case where
both operator compete simultaneously to set their pricing
strategy. In this last case, we formally study the existence of
Nash equilibria for the duopoly pricing game and their related
quality in terms of Price of Anarchy.

The manuscript is organized as follows: Section II reviews
the related literature in the field further highlighting the major
novelties of the present work; in Section III, the reference
network scenario and model are described. Section IV provides
the analysis of the best response of one operator when the
pricing strategy of the other is given, whereas the simultaneous
pricing game is analyzed in Section V. Section VI concludes
and indicates some directions for future work.

II. RELATED WORK

The design of efficient V2I and V2V networks has already
attracted much attention within the research community. Most



of the work generally targets the design and optimization of
communication protocols to be used in vehicular networks.
As an example, the optimization of V2I segment is targeted
in [23] where the focus in on uplink and downlink packet
scheduling techniques. Along the same lines, Yang et al. study
in [21] the applicability and performance of IEEE 802.16 for
the communication between groups of vehicles and an RSU.

V2V communications are addressed in [4], [11], [22]. In
[4] a Medium Access Control (MAC) protocol is proposed to
support reliable communication among vehicles. The work in
[22] proposes a protocol framework to support the dissemi-
nation of warning messages in V2V, whereas the use of V2V
communications to support proactive data monitoring in urban
environments in studied in [11].

In the field of V2I networks, besides the work on protocol
design/optimization, it is worth mentioning the research field
targeting the optimal design of the roadside infrastructure.
In this case, the goal is to optimize the deployment of the
RSUs with respect to specific objectives which are generally
related to the coverage ratio of vehicles. Trullols et al. [19]
propose three formulations for the the deployment problem
as a Maximum Coverage Problem (MCP), Knapsack Problem
(KP), and Maximum Coverage with Time Threshold Problem
(MCTTP), respectively; heuristics based on local-search and
greedy approaches are then introduce to get suboptimal solu-
tions. Along the same lines, Cavalcante et al. [5] focus on the
Maximum Coverage with Time Threshold Problem (MCTTP)
and propose a genetic algorithm to solve it. Yan et al.. [20]
study the very same RSU deployment problem in case the
candidate sites for deployment are limited to the intersections
between crossing roads. The interested reader may refer to [2]
and references therein for a more comprehensive description
on the general problem of RSU deployment. Different from
the aforementioned work which assumes one central entity
to optimize the RSU deployment, [6] studies the competitive
scenario where different network operators compete in the
deployment of their respective RSUs by resorting to a non-
cooperative game. Spatial positioning games are also proposed
in [1] for generic wireless access networks.

Game theory has been used to evaluate the strategic interac-
tion between the different agents in vehicular networks [16].
In [15], the authors introduce a stochastic game among OBUs
which compete to get service from shared RSUs. Nyiato et
al. propose in [14] a hierarchical game framework to capture
the competition of different actors; besides OBUs and RSUs,
the concept of Transit Service Provider (TSP) is used to
model an entity which manages groups of vehicles and is
in charge of minimizing the total cost to support streaming
application to its vehicles while meeting the application QoS
requirement. The available bandwidth at each RSU can be
split in reserved bandwidth and on-demand bandwidth. OBUs
make short-term decisions between on-demand and reserved
bandwidth (if available), TSPs decides what kind of bandwidth
split to purchase from different RSUs along the road, whereas
Network Service Providers (NSPs) owning RSUs set their
price for on-demand bandwidth to maximize their revenues.

Differently, in [18] a coalition formation game among RSU is
analyzed, with the aim of better exploiting V2V communica-
tions for data dissemination.

The matter of pricing in generic wireless access networks is
largely debated in the literature. Reference [13] provides a nice
overview on pricing problems in wireless networks, and further
analyze a specific case where two wireless Internet service
providers compete on prices, one owning a WiMAX-based in-
frastructure and the other running a WiFi-based infrastructure.
Differently from previously mentioned literature, in this work
we focus on price competition between network operators
for V2I networks, which is, to the best of our knowledge, a
novel issue. Even if V2I networks bear some similarities with
generic wireless access networks, there are distinctive features
which make the pricing problem worth analyzing; in generic
wireless access networks, the network operator competition is
generally on the “common” users, that is, those users which
fall in the coverage area of the competing network providers.
In other words, there is actually a competition only if the
coverage areas of the network providers (partially) overlap as
in [13]. Users themselves tend to choose the network operator
which maximizes some quality measure as in [7]. On the other
side, in V2I networks competition may arise due to vehicles
mobility even if the coverage areas of competing RSUs are not
overlapping, since if a RSU does not serve a moving vehicle
in its own coverage range, the very same user can be served
later by competing operators.

III. MODEL

A. Usage scenario

We consider two Internet access providers (labeled by 1
and 2), competing to attract users on a stretch of a highway.
They offer the possibility to access the Internet through
Road Side Units, which allows cheaper or better QoS than
the other available cellular networks1. We assume that each
provider has already deployed one RSU –on different locations
along the road–, and that both RSU are identical; we denote
their individual goodput (or capacity) by c. (Note that this
model easily extends to the case when providers own disjoint
“connectivity regions”, each one made of several RSUs and
with total service capacity c.)

Since both providers’ RSU are at different locations, vehi-
cles taking the road in one direction first enter the coverage
area of Provider 1’s RSU, while those traveling in the opposite
direction first see Provider 2. We denote by ρj , j = 1, 2 the
average number of commuters per time unit that first enter
Provider j’s coverage area; they will cross the competitor’s
coverage area afterwards (since we are considering only one
road).

