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Hadamard states for the linearized Yang-Mills equation on curved
spacetime

C. Gérard and M. Wrochna

ABSTRACT. We construct Hadamard states for the Yang-Mills equation linearized around a
smooth, space-compact background solution. We assume the spacetime is globally hyperbolic
and its Cauchy surface is compact or equal R%.

We first consider the case when the spacetime is ultra-static, but the background solution
depends on time. By methods of pseudodifferential calculus we construct a parametrix
for the associated vectorial Klein-Gordon equation. We then obtain Hadamard two-point
functions in the gauge theory, acting on Cauchy data. A key role is played by classes of
pseudodifferential operators that contain microlocal or spectral type low-energy cutoffs.

The general problem is reduced to the ultra-static spacetime case using an extension of
the deformation argument of Fulling, Narcowich and Wald.

As an aside, we derive a correspondence between Hadamard states and parametrices for
the Cauchy problem in ordinary quantum field theory.

1. INTRODUCTION

The construction of a sufficiently explicit parametrix for the Klein-Gordon is essential in
Quantum Field Theory on curved spacetime, where two-point functions of physically admissible
states (Hadamard states) are required to be distributions with a specified wave front set. By
using methods of pseudodifferential calculus it is possible to control at the same time the
propagation of singularities and the additional properties of the parametrix, which are needed
to treat physical conditions such as positivity (or purity) of states. As shown in the scalar case
in [J, GW] for a large class of spacetimes, this allows to construct a large class of Hadamard
states.

The generalization to gauge theories poses difficulties which are due to two main obstacles.

First of all, the equations of motions are given by a non-hyperbolic differential operator P.
This is usually coped with by identifying the space of solutions of P with a quotient Vp, of
subspaces of solutions of some hyperbolic operator D;. Although one is essentially reduced to
constructing two-point functions for Di, one has to make sure that their restriction to V, is
well defined. This entails a compatibility condition that will be termed gauge-invariance.

Secondly, the hyperbolic operator D; is formally self-adjoint w.r.t. a hermitian product
which is typically non-positive on fibers. This results in a conflict between the Hadamard
condition and positivity of states for D;. Although one can still expect positivity to hold on
the subspace V;, it is not obvious how this can be controlled.

An additional difficulty are infrared problems, which are inherent to any massless theory, but
have also their special incarnations in the context of gauge-invariance and positivity on Vp.

In the present paper we study those issues in the case of the Yang-Mills equation, linearized
around a (possibly non-vanishing) background solution A.

2010 Mathematics Subject Classification. 81T13, 81T20, 35505, 35535.
Key words and phrases. Hadamard states, microlocal spectrum condition, pseudo-differential calculus, Yang-
Mills equation, curved spacetimes.
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Framework for gauge theories. We work (when possible) in the abstract framework for
gauge theories proposed recently by Hack & Schenkel [HS]. More precisely, we consider its
simplified version, in which the classical theory is determined by:

(1) two vector bundles Vp, Vi over a globally hyperbolic manifold (M, g), both equipped
with a hermitian structure,

(2) a formally self-adjoint operator P € Diff (M;V;), which accounts for the equations of
motion,

(3) a non-zero operator K € Diff(M;V,, Vi) s.t. PK = 0, which accounts for gauge
transformations u — v + K f.

We then assume D; := P + KK* is hyperbolic and define the physical space by identifying
solutions of P with those solutions of Dy which satisfy the additional constraint K*u = 0 (cf.
Sect. 2 for precise definitions). The latter is often called subsidiary condition in the physics
literature, we will thus term this approach the subsidiary condition framework!'. The version
we consider applies to the Maxwell and Yang-Mills equations, K being then the covariant

differential d (note however that for other gauge theories one would have to use the more
extended version from [HS]).

Hadamard two-point functions. In our framework, a pair of operators )\% :To(M; V) —
T'(M;V;) induces two-point functions of a Hadamard state on the phase space of P if it satisfies

(1.1) DIXNE =MD =0, A -\ =ilGy,
where (G is the causal propagator of D; and if moreover:
(usc) WEF'(\F) c NE x NE,
(gi) (AH)* =X and A\ :RanK — RanK,
(pos) Af >0 on Ker K*.

Condition (usc) is just the same as the Hadamard condition in ordinary (i.e., hyperbolic)
field theory. What differs is the non-trivial requirement of gauge-invariance (g.i.). Moreover,
positivity (pos) is no longer required to hold on all test sections, but on a specified subspace
instead.

Main results. Our main result is the construction of Hadamard states for the Yang-Mills
equation linearized around a smooth background solution A, under various assumptions on A
and the spacetime (M, g). Let us first formulate some hypotheses.

1.0.1. Spacetimes.

Hypothesis 1.1. (M, g) is a globally hyperbolic spacetime with a Cauchy surface X diffeomor-
phic either to R? or to a compact, parallelizable manifold.

Hypothesis 1.2. If ¥ = R?, hij(x)dz'dz? is a smooth Riemannian metric on ¥ such that:

0711 S [hw(x)] S C]_, c> 0, |agh”(1')| S Ca, Vo € Nd, x € Rd.

IBecause we are working in a purely algebraic setting, the terminology is rather ambiguous. We refer the
interested reader to [Der] for a review on the flat case that explains the terminology used in the physics literature.
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1.0.2. Background Yang Mills connections.
Hypothesis 1.3. G is a linear Lie group with compact Lie algebra g.

We consider the trivial principal bundle over (M x G, M, G) and the associated trivial vector
bundle (M x g, M, g). Using the horizontal connection on M x G, a connection on M x g can
be identified with a section A of the bundle T*M X g, i.e. with a Lie algebra valued 1—form A.

Hypothesis 1.4. If¥ = R%, A is a smooth global solution of the non-linear Yang-Mills equation
(2.14) on Ry x 3 such that

i) A is in the temporal gauge i.e. A; =0,
ii) |02 Ax(t,7)| < Ca, locally uniformly in t,
iii) 090 F(0,2)| < Colz)™', |09 F,(0,2)| < Colz)™? a € NY, z € RY,
where the components Ay, Ay, Fy, Fy of A and the curvature F = dA are defined in 4.4.1.

Our first theorem deals with ultra-static background metrics and background solutions A
satisfying conditions near infinity in the case ¥ = R

Theorem 1.1. Let us assume Hypotheses 1.1, 1.3 and if ¥ = R® also Hypotheses 1.2, 1.4.
Let g = —dt* + hij(z)dz'dx? on M =Ry x 3. Then there exist quasi-free Hadamard states for
the linearized Yang Mills equation on (M, g) around A.

Our next theorem covers the general case, with a space-compact background solution A.
We will deduce it from Thm. 1.1 by a deformation argument explained in Subsect. 3.5. This
deformation relies on the global solvability of the non-linear Yang-Mills equation, which requires
that dim M < 4.

Theorem 1.2. Let us assume Hypotheses 1.1, 1.3 and dim M < 4.

Let A € EL(M)® g a smooth, space-compact solution of the non-linear Yang-Mills equation
(2.14) on (M,g). Then there exist quasi-free Hadamard states for the linearized Yang Mills
equation around A.

Let us emphasize that the case A # 0 differs substantially from the case of a vanishing
background solution (or of an abelian gauge group), as was so far assumed in other works on
Hadamard states. Indeed, if A # 0 then the deformation argument cannot be used to reduce
the problem to the situation when (M, g) is ultra-static and the coefficients of Dy, P do not
depend on time. This is our main motivation for considering the case of a time-dependent
Klein-Gordon operator Dy on an ultra-static spacetime.

Known results. In the literature, other constructions were already considered in the special
case of the Maxwell equations or Yang-Mills linearized around A = 0.

In these cases the deformation argument yields a time-independent problem, and it is possible
to use arguments from spectral theory at least if the Cauchy surface ¥ has special properties
that make the infrared problems less serious. For the Maxwell equations, this strategy was
employed in [FP] for ¥ compact with vanishing first cohomology group (extending some earlier
results of [Fur]), and in [FS] for ¥ subject to an ‘absence of zero resonances’ condition for the
Laplace-Beltrami operator on 1-forms (which appears to be more general, but similar in nature
to our assumptions). The Yang-Mills equation with A = 0 was considered in [Hol2] (in the
BRST framework) for ¥ compact with vanishing first cohomology group.

Another approach was studied in [DS] on asymptotically flat spacetimes, where the use of
spectral theory arguments is made possible by considering a characteristic Cauchy problem.
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Summary of the construction. Let us summarize the strategy adopted in the paper.

The construction of the parametrix by pseudodifferential calculus is a generalization of the
arguments used in [GW] in the scalar case. As an output, we obtain Hadamard two-point
functions Ali that satisfy (g.i.) only ‘modulo smooth terms’. Moreover, they are positive on
some subspace (the space of ‘purely spatial’ 1-forms on M) that needs not to coincide with
KerK*.

To solve this, we work with quantities on a fixed Cauchy surface ¥. We define a Cauchy-
surface analogue K of the operator K, and deduce that the Cauchy-surface version of the
phase space for P can be expressed as a quotient KerK; /RanKy, (where T is the symplectic
adjoint, defined in (2.9)).

Next, we argue that gauge-invariance can be obtained by modifying Ali with the help of a
projection IT that maps to a complement of RanKy. The whole task that remains then is to
show that:

e The range of II is a space on which Ali is positive (after restricting to the phase space
of P).
e The modification of AT does not affect (usc).

Both tasks are unfortunately made difficult by infrared problems. For example, the projection IT
can contain terms such as (0xdy) 9y (see Subsect.8.2), whose definition is already ambiguous,
not to mention boundedness between Sobolev spaces of appropriate order.

One way we deal with such problems is to use a Hardy’s inequality on R? for the Hodge
Laplacian on 0-forms.

The essential novelty is the systematic use of two classes of pseudodifferential operators

\I/gs(z;vavﬂ)v wr (E;Va,Vﬂ),

reg

that contain infrared regularizations of different type — either a simple ‘microlocal’ cutoff in
the low frequencies (for the WL, class), or in addition to that a ‘spectral’ cutoff (the W7,
class), defined using (functions of) some elliptic self-adjoint operators. Moreover, the norm of
the regularization is controlled by a parameter R that can be chosen arbitrarily large. This
allows to obtain ezact inverses in situations where standard pseudodifferential calculus gives
only inverses modulo regularizing remainders. Using this method, we first construct a reference
projection, establish its boundedness as an operator between appropriate (weighted) Sobolev

spaces, and then perturb it in order to finally get the positivity.

Auxiliary results. Beside of what is of direct interest for Maxwell and Yang-Mills fields, let
us mention some auxiliary results obtained in the present work.

First of all, our construction of the parametrix actually produces ezxact solutions, and not
merely solutions modulo smooth terms (Sect. 5). This improves on previous works [J, GW]
and turns out to be useful in gauge theory.

Moreover, in the context of ordinary field theory (without gauge), we derive a direct relation
between (bosonic) Hadamard two-point functions and parametrices that satisfy certain special
properties (Subsect. 3.3). This allows to generalize and simplify results in [GW] that tell how
to obtain more Hadamard states out of an already given one.

We also derive a number of results for the classical Yang-Mills theory linearized around a
non-vanishing background, for instance our formula for the phase space of P in terms of Cauchy
data appears to be new (see 2.4.1).

Outlook. An evident limitation of our method is that we have to assume that the Cauchy sur-
face ¥ is either compact or equal R, as the construction is based on standard pseudodifferential
operator classes. We also use Hardy’s inequality in the case ¥ = R%. We expect, however, that
it would be possible to extend our results to other Cauchy surfaces by considering extensions
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of the standard pseudodifferential calculus on classes of non-compact manifolds on which a
generalized form of Hardy’s inequality still holds true.

Let us also stress that all our results are formulated in the subsidiary condition framework to
gauge theories. Especially for applications in perturbative Quantum Field Theory, a different
approach — the BRST framework, is commonly believed to be more efficient [Hol2]. We do
not consider it here, although it seems plausible that one can transport Hadamard states from
one framework to the other, as illustrated in [FS, Appendix B]. Another assumption that we
implicitly make is that A is a connection on a trivial principal bundle and one can ask whether
the methods of this paper can be applied to the non-trivial case. We plan to address these
issues in a future work.

Structure of the paper. The paper is structured as follows.

Sect. 2 concerns the classical theory. We first recall well-known facts on ordinary field
theories, then in Subsect. 2.4 review gauge theories on curved spacetime in the (simplified)
subsidiary condition framework. We introduce the corresponding quantities on a Cauchy surface
in 2.4.1 and then in Subsect. 2.5 we show how the linearized Yang-Mills equation fits into this
framework.

Sect. 3 discusses Hadamard states for both ordinary field theories and for gauge theories
in the subsidiary framework in general terms. We introduce in Subsect. 3.2 the definition
of Hadamard states that we use for ordinary field theories. We then set up in Subsect. 3.3 a
correspondence between Hadamard states and parametrices subject to special conditions. Next,
we discuss in Subsect. 3.4 two-point functions in gauge theory, and formulate the conditions
(usc), (g.1.), (pos) and the Cauchy surface analogues of the latter two. In the same subsection we
outline our method to cope with (g.i.) and (pos), and discuss the main technical obstructions.
The section ends with an extended version of the Fulling, Narcowich & Wald argument in
Subsect. 3.5, which allows us to reduce the construction of Hadamard states for the Yang-Mills
equation to a situation where the spacetime is static, but the equations of motions still depend
on the time coordinate.

Sect. 4 reviews the vector and scalar Klein-Gordon equations on ultra-static spacetimes.

In Sect. 5 we give a detailed construction of the parametrix for the vector Klein-Gordon
equations considered in Sect. 4, generalizing results from [GW].

In Sect. 6, using the results of Sect. 5 we obtain two-point functions for the vector and scalar
Klein-Gordon equations on an ultra-static spacetime and study their properties. At this point,
the properties (g.i.) and (pos) are not satisfied and only their weaker versions are available.

As a byproduct of our constructions, we prove that for vector Klein-Gordon equations,
where the natural hermitian product is not positive-definite on the fibers, there does not exist
Hadamard states, but only Hadamard pseudo-states.

In Sect. 7, we study the relationship between the two-point functions constructed in Sect. 6
in the vector and scalar case. In particular Thm. 7.3 will be important later on.

In Sect. 8 we prove Thm. 1.1 by the method described in Subsect. 3.4. This is the most
technical part of the paper.

In Appendix A we introduce the necessary background on pseudodifferential calculus. It
includes amongst other a version of Egorov’s theorem adapted to the case of matrices of pseu-
dodifferential operators.

Appendix B gathers independent results, used in several parts of the main text. In B.1 we
prove a version of Hardy’s inequality adapted to our applications for the Yang-Mills equation.
In B.2 we recall the transition to the temporal gauge for the non-linear Yang-Mills equation.
In B.3 we sketch the proof of Prop. 3.18.
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2. CLASSICAL GAUGE FIELD THEORY

2.1. Notation. Let V be a finite rank vector bundle over a smooth manifold M. We denote
by T'(M; V), resp. I'«(M; V') the space of smooth, resp. smooth with compact support, sections
of V, the later notation requiring that M is equipped with some causal structure.

If V4, Vi are two vector bundles, the set of differential operators (of order m) I'(M; V) —
T'(M;V3) is denoted Diff (M; Vi, Vo) (Dift™ (M; V1, V3)), we also use the notation Diff (M; V) =
Diff (M; V, V).

By a bundle with hermitian structure we will mean a vector bundle V' equipped with a fiber
wise non-degenerate hermitian form (in the literature the name ‘hermitian bundle’ is usually
reserved for positive definite hermitian structures).

Suppose now that (M, g) is a pseudo-Riemannian oriented manifold. If V' is a bundle on M
with hermitian structure, we denote V* the anti-dual bundle. The hermitian structure on V'
and the volume form on M allow to embed I'(M; V) into T',(M; V'), using the non-degenerate
hermitian form on I'c(M;V)

(2.1) (uv)y = /M(u(x)|v($))vdVolg, u,v € To(M; V).

Therefore, we have a well-defined notion of the formal adjoint A* : T'o(M; W) — I'(M; V) of
an operator A : To(M;V) — T'(M; W).
If E,F are vector spaces, the space of linear operators is denoted L(E,F). If E,F are
additionally endowed with some topology, we write A: E — F if A € L(E, F) is continuous.
To distinguish between the same operator A acting on different spaces of functions and
distributions, for instance A : T'o(M;V) — T'L(M;W) and A : T'(M; V) — I'(M; W), we use
the notation A|p, and A|r.

2.2. Quotient spaces. In the sequel we will frequently encounter operators and sesquilinear
forms on quotients of linear spaces, we recall thus the relevant basic facts.

2.2.1. Operators on quotient spaces. Let F; C E;, i = 1,2 be vector spaces and let A €
L(FE1, E3). Then the induced map

[A] € L(E\/F1, By | Fy),

defined in the obvious way, is

e well-defined if AE; C Ey and AF} C FQ;
e injective iff A71F, = Fy;
e surjective iff Fy = AE; + F5.

2.2.2. Sesquilinear forms on quotients. Let now E C F be vector spaces and let C' € L(E, E*),
where E* is the anti-dual space of E. Then the induced map

[C] € L(E/F,(E/F)7),

defined as before, is

o well-defined if CE C F° (where F° C E* denotes the annihilator of F') and F' C Ker C}
e non-degenerate iff ' = Ker C.

If C is hermitian or anti-hermitian (which will usually be the case in our examples) then the
condition F' C Ker C implies the other one CE C F° (and vice versa).
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2.3. Ordinary classical field theory. We recall now some standard results, see eg [BGP, HS].
Let (M, g) be a globally hyperbolic spacetime (we use the convention (—,4+,...,+) for the
Lorentzian signature). If V' is a vector bundle over M, we denote I's.(M; V') the space of space-
compact sections, i.e. sections in I'(M; V') such that their restriction to a Cauchy surface has
compact support.

One says that D € Diff (M; V') is Green hyperbolic if D and D* possess retarded and advanced
propagators — the ones for D will be denoted respectively GT and G~ (for the definition, see
[BGP)). The causal propagator (or Pauli-Jordan commutator function) of D is then by definition
G := GT — G~. Normally hyperbolic and prenormally hyperbolic operators (defined below)
are Green hyperbolic.

Definition 2.1. (1) An operator D € Diff (M; V') is normally hyperbolic if its principal sym-
bol equals —£,&" 1y .

(2) An operator D € Diff (M; V') is prenormally hyperbolic if there exists De Diff (M;V) s.t.
DD is normally hyperbolic.

This terminology is slightly more general than the one used in e.g. [Miih], cf. [W, W2] for
examples.

Proposition 2.2. If D, De Diff (M; V) are such that DD is Green hyperbolic then D is Green
hyperbolic and their retarded/advanced propagators G* and G*_ are related by

DD
+ YaEs
G* = DG

The proof of Prop. 2.2 is a straightforward generalization of the arguments of Dimock
[Dim, Miih].

Before discussing gauge theories, let us recall the basic data that define an ordinary classical
field theory (i.e., with no gauge freedom built in) on a globally hyperbolic manifold (M, g).

Hypothesis 2.1. Suppose that we are given:
(1) a bundle V' over M with hermitian structure;
(2) a Green hyperbolic operator D € Diff(M; V) s.t. D* = D.
Proposition 2.3. As a consequence of Hypothesis 2.1,
(1) the induced map
. Le(M;V)

: Ker D
(G] Ran Dr. — Ker

Tse

is well defined and bijective.
(2) (G*)* = GT and consequently G* = —G;

To fix some terminology, by a phase space we mean a pair (V,q) consisting of a complex
vector space )V and a sesquilinear form ¢ on V. Actual physical meaning can be associated to
(V, q) if q is hermitian. The classical phase space associated to D is (V, q), where

T(M;V)
2.2 Vi= 2 aqu:=i(u|[G]v)y.
(22) R D T = Gl
By (2) of Prop. 2.3 the sesquilinear form ¢ is hermitian, and it is not difficult to show that it is
non-degenerate. As a rule, we will work with hermitian forms rather than with real symplectic
ones, but it should be kept in mind that the two approaches are equivalent.
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2.3.1. Phase space on Cauchy surface. Let us fix a Cauchy surface ¥ of (M,g). Consider
a Green hyperbolic operator D € Diff"™(M;V). Let V, be a vector bundle over ¥ and p :
IFse(M;V) — T'¢(X;V,) an operator which is the composition of a differential operator of order
< m with the pullback 2* of the embedding ¢+ : ¥ — M.

We equip V, with a hermitian structure (-|-)y,, which extends to I'.(X; V,) as in (2.1), using
the volume form on ¥ induced by g. It is convenient to assume that this hermitian structure
is positive definite. The adjoint map:

p* i Te(%;V,) = T/(M;V)

is defined using the two hermitian structures (-|-)y and (-|-)v,.

Hypothesis 2.2. Assume that for each initial datum ¢ € T'o(3;V,), the Cauchy problem

(2.3) {Df —0, felu(M;V)

pf=e
has a unique solution.

In other words, the map p : Ker D|p_. — I'c(3;V}) is a bijection. If D satisfies Hypothesis
2.2, we will say that it is Cauchy hyperbolic (for the map p). It can be proved that if D is Green
hyperbolic then there exists p s.t. D is Cauchy hyperbolic?, cf. the reasoning in [K, Sec. 4.3].

By Hypothesis 2.2, assuming additionally D = D* and using (1) of Prop. 2.3 we deduce
that the phase space (V, ¢) is isomorphic to (Vg, ¢s), defined in the following way:

(2.4) Ve :i=T(5;V,), Tugsv:=i'(u|Gso)y,,
where Gy, is uniquely defined by
G =: (pG)"Gx(pG).

(Let us stress again that the stars refer to formal adjoints using the hermitian structures of V'
and V,, the latter can be chosen quite arbitrarily.) As a consequence of this definition,

(2.5) 1=G"p"Gyp on KerDlp,..
This also implies p = pG*p*Gxp on Ker D|r,,, hence
(2.6) 1=pG"p*"Gy on I'c(%;V)).

It is useful to introduce the Cauchy evolution operator:
(2.7) U:=Gp*Gy.

By (2.5) and (2.6), it satisfies pU = 1 and Up = 1 (on space-compact solutions of D). Moreover,
since G* = —G we get DU = 0. Applying both sides of (2.5) to f we obtain a formula for the
solution of the Cauchy problem (2.3).

Proposition 2.4. Assume D is Cauchy hyperbolic for p and D = D*. Then the unique solution
of the Cauchy problem (2.3) equals

f=Up=Gp*"Ggp = —Gp*Gxep.

20f course one has to choose p sensibly, cf. the example in [BG, Sec. 2.7].
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2.4. Gauge theory in subsidiary condition formalism. The following data is used to
define a classical linearized gauge field theory on a globally hyperbolic manifold (M, g). This
is a special case of the setting proposed by Hack and Schenkel in [HS], well suited for the case
of Maxwell and Yang-Mills fields.

Hypothesis 2.3. Suppose that we are given:

(1) bundles with hermitian structures Vo, Vi over M ;

(2) a formally self-adjoint operator P € Diff (M;V1);

(3) an operator K € Diff (M; Vy, V1), such that K # 0 and
(a) PK =0,
(b) Do := K*K € Diff(M;V}) is Green hyperbolic;
(¢) Dy := P+ KK* € Diff(M; V1) is Green hyperbolic.

The operator P accounts for the equations of motions, linearized around a background
solution. The operator K defines the linear gauge transformation f — f + Kg, and the
condition PK = 0 states that P is invariant under this transformation, which entails that P is
not hyperbolic. Making use of the assumption on Dy, the non-hyperbolic equation Pf = 0 can
be reduced by gauge transformations to the subspace K*f = 0 of solutions of the hyperbolic
problem D; f = 0. The equation K*f = 0 is traditionally called subsidiary condition and can
be thought as a covariant fixing of gauge (that generalizes the Lorenz gauge).

Let us first observe that the differential operators from Hypothesis 2.3 satisfy the algebraic
relations

K*Dy = DgK*, D1K = KD.

These have the following consequences on the level of propagators and spaces of solutions,
proved in [HS].

Proposition 2.5. As a consequence of Hypothesis 2.3,
(1) K*Gf = GEK* on To(M; V1) and KGE = GEK on T'o(M;Vp);
(2) For all ¢ € Ts.(M;Vy) there exists h € Tsc(M;Vp) s.t. p — Kh € Ker K*|p_.. If
moreover 1 € Ker P|p,, then ¥ — Kh € Ker P|r,, N Ker K*|r,.;
(3) We have

Ker P|p.. NKer K*|pr.. € G1Ker K*|r, + GiRan K|r_;
(4) Ran P|p, = Ker K*|r, NG 'Ran K

I

Since the auxiliary operators D1, Dy are Green hyperbolic, we can associate to them phase
spaces (V1,q1), Vo, qo) as in the previous subsection.

In the ‘subsidiary condition’ framework, the physical phase space associated to P, denoted
(Vp, qp), is defined by

_ Ker K™,
- I{ELIlP|FC ’

The first thing to check is that the propagator G; of D; induces a well-defined linear map on
the quotient space above.

Ve

Tqpv =i H(u|[G1]v)v, .

Proposition 2.6. The sesquilinear form qp is well defined on Vp.

Proof. We need to show that (u|Gyv)y,, = 0 if u € Ker K*|p, and v = Pf for some f €
I'o(M; V7). We have in such case

G1Pf=-GiKK"f=—-KGyK"f,
hence (u|G1Pf)y, = —(K*u|GoK* f)y, = 0. =
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The definition of the phase space Vp agrees with the one considered in [Dim2, FP, P, HS]
and is arguably the most natural one. Other possible definitions are discussed in [DHK, HS, BJ.
Let us also mention that the form ¢, needs not be non-degenerate on V,, cf. examples and
further discussion in [DHK, HS, B].

It is possible to give different generalizations of Prop. 2.3, (1) (claim a) below is proved in

[HS]).
Proposition 2.7. The induced maps
Ker K*|r, Ker P

Gl : — Lec
R R ey = RanK|p,.’
Ker K* Ker D N Ker K*
b) [Gl] : er |pc er /q Tec er Tse

—

Ran P|r, Ran G K|r, ’
are well defined and bijective.
Proof. b): For well-definiteness we check that GiKer K*|p. C KerD; which is obvious, and
G1Ker K*|p, C KerK*, which follows from K*G; = GpK*. We need also to check that
G1RanP C RanG1 K which follows from Hypothesis 2.3 (c).

For injectivity we see that if K*u = 0 and Giu = G1Kwv, then u — Kv = Dy f for f €
Te(M; Vi), hence Do(v + K*f) = 0, which implies that v + K*f = 0 and hence u = Pf.

Surjectivity amounts to showing

Ker D1|Fsc N Ker K* Mo = GlKerK*|pc + GlRanK|pc.

The inclusion ‘D’ is easy, the other one follows from Prop. 2.5, (3). O

Finally, let us quote another useful result, shown in the present context in [HS], and often
called the time-slice property (or time-slice axiom). Below, JT(O) (resp. J~(0)) denotes the
causal future (resp. causal past) of O C M.

Proposition 2.8. Let ¥, X be two Cauchy surfaces s.t. J= (X )NJT(X_) contains properly
a Cauchy surface. Then for all [f] € Ker K*|p,/Ran P|r, there exists f € Ker K*|r, s.t.

[f1=1f], suwppfCJ™(Z4)NJIF(E).
2.4.1. Phase spaces on a Cauchy surface. Let us now discuss the corresponding phase spaces
on a fixed Cauchy surface ¥ C M. Recall that in Hypothesis 2.3 we have required that the

operators D; and Dy are Green hyperbolic, and thus Cauchy hyperbolic. The corresponding

maps will be denoted
pr: D(M; Vi) = Te(35 V),

po: D(M;Vp) = Te(3; Vio)-
We also recall that we have defined operators Gy, such that G; = (p;G;)*Gix(piG;) and Cauchy

evolution operators U; for i = 0, 1.
To the operator K we associate an operator Ky, € Diff(X;V,,,V,,):

(28) K): = leUo.

It is useful to introduce the adjoint Kl e Diff(%;V,,,V,,) w.r.t. the hermitian forms ¢,
and qos, (the so-called symplectic adjoint), i.e.
(2.9) GouK] == K:G15.
The notation T is used to avoid confusion with the formal adjoint * w.r.t. the hermitian
structures on the bundles V,;, V,,, appearing for instance in the LHS of the above equation.

Lemma 2.9. As a consequence of Hypothesis 2.3,
(1) KUy = U1 Ky, and K*Uy = UgK};
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(2) ;1K = Kypo on Ker Do|r., and poK* = K£p1 on Ker D
(3) Ker Kf|r. = pGiKer K*|p,;
(4) Ran Ky|r, = p1GjRan K|r_;
)

(5) KiK, =0.
Proof. (1): Let us prove the second assertion (the first one is trivial). By (2.9) and Prop. 2.5,

(1)5

Fses

UKL = GipiGos KL = Gipi KiGhs = GipUs K* pi Gis
= GS *pTGlz =K TpiGlz = K"U.

(2): By (1) we have poK* = po K*U1p1 = poUoKipy = Kipy. The other assertion is trivial.

(3): If u = p1 G5 f with f € Ker K*|p_ then Kiu= po G f = poGHK* f = 0. Conversely,
if u e KerK;|pc then using that 1 = p1Gip;G1x we get u = p1 G f with f = p]G1yu and

K*f = K*piGisu = py K:Grsu = piGos Kiu = 0.

(4): fu=p1GFK f then u = p1 KG1f = KypoGof. Conversely, if u = Kyh then using that

1 = p1GipiGis we get
u= p1Gipi1G1sKsh = p1 G K piGosh.
(5): By (1), KLKy = poUoKLKy = poK* U Ky = poK*KUp = 0. O

Proposition 2.10. The induced map

Ker D1|r,, N Ker K*|p,. N KerK;hﬂC
RanG1K|pc RanKE|pc

[p1] :

is well defined and bijective.

Proof. Recall that we proved Ker Dy |r,, NKer K*|p,, = GiKerK*|pr, + GiRan K.
For well-definiteness and surjectivity of [p1] it is thus sufficient to check that
£1 (GlKerK* |Fc + G1Ran K'FC) = Ker K;h“c,

which follows directly from (2) and (3) of Lemma 2.9 (using G5 = —G1).
For injectivity we need to show that if u € G1KerK*|r, + GiRan K|r, and pju € Ran Kg|r,
then u € Ran G1 K|r,. This follows from (4) of Lemma 2.9. O

We deduce from Prop. 2.7 and Prop. 2.10 that the map p;G; induces an isomorphism
between the phase space (Vp, ¢r) and the phase space (Vpy, ¢ps), defined in the following way:

Vo Ker K;h"c
= RanKE|pC ’
2.5. Linearized Yang-Mills. We now recall how the formalism of Subsect. 2.4 applies to
Yang-Mills equations linearized around a background solution A. We follow [MM, HS].

Let g be a real compact Lie algebra as in Hypothesis 1.3. We still denote by g its complexi-
fication. The complexification of the Killing form yields a sesquilinear form

k€ Lg,g"), k>0

For simplicity we will work in a geometrically trivial situation?.
As in [HS] we take Vj to be the trivial bundle

U(pst i= i_l(u| [Glz]v)vpl .

Vo =M x g,
equipped with the hermitian structure induced by &, and V; the corresponding 1-form bundle
Vi:=T"M x g.

30Otherwise one has to use the language of principal bundles, some indications can be found in [MM, Z].
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We equip V; with the hermitian structure given by the tensor product of the canonical hermitian
structure on T* M with K.

Note that under Hypothesis 1.1 this bundle is trivial since ¥ and hence M is then paralleliz-
able.

Let us denote by EP(M) the space of smooth p-forms on M and by £9(M) = B, EP(M) the
space of smooth forms on M. As explained in 1.3, the spaces of sections I'(M;V;) i = 0,1 can
be identified respectively with £9(M) ® g and £1(M) ® g. The exterior product on EP(M)® g
is defined by

(@®a)A(Bb) = (aAB)@ab] abeg, a,feEXM),
(note that in the physics literature a bracket notation is sometimes used instead). The interior
product is defined by

(a®a)s(B0b) = (0 f) @ [bal, abeg, a,beE(M).
We also define

AL E9(M)®g2>B— BlAcEY(M)®g.
It holds that
(BAN-)*=B.-, BecEP(M)®g

where the bar stands for ordinary complex conjugation. Note also that for O-forms the interior
product reduces to

(2.10) fao-=—fA-, feE'M)®aqg.

Let d : EP(M) — EPTL(M) be the ordinary differential and let A € EY(M) ® g (the thick
bar is designed to distinguish A from dynamical variables A, it should not to be confused with
complex conjugation A). The covariant differential d : EP(M) @ g — EPTL(M) @ g respective
to A is defined by

df ==df + ANf, fec&EP(M)®ag.
Despite its name, it is in general not a differential in the sense that dd would vanish, instead it
holds that

(2.11) dd=FA -,

where F:= dA+ ANA € E*(M) ® g is the curvature of A. The covariant co-differential
§: EPTI (M) ® g — EP(M) ® g is by definition the formal adjoint d* of d. The covariant
differential satisfies

d(AANB) = (dA)AB+ (—1)PAN(dB), Ac&P(M)®g, B€EI(M)®g.
This can be written as an identity for operators and by taking their adjoints, one gets
(2.12) AL 0B = (dA).B+ (-1)P6(A.B), Acé’(M)®g, Be&IY(M)®yg.
A consequence of the definition F' = dA is the Bianchi identity
(2.13) dF =0.
The non-linear Yang-Mills equation for A reads
(2.14) §dA (= 6F) =0.

This system can be linearized as follows. We fix a real-valued section A € £'(M) ® g and
assume it is on-shell, i.e. satisfies the Yang-Mills equation (2.14). The linearized Yang-Mills
operator is

(2.15) P :=4d+ FL € Diff>(M; Vy),
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where d, § and F refer to the background solution A. The linearized Yang-Mills equation is
(2.16) PA=0.
Gauge transformations are described in this linearized setting by the differential operator
K :=d € Diff' (M; Vy, V1).

It is not difficult to see that Hypothesis 2.3 is satisfied by P and K. More precisely, the
operators Dy = K*K and Dy = P + KK™ equal

Dy = éd € Diff>(M; Vp),
Dy =dd + 6d + F L € Diff*(M; V).
To show PK = 0, we compute using (2.11), (2.12) and (2.10)
PKf=2éddf + FL(df)=0(FNf)+(df)sF
=0(fuF)+(df)oF = fL(6F) Vfe&'(M)®ag.
By the assumption that A is on-shell (2.14) this vanishes.

2.5.1. Adapted Cauchy data. Let us denote by n the future directed unit normal vector field to
a Cauchy surface X.

Since D1, Dy are normally hyperbolic, they are Cauchy hyperbolic for the maps p1, pg defined
by taking the restriction to X of a given section and of its first derivative along n.

For many purposes it will however be more convenient to consider different maps pt’, pf,
which appear to be due to Furlani [Fur2] (cf. also [P]), and which are defined as follows®.

We equip £7(X)®g with their standard (positive) hermitian scalar products, obtained from £
and the Riemannian metric i induced by g on ¥. We also recall that +* : EL(M)®@g — EP(X)®9
is the pullback map induced by the embedding ¢ : ¥ — M.

Definition 2.11. If ( € EL(M) ® g, we set:

g =vniC € (D) @y,

g=r(e& (D) ey,

g =1 e &(B) @,

gt =i"Yrnad € L) @ g.
For g' := (gi,g%) € EX(X) ® g ® EL(T) @ g we set:

9:=1(9%9") = pi¢.

Analogously, if ¢ € EX.(M) ® g, we set

P =v(ell@ @y,

gt =i"trnud¢ € E2() @ g,
and

g:=(g"g") = p;C.

4To be precise, reference [Fur2] uses Cauchy data which are denoted (A(y), Aoy, A(s); A(qy) therein and are
related to ours by g9 = An)s g% = A(0)s gt = i_lA((;)7 gL = i_lA(d).
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In the terminology of Sect. 2.4.1, p : Te(M;V;) — T'e(3;V,r) where the bundles
Ve =(T"E@T*'E)xg, Vy=EoX)xg

are equipped with their canonical hermitian structures inherited from the inverse Riemannian
metric on ¥ and the Killing form £.

As in [Fur2, P], it can be checked that the corresponding Cauchy problems are well-posed
and that the operators Gy (defined using the p!' data) can be written as

0 0 -1 0
..l 0 0 0 1 .1 (0 1
(217) Gl): =1 1 0 0 0 , GOE =1 (1 0) .
0 1 0 O

We denote by dy,, 9y, the covariant differential and co-differential on ¥ respective to Ay, := 1" A,
i.e.
dyi=ds +As A - EP(X)@g— EPTHD) @ g,
Oy i=dy: EE(X)®g— ELTN(E) @y,
where now the adjoint is computed using the inverse metric on ¥ and the Killing form &.

The p!' Cauchy data are particularly useful to express the operators Ky = Uf Kpf and K
(where UY is defined as U; but with p! instead of py).

Lemma 2.12. We have:

coc o~
el
I
7~
oo
—
QO
*
(el
S o
N————

where a :=1"(noF) A -.

Proof. The formula for Ky, is a routine computation. To obtain the formula for K; we use
(2.17) and (2.9). O

Using Lemma 2.12 and the identity KiK., =0 (Lemma 2.9, (5)), we obtain the following
important identity:

(2.18) dpoa=a*ody in L(E(X) ® g).

3. HADAMARD STATES

In this section we discuss Hadamard states both in ordinary field theory and the subsidiary
condition framework. In Subsect. 3.1 we recall basic facts on quasi-free states on complex
symplectic spaces. The Hadamard condition in ordinary field theory is recalled in Subsect.
3.2. Subsect. 3.3 contains a streamlined version of the arguments in [GW], dealing with the
correspondence between Hadamard states and parametrices for the Cauchy problem in the
ordinary framework. In Subsect. 3.4 we consider the subsidiary gauge framework. We explain
there in detail the strategy we will follow in later sections to construct Hadamard states in this
case, thereby proving Thm. 1.1.

Finally in Subsect. 3.5 we explain the version of the Fulling-Narcowich-Wald deformation
argument adapted to the Yang-Mills case, which we use to deduce Thm. 1.2 from Thm. 1.1.
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3.1. Quasi-free states. Let }V a complex vector space, V* its anti-dual and Ly(V,V*) the
space of hermitian sesquilinear forms on V. If ¢ € L, (V) then we can define the polynomial
CCR #-algebra CCRP®(V, q) (see eg [DG, Sect. 8.3.1]) °. The (complex) field operators V 3
v h(v),1* (v), which generate CCRP?(V, q) are anti-linear, resp. linear in v and satisfy the
canonical commutation relations

[Y(v), ¥(w)] = [P"(v), 9" (w)] = 0, [$(v), " (w)] = Vqwl, v,weV.