Each user wants to download data files, for an average
volume per user (assumed independent of the travel direction)
normalized to 1 without loss of generality; the potential
demand (in volume) from users seeing Provider j first thus
also equals ρj . In this paper, we treat those average loads

1Note that we ignore vehicle-to-vehicle communications in this paper.



Fig. 1. Flows involved in the model: among the total potential demand ρj
seeing Provider j first, we distinguish ρsp

j (demand from users agreeing to
pay pj , but not served by this provider), ρref

j (demand from users refusing to
pay pj ) and ρusj (demand unserved by any provider).

as static values, i.e. we do not model the time variations of
the load. Moreover, we assume that the coverage area size of
RSUs and the vehicles’ speed do not constrain the transfers:
if a RSU’s capacity exceeds its (average) load, all requests are
successfully served.

Each provider j = 1, 2 chooses the (flat-rate) price pj to
charge for the connection service. To model heterogeneity
among users, we assume that only a proportion w(p) of
users accept to pay a unit price p for the service (this being
independent of the download volume). As a result, if Provider
j sets his price to pj , the users who first enter Provider j’s
service area generate a demand (again, per time unit, and
treated as static) of w(pj)ρj . Note that we are assuming here
that users do not try to anticipate the price set by the next
provider: when a user first sees an RSU access offer, she
responds to it as if there were no other RSU afterwards.

Figure 1 summarizes that scenario in terms of demand flows.
The total potential demand (volume per time unit) ρj from
users seeing Provider j can be decomposed into:

1) users accepting the price pj and being served by
Provider j;

2) users accepting the price pj and being rejected due to the
RSU capacity limit (forming a spillover flow ρsp

j heading
to the competitor’s RSU);

3) and users refusing the price pj (forming a flow ρref
j

heading to the competitor’s RSU).
The two latter flows then enter the coverage area of the
competing provider, where they can be served or not. In the
latter case, we denote the corresponding (unserved) demand by
ρusj . Note that we assume users keep the same willingness-to-
pay for the service when they enter the second RSU coverage
area.

B. Mathematical formulation

We now give analytical expressions for the different demand
components, using the RSU capacity c and the willingness-
to-pay function w(·). In the whole paper, w(·) is assumed
continuous and non-increasing, and such that w(0) = 1 and
w(pmax) = 0 for some pmax > 0. If the quality of the
alternative cellular access (say, 4G) is sufficient, the price
pmax may be interpreted as the unit price for that cellular

service: above pmax, users have no interest to use an RSU-
based access.

The demand submitted to Provider j comes from three
different types of users:

1) those seeing Provider j first, and accepting to pay the
proposed price pj , hence issuing a total demand

w(pj)ρj ;

2) those seeing Provider k 6= j (the competing provider)
first, who refused to pay pk but would accept the price
pj , forming a total demand level (smaller than ρref

k , and
null when pk ≤ pj)

ρk[w(pj)− w(pk)]+,

where x+ := max(0, x) for x ∈ R.
3) and those seeing Provider k first, who agreed to pay

pk but were rejected because of Provider k’s limited
capacity, and who also agree to pay pj , for a total
demand

min

(
1,
w(pj)

w(pk)

)
ρsp
k ,

where ρsp
k is the part of the demand w(pk)ρk that is

spilled over by Provider k.
The total demand ρT

j (pj , pk) for Provider j then equals the
sum of the aforementioned components:

ρT
j (pj , pk) :=

w(pj)ρj + ρk[w(pj)− w(pk)]+ + min
(

1,
w(pj)
w(pk)

)
ρsp
k

Note the dependance in both prices, although for simplicity
we will sometimes just write ρT

j when there is no ambiguity.
When the total demand at an RSU exceeds its capacity, some

requests are rejected: we assume the RSU serves users up to its
capacity level, and the rejected requests are selected randomly
among all requests. This leads to an identical probability of
success Pj for each request submitted to Provider j, that is
simply given by

Pj = min

(
1,

c

ρT
j

)
(1)

so that the served traffic at RSU j equals ρT
jPj = min(c, ρT

j ).
Again, the probability Pj depends on the price vector (pi, pj).
The corresponding revenue of Provider j is then

Rj = pj min[c, ρT
j (pj , pk)]. (2)

The traffic ρsp
j spilled over by Provider j (and that will then

enter the competitor’s coverage area) also depends on both
prices through the probability Pj , and equals

ρsp
j = w(pj)ρj(1− Pj), (3)

with

Pj = min

1,
c

w(pj)ρj+[w(pj)−w(pk)]+ρk + min[1,
w(pj)
w(pk) ]ρsp

k

.



Remark that for a given price configuration (p1, p2), the
success probabilities P1 and P2 are the solution of a fixed-
point system, since the success probability Pj of Provider j
depends on the spillover demand ρsp

k and thus on Pk, that
itself depends on ρsp

j and hence on Pj . More specifically,
assuming without loss of generality that p1 ≥ p2, those success
probabilities should satisfy P1 = min

(
1, c

w(p1)(ρ1+ρ2)−w(p1)ρ2P2

)
P2 = min

(
1, c

w(p2)(ρ1+ρ2)−w(p1)ρ1P1

)
.

(4)

Proposition 1: For any price vector (p1, p2), the system (4)
has a unique solution (P1, P2).