The complex covariances A* € L(V,V*) of a (gauge-invariant®) state w on CCRP°(V, ) are
defined in terms of the abstract field operators by

TAtw = w(@ ()Y (w)), VA w:=w(*(w)p(v)), v,weV

By the canonical commutation relations, one has AT — A~ = q.
In what follows we will consider only quasi-free states, which means that they are uniquely
determined by their covariances A* (since At — A~ = ¢ it suffices to know one of them).

Definition 3.1. A pair AT of hermitian forms on V such that AT — A~ = q will be called a
pair of pseudo-covariances.

Let us recall the following characterization of covariances of quasi-free states on CCRpOl(V, q)
(cf. [AS, GW]).

Proposition 3.2. Pseudo-covariances A* € Ly(V,V*) are covariances of a (bosonic, gauge-
invariant) quasi-free state on CCRP°(V, q) iff

(3.1) AE>0.

If q is non-degenerate then this is equivalent to +qc*t > 0, where ¢t := +q~'A*. If moreover,
(¢™)? = ¢t on the completion of V w.r.t. AT + A~ then the associated state is pure.

Hence a pair of (pseudo-)covariances A* € Ly(V,V*) uniquely define a (pseudo-)state on
CCRP°Y(V, q), where by pseudo-state we mean a *—invariant linear functional on CCRP!(V, q).

Definition 3.3. A (bosonic) charge reversal on (V,q) is an anti-linear operator k on V such

that k2 = £1 and k*qk = —q, where the bar stands for ordinary complex conjugation. A quasi-
ree state on with two-point function is said to be invariant under charge
free stat CCRPN(V, q) with two-point function AT is said to be invariant under charg
reversal if A= = —k*A+k. If q is non-degenerate then this is equivalent to ¢~ = —kctk.

Clearly, if AT is a covariance of a quasi-free state invariant under charge conjugation then
one of the two conditions in (3.1) implies the other. Note that one can always obtain a state
invariant under charge reversal by taking %(AJr — H*A__H) instead of AT. For this reason, we
will disregard this issue and consider states that need not be invariant under a charge reversal
(contrarily to most of the literature on Hadamard states).

3.2. Hadamard two-point functions.

5See [GW, W2] for remarks on the transition between real and complex vector space terminology.

6Here by gauge invariance we mean invariance w.r.t. transformations generated by the complex structure. We
always consider states that are gauge-invariant in this sense and not mention it anymore in order to avoid
confusion with other possible meanings of gauge invariance.
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3.2.1. Two-point functions. Let D € Diff"™(M;V) be prenormally hyperbolic and formally
selfadjoint for (+])y. Let us introduce the assumptions:

i) AT T(M;V) —=T(M;V)

ii) AT = A** for (-|-)y on T'(M;V),
(3:2) iii) AT — AT =i"'G,

iv) DXt =)tD =0,
(3.3) ME >0 for (+|-)y on Te(M; V).

Note that (3.2) implies that A* : IV(M; V) — T'.(M; V). Let us set
Ay = (u o)y, u,v € To(M;V).

If (3.2) hold, then AT define a pair of complex pseudo-covariances on the phase space (V,q)
defined in (2.2), hence define a unique quasi-free pseudo-state on CCRP*'(V, ¢). If additionally
(3.3) holds, they are (true) covariances, and define a unique quasi-free state on CCRP!(V, q).

Definition 3.4. A pair of maps A\t : To(M;V) — ['(M;V) satisfying (3.2) will be called a
pair of spacetime two-point functions.

3.2.2. Hadamard condition. The (primed) wave front set of A* is by definition the (primed)
wave front set of its Schwartz kernel. For x € M, we denote Vzi* the positive/negative energy
cones, dual future/past light cones and set

NE = {(2.6) € TIM\ {0} g™ (0)6,6, = 0, € € VEL, N o= NFUN™.
Definition 3.5. A pair of two-point functions \* satisfying (3.2) is Hadamard if
(Had) WE' (A\E) € NE x N

Remark 3.6. Assume that there exists an anti-linear operator x : T'(M;V) — T'(M; V) with
k? = +1 and Dk = kD. It follows that k induces a charge reversal on (V,q) defined in (2.2).
If moreover k has the property that

k(fu) = fru, f€T(M), ueT(M;V)

then it is easy to see that

WF(ku) = WF(u), uw e TL(M;V)
where
Ii={(z,-&): (x,6) €T}, forT CT*M.

If \* are the two-point functions of a (pseudo-)state w invariant under the charge reversal k,
then the relation between At and A\~ shows that the two conditions in (Had) are equivalent.
Most of the literature on Hadamard states deals only with the charge-reversal invariant case,
see however [Hol, W2].

3.3. Correspondence between Hadamard states and parametrices. One of the methods
to impose (usc) is to construct a sufficiently explicit parametrix for the Cauchy problem on a
given Cauchy surface X, as was done in [GW] for the scalar Klein-Gordon equation. In the
present subsection, we will derive the precise relation between two-point functions of Hadamard
states in ordinary field theory and parametrices.
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3.3.1. Two-point functions on a Cauchy surface. Let D € Diff""(M; V) be prenormally hyper-
bolic, formally selfadjoint on I'.(M; V) and Cauchy hyperbolic for some map p as in 2.3.1.

Lemma 3.7. The operator pG extends continuously to a surjection
pG T'(M;V) = T'(2;V,)
with KerpG|r» = RanD|p.

Proof. To show that pG : IV(M;V) — I'(3;V,) is well-defined and continuous, it suffices to
use the well-known fact that

(3.4) WF'(G) Cc N x N

and the rules for composition of distributional kernels in terms of the wavefront set (see [Hor]).
The fact that pG : IV(M;V) — I"(%;V,) follows then from the support properties of G. To
prove the surjectivity it suffices to show that the identity

1= —pGp*Gy valid on I'c(%; V)
extends to I'(X;V,). This is indeed the case because Gy is a differential operator (this is
usually shown using Green’s formula) and consequently acts continuously from I'V to I, hence
p Gy T'(3;V,) = T/ (M; V).
The fact that KerpG|rr = KerG|r» = RanD|p follows by the same proof as before. O
Let us introduce the assumptions:
i) AT Te(35V,) = T(5;V,),
(3.5) ii) A= (A\)* for v,
iii) AL — A5 =i71Gy.
Definition 3.8. A pair of maps A} satisfying (3.5) will be called a pair of Cauchy surface

two-point functions.

In the proposition below we recall a well known bijection between spacetime and Cauchy
surface two-point functions.

Proposition 3.9. The maps:

(3.6) AL = A = (0G) AL (0@,
and
(3.7) A= AL = (0" Ge) A (0" G

are bijective and inverse from one another. Moreover, A\ are the two-point functions of a
quasi-free state iff
AE >0 for Cl)v,-

Proof. (1): let AL satisfy (3.5). Clearly A* is well defined as a map from I'.(M;V) to
I(M;V). If u € To(M;V), then f* := MfpGu € I'(%;V,), hence WF(p*f*) C NiM,
the conormal bundle to ¥ in M. We use now (3.4), the fact that ¥ is non-characteristic
ie. NJM NN = 0 and standard arguments with wave front sets (see [Hor]) to obtain that
Mu = —Gp*f* € I(M;V). The other conditions in (3.2) are immediate.

(2): let A satisfies (3.2). Since AD = 0, we have WF'(\) € T*M x N which implies
that \p*Gy : To(X;V,) — T'(M;V). Next we use that Gy is a differential operator hence
Gy : T(%;V,) = I'(X;V,) to obtain that Ay : I'c(X;V,) — I'(X;V,). The other conditions in
(3.5) is immediate.

The fact that the two maps are inverse from each other follows from pU = pG*p*Gy = 1.
The last statement about positivity is obvious. U
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Prop. 3.9 leads to the following definition:

Definition 3.10. A pair AL of Cauchy surface two-point functions is Hadamard if the associ-
ated spacetime two-point functions \* are Hadamard.

3.3.2. Hadamard two-point functions and parametrices. Let us now discuss the link between
Hadamard two-point functions and parametrices for the Cauchy problem. Let A* be the two-
point functions of a state. We set”

(3.8) HO(2;V,) = (De(23 V)
where the completion is taken w.r.t. (-|(Af +A3)-)v,.

Theorem 3.11. Let D € Diff™(M;V) be prenormally hyperbolic, formally self-adjoint and
Cauchy hyperbolic. Let \* be the two-point functions of a quasi-free Hadamard state and define
Ut :=Uc*: T/(5;V,) = TL(M; V),

where ¢t = £iGZ'A\E. Then
(1) UT+U- =U.
(2a) The spaces Ker Ut |go and Ker U™ |go are orthogonal for gs.
(2b) if the state is pure then
H(2;V,) = Ker U | o @ Ker U™ | go.
(3) £i~1Gy is positive on Ker U*|go for (-|')v,.
(4) WE(U*f) c NE for all f € T/(Z;V,,).
Proof. (1) follows from c¢* + ¢~ = 1. To prove (2a) we note that for u* € Kerct and ¢
defined in (2.4) one has:
(ut + 2u~)gsut = (ut + zu)gecT (T +2u7) €R, V 2 €C,

which implies that u=gszu®™ = 0. (2b) follows from the fact that ¢* are bounded projections on
HY if the state w is pure, (3) follows from the conditions Af > 0. To show (4), observe that for
all u e T'(M; V)

ATu = (pG)* N pGu = Ut pGu.
Thus, the Hadamard condition entails that WF(UTpGu) € N'*. Since pG is surjective this
means WF(U* f) c Nt for all f € I"(2;V,). The proof for U~ is analogous. O

To obtain a converse statement, it is not sufficient to work with local ’Sobolev’ spaces —
we rather need some global ones that can replace the space H°(3;V,,), and that will allow to
compose operators.

To this end, suppose H(X;V,) is a topological vector space s.t.

I(%;V,) CH(E;V,) CT(X; V).

Examples of such spaces are (intersections of) scales of Sobolev spaces associated to a positive,
elliptic pseudodifferential operator. The dual space of H(X;V},), denoted H'(X;V),), satisfies

I'(3:V,) C H'(3;V,) C Tu(3:V,).
We will denote B~>°(X;V,) the class of operators that map H'(X;V),) into I'(X; V).
We assume that
(3.9) Gs, G531 i H(Z;V,) = H(Z; V),

"For instance, if AT are the two-point functions of the vacuum for the scalar Klein-Gordon equation on Minkowski
1 1
space then HO(3;V,) = H2 (R?) @ H™ 2 (R?), where H™(R?) are the usual Sobolev spaces.
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which since i7' Gy, is selfadjoint for (-|-)y, implies of course
Gy, G31HI (V) = H (DY),
The corresponding natural assumption for a pair of Cauchy surface two-point functions A\i is
AL RSV = RS V),
AECHI(SV,) = HI(S: V),

where as before one of the above conditions implies the other.

(3.10)

Theorem 3.12. Assume that there exist operators U+ : H'(S;V,) — I'L(M;V) such that
Ut H(Z;V,) = T(M;V) and
DUY =0, UT+U" =1,
up to remainders that map H'(X;V,) — T'(M; V).
Assume moreover that
(1) The spaces Ker UT |y and Ker U™ |y are orthogonal for gs, and
H(Z;V,) =KerUt |y @ Ker U™ |n.
(2) WE(U*f) c NE for all f € T/(Z;V,,).
Let c* : H(Z;V,) — H(Z;V,) be the projection s.t.
Ranct = KerUT|y, Kere® = Ker UF|y.

Then \f == +i~'Gyc® are Hadamard Cauchy surface two-point functions. If moreover

(3) i 'Gsct >0 for v,
then Xt are the Cauchy surface two-point functions of a Hadamard state.
Proof. (1) implies ¢™ + ¢~ = 1. By duality, ¢* : H'(Z,V,) — H'(Z,V,). Next, for all
feTl’(3;V,) we have:

Ut f= U4+ U )t f=Ucf=UT1 - cF)f =UTf mod C.
Therefore,
My = +i7 Ut pGu = +iU*pGu mod O, wu e I'(M;V).

Let a* be a properly supported pseudodifferential operator, non-characteristic on A'* and with
essential support disjoint from A/F. From (3) and the relation above it follows that a®\* is

smoothing, hence WF'(A\*) € N & x N. Since A\* = (A*)* this implies WF'(A\*) € N'F x N'E.
This proves the first statement of the proposition. The second statement is obvious. O

Thm. 3.12 allows to simplify the construction of Hadamard states for the scalar Klein-
Gordon equation given in [GW] — it is in fact not difficult to check properties (1)-(3) directly
from the construction of the parametrix therein. The space H(X;V,) is taken there to be the

intersection of usual Sobolev spaces on R??. The next proposition is an abstract version of a
result from [GW].

Proposition 3.13. Assume that /\:E*:,S\:EIE satisfy (3.10) and are the Cauchy surface two-point
functions of two quasi-free states, and suppose the first of them is pure and Hadamard. Then
the other one is Hadamard iff

(3.11) c ¢, ctete, e et € BT(%;V,)
or, equivalently, iff

(3.12) & —ct e BT(%; V)
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Proof. «: 1If (3.11) or (3.12) holds then
Ut —Uctetet . H(ZV,) = T(M; V).

By Thm. 3.11, it follows that WF(U¢E f) € N'* for all f € I'(3;V,) and consequently \ is
Hadamard by Thm. 3.12.

=: Forall f eT'(%;V)),

Uc étet f=Uetet f —Uctetetyf.

By Thm. 3.11, the wave front set of the LHS is contained in N ~, and the wave front set of
the RHS is contained in N'*. This shows that the operators Uc~¢t¢® are smoothing, therefore
c~&tet = pUc™ &t c® are smoothing. The assertion ¢té~c¢t € B™°°(%;V,) is shown similarly.

Moreover, (3.11) entails that

et —ct=(ct+c)Et (e +c¢7)—ct =ctétet — ¢t
=cT (et —1)c" = —c"¢ ¢ mod B~(%;V,),

where the last term belongs to B~>°(X;V,). This proves (3.12). O

Corollary 3.14. If A\ satisfying (3.10) are Hadamard Cauchy surfaces two-point functions
then so are v*A\fv for anyv € 1+ B=®(%;V,) s.t. v*Gyv = Gy.

3.4. Hadamard states in the subsidiary condition formalism.

3.4.1. Hadamard states in the subsidiary condition formalism. Definition 3.5 can be generalized
to gauge theories in the ‘subsidiary condition’ framework. Recall that to a given non-hyperbolic
operator P we have assigned a hyperbolic operator D; and introduced phase spaces V, =
KerK*/RanP, V; = I'./RanD. We consider the following definition, which generalizes the one
used by [FP, FS]. Let us recall that Vp is the quotient .

Definition 3.15. We say that a quasi-free state w on CCRP®(V,,qp) is Hadamard if there
exists Hadamard two-point functions )\it on T'o(M;V7) such that the complex covariances of w
are given by:

[u]AE[v] = (u|)\1iv)vp, u,v € KerK*|p_,
where KerK*|r, > u — [u] € KerK*/RanP is the canonical map and N\ are Hadamard two-
point functions on T'c(M; V7).

We say that )\li are the two-point functions of the Hadamard state w on CCRPOI(VP, qp).
The following lemma is obvious.

Lemma 3.16. )\ : [.(M; Vi) — I(M; Vi) are the two-point functions of a Hadamard state
on CCRP' (V,., qp) if:

(usc) DiAE =XED; =0, WF'(\Y) c NFx N,
(3.13) (gi) (AY)*=Af and A{: RanK|r, — Ran K|,
pos > on Ker r.-
M >0 Ker K*|r,

It is worth keeping in mind that in applications in perturbative Quantum Field Theory,
the positivity condition (pos) appears to be unessential. Moreover, some constructions seem
to survive if one replaces gauge-invariance (g.i.) by a condition ‘modulo smooth terms’ [Rej].
Nevertheless, all three conditions are needed to have a reasonable non-interacting theory, we
will thus aim at solving all of them when possible.

We now discuss gauge-invariance and positivity on the level of Cauchy surface two-point
functions A\i. We explain the main steps of the construction of Hadamard states for the
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linearized Yang-Mills equations, leading to a proof of Thm. 1.1, which will be completed in
Sect. 8.

The construction is somewhat complicated by the need to justify that various operators can
be composed. These technical points can be bypassed on the first reading.

We fix spaces H(X;V,,), i = 0,1 as in Subsect. 3.3 and assume that G satisfy (3.9). The
corresponding assumption on K, is:

(3 14) K : H(E,Vpo> - H(E;Vm)a
’ Ky i H (3 V) = H(E; V).

The operator K has then the same properties as K.

3.4.2. Cauchy surface two-point functions. Assume that we are given Cauchy surface two-point
functions A% for i = 0,1 satisfying (3.5) and (3.10) for V = V;.

To /\;; we associate as before operators cl:.t = :I:iCT‘i;l)\fEE which by the above assumptions
satisfy:

i) T H(E V) = HS V),
(3.15) i) HI(S V) — HI(S; V),
iii) cf +¢; =1.

Conditions (pos), (g.i.) on A\f in (3.13) can be rewritten as

(pos) AL, = 4i"'Gipef >0 for (I')v,, on KerKy,

(gi) () =¢f, ¢ :RanKy — RankK,,.
Note that the last condition can be rewritten as:

(gi) (D)t =¢f, ¢ :KerK! — KerKk].

Let us now set:
(3.16) R =i Ky — Kyt

Condition (g.i.) is clearly satisfied if R_o, = 0.

The operators cf are obtained from parametrices UijE for the Cauchy problems for D; as in
Thm. 3.12, in order to enforce the Hadamard condition for /\ft. The construction of paramet-
rices done in Sect. 5 relies on pseudodifferential calculus, from which we will only be able to
obtain that R_. is smoothing.

Nevertheless, it is possible to ensure (g.i.) by subtracting to cljE a term clireg, which is expected
to be smoothing, and hence will not invalidate the Hadamard property.

The method works as follows.

3.4.3. Construction of a projection. Let II be a projection s.t.

KerIT = Ran K,
(3.17) I H(X5 Vi) = H(E V),
II:H(EV,,) = H(ZV,,).
Clearly II' has the same mapping properties as II. Moreover one has:
(3.18) Ranll' = KerK{, Ran(l—1II) =RanKy, Ker(1 1) = KerKk].
Since RanKy, C KerK; we also have:
(3.19) MK, = Ky, Kill =K},
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3.4.4. Construction of a right inverse to K. Let also B : I'o(X;V,,) — I'(X; V,,) an operator
such that

(3.20) KB =1—1I, and hence BT K| =1 — 11",

The operator B is typically unbounded from H(3;V,,) to H(3;V,,), because of infrared prob-
lems. To control its unboundedness, we introduce a smooth positive function (z) : ¥ — R and
still denote by (z) the operator of multiplication by (z), acting on I'(X;V,,). If ¥ is compact
the weight is unnecessary and one can take (x) = 1.

We assume that:

i) (2)Gis(z) "t H(E V) = H(BV,,), i =0,1,
(3.21) i) (z) " Ks(w) t H(E; V) = H(Z V),
iti) (@) ey (@) H(S: Vog) = H(Z; V),

Concerning the operator B we assume that:
B :H(Z;V,,) = (@)H(E; V),

(3.22)
B HI(Z,‘/;JI) — <§C>HI(27 Vpo)a

Theorem 3.17. Let czi, II, B be as above. Let us set:
& =1cf Il + Bleg K + Kycy B,
CFreg = E(B'R_oo + TI'R_.B),

\E . -1 ~+
Al =i Gy

Then:
(1) & (@) H(SV,,) = (@) H(S5V,,,), hence & : Te(S5V,,) = T(S:V,,).
(2) One has:

i) (@) =a,

oA
1) ¢ +c¢f =1,

)

)

iii) & KerKl — KerK{,
)
)

iw) ML, =TI"o XL oIl on KerK{,

+

I +
v G = +Clreg’

in particular N satisfy (g.i.).
(3) If the projection I1 can be chosen such that

(3.23) AL >0 on TTKer K],

then /N\ftE satisfy also (pos).
(4) If moreover

C{Ereg : Fé(27 ‘/;11) — F(Za V;Jl)
and Aliz are Hadamard, then :\f':E are Hadamard.

Proof. Let us first prove (1). Clearly T¢I : H(X;V,,) — H(Z;V,,), by (3.15), (3.17).
Next we obtain that Kyci B : H(X;V,,) — ()H(X;V,,), by (3.22), (3.21). Using the same
assumptions and duality we obtain that BicEK{ : ()1 H(%; Vo) = H(E; V).
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Let us now prove (2). i) is obvious. To prove ii) we write
& +é =0+ B'KL + KB
=0+ B'KIIT+ K.B
=+ 1 -0OHIT+(1-1) =1,

using successively ¢ + ¢ = 1, (3.19), and (3.20). iii) follows from RanIl’ = KerK} (see
(3.18)), and RanK,, C KerK{. iv) is immediate. To prove v) we write:

& =nten+ Bl K + Ko B
—fefn + Bl g KL + T Ko ef B
e+ B'Kicf + i K. BT B'R' T I'R_ B

=T+ -mie + (1 - F BIRT _FTR_ B

_ * +
=€ — Clreg-

(3) follows from the fact that (-|5\1i2-)vp1 = (-|)\1i2-)vp1 on KerK}.

Under the hypotheses of (4) Aliz — A1y is smoothing, hence so is Ali — 5\1i This completes
the proof of the theorem. O

3.5. Reduction to ultra-static spacetimes by deformation. A well-known argument due
to Fulling, Narcowich and Wald [FNW] allows one to reduce the construction of Hadamard
states for the Klein-Gordon equation to the special case of an ultra-static spacetime, and an
extension of this method can be used for the Maxwell equations [FP] and Yang-Mills linearized
around A = 0 [Hol].

Let us first recall the FNW deformation argument for ordinary field theory: let g,g" be
Lorentzian metrics on M such that (M, g) and (M,g’) are globally hyperbolic and ¥ C M a
Cauchy surface for (M, g) and (M,g’). Assume that ¢ = ¢’ on a causal neighborhood O(X)
of ¥. Assume also that D, D" € Diff™"(M; V) are normally hyperbolic operators satisfying the
assumptions in Subsect. 2.3 such that D = D’ on O(X). Then by the time-slice property and
propagation of singularities theorems, the restriction of a Hadamard state for D’ to O(X) yields
a Hadamard state for D.

In the subsidiary condition formalism, one has to assume the existence of operators P, K,
P’ K’ as in Hypothesis 2.3 such that P = P’, K = K’ on O(X). The same argument using the
gauge invariant version of the time slice property, i.e. Prop. 2.8, shows that the restriction of
a Hadamard state for (P, K') to O(X) yields a Hadamard state for (P, K).

In the ordinary case one fixes an ultra-static metric gus, a normally hyperbolic operator
Dys with coefficients independent on the associated time coordinate, an interpolating metric ¢’
sharing a Cauchy surface ¥ with g and a Cauchy surface ;s with gus, and finally a normally
hyperbolic operator D’ with D’ = D near O(X) and D’ = D, near O(3,s). Applying twice
the above argument, one obtains a one-to-one correspondence between Hadamard states for D
and Hadamard states for D,s. The construction of Hadamard states for D, is easier since D,
admits a natural vacuum state which can be shown to be Hadamard.

3.5.1. Deformation argument for Yang-Mills. In the subsidiary condition formalism, it is not
obvious how to find interpolating operators P’, K’ equal to P, K near O(X) and satisfying
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Hypothesis 2.3 globally on M. Moreover even if (M, g’) is ultra-static on some O(X,s), this
does not imply in general that P/, K’ will be independent on the time coordinate on O(X,;).

For linearized Yang-Mills equations, it is possible to find interpolating operators P’, K’ if we
can find a 1—form A’ on (M, ¢') such that & F' = 0 and A’ = A near O(X). This will follow in
turn from a result of global existence of smooth solutions of the non-linear Yang-Mills equation,
on the spacetime (M, ¢’), with smooth Cauchy data on X.

Assuming this problem is solved, there is another issue that we need to consider:

by the deformation argument explained above, to prove the existence of Hadamard states
for the linearized Yang-Mills equations on (M, g), we may assume that (M, g) is ultra-static,
ie. g = gus = —dt* + h;j(x)dz'dr? on M =Ry x 3.

Recall that we assume that ¥ is either a compact manifold or ¥ = R?. The Riemannian
metric hij(x)dacidacj on ¥ can be chosen as we wish, in particular if ¥ = R? is not compact,
we may assume that it satisfies Hypothesis 1.2. However if ¥ = R? we need also to ensure
Hypothesis 1.4 on the background solution A, (recall that this is a decay condition at spatial
infinity). Moreover we have to assume that Ay is in the temporal gauge, ie. that Zus,t =0.

If our model problem is obtained from the above deformation argument, A, is obtained by
solving two Cauchy problems for non-linear Yang-Mills equations:

in the first step one has to solve it on (M, ¢'), from a Cauchy surface ¥ in the future (where
g = g) to a Cauchy surface Y5 in the past (where ¢’ = gys). In a second step one has to solve
it globally on (M, gus) with the Cauchy data on X, obtained in the first step.

Clearly if the Cauchy problem for the Yang-Mills equation (2.14) on a globally hyperbolic
spacetime (M, g) can be globally solved in the space of smooth space-compact solutions, then
all the intermediate background fields A’ and Ay will be space compact, and hence A, will
satisfy the decay condition (1.4). As a consequence the FNW deformation argument can be
applied, giving the existence of Hadamard states if the background field A is space-compact.

Fortunately it is not very difficult to deduce the result we need in dimensions lower than 4,
from the existing literature, in particular from the work by Chrusciel & Shatah [CS, Thm. 1.1].
The proof of the following proposition will be sketched in Appendix B.3.

Proposition 3.18. Assume that dim M < 4 and (M,g) is globally hyperbolic. Let A €
EL(M;g) a local solution of the Yang-Mills equation (2.14) near some Cauchy surface 3. Then
there exists A’ € EL(M;g) such that:

(1) A" ~ A near ¥, where ~ denotes gauge equivalence,

(2) A, =0, ie A is in the temporal gauge,

(3) A’ is a global solution of (2.14).

Combining Prop. 3.18 with the above discussion, we see that Thm. 1.2 follows from Thm.
1.1.

4. VECTOR AND SCALAR KLEIN-GORDON EQUATIONS ON ULTRA-STATIC SPACETIMES

In this section we consider a general framework containing the operators Dy = dd and
Dy =dé + dd+ F L associated to the Yang-Mills equation (defined in Subsect. 2.5) on ultra-
static spacetimes. This will provide a basis for the construction of the parametrix in Sect.
5.

4.1. Preparations. The operator Dy, (resp. Dg) acts on EX(M) @ g (resp. E9(M)®@g). Since
by Hypothesis 1.1 M = R; x X is parallelizable, we fix a global trivialization of T*M and
identify (M) ® g (resp. EY(M) @ g) with C>(M; W) for

(4.1) W:=V®g and V =C!"d (resp. V =0C).

We refer to the two cases as the vector case (resp. scalar case).
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The background metric is ultra-static:
g = —dt* + hij(z)dr'dz?
on M =R x ¥, with either ¥ = R? or ¥ a compact manifold. We obtain a splitting
(4.2) V=VioVs, Wy =V,®g, W=W;DWs,
by writing a 1—form as A = A;dt + Axdx, and we identify V; with C. In the scalar case we

take V; = {0}, Vi, = C. Setting

(4.3) J:<_01 (1)>ifV(C1+d,leifV(C,

we see that V; = Ker(J + 1), Vi = Ker(J —1).
We denote by (-|-) the canonical positive definite scalar product on C§°(M; W) in the scalar
case, defined using the Killing form K. In the vector case we set:

(4.4) (ulv) := /Zﬂ(x)Jg_l(x) ® Kv(x)|h|%dx,

which is also positive definite.
We denote by T', € C°°(%; L(V)) the coefficients of the Levi-Civita connection for g. Since
this connection is metric for ¢g—!, we have:

(4.5) Dag ' =Trg  + g7 'T,.

Since the metric is ultra-static we have moreover I'y = 0, and I'; are the Levi-Civita connection
coefficients for (3; h;;dztdx?).

We denote by M, = adz € C(R x ¥;L(g)) the connection coefficients for the algebra
degrees of freedom. They can also depend on z° because the background Yang-Mills solution
is obviously time-dependent in general. In the vector case we set

Ty =Ta®1g+ 1y ® M, € C®(R x ¥; L(W)),

and T, = M, in the scalar case. We have of course Mk + kM, = 0.
In the vector case we also fix a map p € C®°(R x X; L(W)) representing the term F'r such
that

P (g7 ®k)= (97" ®K)p,

in the scalar case we take p = 0. We set:
(4.6) Vi o= 0u+ T, D= —|g| 2 VE|g|? g™V} +p.
The charge q defined in (2.2) equals:
(47) C= [ T g ok 4T g o kYA
{t}x=2
in the vector case and

(438) Cat = /{ L TVEC R T e hlb
tIx>

in the scalar case.
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4.2. Temporal gauge. The temporal gauge is Ay(t,z) = 0, which since M, = ad g implies
that Ty = 0, i.e. VOT = 0. It is well known that one can always assume that one is in the
temporal gauge, cf. Appendix B.2.

In this case the operator D takes the form:

(4.9) D= +a(t,z,Dy), alt,x,Dy) = —|h|"2VThY(2)|n|zVT + p(t,z).

Denoting by a* the formal adjoint of a for the positive scalar product (-|-) , we deduce from
the fact that ¢ defined in (4.7), (4.8) is independent on ¢ that:

(4.10) a*J = Ja,

for J defined in (4.3). In other terms, D is self-adjoint for (:|-)y := (:|J-). In the next sections
we will use primarily the product (+|-).

4.3. Cauchy problem. The standard Cauchy problem for the operator D is
D¢ =0,
(4.11) {

S =f
for pl(z) = (€(0,2),i710:¢(0,2)), f = (f°, f1). We denote by ¢ = Uf the solution of (4.11).
We will denote by f}, fi, i = 0,1 the time and space components of f¢ according to the
decomposition
W =W, ® Ws.

Denoting still by ¢ the charge expressed in terms of Cauchy data we obtain that in the vector
case:

faf = (1T + (FO1TF
= (falF2) + (F212) = (D) = (F1AD)-

In the first line above the positive scalar product (-|-) is defined in (4.4), the positive scalar
products in the second line are equal to

(413) (felfs) = / Foh™' @ kfslhlzdz, (filfr) = / o kfolh)da.
) )
In the scalar case we have instead

Taf = (FHIS0) + (1Y), for (ufv) = /E 7 kolh|Hda.

(4.12)

4.4. Adapted Cauchy data. The above choice of Cauchy data is the usual one for any
operator obtained from a metric connection. In the vector case, however, it will often be more
convenient to work with the adapted Cauchy data p!' defined in Sect. 2.5.1. In this subsection
we discuss the transition from one choice of Cauchy data to the other.

4.4.1. Identifications. The space EL(M) ® g equals C°(M; W).
For A € EL(M) ® g we set:

(4.14) A =: Adt + Ay,

for Ay € C®(R,EX(X) @ g), Ax € O°(R,EL(X) ® g), which corresponds to the decomposition
¢ = (@ (s, using (4.2). We will use the corresponding identifications for restrictions to X, i.e.:

(4.15) CEe (B W) ~ C° (%5 W) & G5 (3 W) ~ (EX(D) @ g) @ (£ (D) @ 9).
We have also corresponding decompositions for 2—forms. Namely, if F' € E2(M) ® g we set:
(4.16) F =:dt \ F; + F,,

for F; € C®(R,EL(D) @ g), Fy € C®(R, E2(D) @ g).
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We recall that A € EL(M) ® g is the background connection, which we assume to be in the
temporal gauge. We introduce the derivative and co-derivative on X:

dy :=ds + As A - : 55(2)®E‘>85+1(2)®9’
0o i=dr: EP(D)0g— EP (D) @y,

and one has dyudy, = Fy A- using the notation in (4.16). An easy computation using that A, =0
shows that:

du = Oyudt + dsu, u € 5£C(M) ® g,

dA = dt A (04 Ay — du Ay) + du Ay, A€ EL(M)® g,
(4.17) B B

SA = 0;A; +0uAs, ACEL(M)® g,

OF = —(65F)dt + Oy Fy + 65 Fs, F € EL(M)®g.
Using (4.17), we see that -

Ft:at/_l)ia FZ:dZ/_lE;

and that the Yang-Mills equation 6F = 0 is equivalent to:
(4.18) 0sF, =0, O.F + 05Fs =0,
where of course (4.18) holds for all ¢ € R.
4.4.2. Transition to adapted Cauchy data. The adapted Cauchy data were defined in Sect.

2.5.1. Using (4.17) we obtain the following relation between the standard Cauchy data p; and
the adapted ones pY'.

Lemma 4.1. Let Ry :=p¥ o pl’l. Then:

(1)

1 0 0 0 1 0 0 0
o 1 00 4| o 1 00
fir = 0 —idy 1 0 e = 0 iy 1 0
idy, 0 0 1 —id, 0 0 1
(2) We have:
Reqi Ry = q1,

i.e. Ry is symplectic.

Note that the precise form of Ry relies on the assumption that the spacetime is ultra-static.
It enjoys some good properties particular to that case, like for instance JRp = RpJ, which is
used implicitly in some computations in Sect. 8.

5. PARAMETRICES FOR THE CAUCHY PROBLEM

In this section we give a construction of the parametrix for the Cauchy problem (4.11),
by adapting arguments in [GW] to vector-valued Klein-Gordon equations. In the rest of
the paper, the principal part of the operator a(t,z, D,) below is time-independent, since the
background metric is ultra-static. In this section however we treat the more general case
where the principal part is time-dependent, which corresponds to the case when the riemann-
ian metric h;j(t, z)dzdx’ is time-dependent. The completely general situation of a metric
—B(t,x)dt? + h;j(t,z)dx*dz’ could be treated as well by our methods.

The construction of a parametrix for the Cauchy problem given later on will rely heavily on
pseudodifferential calculus. For the necessary basic facts and definitions we refer the reader to
Appendix A.



Hadamard states for the Yang-Mills equation on curved spacetime 28

5.1. Setup and notation. We consider an operator
D =8 +al(t,z, D), a(t,x,Dy) = —|h|"2VT R (t,2)|h|2VT + p(t,z),

where T, p etc. are as in Sect. 4.

We assume that the metric h;;(t, z)dz'dz? satisfies Hypothesis 1.2, locally uniformly in ¢,
and that the background Yang-Mills solution A satisfies Hypothesis 1.4 ii).

In the sequel we denote a(t,z, D,) simply by a(t) € C*°(R, ¥2(3; W)) (see Appendix A for

the definition of pseudodifferential operators classes ¥, ¥ ). One has:

(5.1) a(t) = ascal(t) +r1(t), r1 € O (R, UH(X; W),

and ageal € C°(R, W2 (3;W)) equals:

(5.2) tscal(t, , D) = —|h|~28;|h|Zh (L, 2)0;.

Its principal symbol is

(5.3) Opr (ascar) (t, 2, k) = ki b (¢, 2)k @ 1y

For V a finite dimensional vector space, we set

(5.4) H(Z V)= () B™(SV), H(S5V) = [ H™(ZV),
meZ meZ

equipped with their natural topologies, where H™(3;V) are the Sobolev spaces, which are
canonically defined since ¥ is equal either to R? or to a compact manifold. We set also

L*(5; W) = HO(S; W),

where in the situation considered in Sect. 4, L?(X;W) is equipped with the scalar product
(4.4).

5.2. Some classes of pseudodifferential operators. In this subsection we introduce some
special classes of pseudodifferential operators which will play an important role later on.

5.2.1. High momenta localization. A first problem that we have to face is the need to construct
eract inverses to some elliptic operators, not only inverses modulo smoothing errors. Let us
explain the well-known way to solve this problem on a simple scalar example:

if r € U=1(RY), the operator 1+ r is not necessarily invertible on L?(R?). However if we fix
some cutoff function x € C*(R), with x(s) =0 for |s| < 1, x(s) =1 for |s| > 2 and set

(5.5) rr(z, k) == x(R7k|)r(z, k), rr = rgr(z, D,),
then r —rp € ”°(R?) and rg — 0 in UO(R?) as R — +oo. It follows that
(5.6) 1+ rp is invertible on L*(R?) for R>> 1, (14 rg)~' € 1+ U~ Y(RY).

We formalize this method by introducing the following definition.

Definition 5.1. Let V4, V3 be finite dimensional hermitian spaces. We denote by W2 (%; V1, Va)
the space of R—dependent pseudodifferential operators cr such that:

1) cr is uniformly bounded in WP (3; Vi, Va),

ii) cr — 0 in WPTE(3; V1, Vo) when R — +oo for some (and hence for all) € > 0.

The space WL (3; V, V') will be simply denoted by WL (3; V).

We now collect some easy properties of the above classes (the meaning of statement (2)
below is explained in the proof).

Lemma 5.2. (1) (V2 (%;V4,V3))" = W (5; Ve, V1),
(2) \I];D(Ey V17‘/2) C lllgs(zy V17‘/2) + \11_00(27 V17‘/2);
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(3) let cp € U 5 (3;V) fore >0 and let o € R. Then for R > Ry we have:
(I+cr)*el4+ T 5(5;V).

Proof. (1) is immediate. If ¢ € SP(X; V4, Vo) we set cr(z, k) = x(R™Yk|)e(z, k), for x as in
(5.5), and obtain that cr(z, Dy) € WL (3; V1, V), c(x, Dy)—cr(x, Dy) € U-°(X; V4, V2), which
proves (2). Let us now prove (3). We obtain that cg — 0 in U°(3; V), hence in B(L?(%;V)).
It follows that for R > Ry (1 + cg)® is well defined by the holomorphic functional calculus
of bounded operators. The map cg — (1 + cg)® — 1 is then continuous on ¥—5(X; V) for all
e > 0, from which we deduce that (1 +cgr)* € 1+ ¥_5(3; V). O

5.2.2. Infrared cutoffs. Furthermore, some operators will need to contain additional low energy
(infrared) cutoffs, defined using some selfadjoint operators. These cutoffs will play an important
role in Sect. 8.

In the rest of the paper we denote by x_, x> € C®°(R) two cutoff functions with

(5.7) X<+ Xx>=1, suppx. C]—o0,—1JU[l,400[, suppx.C [-2,2].

Definition 5.3. Let V1, V5 be finite dimensional hermitian spaces and h; € Difo(Z; Vi) be ellip-
tic, selfadjoint and bounded from below. We denote by \I/feg(E; Vi1, Va) the space of R— dependent
pseudodifferential operators cgr such that:

Z) CR € \pgs(z;‘/la ‘/2);

ii) cgr = x=(h2)crxs(h1) for some x- as in (5.7).