Proof: We again assume without loss of generality that
p1 ≥ p2. Since the right-hand sides of the equations in (4) are
continuous in (P1, P2) and fall in the interval [0, 1], Brouwer’s
fixed-point theorem [9] guarantees the existence of a solution
to the system.

To establish uniqueness, remark that P2 is uniquely defined
by P1 through the second equation in (4), so (P1, P2) is unique
if P1 is unique. But P1 is a solution in [0, 1] of the fixed-point
equation x = g(x) with

g(x) := min

1,
1

a+ b− bmin
(

1, 1
a+b+ε−ax

)
 ,

where a = w(p1)ρ1

c , b = w(p1)ρ2

c , and ε = (w(p2)−w(p1))(ρ1+ρ2)
c

are all positive constants; we also assume a > 0 and b > 0
otherwise the problem is trivial. As a combination of two func-
tions for the form x 7→ min

(
1, 1

K1−K2x

)
, g is continuous,

nondecreasing, strictly increasing only on an interval [0, x̄] (if
any) –it is in addition convex on that interval–, and constant
for x ≥ x̄ (note we can have x̄ = 0 or x̄ ≥ 1).

Assume g(x) = x has a solution x̃ ∈ (0, x̄]. Then g is
left-differentiable at x̃, and

g′(x̃) =
x̃2ab

(a+ b+ ε− ax̃)2
≤ x̃2a

(a+ b+ ε− ax̃)
(5)

where we used the fact that x̃ ≤ 1 (as a fixed point of
g). Moreover, since x̃ is in the domain where g is strictly
increasing we have η := 1

a+b+ε−ax̃ ≤ 1 on one hand, and
x̃ = 1

a+b−bη on the other side. Their combination yields x̃ ≤ 1
a

and finally
g′(x̃) ≤ x̃ ≤ 1.

Remark also that g′(x̃) < 1 if x̃ < 1. We finally use the fact
that g(0) > 0 to conclude that the curve y = g(x) cannot meet
the diagonal y = x more than once: assume two intersection
points x̃1 < x̃2, then g′(x̃1) < 1 thus the curves cross at x̃1,
another intersection point x̃ would imply g′(x̃2) > 1 (recall
g is convex when strictly increasing), a contradiction. Hence
the uniqueness of the fixed point and of the solution to (4).

We can also establish continuity properties for the solution
of (4), which will be used in the remainder of this paper.

Proposition 2: The success probability pair (P1, P2) is con-
tinuous in the price profile (p1, p2).

Proof: For a given price profile (p1, p2), the solution
(P1, P2) of (4) can also be seen as a solution of the mini-
mization problem

min
(P1,P2)∈[0,1]2

(
P1−min

(
1,

c

w(p1)(ρ1+ρ2)− w(p1)ρ2P2

))2

+

(
P2−min

(
1,

c

w(p2)(ρ1+ρ2)− w(p1)ρ1P1

))2

,

where the objective function is jointly continuous in (P1, P2)
and (p1, p2). From the Theorem of the Maximum [3], the
mapping of prices (p1, p2) into the corresponding set of
solutions (P1(p1, p2), P2(p1, p2)) is an upper hemicontinuous
correspondence. From the uniqueness result above, that corre-
spondence is single-valued and hence continuous. We therefore
have continuity for p1 ≥ p2 and for p2 ≥ p1 (exchanging the
roles of providers), hence continuity for all price profiles.

IV. REVENUE-MAXIMIZING PRICE FOR A PROVIDER

In this section we assume that provider k has already chosen
his price, while provider j has to set his. We describe the
revenue function of provider j for different scenarios, and
provide an example when the willingness-to-pay function is
linear.

In this whole section, we only consider prices p such that
w(p) > 0, since a larger price would yield no revenue to the
provider setting it.

We first establish a monotonicity result, that will be useful
in the rest of the analysis.

Lemma 1: The total demand ρT
j of provider j is a continu-

ous function of his price pj ; that function is in addition non-
increasing while provider j is not saturated (i.e., while ρT

j < c).
Proof: Recall that

ρT
j (pj , pk) = w(pj)ρj + ρk[w(pj)− w(pk)]+

+ min (w(pk), w(pj)) ρk(1− Pk).

The components of the first line are trivially continuous and
non-increasing in pj with our assumptions on w(·).

The continuity of ρT
j (pj , pk) follows from the continuity of

Pk in the price vector (pj , pk), established in the previous
section.

To establish the monotonicity result, we distinguish two
cases.
• If pj ≤ pk, we show that the success probability Pk is non-
decreasing in pj : applying System (4) (with k = 1, j = 2) we
get that Pk is the solution of the fixed-point equation x = g(x),
where the function g can be written as

g(x)=min

1, c

w(pk)ρk+w(pk)ρj

[
1− c

w(pj)(ρj+ρk)−w(pk)ρkx

]+
.

We then remark that, all else being equal, g(x) is non-
decreasing in pj , so the solution Pk of the fixed-point equation
g(x) = x is also non-decreasing in pj .



As a result, when pk ≥ pj the component
min (w(pk), w(pj)) ρk(1 − Pk) decreases with pj , and
so does ρT

j .
• If pk < pj , then we have

ρT
j (pj , pk) = w(pj)ρj + w(pj)ρk(1− Pk).

When ρT
k < c, then Pk = 1 and ρT

j is non-increasing in pj .
Now if ρT

k > c then from System (4) (this time with k = 2,
j = 1), we have w(pk)(ρj + ρk)− w(pj)ρjPj > c and

ρT
j (pj , pk) = w(pj)(ρj + ρk)

+w(pj)ρk
c

w(pk)(ρj + ρk)− w(pj)ρjPj
.