The space WL, (5;V, V) will be simply denoted by VP, (X;V).

reg reg

Lemma 5.4. (1) (U2, (%11, V3))" = UL (515, VA1),

reg

(2) WP(X; V1, Vo) C Whg (355 V1, Vo) + U 720(35 V4, Va),

reg

(3) let cr € U, 5(3;V) for e > 0 and let o € R. Then for R > Ry we have:
(I+cp)* el + T (5 V).

reg

Proof. (1) is obvious. (2) follows from Lemma 5.2 (2) and the fact that x.(h;) € T°(%; V;),
since h; is elliptic and bounded below. Next (1 + cg)® is well defined for R large enough by
Lemma 5.2. For f(\) = (14 \)® we have (denoting y-(h) simply by x.):
fler) = fxserx=) = 1+ f(0)xocrRX + XCRX-G(X-CRX-)X-CRX >

for g(\) = A72(f(\) — 1 — f/(0)N). Since g is analytic near 0, we obtain that g(x.crx-) €
UY(%; V) and moreover that g(y-crX-) is uniformly bounded in W°(3; V). This implies (3). O

We will use the above operators classes for V.= W,;, Wy, W or W& W. We start by defining
the operators h that will be used in our case.
Definition 5.5. We set:

hy = 0sdy : 5?(2) Rg— 5?(2) ® g,

By i= 0pdy + dely + Foa-: EX(D)0g— ELD) g,

and denote still by hy, hy their selfadjoint extensions, with domains H?(3; W), H?(X; Wy).
We set:
h:= hy @ hy acting on L*(X;W).

We equip then the spaces Wi, Wy, W and W & W with the elliptic operators hy, hy, h and
h @ h and define the various spaces U¥,, using the above operators.
Finally we choose a number C > 1 such that A + C1 > 1 and set:

€:= (h—l—Cl)% =€ D €y,
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where ¢, := (hy + C1)2, €, := (hy 4+ C1)2. Let us collect some useful properties of the above
operators.

Lemma 5.6. (1) h € Diff>(X; W) is an elliptic differential operator with principal symbol
opr(h)(z, k) = kih" (2)k; @ Ly
(2) € € L3 W) is an elliptic pseudodifferential operator with principal symbol:
e (€)(2, 1) = (kih (2)hy)F @ L.

(3)
i) h=h* e=¢, [h e, J] =0,

)=
1) hyds = dghy + 05 Fs A -, Sshy = hibs + 0 Fso - .
)

Proof. (1), (2) and (3) i) are immediate. (3) ) follows from the Riemannian version of the
computations at the end of Subsect. 2.5. (|

5.3. Construction of generators. In this subsection we construct the two generators for the
parametrix of the Cauchy problem, by modifying arguments from [GW].

Proposition 5.7. There exists for R > 1 an operator such that:
br(t) = (asear(t) +1)% + O (R, ¥0(S; W),

and:
i) 10:br(t) — b%(t) + a(t) =0,
i) br(0) + JbR(0)J = €3 (21 + Wi L (S W))es,
i) (br(0) + JbR(0) )"t = e 3 (31 + U L(SW))e 2

) br(0) = €3 (L+r_1,r)e?, r_1p € T l(ZW).
Remark 5.8. [t is easy to see that the equation
i0;:b(t) — b*(t) +a(t) =0
is equivalent to
(8, +1ib(t)) o (8; — ib(t)) = 8% + a(t).

Proof. The proof is separated in several steps, the most important one being to solve the
equation:
(5.8) 10;bR(t) — bR (t) + a(t) = 0.
Step 1: in Step 1 the parameter R will be absent, so we suppress the subscript R to simplify
notation. We first try to solve (5.8) modulo C™(R, U= (2; W)). We set €(t) = (agear(t) +1)2
and look for b(t) of the form:
(5.9) b(t) =: e(t) + bo(t), bo(t) € C°(R, ¥ (3; W)).
Using that a(t) = ascai(t) + 71(t) by (5.1), we obtain that by(¢) should solve:

bo = (26)_liat€ 4+ (26)_1(7’1(t) — 1) + (26)_1(iatb0 — bg 4+ [6, bo])
(5.10)

= (2€) 7' (i0se + 11 — 1) + F(bo),

Since €(t) € C®°(R, V! (3;W)) we obtain that [e,c] € C(R, ¥™(3;W)) for any operator

scal

c € C®(R,¥™(X; W)). Therefore we can apply [GW, Lemma A.1] and find b(t) = €(t) + bo(t),
unique modulo C*° (R, ¥~°°(3; W)) such that

(5.11) 10;b(t) — b2(t) + a(t) € C°(R, ¥ ~>°(Z; W)).
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Step 2: in Step 2 we modify b(t) by subtracting an R—dependent term in ¥~°°(W) to ensure
conditions i), 74i), iv). Note that the principal symbols of the two operators €(0) and e defined
in Def. 5.5 are both equal to (k;h* (0, x)k;)=. Hence we deduce from (5.9) that:

b(0) = €2 (0)(1 +r_1)e2(0), 1 € T~ (W),

By Lemma 5.4 (2) we can write

(5.12) r-1=T_-1,R+7"—c,R, "'-1,RE \I/r_eé(Z;W), T—oo,R € \I/_OO(Z;W).

We now choose any b_o g(t) € C°°(R, U~°(2; W)) such that b_oe z(0) = €2r_oo ge? and
replace b(t) by

br(t) = b(t) — b_oo r(t).
Then bg(t) still satisfies (5.11) (with a different error term), and

bR(O) = 6% (1 + 7“_17R)6%,

i.e. condition iv) is satisfied. It is then easy to verify conditions ii), iii). In fact we have
[e, J] = 0 and hence:

bR(0) + Jb5(0)J = €2 (21 + 71, + Jr' | pJ)et.
Since [h, J] = 0 we obtain that 71 g + Jr* | pJ € W, L(3; W), hence by Lemma 5.4 (3)

reg

(3; W).

reg

1
2l+r_y g+ Jri gJ) € F1+ e

If follows that conditions 4i), i), iv) are satisfied.
Step 3: We now further correct bp(t) to solve (5.8) exactly, not modulo C*°(R, ¥ ~>°(3; W)),
without changing br(0). Again we can suppress the subscript R. The operator b(t) solves

10,0 — 0% +a=7_n0, T_0o € C®(R,U™(5; W)).
Setting b(t) = b(t) + c_oo(t) we see that
18tl~7 — 52 + a = 0

iff

(5.13) OrC—oo(t) = —1b(t)c_oo(t) — 100 (t)b(t) 4 ir_oo (t).
Setting

(5.14) C_oo(t) =: Texp(—ifot b(s)ds) 0 s_oo(t) o Texp(i fto b(s)ds),

we obtain that s_. () should solve the equation:
Os_oo(t) = iTeXp(—iftO b(s)ds) o r_so(t) o Texp(i fg b(s)ds) =: T_oo(1).
By Lemma A.5, we know that 7_, € C*°(R, ¥ ~°°(3; W)), hence

s_oc(?) :/0 oo (s)ds € C (R, U~(5; W)

solves the above equation. Again by [GW, Lemma 4.7] we obtain that c_ given by (5.14)
belongs to C*°(R, ¥ ~°°(X; W)). Moreover since s_o(0) = r_(0) = 0, we have b(0) = b(0).
Denoting b(t) again by b(t), we have proved the proposition. O
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5.4. Parametrices for the Cauchy problem. It is well known that if f € H(Z; W & W),
then the Cauchy problem (4.11) has a unique solution ¢ = U(¢t)f € C°(R, H(X;W)). In this
subsection we give a representation of U(t) by generalizing to vector-valued wave equations the
constructions in [GW, Sect. 5] for the scalar case. Note that we also improve upon [GW] by
obtaining an ezact solution, not only a parametrix.

Theorem 5.9. Let b(t) = br(t) € C°(R, W(X;W)) be the operator constructed in Prop. 5.7
and let us set:
bT(t) :==b(t), b (t) :== —Jb*(t)J,

u® (t) := Texp(i f(f b*(s)ds)

rO% = F(07(0) — b7(0) 7T (0) € YOS W),

rE = (0T (0) = b (0)) " e UTHE; W),
and
(5.15) rEf =0 O E L e H(S W e W).
Then
Ut)y=utt)r™ +u (t)r.

Proof. By Remark 5.8 we have:
(5.16) (O +1b(t)) (0 — ib(t)) = 02 + a(t).

Since a(t) = Ja*(t)J, we see that if b(t) solves (5.16), so does —Jb*(t).J. Therefore b*(t) solve
(5.16) hence (97 + a(t))u™(t) = 0. It remain to check that the initial conditions in (4.11) are
satisfied, which is equivalent to

(5.17) T =1 omHeVaV)

' b (0)rT + b (0)r~ '
An easy computation shows that 7* given in the theorem is the unique solution of (5.17). This
completes the proof of the theorem. O

At this point, we could set U* := u*(t)r* and prove directly that these are parametrices
that satisfy properties analogous to those listed in Thm. 3.12 (but with positivity w.r.t. the
product (+|-), not (+|-)v), and associate to them pseudo-covariances A* in an abstract manner
as in Thm. 3.12. However, we prefer to do this in a more systematic way in Sect. 6 in order
to derive additional information needed to cope later on with the conditions (g.i.) and (pos) in
gauge theory.

6. HADAMARD TWO-POINT FUNCTIONS

6.1. Preparations. In the present section, we continue with the setup of Sect. 5 and deduce
expressions for Hadamard two-point functions from the construction of the parametrix. This
is done in a similar way as in [GW], i.e. we construct an operator Tk that diagonalizes the
symplectic form and separates Cauchy data that propagate with positive and negative frequen-
cies in the wave front set. We also show in Subsect. 6.3 that Hadamard states do not exist for
vector Klein-Gordon equations if the scalar product is not positive-definite on the fibers.

In the sequel, if br(t) is the operator constructed in Prop. 5.7 we denote br(0) simply by
br.
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Lemma 6.1. There exists Wr € U2 (S; W) such that:

(6.1) brdJ + Jbp = WiJWhg,

and additionally:
Wgr=(1+V,}

reg

(S W))(26)%, W' = (26) 72 (14 U

reg

(3 W)).
Proof. By Prop. 5.7 we have
Jbg + bid = (2€)2 (J + Jeg + ¢ J)(26)%, cr € UL (S W).

reg

We look for Wg in the lemma under the form Wgx = 53(26)% for

(6.2) Sp=1+dg, dp € U (3;W).
The identity (6.1) is satisfied if
(63) S;}JSR =J+Jecrp+ CEJ

Using W = W; @ Wy, (see (4.2)), we can write:

IS _( Stt,R  Sts,R ) _( Ctt,R Cts,R )
R — , CR = .
Sst,R  Ssx,R Cst,R Csxs R
Let us now formulate the property that cg € \I/r_eé(Z; W) in terms of the components of cp.
If o, B are any of the symbols ¢ or =, then since h = hy @ hy, we obtain that c.p r €
ook (35 Wa, Wg). We are looking for sag g such that
SaB,R — 6(15 S \I/;eé(E; We, Wﬂ)

Let us now suppress the index R to simplify notation. The equation (6.3) is satisfied iff:

* * _ *
=SSt + S5uSet = 1 — ¢y — Cus
* * *
6.4 —5145ts T S5ySee = —Cim + gy,
(6.4) . . .
—SisStt + SeeSst = Cst — Gy
* * *
SisSsn — SigSts = 14 cos + iy

To solve this system we first set s;,; = 0. The last equation of (6.4) can then be solved for R
large enough by

Sww = 8hy = (L4 Com + €50) 7 € 1+ UL (S W, Wh),
using Lemma 5.4 (3). The second and third equations are then solved by
Sut = Spu(Cot — Cfy) € ‘I’:eé(& We, Wh),
again by Lemma 5.4. Finally we solve the first equation by
su=8,=Q+cu+c;,+ s;*:tszt)% €1+ \Ilr_eé(E; Wi, Wh).
This completes the proof of the lemma. (]
We now set

(6.5) Tr = Wgr(bf —br) ' ®@1c2 0 ( ’bﬁR _11 ) c U (W a W),
R
WRTIJ%f

sothatTRf<W e f
R'R

>, where 75 are defined in (5.15). We have:

_ 11 _
(6.6) T = ( - )OWR1®1C2.
R R
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Proposition 6.2. We have:
—1\* -1 _ J 0
(6.7) (Tr") eqoTy —(0 J)’

1

(6.8) Tp = \/5(1+\1/reg(z W@W))( } jl ) ( 65 69% )

34

Proof. Let us suppress again the subscript R and denote bfg simply by b*. Set f* =7r%f so

that
fo=rt+r fr=vtrt 4o f.
An easy computation using that b* = b, b= = —Jb*.J yields:
Faf = (fHIJo+0"I)fF) = (F71(Jb+b"T) f7).

By Lemma 6.1 we have Jb+ b*.J = W*JW. This implies (6.7) by the definition of Ty.

Let us now prove (6.8). From Lemma 6.1 and Prop. 5.7 we have
WR - (1 + \I/reg(z W))( )
(bf —bp) "' = (bp + JbRJ) ™ = (2)77 (1 + U,

Similarly we have

§(Z:W))(26)72.

reg

—bp 1 ez 0 Jby, Jeoz €2
bJr -1 0 N be~2 —e2

= S+ VLW aW)) (

™

Then (6.8) follows by applying formula (6.5).

O

6.2. Hadamard two-point functions. In this subsection we construct pairs of Hadamard

two-point functions.

Proposition 6.3. Let us define ¢t : H(Z;, W o W) — H(Z; W @ W) by:

_ 1 0 _ _ 0 0
(6.9) c+:TRlo<0 O)OTR, c :TR10<0 1)OTR7
Then the following holds:
(1) One has

sp (0 HS W oW
cfi= biTif , fFEHEWa W),

(2)
i) ¢t +c =1, (c)?=ct,
i) (%) = e,
i) ot =1,
Proof. (1) is a routine computation using (6.5), (6.6). (2) follows from (6.7).
Theorem 6.4. Let ¢t be defined by (6.9) and set
(6.10) AS i=tqoct € BH(SW W), H (S W e W)).

Then
(1) XL is a pair of Hadamard Cauchy surface two-point functions;
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(2) one has:
«( J 0 _ «( 0 0
(6.11) A;:TR(O O)TR, )\E:TR(O J)TR.
Proof. The proof of (1) is identical to the proof of [GW, Thm. 7.1]. Note that only the proof
of the implication = in [GW, Thm. 7.1] needs to be copied. (2) is immediate. O

Remark 6.5. Statement (1) of Thm. 6.4 still holds if we replace ¢* by ¢* +1r_o, for r_o €
U=, W e W).

6.3. Non-existence of Hadamard states for vector Klein-Gordon equations. In this
subsection we consider a vector Klein-Gordon operator D as above, assuming that J # 1,
i.e. that the hermitian form on W is not positive definite. We show that under a mild addi-
tional condition on its two-point functions, there does not exist any Hadamard state, but only
Hadamard pseudo-states.

Theorem 6.6. Assume that J # 1. Then there does not exist spacetime two-point functions ME
for D satisfying (psc) and (pos) such that additionally the Cauchy surface two-point functions
AL map continuously H(Z; W @ W) into itself.

Proof. Let 5@[ the Cauchy surface two-point functions of the state w. Since by assumption 5\35
preserve H(X; W & W) we can apply [GW, Thm. 7.1], which generalizes directly to the vector
case. We obtain that if (usc) holds then A} — AT is smoothing. Let us set

- B S J 0
B::(TR)l(A;+AE)TR1, B:<0 J).

By (6.11) we obtain that B = B + R, where R is smoothing. We may choose a sequence
fo € LA, W @ W) with ||fu]l = 1, (fu|Bfn) = —1, w—1lim f,, = 0, with support in some
fixed compact K C ¥. Let us denote llx the characteristic function of K, understood as a
multiplication operator. Since lx Rl is compact we obtain that limn_mo(fn@fn) = —1.
But this contradicts the positivity condition (pos), which implies that B > 0. O

6.4. Positivity of Hadamard two-point functions on subspaces. We saw in Thm. 6.6
that it is impossible to construct Hadamard two-point functions for Dy, since in this case J # 1.
However there exist subspaces of H(X; W & W) on which Alix are positive. This will follow from
the fact that J is positive on Wy, = (Ker(J — 1)) ® g.

Proposition 6.7. Let \'* be defined in (6.10), for D = D;y. Then there exists r_1 p €
Wt (3 W @ W) such that:

Ali >0on (L+r_y p)H(E Wy & Wy).

Proof. From (6.8) we obtain that

(6.12) Tr = %( i fl ) ( f 69 )(1+wre;(z;W@W)).

W=

This implies, using also Lemma 5.4 (3) that for R large enough there exists r_1 p € U, L(3; W

reg
W) such that
1 /1 1 ez 0 1
e (2 2) (5 2 Y
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We note next that ( J 0

0 0 ) and ( 8 3 ) are positive on H(3; Wy, @ Wy,), since J is positive

on Wy. The operators < 1 11 ) and ( 65 Ol > preserve the space H(X; Wy ®@Wy,), since
_ et

€ = € @ €. The proposition follows then from (6.11) and (6.12). O

7. PAIR OF HADAMARD PSEUDO-COVARIANCES

In this section we consider the pair of operators Dy = dd, D; = dj + 0d + FL as in
Subsect. 2.5. After going to the temporal gauge, we may assume that both operators fit into
the framework of Sect. 5, i.e. that:

D, = 8? + ai(t, x, Dz),
where a;(t) € C®(R; W2(X; W;)) for W; = Vi @ g, and Wy = g. The operator K = d becomes

in this framework:

(7.1) K = Ko(t)0, + Ki(t),

where K;(t) € C*(R, Diff? (2; Wy, W1)) is a differential operator in z, of order j such that
(7.2) (0F +ai(t) o K = K o (07 + ap(t)).

It is easy to check that

(7.3) Ko(t,z) € L(Wy,W1) #0, V (t,x) € R x %.

We recall that
Ky = p1 0 KoUye€e Diff(WQ o Wy, W1 & Wl),

where p;, U; are the trace and Cauchy evolution operators.

7.1. Some preparations. Let us denote by uzjE (t), i = 0,1 the operators constructed in Thm.
5.9.

Lemma 7.1. There exist mi € WL(S; Wy, W1) and r=_(t) € C®(R, U—>°(%; Wy, W1)) such
that:
K oug (t) = uy ()my +rZ,(t).

Proof. We consider only the + case and suppress the + superscripts to simplify notation.
Since ug(t) = Texp(i fot bo(s)ds), we obtain from (7.1) that:

Ko UQ(t) = (iKObO(t) + Kl) o ’U,O(t).

Composing this identity to the left with d; — ib; and using that i9;b9 — (bo)? + ag = 0 by Prop.
5.7, we obtain:

(0 —1ib1) o K o ug(t)
(7.4) = (—Koao + 8K + (8, Ko + K1)bo + by (Kobo — iK1)) 0 uo(t)
= ma(t) oug(t), for ma(t) € C=(R, W2(3%; Wy, Wh)).
Expanding both sides of the identity (7.2), we obtain the following identities:
20, Ko + K, = K1 — K,
(7.5) Koag = 07 K¢ + 20, K1 + a1 Ko,
02K+ a1 K, = (K1 — Ko)ag + Ko K.
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The second identity of (7.5) implies that Ko(t)ao(t) = a1 (t)Ko(t) mod C>(R, Diff* (Wy, W),
hence taking the principal symbols of both sides we obtain:

(Upr(al)(ta €T, k) ® 1W1) © KO(ta x) = KO(ta x) © (Upr(ao)(taxa k) ® 1Wg)a

as an identity in C°°(T*X; L(Wy, W1)). Now a¢ and a; have a scalar principal part (see as-
sumption (5.1)), which using that Ko(t,z) # 0 implies that

opr(a1)(t, z, k) = ope(ao)(t, z, k), (t,2,k) € R x T*%;

hence
opr(€1)(t, k) = ope(€0)(t, 2, k) (t,x,k) € Rx T*E;

by taking square roots.
Therefore we can apply Prop. A.3 (2) and obtain that:

(7.6) ma(t) o ug(t) = uy(t) o ma(t), where ma(t) € C(R, U (%; Wy, W1)).
Combining (7.4) and (7.6), we obtain that:
(0 — iby) o K o ug(t) = uq(t) o ma(t).
Using that (97 + ag) o uo(t) = 0, identity (7.2) and Remark 5.8 we obtain finally
(8% +a1) o K 0 ug(t) = (8 +iby) 0 us (£) 0 a(t)
= wuy(t) o (Opma(t) + 2ibyma(t)) = 0.

Therefore ma(t) = Texp(—2i fot b1(s)ds)m2(0). By Lemma 7.2 below this implies that ms(t) €
C°° (R, U~°(%; Wo, W1)), hence by Lemma A.5 that ma(t) € C(R, ¥~(%; Wy, Wy)). The
identity (7.4) becomes

(O —1ib1) o K o ug(t) = m_so(t) € C(R, U™ (X; Wo, Wh)),

hence
Koug(t) = ui(t)o (K oug)(0) + [i Texp(i [, b(s)ds) o r_oo (t)dt
= ui(t) o (iKo + K1) + T (),
for r_oo(t) € C°(R, U~>°(3; Wy, W1)). This completes the proof of the lemma. O

Lemma 7.2. Let bi(t) € C®(R, VU (Z;W1)) satisfying the assumptions of Prop. A.3 and
m(t) € C° (R, ¥P(X; Wy, W1)), p € R such that:

m(t) = Texp(i [ bi(s)ds)m(0).
Then m(t) € C°(R, U—(%; Wy, Wh)).
Proof. We have 9;m(t) = iby (t)m(t). By induction we obtain that for any k € N.
OFm(t) = pr(B)m(t), where pi(t) € C (R, WE(S5 W), ape () = (i0pe (b))

Note that by is elliptic in W!(W7) hence py is elliptic in U*¥(W},) and since 9fm(t) belongs to
C>=(R, WP (%; Wy, W1)) by assumption we obtain that m(t) € C®(R, UP~F(X; Wy, Wy)). This
completes the proof. O
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7.2. Compatibility of Hadamard pseudo-covariances. We prove now the main result of
this section, which will be important later on.

Theorem 7.3. Let ¢t € B(H® (W; ®W;)), i = 0,1 be as in Prop. 6.3. Then
i Ky — Kect € U°(Wy @ Wo, Wy © W1).
Proof. Since czr +c; =1, it suffices to prove the + case, which amounts to show that
(7.7) ey Ksef € U™°(Wy @ Wo, Wy @ Wh).
We recall that from Thm. 5.9 and Prop. 6.3 we have:
Ui(t) = uf (O] +uy (&)

7

rEct = rf,
Using Lemma 7.1 this gives first:
Ui(t)Kseg = KUg(t)eg = Kug (t)rg = ul (#)mfrd +r_o0(t)
for some m; € WH(X; Wy, W1), r_oe € CF(R, U=(%; Wy @& Wy, W1)). On the other hand:
Ur(t)Kyed = uy (el Keeg +uy (H)ry ef Keef
It follows that
(7.8) uy () ep Kseg = uf (t) o (mird —rief Kaed) + 700 (t).
We claim that if nf € UP(2; Wy @ Wy, W) satisfy
ul (H)nf —ul (t)n] € C(R, U(3; Wy & Wy, Wh)),

then nfﬁ € U0 (X Wy @ Wy, Wh).

In fact taking derivatives in t at ¢ = 0 we obtain that (b; (0) — by (0))n] € U=°°(3Z; Wy @
Wo, W1), hence nf € U=°°(%; Wy @ Wy, W1) by the ellipticity of b (0) — b, (0). This also
implies that ny € U=°(Z; Wy & Wy, Wh).

Applying this remark to (7.8) we obtain that r{c; Kyxcf € W=°°(Z; Wy & Wy, Wy). This
implies (7.7) since from Prop. 6.3 and r{¢; = 0 we obtain:

C1< _n _)ocl.
by (0)ry

This completes the proof of the theorem. O

8. PROOF OF THM. 1.1

As before, ¥ is assumed to be compact or equal to R%. If ¥ = R¢ we assume Hypothesis 1.4.
In this case it follows from Prop. B.1 that h; satisfies a Hardy inequality:

(8.1) hy = 6ydy > C(x) ™2,

which will be very important in the sequel.
Our goal in this section is to construct a projection II acting on Cauchy data with the
following two properties:

i) Kerll = RankKj,

i) A{, are positive on RanIl N KerKy.
We will ensure ii) by choosing IT in such a way that
(8.2) RanIl NKerK] € (1 +7_1 g)H(Z; W @ Wy),

where the operator r_i r appears in Prop. 6.7.
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8.1. Notations. - As before, if E, F' are two topological vector spaces, we write A : £ — F
if A is linear continuous from E to F'. We write A : E = F if additionally A is bijective and
both A~ is linear continuous.

- We denote (z)H™(3; V) the Sobolev space of order m with weight (z) = (1 + ||z||)2 (of
course this is just the same as H™(3; V) if ¥ is compact) and (z)L?(3; V) = () H(2; V) the
weighted L? space.

- We will denote B~>°(X%; V4, Va) the space of operators that are bounded from H~™(%; V)
to H™(X; V) for any m € R.

8.2. The reference projection for ¥ = R?. In this subsection we assume that ¥ = R?. We
define a reference projection Ily, which will be used to construct the projection II. We first
state an easy consequence of the Hardy inequality.

Lemma 8.1. The following operators are bounded:
B hy T8 LA W) — L2(S W),
i) duhy ® o LA WL) — L2(S W),
i) hy P (a) s LA(S W) — LA W)
Proof. i) and i) are immediate. To prove iii) we use the Hardy inequality (8.1) and the

Kato-Heinz theorem which yield h; ' < C{z)~2. O

Definition 8.2. We set:
7= dyphy Moy L0 W) — L2(3; Wy),
bi=h;'0s: L2(Z;Wy) — (2)L2(2; W),
a:=F; A - (2)L2(S; W) — L3(%; Wy).

The above operators are well defined by Lemma 8.1 and Hypothesis 1.4.
Clearly 7 is the orthogonal projection on Randy, where dy, is considered as a closed operator
on L?(X; W;) with domain H'(3; W;). Moreover one has:

(8.3) dsob=m, body = 1.

We will construct IT by modifying a reference projection IIy. We denote by Iy : H(3; W @
W) — H(Z; W @ W) the operator defined in the adapted Cauchy data by the matrix:

0 0 0 0
0O 1—-7 0 O
(8.4) Iy := 0 0 10
0 iaob 0 1

Since a(z)~t : L2(2;W;) — L*(X; Wy) by Hypothesis 1.4 we see that
o : L2(S; W o W) — LAS;, W e W).

Let us consider the operator Ky given in Lemma 2.12 as an unbounded operator
Ky : L2(S;We @ Wy) — L2(5; Wy @ Wyy),
DomKy, = HY(S; Wy) @ L2(3; Wy).

Lemma 8.3. Il is a bounded projection on L*(X;W & W) with Kerlly = RanK,.
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Proof. The fact that Iy is a projection is a routine computation, using that b(1 — w) = 0.
Since ab is bounded by Lemma 8.1 and Hypothesis 1.4 we see that I is bounded. To prove the
second statement we note first that ITo Ky, = 0, using (8.3). This implies that RanK C Kerll,.
Conversely let g € Kerlly, i.e.

9% =mg2, g; =0, gi = —iabg?.

From the first equation we get g% = dyu® for u® = bgQ € H'(¥; g), and hence g = —iau®

, 1.e.
g = Ksu, for u = (u®,i~1g?). O

We end this subsection by constructing an operator By such that (1 —IIy) = Ky, By (see the
discussion at the end of Subsect. 3.4).

Lemma 8.4. Let By : L>(X; W @ W) — (x)L?(X; Wy) @ L2(3; Wy) be given by:

0 b 00
o =00 00)

Then one has
(1 —TIy) = Ky By.

Proof. The proof is a direct computation that uses dyb = . O

8.3. The reference projection for > compact. In this subsection, we assume that ¥ is
compact. This implies that Kerh; = Kerdy, is non trivial, since it contains constant multiples
of the unit 14 in the Lie algebra g. Therefore we need to change the definition of 7, b and Ilp.
We set now:

Definition 8.5.
7= dshy Mg oy (he)ds + L2(3; W) — L*(S; Wy),
b= hy gy (o) (he)ds © L2(Z Wy) — L2(S; Wh),
a=F;A-: L3S, W) — L322 Wy),

where g\ [0y stands for the characteristic function of R\{0}.

Note that since h; has compact resolvent, we know that

(8.6) T e WS We), be U 1S Wy, Wy), a€ U (3; Wy, Wy).
We also denote by m : L?(3; Wy) — L?(3; Wy) a bounded projection with
(8.7) Kerm = a(Kerhy),

like for example the orthogonal projection for the natural Hilbertian scalar product on L?(3; Wy,)
along aKerh;. By the ellipticity of h:, we know that Kerh; C C°°(X;W;), hence aKerh; C
C>°(3; Wy) and these two spaces are finite dimensional.

This implies first that there exists a right inverse a=! € L(Ker 7, Kerh;) such that

(8.8) aoa"'=1on Kerm.
Moreover since Ker 7y is a finite dimensional subspace of C>°(%; W) we have:
(8.9) T €14+ U Wy), a M1 —m) € U2(S; Wy, Wy).

We set now:

0 0 0 O
0O 1—7 0 O
(8.10) o= | 0 1o
0 iﬂlaob 0 1
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Lemma 8.6. Iy is a bounded projection on L?(3; W & W) with KerIly = RanKy. Moreover
Iy € V(W e W).

Proof. The fact that Iy is bounded is immediate. Again the fact that Ily is a projection
follows from b(1 — 7) = 0. Let us now prove that IIoKy = 0 hence RanK, C KerIly. By
a routine computation this amounts to show that (1 — 7)dx = 0 and that 7a(bdyx — 1) = 0.
The first identity is immediate. To prove the second, we use that bdy, — 1 = 1403 (ht). Then
m1algoy(he) = 0 since Kerm; = a(Kerh).

Let us now prove that KerIly C RanKy. Let g € KerIlj i.e.

gg = ﬂgg, gt1 =0, ﬂl(gé + iabgg) =0.

Then g = Kyu for u = (u®,ul) if

= g5

We take u! = i71g? and u® = bg¥ + v° for v € Kerhy, so that deyu® = dypbg? = 7g% = 9.
It remains to satisfy the third identity in (8.11), which yields —iav® = gL + iabg?. Since
71 (gL +iabg?) = 0, we can find v° € Kerh; satisfying the above condition, using that Kerm =

aKerh;. The fact that Iy € WO follows from (8.6) and (8.9). O

(8.11) iu' =g, dou’ = g2, —iau

We need the analog of Lemma 8.4 in the compact case.
Lemma 8.7. Let By : L>(X; W @ W) — L2(3;Wy) @ L?(3; W) be given by:

(0 b—a'1-m)ab 0 ia'(1-m)
(8.12) By = ( 2 . 0 9 ,

where a=' : Ker m; — Kerh, is defined in (8.8). Then one has
(1-1lo) = K+ Bo.
Moreover By € U (X; W @& W, W, & W,).

Proof. Again the first property of By is a direct computation, the fact that By € ¥ follows
from (8.6), (8.9). O

8.4. Change of Cauchy data. In this section we systematically work with the adapted
Cauchy data, in which the operators Ky and K take simple forms. Therefore the operator
T_1,R € \Ilr_eé(E; W @ W) appearing in Prop. 6.7 is replaced by Rpor_j r o Rgl.

Moreover it is convenient to perform another change of Cauchy data, corresponding to
putting different weights on the two components f°, f' or ¢° ¢! of a set of Cauchy data.
The need for these weights is already apparent from the presence of the matrix

(8.13) S = ( Ej 69 )

in the expression of the operator T in Prop. 6.2. It can also be seen from the fact that the
natural space of Cauchy data appearing for example in the quantization of the scalar Klein-
Gordon equation is H%(E) @ H_%(E). It is convenient to treat the two components of the
Cauchy data as follows: If f € H(3Z; W @ W) and g = Rpf we will set

(8.14) f=S5f g:=89g.

Note that S maps H2 (3;W) & H~2(; W) into L2(X; W & W). Let us now collect a few
properties of S. Clearly

W=

S*(Z1S = {1,
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i.e. S is symplectic. Moreover:

STL(SW e W)S™! = UL (%W e W),

(8.15) SUL (S W & W)S™H = WL (S W & W).

If f,g are as in (8.14), then § = Rpf for
1 0 0 0

(8.16) Rp :=SRpS™!' = 8 71152 (1) 8 c V(S W a W),
idsy, 0 0 1

and

(8.17) boim 6 et = o

Finally let us express the transformed reference projection. If ¥ = R? then:

0 0 0 0
= 1 | 0 1—€Zmeg® 0 0
(8.18) Iy := SIS~ = 9 0 Lo |
1 1
0 ieg?aobes? 0 1
and if ¥ is compact:
0 0 0 0
0 1-cimes® 0 0
1. . -1 _ — ExTEy
(8.19) Il := SIS~ = 0 0 1 0
0 ieg2miaobey? 0 ey 2mel

8.5. Operator classes for adapted Cauchy data. It follows from the above discussion
that after going to the adapted Cauchy data and conjugating by S, the class W, L (3 W & W)

reg
appearing in Sect. 5 should be replaced by RF\II;%(Z; W @ W)RE ! which is different from
\I/r_eé(E; W @ W). In this subsection we introduce classes of pseudodifferential operators in
which the operator equation 0y o v = r can be solved in v (see Lemma 8.10) and which contain
the class RF\P;&;(Z; W @ W)Rp". We first introduce some notation.

In the sequel i, j are indices equal to either 0 or 1, and «, 8 are indices equal to either ¢ or

s. If a =t, resp. £, we set & =3, resp. t and:
. - JE, if a =1,
T Oy, ifa=s,

so that s, € WO(X; W, Wg).
If c € UP(E; W & W) we denote by c¢iq,;j3 its matrix entries according to the decomposition

WaoW=WoW)o (W, ®Ws) =Wor & Wos & Wit ® Wis.
Recall also that x. denotes a cutoff function as in (5.7).

Definition 8.8. Let p € R.
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(1) We set
WP (55 Wa, Wa) = WE(S: W, Wa)xs(hs) + Wh (55 Wy, Wa)sg,

P (2 Wa, Wa) := xs(ha)UE(E; W5, Wy) + sa Ul (3; Wa, Wg),

reg,l

(38 Ws, Wa) i= Xa(ha)Wh (5 Wa, Wa)Xs(hg) + saVE(3; Ws, Wa)x-(hs)

reg
+ SE\IIQS(E; WB, WE)X>(h,6) + Sa‘l’p (Z WE, WE)Sa

(2) We say that ¢ € T egﬁ(Z;WGB W) for =L, if ¢ia ;g € P (35 Wy, W) for all i, c,

Ji B

The next lemma shows that the above classes have similar properties to ¥

reg,f

reg;(E; W e Ww).

Lemma 8.9. The folloujing pmperties hold:
(1) ReWh(ZW @ W)Rg' = WA (W @ W),
(2) RF\Ilreg(Z W e W)R C \Iffeg(Z;W OW)C Ve (S, WaW),
(3) Letcp € VU o (5 W @ W) for e >0 and let « € R. Then for R > Ry we have

(1+cr)* €1+ T L (S WaW).

Proof. (1)is obvious. (2) is a routine computation, introducing the matrix entries of some ¢ €
U2, (3; WeW) and using (8.16). To prove (3) we use the identity (1—a)™' = 1+a+a(1—a) 'a

and the following easy observations:
VOULE C U, U U0 s

reg,r reg,r’ reg,l

2
reg,l? \Prez l\Ilrez; r \Pregs' U
We end this subsection with another technical lemma, which will motivate the introduction of

the above operator classes.

Lemma 8.10. Let r € \Ifreg(Z Wea, W) for ao =t,s. Then there exists v € \Ifreg (5 We, Wy)
such that )
00U =T.
Proof. Since r € \I/reg(E; W, Wi) we can write
r = xa(h)m + dsma, mi € Why (5 Wa, W), ma € Why (55 Wa, W).
If follows that L
v = ezdzh y 2ef xs(he)my +mo € \Ilfegr(Z;Wa, Wy)
solves SE ov=r. O

8.6. Technical estimates for ¥ = R?. In this subsection we collect some delicate technical
estimates on the operators 7, b in the case ¥ = R%. It is convenient to introduce some notation
related to Hypothesis 1.4: if V' is a finite dimensional vector space we set:

S™(E5V) = {f € C™(%V) : 97 f(x) € O((x)™ 1), @ e N},
Abusing notation we see that Hypothesis 1.4 implies that
A, €8 6,F, eSSt F, e S 2.
Recall that B~°°(X; V1, V2) denotes the space of operators that map H~"™(X; V1) — H™(X; Va)
for all m.

Lemr_na 8.11. Afsume that ¥ = R%. Then:
(1) dEX<(ht)ht_16>3 € B_OO(Z;WE)7
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<z>71X<(ht)hilg € B7(X; Wy)
€ UO(%; Wy) + B™0(%; Wy),
E 1(E7W23Wt) < >B_OO(Z;WE)Wt)7
€ WO W) + (2) "1 B=(3; Wy),
) aobe (x) 1Y, Wy) + (2) 1B (3 Wy).
Proof. (1): let A = dyx(h¢)h; '05. We need to prove that
(R 4+i1)A(hZ 4+i1) : L* — L?, ¥n € N,

which follows from

i): A:L* = L?, ii): Ahy : H™™ — L2

iii) 1 hyA: L? — H"™, iv): hyAhy : H™™ — H™.
i) is immediate by Lemma 8.1. Let us now prove ii). By Lemma 5.6 (3), we have:
Ahs = dex (he)h; hy Yoshy = ds X <(he)ds + dsx (he)hy 'R,

for R = Oy FEJ The first term on the right belongs to U=°°. We write the second term as
dehy Hx) Lo (x r)X<(h¢)R. The first factor is bounded on L? by Lemma 8.1, the second belongs
to W™, since 0y Fy, € S™!. This implies i) and hence i) by duality. To prove i) we write

hsAhy =  hsdsx(hi)ds + hedsx(he)hy 'R
= hsdsx(h)ds + dsx(h) R + R*x(he)hi ' R.
The first two terms belong to ¥~°°. We factor the third term as:
R*x<(he)(x) o (@)~ hiH(2)™h o (@)X <(he) R,

for some cutoff function y. with the same properties as y. and x.x. = x.. The first and last
factor belong to ¥~°°, the middle one is bounded on L? by Lemma 8.1. This proves iv) and
completes the proof of (1).