Assuming that provider j is not saturated, Pj = 1 and thus
ρT
j = f(w(pj)) with

f(x) := x(ρj + ρk)− xρk
c

w(pk)(ρj + ρk)− xρj
.

But f is a non-decreasing function of x when x ∈ [0, w(pk)]
and w(pk)(ρj + ρk)− xρj > c: differentiating we indeed get

f ′(x)

ρj + ρk
= 1− ρkc

w(pk)

(w(pk)(ρj + ρk)− xρj)2

≥ 1− ρkw(pk)

w(pk)(ρj + ρk)− xρj

≥ 1− ρkw(pk)

w(pk)(ρj + ρk)− w(pk)ρj
≥ 0,

where we used w(pk)(ρj + ρk)− xρj > c in the second line,
and x ≤ w(pk) in the last one. The non-increasingness of
ρT
j = f(w(pj)) in pj then comes from that of w(·).

A. Capacity saturation price

For further analysis, we define the capacity saturation price
of a provider, that depends on the price of his competitor.

Definition 1: The capacity saturation price of provider j is

pc
j(pk) := inf{p ∈ [0, pmax] : ρT

j (p, pk) < c}.

Since ρT
j (pmax, pk) = 0, for all pk we have pc

j(pk) < pmax.
Additionally, Lemma 1 implies that if pc

j > 0, then
ρT
j (p

c
j , pk) = c and pj ≤ pc

j ⇒ ρT
j ≥ c.

We now provide analytical expressions for that price, in the
case when ρT

j (p, pk) ≥ c. In that case ρT
j (p

c
j) = c, hence pc

j

satisfiesw(pj)ρj + ρk[w(pj)− w(pk)]+ + min
(

1,
w(pj)
w(pk)

)
ρsp
k = c,

ρsp
k = w(pk)ρk

[
[w(pk)−w(pj)]+ρj+w(pk)ρk−c

[w(pk)−w(pj)]+ρj+w(pk)ρk

]+
.

(6)

Let us define a generalized inverse of w, as

W (q) := inf{p ∈ [0, pmax] : w(p) < q}. (7)

For q ≤ 1, W (q) is the maximum price that can be accepted
by a proportion q of users.

Then the capacity saturation price can be computed as
follows. (The proof is omitted due to space constraints.)

• If w(pk) ≤ min[ cρj ,
c
ρk

], then pc
j = W

(
c+w(pk)ρk
ρj+ρk

)
.

• If c
ρk
< w(pk) ≤ 2c

ρj+ρk
, then pc

j = W
(

2c
ρj+ρk

)
.

• If c
ρj
< w(pk) ≤ 2c

ρj+ρk
, then pc

j = W
(
c
ρj

)
.

• If w(pk) > 2c
ρj+ρk

, then pc
j = W (x), with x the unique

solution in [0, w(pk)] of

−x2ρj + x

(
w(pk)(ρj + ρk)− cρk − ρj

ρj + ρk

)
− cw(pk) = 0.

B. Piece-wise expression of the revenue function

The revenue function of each provider j is continuous in
his price (from the continuity of ρT

j and of Pj), and can be
expressed analytically on different segments.

1) When pj ≤ pc
j(pk) (or ρT

j (pj) ≥ c when pc
j(pk) > 0),

the RSU capacity of provider j is saturated, and thus his
revenue is simply

Rj = pjc. (8)

This is the case in Figure 3 for prices pj below approxi-
mately 2.5. Figure 5 shows that for these prices, provider
j spills some flow over toward provider k.
Above pc

j , provider j is not saturated anymore. Then if
the total demand ρk(pc

j , pk) of the competitor is strictly
below c, we have a price range with no provider being
saturated. In that case we have no spillover demand, and
the revenue of provider j is:

Rj = pj
(
w(pj)ρj + [w(pj)− w(pk)]+ρk

)
.

If pc
j < pk, then we remark that necessarily ρT

k(pk, pk) ≤
c, i.e., we meet the price of the opponent provider before
he gets saturated. Indeed, at (pc

j , pk) provider j does not
spill traffic over to k, thus ρT

k(pc
j , pk) = ρkw(pk) (where

we also used the fact that w(pk) ≤ w(pc
j)). From the

definition of pc
j , provider j is not saturated at (pk, pk),

so that ρT
k(pk, pk) = ρkw(pk) = ρT

k(pc
j , pk) ≤ c.

Summarizing, we then have the two following segments.
2) If pc

j < pk and ρT
k(pc

j , pk) ≤ c, then for pj ∈ [pc
j , pk]

Rj = pj (w(pj)(ρj + ρk)− w(pk)ρk) .

Remark that this segment is empty if pc
j ≥ pk or

ρT
k(pc

j , pk) ≥ c. Figure 5 illustrates that when pj is
between approximately 2.5 and 4, provider j serves his
own traffic and the one from the competitor who refused
the price pk but agrees to pay pj .

3) If ρT
k(pc

j , pk) ≤ c, then for pj ≥ max(pc
j , pk) we have

while provider k remains unsaturated:

Rj = pjw(pj).

4) Now if ρk(pc
j , pk) > c, then provider k is saturated for

pj ∈ [pc
j , pmax] (which is easy to see since j has no

spillover traffic), and for pj ∈ [pc
j , pk] we have

Rj = pj (w(pj)(ρj + ρk)− c) .

Remark that this segment appears only when both
providers can be simultaneously saturated, a case not
occurring in the example we display here.



5) There may be a price of provider j larger than pk,
and above which the competitor gets saturated, so that
provider j may serve part of the traffic spilled over by
k. In that case the revenue of provider j is:

Rj = pj

(
w(pj)ρj +

w(pj)

w(pk)
ρsp
k

)
, (9)

where

ρsp
k = w(pk)ρ

(w(pk)− w(pj))ρj + w(pk)ρk + ρsp
j − c

(w(pk)− w(pj))ρj + w(pk)ρk + ρsp
j

.

(10)
Figure 6 shows that provider k gets saturated, and
the spillover traffic is served partly by provider j as
illustrated in Figure 5.

Figure 2 illustrates those different zones for the special case
ρ1 = ρ2 = 11, c = 10, and w(p) = 1 − p/10. Figure 3
shows the corresponding different segments for Rj when
pk = 4, and Figure 4 for various prices pk of the competitor.
We observe that a revenue-maximizing price can belong to
different segments, depending on the competitor’s price.
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Fig. 2. Capacity saturation prices, and the different zones where the
expressions of revenues vary.

V. PROVIDERS PRICING GAME

In this section we consider a non-cooperative game, where
providers –the players– simultaneously choose their prices,
trying to maximize their individual payoffs given by (2). Our
aim is to find a Nash equilibrium (NE) of this game: a pair of
prices (p̄1, p̄2), such that no player could increase his revenue
by unilaterally changing his price. Further, we investigate the
situation where providers would decide to cooperate, trying to
maximize the sum of their individual revenues (as a monopoly
would do). We analyze how much the providers lose in terms
of total revenue by refusing to cooperate.

Below is a more formal definition of the Nash equilibrium
in the pricing game.
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w(p) is linear. The different segments correspond to the zones delimited in
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Definition 2: A pair of prices (p̄1, p̄2) is a Nash equilibrium
for the pricing game if

R1(p̄1, p̄2) ≥ R1(p1, p̄2) for all p1 ∈ (0, pmax],

R2(p̄1, p̄2) ≥ R2(p̄1, p2) for all p2 ∈ (0, pmax].

Nash equilibria can be interpreted as predictions for the
outcome of the competition between selfish entities, assumed
rational and taking decisions simultaneously.

A. The case of large capacities

We first consider here that RSUs capacities are larger than
the users flows (c ≥ ρj + ρk). So, for any price pair RSUs
capacities are not saturated and spillover traffic never appears.

Without loss of generality we consider that ρ1 = αρ2 = αρ,
for α ∈ (0, 1]. (The case α = 0 is trivial and not considered
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here.) In all this subsection, we consider a linear willingness-
to-pay function, i.e., w(p) = 1− p/pmax for some pmax > 0.

We consider two cases separately:
1) When p1 ≤ p2, the provider revenue functions are{

R1 = p1(w(p1)ρ(1 + α)− w(p2)ρ),

R2 = p2w(p2)ρ.

After getting derivatives and equating them to zero, we
get the following pair of prices, as a Nash equilibrium

candidate:

{
p̄1 = pmax(α+1/2)

2(1+α) ,

p̄2 = pmax

2 .
Note that p̄2 > p̄1 for all α ∈ (0, 1]. As can be checked

(see Appendix A), this pair of prices is indeed a Nash
equilibrium for all α ∈ (0, 1].
The corresponding total revenue is

R = R1 +R2 =
pmaxρ(α2 + 2α+ 5/4)

4(1 + α)
.

2) When p1 > p2, the revenue functions are:{
R1 = p1w(p1)αρ,

R2 = p2(w(p2)ρ(1 + α)− w(p1)αρ),

giving the NE candidate

{
p̄1 = pmax

2 ,

p̄2 = pmax(1+1/2α)
2(1+α) .

Again, for all α ∈ (0, 1], p̄1 > p̄2 is verified. But
this pair of prices is a Nash equilibrium only for
α ∈ [s, 1], where s ≈ 0.73 (the details are provided
in Appendix A). The corresponding total revenue is

R =
pmaxρ(5/4α2 + 2α+ 1)

4(1 + α)
.

Summarizing, with large capacities the pricing game has{
1 equilibrium if α ∈ (0, s),

2 equilibria if α ∈ [s, 1], with s ≈ 0.73.

We now compare the minimum total revenue in the duopoly
case with the revenue a monopolist would obtain, to evaluate
the cost of competition. Following the literature on the Price
of Anarchy [10], we use the ratio between the total revenue
in the worst-case Nash equilibrium and the monopoly total
revenue as the cost measure.

It is easy to check, that the second Nash equilibria high-
lighted before –corresponding to the case p1 > p2– gives a
lower total revenue if it exists. Our cost of competition, as a
function of α, therefore has two segments:{

4(1+α3)
(3+4α)(α2+2α+5/4) if α ∈ (0, s),

4(1+α3)
(3+4α)(5/4α2+2α+1) if α ∈ [s, 1].

(11)

Remark that if we consider only the best-case Nash equilib-
rium (under a Price of Stability logic), then the first expression
above applies for α ∈ [0, 1]. Figure 8 shows the cost of
competition of (11), that is maximum for α = s, i.e., when
the second candidate becomes actually an equilibrium. For
computation details see Appendix B.

B. Homogeneous flows and arbitrary capacities

With arbitrary capacities, the model becomes intractable
analytically. We treat here the special case when user flows are
homogeneous, i.e., ρ1 = ρ2 := ρ. In that case, we can prove
necessary conditions for a price profile to be an equilibrium.