(2): the proof of (2) is completely analogous to the proof of (1) and left to the reader.

(3): we write

™= J2X>(ht)h;lgz + JZX<(ht)h;1gz-

The first term belongs to W, the second to B~ by (1). This proves (3).

(4): we write

b= x=(he)hy s + x(he)hy 105,

the first term belongs to =1, the second to () B=>°, by (2).

(5): We write as before:

X>(hs)m = X>(h2)JZX>(ht)ht_13>: + X>(h2)JZX<(ht)ht_132~
The first term belongs to U°. We write the second term as
X>(h2)h;1th2X<(ht)ht_1gz = X>(hs)hs 1de<(ht)5 + Xs(hs)hs ho ' R* X<(ht)h t_lgE'
The first term belongs to ¥~°°. We factor the second term as:
(@) 7" o (@)x=(he)hg R () o (2) " x(he)hy ' s.
Now (2)x-(hs)hg ' R*(x) € WO since 5. Fx € S72 and (z)~'x(h¢)h; ' € B~ by (2). This
proves that the second term belongs to (x) "' B~>° and completes the proof of (5).
(6): we write once again:
aob=ax-(h)h; s +aox(hi)h; 0.

The first term belongs to (z) ='W, since F; € S~'. The second term belongs to (z)~' B,
using (2) and the fact that F, € S=2. O
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8.7. Construction of the projection II. In this subsection we construct the projection II.
The first step consists in determining its range.
Proposition 8.12. There exists s_1,r € V1 (3; W & W) such that:
(1+s_1 p)Ranlly NKerK{ € (1 +7_1 ) L*(Z; Wy & W),

where r_1 p € \P;eé(E; W @ W) is the operator in Prop. 6.7.
Proof. We set g = Rpf. It is easy to check that for IIy given either by (8.4) or (8.10):

f e KerK! = gt =0,
(8.20) FeEHE:WedWy) < ¢0=0, gt +idsg? =0,

f€Ranlly = g =0, dxg% =0.

As explained in Subsect. 8.5 it is convenient to work with g = Sg, which amounts to replace
r_1,r by RFT_LRREl =:7,and s_1 g by RFT_LRRP?l =: 3.
By Lemma 8.9 we know that 7 € W, L(3; W@ W), and we will look for § € U, .1 (Z; WaW).

reg reg,r
Again by Lemma 8.9 it will follow that s € W 1(3; W @& W).
Expressed in terms of g, the statements in (8.20) become:

feKerKl = gl=o,
(8.21) feH Wy W) © §0=0, gl +i0,3% =0,
feRanlly = 30 =0, 6:xg2 =0,

where 0y, = 6;%326;% was defined in (8.17). We set:
1 0 0 O 1 0 0 0
A1<0 o it o)’A2<o o 0 o)’

fe@+rH (S;Wed W) < geKer(Aio(1+7)71),
fe(@+s)Ranlly = geKer(Azo(143)71).
To prove the proposition it suffices to find § € W1 (3; W @& W) such that

reg,r

(8.23) geEKer(Ad20(1+3)7"), g =0= geKer(Aio(1+7)").

so that

(8.22)

Again by Lemma 8.9 (3), we know that for R large enough (1 +7)~! = 147 for # € UL, Let

reg*

assume that we have found 5 € Elr_eé;,r such that

(8.24) g € Ker(4z0(1+35)), g =0= g€ Ker(dio(1+7)).
Then setting 1+ 3 := (1+3)"!, we know that § € W ;! . by Lemma 8.9 and that § solves (8.23).

reg,r
Hence to complete the proof of the proposition, it remains to solve (8.24).

We have

00 0 O
A1:A2+A3f01‘143:(0 0 171 0)
Therefore we look for § = 7 + 9 and need to find 0 € \T/;eé’r such that:

Ao = A3(1 +7) on {g} = 0}.
Since A3 = 0 on {g} = 0}, we finally need to find & such that
Agi = Az? on {g; = 0}.
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A routine computation yields the following equations for the entries of v:

Vot,ip = 0, V 4B,
(8.25) )
ds0os,jp = i1y jp for js=ot, 0x, 1s.

We can set all the other entries of v to 0. It remains to solve the equations in the second
line of (8.25). This can be done by applying Lemma 8.10. This completes the proof of the
proposition. ]

In the proof of Prop. 8.12, we use the assumption that (M, g) is ultra-static: otherwise the
expression in the second line of (8.21) becomes more complicated and it is not clear how to
choose the reference projection Ilj.

If ¥ = R% we will need some further properties of the operator 5_1,r constructed in Prop.
8.12.

Proposition 8.13. Assume that ¥ = R%. Then there exists Ry such that for R > Ro and for
any m € R:

i) 1+4s_ygllo: H™2(SW)® H™ 2 (S W) = H™H s (S, W) @ H™ 2 (S, W),
i) (z)(1+s_yplo) (@)™t H™ (W)@ H™ (S W) = H™ 2 (5, W) @ H™ 3 (3, W).
Proof. As before we conjugate all operators by Rp, which amounts to replace s_1,r by

§_17R = RFS_LRREI, 11y by ﬁo = RFH()REI and Hm+% D Hm_% by H™ & H™. From the
expression (8.18) of Iy we see that the entries of §_1 gIIy are of one of these three types:

Dol 2)Ut (1-7), 3)¥.l aob.

reg,r’ reg,r reg,r
Terms of type 1) are simply considered as belonging to W .'. To control terms of type 2) we
recall that Wil . = W lx.(hs) + ¥ld,. By Lemma 8.11 (5) we know that W lx.(hs)m €
Wb+ ()71 L B7°°. The terms of type 3) belong to ¥;! + (2)~!W_ 1B~ by Lemma 8.11
(6). It follows that

(8.26) 51 rly € UM 4 (2) 71w 1B~>.

Let us now prove i). From (8.26) we first deduce that ||§_1,Rﬁ0|\B(L2) € o(R"), hence we can
find Rg such that

14+5_ 15l : L2 WaW) S LA, WaoW).
Let us first assume that m > 0. We apply the identity

(1-A)~t= nz_: AT 4 A1 — A

=0

to A = —5_1 grlly. By (8.26) we know that 5_; glly : H™(X; W @ W) — H™ (S, W @ W).
We obtain taking n large enough that

(145 p0) " L H™ (S W e W) — H™ (S, W @ W),
which proves i) for m > 0. The same argument shows that for m > 0
1+ (5o pgllg)* : H™S;Wa W) S H™(S,W o W),

which by duality proves i) for m < 0.
To prove ii) we split §_1 rlly as m1 g+ma, g, where mq g € V.. and mg g € (z) " 1U_ 1B~
We can choose Ry above large enough such that (1 + mLR)_l € U0 for R > Ry. We have

(L+35-1.810) " = (1 +m1pr) " (1 — mor(l+35_18I) ).
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Now mop : H™ — (x)"'H™ and (1 +mi g)~' : (z)"'H™ — (z)"'H™ by pdo calculus,
which implies that (1 + 5_1 gllp) ™t : (z)"'H™ — (z)"'H™. This completes the proof of the
proposition. O

8.8. The projection IT and the right inverse B. We now define a projection II and a right
inverse B to Ky as in 3.4.3, 3.4.4.

Theorem 8.14. Let Iy be given by (8.4) if ¥ = R? and (8.10) if & is compact. Let also s_1 g
be the operator constructed in Prop. 8.12. Then there exists Ry such that for all R > Ry:
(1) the operator

Il := (1 + 8_17R)H0(1 + Hos_l,pbno)il

is a bounded projection on L*(X;W @& W).
(2) moreover

1 — H = (1 — Ho)(l + SflyRH())il.
(3) one has
a) Kerll = RanKy,

b) AL are positive on Ranll N KerKy.

(4) W HE W) = HE W), IT: H(ES W) = H (2 W).
(5) if ¥ is compact then II € U (X, W ¢ W).

Proof. If IIp is a bounded projection on a Hilbert space H and ||| < 1, then KerlIl
and (1 + r)Ranlly are supplementary subspaces and it is easy to show that the projection
IT with KerII = KerIlp and RanIl = (1 + r)Ranllj is given by the formulas in (1) and
(2). Statement (3a) follows from KerIl = KerIly = RanKy. Statement (3b) follows from
Ranll = (1 + s_1 g)Ranlly C (1 4+ r_1 g)H(Z; Wy & W) by Prop. 8.12, and from Prop. 6.7.
Let us now prove (4). It suffices to prove the corresponding statements for 1 —TII. Using that
by Prop. 8.13 (1 + s_1 gllp)~! maps H(; W) and H'(X2; W) into themselves, we can replace
1 —1I by 1 —IIp. The result follows then from the expression of IIy in (8.4) and statements
(3), (6) of Lemma 8.11. Finally the fact that IT € ¥ if 3 is compact, follows from the same
property of Iy, see Lemma 8.6. This proves (5). O

Let us now define the right inverse B to K.
Proposition 8.15. Let By be given by (8.5) if ¥ = R? or by (8.12) if ¥ is compact. Let

(8.27) B := By(1+s_1.gllp) "
Then

(8.28) Ky;B=1-1I
Moreover

(1) if S =R% then B: H(Z; W) — ()H(Z; W), B : H' (S W) — (a)H/ (Z; W).
(2) if ¥ is compact then B € U>°(Z; W @ W, W, & Wy).

Proof. The fact that Ky B = 1 — II is obvious. To prove (2) we can as in the proof of Thm.
8.14 replace B by By. The statement follows then for the expression (8.5) of By and from (4)
of Lemma 8.11. Finally, (2) follows from the fact that By, IIy belong to ¥>°, see Lemmas 8.6
and 8.7. O
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8.9. Proof of Thm. 1.1. We now complete the proof of Thm. 1.1, by checking the assump-
tions of Thm. 3.17. We take for cf for ¢+ = 0,1 the operators constructed in Prop. 6.3 for the
operators 97 + a;(t) = D;.

- cl:.t are pseudodifferential operators, hence cf satisfy (3.15 i), ii) and cgt satisfy (3.21) iii).
- Gyx are equal to i ( ‘(]; _(?]' ), for J; given in (4.3), hence conditions (3.9) and (3.21) i)
are satisfied.

- Ky is a matrix of differential operators with coefficients bounded with all derivatives, by
Hypothesis 1.4, hence conditions (3.14) and (3.21) ii) are satisfied.

- IT and B satisfy conditions (3.17) and (3.22), by Thm. 8.14 and Prop. 8.15.

- the positivity condition (3.23) is satisfied by II, using Thm. 8.14 and the fact that RanIIn
KerK{ = IIKer K since Kerll = RanKy C KerKj.

- the two-point functions Aliz are Hadamard, by Prop. 6.3. To prove that Xliz are also
Hadamard, we need to check that clireg are regularizing. This delicate point is shown in Prop.
8.17 below. The proof of Thm. 1.1 is complete. (]

Remark 8.16. It is easy to deduce from (6.11) and the property Ker Il = Ran Ky, that the two-
point functions )\i we construct have the property that (-|\], + A[,,-) induces a non-degenerate

hermitian form on Vpy = KerK;/RanKE. One can show that this property entails that the
corresponding quasi-free state w is faithful, even if q is degenerate on Vps,.

Proposition 8.17. (1) assume that ¥ = R%. Then for any n € N one has:
i) R_oB:H ™S WoW)—= (x)H"(S; W W),
ii) (1-TNR_B:H (W aW)— (2)H (S W o W).
(2) assume that ¥ is compact. Then R_oB and (1 —")R_. B belong to W=°(X; W @ W).

Proof. The proof of (2) is immediate, since if ¥ is compact we know that B, (1 — IIf) € U
and R_, € U~

We now turn to the proof of (1) which is much more delicate. The Sobolev spaces or
pseudodifferential classes between the various vector bundles over ¥ will be abbreviated H™,
UP m,p e R.

We will work with the adapted Cauchy data. Note that because the operators Rrp and Ry !
are differential operators (see Lemma 4.1), the operator R_.,, expressed in Furlani variables,
i.e. RFR_OORgl belongs also to ¥~°°, and will still be denoted by R_ ..

Let us first consider the operator R_., By, which we write as a 4 x 4 matrix. A routine
computation shows that the entries of R_., By are of one of the two forms

(8.29) T—c0, T'—oob;

for r_oo € U7°°. From Lemma 8.11 (4) we obtain that b : H~"™ — (z)H ™™ for all m € N.
Since r_oo : (x)H~ ™ — (x)H™ by pdo calculus, we obtain that R_.By : H " — (z)H™. By
Prop. 8.13 i) we know that 14 s_1Ily : H~™ — H~™. This completes the proof of 7).

The proof of 4) is more delicate. We claim that it suffices to prove that:

(8.30) (1—T)R_ooBo: H™ — (z)H", ¥n € N.
In fact by Thm. 8.14 we have:
(1-107) = (1+ (s o)1) ' (1 — ITY).

By Prop. 8.13 i) (1 + s_1llp)”™' : H™" — H~", and by Prop. 8.13 ii) and duality (1 +
(s_1Mg)") =1 : () H™ — (z)H™. Hence ii) will follow from (8.30).
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Let us now prove ). We write R_o as a 4 X 2 matrix:

Tot,0  Tot,1
R . = Tox,0 Tosz,1
T1t,0  Tit,1
Tis,0 Tis1

Using that
0 0 0 0
gt |0 0 0 0
1=1h = 0 0 1 0 |’
0 ib'a* 0 m

we obtain that the entries of (1 — II})R_ . By are of the form (8.29), except for (sums) of the
more singular terms

(1) 7ris1, (2) b"a*rox1,

(3) b*a*roxob, (4) 7TT1210b,
where as before all the r; ; terms belong to ¥~°°. We will examine successively these 4 terms.

Term 1: by Lemma 8.11 (3) we know that 7 : H™ — H™ for all n € N, hence nri51 : H" —
H".

Term 2: by Lemma 8.11 (6) duality, we know that b*a* : H™ — H", the same argument as
before shows that b*a*ros,1 : H™" — H".

The terms 3 and 4 will be more delicate to estimate. We will cut them into a high and
low energy part. The high energy part is not affected by the infrared problem and is easy to
estimate. The low energy part will be estimated by ‘undoing the commutator’, i.e. rewriting
R_o as ¢f Ky — Kscg .

Term 3: we write ros,0 = ros,0X>(Pt) +70s,0x <(he). We know that x.(h)b = x=(he)hy 1oy €
W~ hence 705 0X(ht)b € ¥°°. This implies that ros 0x-(ht)b: H™™ — H™. Since by Lemma
8.11 (6) b*a* : (x)H™ — (x)H™ it follows that b*a*roxs ox(he)b: H™" — (x)H™.

It remains to control the term b*a*ros ox -(ht)b. We claim that

(8.31) b*a*rog ox<(he)b: H™™ — (x)H", Vn € N.
To prove (8.31) we write R_o, as chE — char. Writing cf and car in matrix form, we obtain
after a routine computation that:
Tos,0 = mids + maa + dsms, m; € U™,
We have hence to consider the three terms:
(3a) b*a*mydsx(hi)b, (3b) b*a*maax_(h)b, (3c) b*a*dsmszx(ht)b,

and to show that each of them maps H ™" into (z)H™.
Term 3a: we have

b*a*mydsx (hi)b = b*a*mlcizx<(ht)h;lgz.
Using Lemma 8.11 (1) and the fact that m; € ¥, we know that midsx(h¢)h; '6s : H™™ —
H™. Next we use that by Lemma 8.11 (6) b*a™ : () H" — (x)H".
Term 8b: by Lemma 8.11 (2) and the fact that F; € S~ we know that moax (h¢)b: H™" —

H™ and we can conclude the proof as for term 3a). ~
Term 3c: we use identity (2.18) to obtain that b*a*dy = b*dxa = wa. Therefore:

b*a” Jz: m3X<(ht)b = 7T'GJWL3X<(ht)b'

Since Fy € S~! we deduce from Lemma 8.11 (2) that amsy.(h¢)b : H™™ — H". Next by
Lemma 8.11 (3) we know that = : H™ — H"™. This completes the proof of (8.31).
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Term 4: we split 7150 as Xs(hs)ris,0 + X<(hs)r1s,0. By Lemma 8.11 (4) we know that
b: H™ — (x)H™ ™. Since ris0 € ¥~ we know that r150 : (z)H™" — (z)H". Finally by
Lemma 8.11 (5) and duality mx.(hy)(x)H™ — (x)H™.

We now claim that:

(8.32) X <(hs)ris0b: H™" — (x)H™.
Again we write R_, as chE — char, obtain that
T1s,0 = mids, + moa + ams, m; € U,
and have to consider the three terms:
(4a) mx(hs)midsb, (4b) wx(hs)maab, (4¢) mx(hs)amsb.

Term 4a: using that dywb = 7, this term equals my .(hy)my7, which maps H " into H™ by now
standard arguments. ~
Term 4b, 4c: these two terms can be treated as term 3b), using that Fy € S—1. O
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APPENDIX A. BACKGROUND ON PSEUDO-DIFFERENTIAL CALCULUS

In this section we recall some facts about pseudo-differential calculus. We refer to [GW, Sect.
4] for more details. We need to extend slightly the situation in [GW] to include matrix-valued
symbols.

A.1. Notation. - We denote by ¥ either R? or a smooth compact manifold. If ¥ is compact
we choose a smooth, non-vanishing density p which allows to equip C°°(X) with an Hilbertian
scalar product. Typically p will be the canonical density associated to some Riemannian metric
on X. If ¥ = R? we use of course the Lebesgue density dz.

- We denote by V' a finite dimensional complex vector space. For simplicity we assume that
V' is equipped with a Hilbertian scalar product, which allows to identify V and V*.

- We denote by Cpq(X; V) the space of smooth functions ¥ — V' uniformly bounded with
all derivatives. We equip Cp3(X) with its canonical Fréchet space structure.

- The Sobolev space of order m is denoted H™(X; V). Furthermore, we define the spaces

HEV) = Nper H'(E; V), H'(EV) i=U,per H™(3; V),
equipped with their canonical topologies.

A.2. Symbol classes. We denote by S™(T*X), m € R the usual class of poly-homogeneous
symbols of order m such that additionally

(A.1) 820 a(x, k) € O((k)™ 1Py, o, B e N

Similarly we will denote by S™(R) the class of poly-homogeneous functions f : T*% — C.

We denote by Si*(T*X) C S™(T*X) the subspace of symbols homogeneous of degree m in
k away from 0.

These spaces are equipped with the Fréchet space topology given by the semi-norms:

lallm.y = sup [(k)"" 920 al.
la|+|BISN
We set
S=X(T*Y) = ,er S™(T*S),  S®(T*Y) :=,,cp S™(T*T).
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Let now Vi, V5 be finite dimensional complex vector spaces equipped with non-degenerate
hermitian sesquilinear forms. The spaces S (T*X)®L(V1, V2) will be denoted by Sij) (T7%; V1, V)
and by S§ (T"5; V) if i =V = V.

The subspace of scalar symbols S™(T*X) ® 1y will be denoted by S™

scal(T*Z; V)
A.3. Principal symbol and characteristic set. For a € S™(T*X%;V;,V3) we denote by
apr € S’H}‘) (T*%; V1, Vi) the principal part of a, which is homogeneous of degree m.

The characteristic set of a € S™(T*%; V) is defined as
(A.2) Char(a) := {(z, k) € T*E\{0} : detap(z, k) = 0},

which is conic in the k variable.
A symbol a € S™(T*%; V) is elliptic if Char(a) = 0.