Proposition 3: If (p̄j , p̄k) is an equilibrium, then

p̄j > pc
j(p̄k),

p̄k > pc
k(p̄j).

Proof: We first prove that if at least one provider –say j–
charges a price lower than or equal to his capacity saturation



price, then the price profile is not an equilibrium. Assume that
(p̄j , p̄k) is an equilibrium, with p̄j < pc

j(p̄k): then provider j is
saturated and gets revenue p̄jc. But deviating to pc

j(p̄k) would
improve his revenue to Rj = pc

j(p̄k)c, a contradiction.
Now we prove that there is no equilibrium where at least

one provider charges his exact capacity saturation price. Again
we assume that (p̄j , p

c
k(p̄j)) is an equilibrium. From the result

above we necessarily have p̄j ≥ pc
j(p

c
k(p̄j)), hence ρsp

j = 0.
• We first show that p̄j ≥ pc

k(p̄j): if it were not the case
(p̄j < pc

k, omitting writing p̄j in the saturation price of k)
then w(p̄j) ≥ w(pc

k(p̄j)), yielding

ρT
k(p̄j , p

c
k) = w(pc

k)ρ = c,

ρT
j (p̄j , p

c
k) = 2w(p̄j)ρ− w(pc

k)ρ = 2w(p̄j)ρ− c ≤ c.

This implies w(p̄j) ≤ w(pc
k), therefore w(p̄j) = w(pc

k)
thus ρT

j (p̄j , p
c
k) = c, yielding p̄j ≤ pc

j(p
c
k(p̄j)). Since the

opposite inequality also holds we have p̄j = pc
j(p

c
k(p̄j)), i.e.,

each provider charges his saturation price. We then deduce
that they are equal, because they are both maximum prices
such that w(p)ρ = c, which contradicts our assumption that
p̄j < pc

k(p̄j).
• Therefore p̄j ≥ pc

k(p̄j). Let us now consider some p > p̄j .
Then we have:

Rj(p, p
c
k(p̄j)) = pw(p̄j)ρ

(
2− c

2w(pc
k)ρ− w(p̄j)ρ

)
.

We now prove that this revenue, as a function of p, has a
positive right-derivative at p = p̄j . Differentiating, we get

R′j(p, p
c
k(p̄j)) = (pw′(p)ρ+ w(p)ρ)

(
2− c

2w(pc
k)ρ− w(p)ρ

)
−pw(p)ρ

cw′(p)ρ

(2w(pc
k)ρ− w(p)ρ)2

.

At (p̄j , p
c
k(p̄j)) the flow of provider k equals c:

ρT
k(p̄j , p

c
k(p̄j)) = w(pc

k)ρ+ (w(pc
k)ρ− w(p̄j))ρ) = c,

which implies

R′j(p̄j , p
c
k(p̄j)) = w(p̄j)ρ+ ρp̄jw

′(p̄j)(1− w(p̄j)ρ/c).
(12)

If w′(p̄j) = 0, R′j(p̄j , p
c
k(p̄j)) is strictly positive. We now

show it is also the case if w′(p̄j) < 0.
• First, if p̄j > pc

j(p
c
k(p̄j)), then

R′j(p̄j , p
c
k(p̄j)) = w(p̄j)ρ+ ρp̄jw

′(p̄j)(1− w(p̄j)ρ/c)

> w(p̄j)ρ+ ρp̄jw
′(p̄j).

But as an equilibrium price p̄j , should maximize the
revenue of provider j over (pc

j(p
c
k(p̄j)), pmax), and thus

p̄j should make the derivative of Rj = pw(p)ρ equal
to zero, giving w(p̄j)ρ + ρp̄jw

′(p̄j) = 0, which implies
R′j(p̄j , p

c
k(p̄j)) > 0 .

• Second, if p̄j = pc
k(p̄j), then w(p̄j)ρ = c and the revenue

function derivative in (12) is equal to c > 0.
Thus by increasing his price provider j could increase his
revenue, therefore (p̄j , p

c
k(p̄j)) is not an equilibrium.

Formally, in order to show that a pair of prices is an
equilibrium, we have to compare the revenue they yield with
the maximum revenues in all other zones (as defined in
Subsection IV-B) for each provider. Proposition 3 reduces this
search, to zones where both prices are strictly above capacity
saturation prices. It can be easily checked that situations where
providers charge equal prices cannot be equilibria. Therefore
the equilibrium candidates remaining can be characterized by

p1 6= p2,

p1 > pc
1(p2); p2 > pc

2(p1),

R′1(p1, p2) = 0;R′2(p1, p2) = 0,

To show that such pairs are indeed Nash equilibria, we have
to compare the revenue they give with the maximum revenue
in other segments.

For a linear willingness-to-pay function, the system above
only leaves two candidates

(p̄1, p̄2) ∈ {(1/2pmax, 3/8pmax), (3/8pmax, 1/2pmax)} (13)

Numerically, we found that these two pairs of prices are indeed
equilibria only when ρ/c ≤ t, with t ≈ 1.23. Figure 7 shows
the best-response curves when ρ/c = t.

C. The cost of ignoring competition

In our scenario, providers may not be aware of the presence
of each other (especially if they are located far from each
other), and thus do not play a noncooperative game on prices.
In that case each provider would treat users seeing him first
the same way as he treats those coming from the competitor’s
direction. We estimate here the cost of this ignorance in terms
of revenue loss.

Then each provider j would believe his total flow to be ρ1+
ρ2 independently of pj , and would therefore simply select his
price so as to maximize pj min(c, (ρ1+ρ2)w(pj)), leading to a
situation where p1 = p2 = arg maxp pmin(c, (ρ1 +ρ2)w(p)).
But from that situation, one provider could decrease his price
and also serve users from the competitor who found him too
expensive. For a linear willingness-to-pay function, we found
that in the symmetric-flow case, this price shift would yield a
12.5% revenue increase, and in the large capacity case with
heterogeneous flows, an approximate 33% revenue increase
for α = 1/2 (see Appendix C).

VI. CONCLUDING REMARKS

In this work, we have analyzed the price competition
between roadside units operators which are providing wireless
access to moving vehicles. In contrast to general work on
pricing in wireless networks where wireless operators compete
on price to attract “common” users, in the reference scenario
competition arises due to vehicles mobility even if the roadside
units do not have overlapped coverage areas. The strategic
interaction between two roadside units operators is analyzed
through game theoretic tools. Namely, the analysis of the
best-response function having fixed the competitor’s price
sheds light on interesting and counterintuitive behaviors in
the systems which lead one roadside unit operator to increase
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her price to induce higher interference onto the competitor,
thus causing traffic spillover from the competitor’s side. The
results from the best-response analysis are then leveraged to
characterize the simultaneous competitive game between the
two roadside units operators in terms of equilibrium existence
and optimality. A natural follow-up for the present work
includes the analysis of the scenario in which the strategy
space of each roadside unit operator also includes the position
of the roadside unit besides setting the price.
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APPENDIX A
PROOF OF THE EXISTENCE OF AN EQUILIBRIUM WITH

LARGE CAPACITIES

To show that a pair of prices is a Nash equilibrium, we
verify that no provider can increase his individual revenue
by unilaterally changing his price. For the large capacities
case, the revenue curves of both providers have only two
different expressions, since RSUs are never saturated. Again,
we consider two cases:

• First, when p1 ≤ p2 we have to verify that the price profile{
p̄1 = pmax(α+1/2)

2(1+α) ,

p̄2 = pmax

2

is an equilibrium.
For Provider 1, we thus have to check whether the revenue-

maximizing price p1 = pmax/2 in the zone where p1 ≤ p2

could be better for him, or equivalently, determine for which
α we could have R1(p1, p̄2) > R1(p̄1, p̄2), in which case the
proposed profile is not an equilibrium. Taking the mathemat-
ical expressions:

R1(p̄1, p̄2) =
pmaxρ(α+ 1/2)2

4(1 + α)
,

R1(p1, p̄2) = 1/4ραpmax.

We then observe that for any α ≥ 0, we have (α + 1/2)2 ≥
α(1+α) and thus R1(p1, p̄2) ≤ R1(p̄1, p̄2). Hence Provider 1
cannot increase his revenue by unilaterally changing his price.

For Provider 2, we similarly have to check, whether the
peak price p2 = pmax+p̄1α

2(1+α) in the zone where p1 ≤ p2 could
be preferable. Let us first rewrite

p2 =
pmax + p̄1α

2(1 + α)
=
pmax(α2 + 5/2α+ 2)

4(1 + α)2
.

The revenue corresponding to this price is

R2(p̄1, p2) =
pmax(α2 + 5/2α+ 2)

4(1 + α)2
×(

(1 + α)ρ(1− (α2 + 5/2α+ 2)

4(1 + α)2
)

− αρ(1− α+ 1/2

2(1− α)
)
)

=
pmaxρ(α2 + 5/2α+ 2)2

16(1 + α)3
,

while with p̄2 Provider 2 gets a revenue

R2(p̄1, p̄2) = 1/4ρpmax. (14)

Therefore the condition R2(p̄1, p2) > R2(p̄1, p̄2) is equiva-
lent to

(α2 + 5/2α+ 2)2 > 4(1 + α)3

⇔ α4 + α3 − 7/4α2 − 2α > 0.

For α ∈ [0, 1] that last condition is never satisfied (the function
being nonpositive), and thus Provider 2 cannot increase his
revenue by unilaterally changing his price.

As a result, the proposed price profile (p̄1, p̄2) is indeed a
Nash equilibrium for all α ∈ (0, 1].

• We now turn our attention to the case when p1 > p2. As
before, we have to verify whether{

p̄1 = pmax

2 ,

p̄2 = pmax(1+1/2α)
2(1+α) ,

is a Nash equilibrium. Let us study whether Provider 1 has
an incentive to change his price to p1 =

αpmax+p̄2

2(1+α ) (his best
price in the zone where he is cheaper than the competitor).
Plugging the expression of p̄2 we have:

p1 =
2α2 + 5/2α+ 1

4(1 + α)2
,

which would earn Provider 1 a revenue

R1(p1, p̄2) = pmaxρ
2α2 + 5/2α+ 1

4(1 + α)2
·(2α2 + 11/2α+ 3

4(1 + α)
− 3/2α+ 1

2(1 + α)

)
=

ρpmax(2α2 + 5/2α+ 1)2

16(1 + α)3
,

while under the proposed price profile he gets

R1(p̄1, p̄2) = 1/4ρpmaxα.

Then we have R1(p1, p̄2) > R1(p̄1, p̄2) if and only if

(2α2 + 5/2α+ 1)2 > 4α(1 + α)3

⇔ 2α3 + 7/4α2 − α− 1 < 0.

The polynomial expression above has a unique root s ≈ 0.73:
thus, for α < s Provider 1 could increase his revenue by
changing his price, and (p̄1, p̄2) is not an equilibrium. On the
other hand, for α > s, the price p̄1 is a best-response of
Provider 1 to p̄2.

Finally, for Provider 2 we follow the same logic, investi-
gating whether taking the optimal price above the price of
Provider 1 could lead to a revenue increase:

R2(p̄1, p2) = 1/4ρpmax,

R2(p̄1, p̄2) =
pmaxρ(1 + 1/2α)2

4(1 + α)
.

Observing that (1 + 1/2α)2 > 1 +α for all α, we deduce that
R2(p̄1, p2) ≤ R2(p̄1, p̄2), hence Provider 2 cannot increase his
revenue by unilaterally changing his price.

Summarizing: an equilibrium with p1 > p2 exists only for
α ∈ [s, 1].

APPENDIX B
COMPUTING THE COST OF COMPETITION (FOR PROVIDERS)

We first derive an expression for the optimal (for providers)
revenue value, which is the maximum possible sum of their
revenues (that we can reach by collaborating). We use a linear
expression for the willingness-to-pay function w(p) = pmax−p

pmax

As previously, we consider two cases:



• First, when p1 ≤ p2 the total revenue is

R = R1 +R2

= p1

(pmax − p1

pmax
(1 + α)ρ− pmax − p2

pmax
ρ
)

+ p2ρ
pmax − p2

pmax

=
ρ

pmax
(p1αpmax − p2

1(1 + α) + p1p2 + pmaxp2 − p2
2).

The necessary extremum condition are :{
∂R
∂p1

= ρ
pmax

(αpmax − 2p1(1 + α) + p2) = 0,
∂R
∂p2

= ρ
pmax

(p1 + pmax − p2) = 0.

Therefore the prices maximizing the total revenue should
satisfy {

popt
1 =

αpmax+popt
2

2(1+α) ,

popt
2 =

pmax+popt
1

2 .

Solving that system gives{
popt

1 = pmax(2α+1)
3+4α ,

popt
2 = pmax(3α+2)

3+4α .
(15)

It is easy to verify that the sufficient conditions for this
pair to be a maximum are also satisfied. The maximum total
revenue with p1 ≤ p2 is therefore

R =
pmaxρ(α+ 1)2

3 + 4α
.

• Let us now consider the case p1 > p2. The total revenue is:

R = R1 +R2

=
ρ

pmax
(−αp2

1 + p2pmax − (1 + α)p2
2 + p1p2α+ p1αpmax).

The necessary extremum conditions are :{
∂R
∂p1

= ρ
pmax

(αpmax − 2p1α+ p2α) = 0,
∂R
∂p2

= ρ
pmax

(p1α+ pmax − p22(1 + α)) = 0,

leading to the system{
popt

1 =
pmax+popt

2

2 ,

popt
2 =

pmax+popt
1 α

2(1+α) ,

from which we get{
popt

1 = pmax(2α+3)
4+3α ,

popt
2 = pmax(α+2)

4+3α .

Again, the sufficient maximality conditions are satisfied; the
total revenue is:

R =
pmaxρ(α+ 1)2

4 + 3α
.

Comparing both cases, we find that for α ∈ (0, 1] the total
revenue with p2 ≥ p1 is larger than (or equal to) in the
other case, meaning that the price profile (15) maximizes total
revenue.

Then, we divide that revenue by the minimum equilibrium
revenue (i.e., we compute the Price of Anarchy 11 for the
game played among providers); it is easy to remark that the
equilibrium yielding the smallest total revenue is the one with
p1 > p2 (which exists only for α ∈ [s, 1], otherwise there is
only one equilibrium).

APPENDIX C
THE COST OF IGNORING THE COMPETITOR’S PRESENCE

Let us consider a situation where each provider believes
he is the only one serving users, so that he can set his price
to the monopoly price (pmax/2 for linear willingness-to-pay
functions, if capacities are sufficiently large). Then in practice
each provider will serve only some of the users seeing him
first. But from such a situation, one provider could lower his
price to serve some of the traffic that refused to pay the price of
the competitor, and increase his revenue. We compute here the
amount of extra revenue that a provider could get by making
this price move.

When pj ≤ pk, the revenue of Provider j with symmetric
flows (ρ1 = ρ2 = ρ) is

Rj = pj(2w(pj)ρ− w(pk)ρ).

The optimal price when the willingness-to-pay function w(·)
is linear equals 3/8pmax, leading to Rj = 3/8pmax(5/4ρ −
1/2ρ) = 9/32pmaxρ, while the revenue was Rj = 1/4pmaxρ
initially. Hence Provider j can improve his revenue by a factor
1/8 ≈ 12%.

Let us consider again the large capacity case, but heteroge-
neous flows. Assume ρ1 = αρ < ρ2 = ρ. When Provider 1
sets his price below p2 = pmax/2, his revenue is

R1 = pmax
α+ 1/2

2(1 + α)
(
α+ 3/2

2(1 + α)
(1 + α)ρ− 1/2ρ)

=
pmax(α+ 1/2)2ρ

4(1 + α)
,

to be compared to R1 = 1/4ραpmax when ignoring Provider
2 (i.e., when taking p1 = pmax/2). The ratio between the two
revenues equals (α+1/2)2

α(1+α) and is maximized for α = 1/2, in
which case it equals 4/3.