A.4. Pseudo-differential operators. In this subsection we collect some well-known results
about pseudo-differential calculus.
We denote by Op : a — Op(a) a quantization procedure assigning to a symbol in S (T*X; V1, Va)
a pseudo-differential operator on . If ¥ is compact, this quantization depends on the choice
of a partition of unity on 3 and of associated coordinate mappings, the difference between two
choices being a smoothing operator. If ¥ = R? it is convenient to choose the Weyl quantization.
One has

Op(a) : H(%; V1) = H(Z;V2),  Op(a) : H'(35V1) — H'(3; Va).
We denote by (L) (3; V1, V2) the space Op(S{L. ) (3; V1, V2) and set
TS5 V2, V) = Mo U7 (55 VA, V0), (53 VA, Vo) = U, cp (5 VA, V).

We equip U™ (3; V1, Va) with the Fréchet space topology induced from the one of S™(T*%; V1, Va).
Let s,m € R. Then the map

(A.3) S™(T*%; V1, Va) 3 a = Opla) € B(H*(X; V), H*™(3; V2))

is continuous.

We denote by o : U°(3; V1, V5) — S°°(T*X; V1, Va) the inverse of Op, o(a) being called the
(full) symbol of a.

If ¥ is a compact manifold, different choices of Op lead of course to different maps o, differing
by a map from U to ST>°. On the other hand, the principal symbol map:

o s U(S3 V1, VR) = SPUT S VA, Va)

is independent on the choice of the quantization.

An operator Op(a) € ¥™(X;V) is elliptic if its principal symbol oy, (a)(x, k) is elliptic in
S™(2; V). If a € U™ is elliptic then there exists b € U~ unique modulo ¥~>° such that
ab = ba = 1 modulo ¥~°°. Such an operator b is called a pseudo-inverse or a parametriz of a.
As a typical example 1 + b for b € ¥~ m > 0 is elliptic in ¥°.

A.5. Functional calculus for pseudo-differential operators. We recall without proof
some well-known results about functional calculus and pseudo-differential operators.

Proposition A.1. Let a € U™ (3; V) for m > 0 be elliptic in V™ (%; V) and symmetric on

H(Z; V). Then:

(1) a is selfadjoint on H™(%;V),

(2) Denote by rs(a) the resolvent set of a, with domain H™(X;V). Then for z € rs(a),
(z—a)"te ¥ —™(%; V),

(3) if f € SP(R), p € R, then f(a), defined by the functional calculus, belongs to WP (X; V).

(4) if f is elliptic in SP(R) then ope(f(a)) = fpr(ope(a)).
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A.6. Propagators. In this subsection we state some results about propagators, associated
to elliptic operators in W!(3; V). It is important to restrict oneself to operators with real and
scalar principal symbols. The propagators in our presentation replace Fourier integral operators
which are often used in the literature.
Let us fix a map €(t) = €1(t) + €o(t), where €;(t) € C°(R, ¥/ (3;V)) for i = 0,1. We assume

that

(1) e1(t) is scalar, i.e. belongs to ¥l (3;V),

(2) €1(t) is elliptic in W1(3; V),

(3) €1(t) is symmetric on H(%; V).
It follows by Prop. A.1 that e;(¢) is selfadjoint with domain H!(3; V'), hence €(t) with domain
HY(2;V) is closed, with non empty resolvent set.

We denote by Texp( f; ie(o)do) the associated propagator defined by:

%Texp(f: ie(o)do) = ie(t)Texp(f; ie(o)do),
%Texp(fst ie(0)do) = —iTeXp(fSt ie(o)do)e(s),
Texp( [ ie(o)do) = 1.

It is easy to see (see e.g. [GW, Subsect. 4.6]) that Texp(f; ie(o)do)is strongly continuous in
(t, s) with values in B(L*(%;V)).

Definition A.2. We denote by ®c(t,s) : T*3\{0} — T*X\{0} the symplectic flow associated
to the time-dependent Hamiltonian —op(€)(t, x, k).

Clearly ®.(t, s) is an homogeneous map of degree 0.
We now state a version of the Egorov’s theorem for matrix-valued symbols.

Proposition A.3. (1) Texp(fstie(a)da) is bounded on H(3; V') hence on H'(X; V) by duality.
(2) There exists m(t,s) € C(R?;WO(3; V) elliptic, invertible on L*(3; V) with m=1(t,s) €
C>®(R%*WO(3; V) such that
Texp(f:ie(o)da) = m(t, S)Texp(f:iel(o)da).
(3) Let a € U™(X; V). Then
a(t,s) := Texp(f;ie(o)da)aTeXp(f:ie(a)do)
belongs to C>°(R?,0™(3;V)). Moreover
opr(a)(t, s) = ope(a) o Pc(s, t).
Proof. The proposition is well-known in the scalar case, i.e. if €(t) = €1(t), see eg [T, Sec.
0.9] for the proof. It is easy to extend it to our situation. Let us denote Texp(f;ie(a)do), resp.
Texp(f:iel(a)do) by U(t, s) resp. Uy(t,s). Setting
Ul(t,s) = m(t,s)Ui(t, s),
we obtain that m(t, s) solves the equation:
Oem(t, s) — ieg(t, s)m(t,s) = 0,
m(s,s) =1,
for €o(t, s) :== Uy (s, t)eq(t)U1(t, s). Note that ey(t,s) € C(R?, ¥ (3;V)), by Egorov’s theorem

for the scalar case. The solution is

m(t,s) = Texp(fstieo(a, s)do).
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It is easy to see that m(t,s) € C°°(R?; ¥°(3;V)), using for example Beals criterion. Moreover
m(t,s) : L*(3; V) — L?(%;V) is boundedly invertible, with inverse
m~(t, s) = Texp( [ ieo (0, s)do).

The same argument shows that m=1(t,s) € C*°(R?;¥O(3%;V)), hence m(t,s) is elliptic in
WO(%; V). This proves (2). (1) follows from (2) and the analogous result in the scalar case.
From (3)

a(t,s) = Uy(t, s)m(t,s)am ™ (t,s)Ui(s,t) = Ui (t, s)a(t, s)Ui (s, 1),

where a(t,s) = m(t,s)am™1(t,s) € C°(R?,¥™(3;V)) has principal symbol oy, (a(t,s)) =
opr(a). The proposition follows then from Egorov’s theorem for the scalar case. O

The following two results are proved in [GW, Sect. 4] for the scalar case. By the argument
outlined in the proof of Prop. A.3 they immediately extend to our situation.

Proposition A.4. Foru e H'(3;V) one has:
WE(Texp( [ ie(o)do)u) = ®.(t,s)WF (u),
hence
WF'(TeXp(f;ie(a)da)) ={(x,k, 2" k') : (z,k) = ®(t,s)(a",k)}.
Lemma A.5. Let e(t) € C°(R, V1(Z;V)) as above, s_o(t,s) € CF°(R2, ¥=°(3;V)). Then
Texp(['ie(0)do)s_oo (t, 5) € C=(R2, U™2(2; V).

APPENDIX B. SOME AUXILIARY RESULTS
B.1. Hardy inequality.
Proposition B.1. There exists C > 0 such that
(B.4) Suds > Clz)™2, on L2(R%, |h|2dz) ® g.

Proof. Let us denote by M;(z) € L(g) the operator i"*4;(x) A - and note that M;(x) is
selfadjoint on (g, k). Let
d

har =Y _(Dj + M;(2))*,
j=1
acting on L?(R? dr) ® g. We claim that the proposition follows from
(B.5) hy > Cla) 2
In fact we have:
o d
=8udy = |h| 2 (z ) Y (D + M) b (a )| (2)(Di + My(z)),

7,k=1

acting on L2(RY, |h|2dz) ® g. Clearly h; is unitarily equivalent to:
d
he = A 73 (2) Y (Dj + M) (@) |h]% ()(Dy. + M () | ~* (2),
k=1

acting on L2(R?, dx) ® g, by the map U : u — |h|3u. It suffices to prove Hardy’s inequality for
hy. Since ¢y < |h|(z) < ¢5* for some ¢y > 0, we can also replace hy by |h|7h|h|7. Finally since
\h|3 he|h|3 > Chyy for some C > 0, we see that (B.5) implies (B.4).
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Let us now prove (B.5). From the usual Hardy inequality we know that there exists C' > 0
such that

(B.6) ~A—C{x)"?>0.
We use now the diamagnetic inequality:
(B.7) e =Py | < o EATCE I, w € LA(RY, dx) @9, 1> 0,

where ||ul|(z) = u(z) - Ku(x). The proof of (B.7) can be done as in [CFKS, Thm. 1.3]. The key
fact is that
Dj +iM;(z) = ;' (x) D;S;(x)
for
Sj(z) = Texp(—iffj Mj(x1,...,xj-1,8,Tjt1,...,2q4)ds)
where S;(z) is unitary on (g, k). Using a=! = 0+°° e~'*dt, we deduce from (B.7) that for € > 0

(u|(har — C(2) 72 + ) u)p2gg < (fulll(=A = Cl2)™* + )~ ul) e

< e Hllulllllull)zz = e (ufu) L2g-

This implies that hy — C(z)? > 0 and completes the proof of the proposition. O

B.2. Transition to the temporal gauge. In this section we review the transition to the
temporal gauge, explained in the language of connections.
We assume here that g = — (¢, z)dt* +hi;(t, z)dz’dz?, i.e. that we are in the general globally
hyperbolic case.
We set:
S(t, ) = Texp(— [, To(s, x)ds) € C>(M; L(W)),
so that

Note that S(t,z) = Sy (t,z) @ S4(t, z), for:
Sy (t,z) = Texp(— fto To(s,x)ds), Sy(t,x) = Texp(— fto My (s, z)ds).
An easy computation using that T is metric for g~! ® £ shows that:

g t,x) @k =S*(t,x)g ' (0,7) ® KS(t, x).

{ WS(t,x) = S(t,x)To(t, z)

Again if we set 3
T,:= 80,8 +ST,S', p:=S8pS~*
then setting gy ' (t,2) := g~ (0,z) we have:

0agy ' @k =Tigy" @ k495" ® kT,
P90 ©k =gy ®Kp,
Ty = 0.
Setting 51 = SD1S~! we have:
Dy = —~|g|#VI|gl?g™V] + .
The conserved charge is:

SUSES /{ : i1VIG g0t @ Ko+ Ggp ! ® K 1TV Golh|F da
t}x%
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B.3. Global existence of smooth space-compact solutions for non-linear Yang-Mills

equations. In this subsection we explain how to deduce Prop. 3.18 from the arguments of
Chrusciel-Shatah [CS].

Proposition B.2. (1) for each A € EL.(M)®g there exists A’ € EL(M)®g such that A, = 0
and A’ ~ A.

(2) Assume that dim M < 4. Let A € EL(M) ® g be a solution of the non linear Yang-Mills
equation (2.14) near a Cauchy surface . Then there exists A’ € EL(M) ® g such that
A"~ A, A, =0 and A’ solves (2.14) globally.

Proof. (1): recall that we assumed that G is represented as a subgroup of L(V) for some
finite dimensional vector space V. The gauge transformation generated by the map M > x +—
Y(z) € Gis: ~ ~ ~

A= A, = 94,9 +9710,9.
Writing M = R; x ¥, we obtain /_1,’5 =0 if 0,4 + A, = 0. This can be solved by

Y(t,x) = Texp(f(;5 —Ay(s,x)ds).

Since A, € C2°(M) ® g, we obtain that ¢4 — 1 € C(M; G), hence /_1; € CP (M) ®g.
(2): By (1) we can assume that A; = 0, i.e. that A is in the temporal gauge. We recall the
form of the Yang-Mills equations in the temporal gauge, recalled in [CS, Sect. 4]. Denoting by

F,, the curvature, we obtain the equations:
O A; = Fos,

(B.8) DiFij = D Fio — DiFjo,
@tFOi = @jpji,

where 9, =V, + [4,,"], and %, = %.

Another fact is that if G, = FW — QLA,, + 8,,/1# — [/L,/L] vanishes at t = 0 and (B.8)
holds in some region I x ¢ where I is a time interval, then G, vanishes identically in I x &,
hence F' = dA.

By [CS, Thm. 1.1] the local in time solution (A;, Fy;, Foj) of (B.8) extends globally as a
smooth solution. Moreover since (B.8) is a symmetric hyperbolic semi-linear system of equations
(see eg the proof of [CS, Prop. 4.1]), its solutions satisfy Huygens’ principle, which implies that
the global solution of (B.8) belongs to £L (M) ® g. Note that [CS] deals with the most difficult
case dim M = 4. It is easy to extend the result to lower dimensions. In fact if dim M =n < 4,
we consider M = M x Ry~" with metric g 4+ dy®. A 1—form A = A, (z)dz* € EY(M) ® g
is extended to A = A, (z)dz" € EY(M) ® g. Tt is easy to see that A satisfies the Yang-Mills
equation on M iff A satisfies the YM equation on M. It follows that the Cauchy problem can
be globally solved for smooth Cauchy data in M. The fact that a local space-compact solution
extends as a global space-compact solution follows by the same argument based on Huygens’
principle. (]

REFERENCES

[AS] Araki, H., Shiraishi, M.: On quasi-free states of canonical commutation relations I, Publ. RIMS
Kyoto Univ. 7 (1971/72), 105-120.

[B]  Benini, M.: Optimal space of linear classical observables for Mazwell k-forms via spacelike and
timelike compact de Rham cohomologies, arXiv:1401.7563 (2014).

[BF] Bar, C. (ed.), Fredenhagen, K. (ed.): Quantum Field Theory on Curved spacetimes, Lect. Notes
Phys. 786 (2009).

[BGP] Bér, C., Ginoux, N., Pféffle, F.: Wave equation on Lorentzian Manifolds and Quantization, ESI
Lectures in Mathematics and Physics, EMS 2007.



Hadamard states for the Yang-Mills equation on curved spacetime 56

[CFKS] Cycon, H.L., Froese, R., Kirsch, W., Simon, B.: Schrédinger Operators with applications to
Quantum Mechanics and Global Geometry, Springer 1987.

[BG] Biar, C., Ginoux, N.: Classical and quantum fields on Lorentzian manifolds., Global Differential
Geometry, 359-400, Springer Berlin Heidelberg, 2012.

[CS] Chrusciel, P.T., Shatah, J.: Global existence of solutions of the Yang-Mills equations on globally
hyperbolic four dimensional Lorentzian manifolds, Asian Jour. Math. 1 (1997), 530-548.

[Der] Derezinski, J.: Quantum fields with classical perturbations, arXiv:1307.1162 (2013)

[DG] Derezinski, J., Gérard, C.: Mathematics of Quantization and Quantum Fields, Cambridge Mono-
graphs in Mathematical Physics, Cambridge University Press 2013.

[Dim] Dimock, J.: Dirac quantum fields on a manifold. Tran. Amer. Math. Soc., 269 (1) (1982), 133—

147.

[Dim2] Dimock, J.: Quantized electromagnetic field on a manifold, Rev. Math. Phys., 4(02) (1992),
223-233.

[DH] Duistermaat, J.J., Hormander, L.: Fourier integral operators II, Acta Math. 128 (1972), 183—
269.

[DHK] Dappiaggi, C., Hack, T.-P., Sanders, K.: Electromagnetism, local covariance, the Aharonov-
Bohm effect and Gauss’ law, arXiv:1211.6420 (2012).

[DS] Dappiaggi C., Siemssen D.: Hadamard States for the Vector Potential on Asymptotically Flat
spacetimes, Rev. Math. Phys. 25, 1350002 (2013).

[FNW] Fulling, S.A., Narcowich, F.J., Wald, R.M.: Singularity structure of the two-point function in
quantum field theory in curved spacetime, II, Annals of Physics, 136 (1981), 243-272.

[FP] Fewster, C.J., Pfenning, M.J.: A quantum weak energy inequality for spin-one fields in curved
spacetime, J. Math. Phys., 44, 4480 (2003).

[FS] Finster, F., Strohmaier, A.: Gupta-Bleuler quantization of the Maxwell field in globally hyper-
bolic space-times, arXiv:1307.1632 (2013).

[Fur] Furlani, E.P.: Quantization of the electromagnetic field on static spacetimes, J. Math. Phys. 36
(1995), no. 3, 1063-1079.

[Fur2] Furlani, E.P.: Quantization of massive vector fields in curved spacetime, J. Math. Phys. 40,
2611 (1999).

[GW] Gérard, C., Wrochna, M.: Construction of Hadamard states by pseudo-differential calculus,
Comm. Math. Phys. 325 (2) (2014), 713-755.

[HS] Hack, T.-P., Schenkel, A.: Linear bosonic and fermionic quantum gauge theories on curved
spacetimes, General Relativity and Gravitation, (2012), 1-34.

[Hol] Hollands, S.: The Hadamard Condition for Dirac Fields and Adiabatic States on Robertson-
Walker spacetimes, Comm. Math. Phys. 216 (2001), 635-661.

[Hol2] Hollands, S.: Renormalized quantum Yang-Mills fields in curved spacetime, Rev. Math. Phys.,
20(09) (2008), 1033-1172.

[Hor] Hormander, L.: The analysis of linear partial differential operators I. Distribution Theory and
Fourier Analysis, Springer, Berlin Heidelberg New York, 1985.

[J] Junker, W.: Adiabatic Vacua and Hadamard States for Scalar Quantum Fields on Curved Space-
time, PhD thesis, University of Hamburg 1995.

[K] Khavkine, 1.: Characteristics, conal geometry and causality in locally covariant field theory,
arXiv:1211.1914 (2012).

[MM] Marathe, K.B., Martucci, G: Mathematical foundations of gauge theories, Studies in Mathemat-
ical Physics, 5, North-Holland 1992.

[Miih] Miihlhoff, R.: Cauchy problem and Green’s functions for first order differential operators and
algebraic quantization, J. Math. Phys., 52, 022303 (2011).

[Miil] Miiller, O.: Asymptotic flexibility of globally hyperbolic manifolds, R. Math. Acad. Sci. Paris
350, no. 7-8 (2012), 421-423.

[P]  Pfenning, M. J.: Quantization of the Maxwell field in curved spacetimes of arbitrary dimension,
Classical and Quantum Gravity, 26(13), 135017 (2009).

[Rad] Radzikowski, M.: Micro-local approach to the Hadamard condition in quantum field theory on
curved space-time, Comm. Math. Phys. 179 (1996), 529-553.



Hadamard states for the Yang-Mills equation on curved spacetime 57

[Rej] Rejzner, K.: Remarks on local gauge invariance in perturbative algebraic quantum field theory,
arXiv:1301.7037 (2013).

[Seg] Segal, I.: The Cauchy problem for the Yang-Mills equations. J. Funct. Anal., 33(2) (1979), 175-
194.

[Shu] Shubin, M.A.: Pseudodifferential Operators and Spectral Theory, Springer 2001.

[T] Taylor, M.: Pseudo-differential Operators and Nonlinear PDE, Birkhiauser, 1991.

[W]  Wrochna, M.: Quantum Field Theory in Static External Potentials and Hadamard States, Ann.
Henri Poincaré, vol. 13, no. 8 (2012), 1841-1871.

[W2] Wrochna, M.: Singularities of two-point functions in Quantum Field Theory, PhD thesis, Uni-
versity of Gottingen 2013.

[Z]  Zahn, J.: The renormalized locally covariant Dirac field. Rev. Math. Phys. 26, 1330012 (2014).

DEPARTEMENT DE MATHEMATIQUES, UNIVERSITE DE PARIS XI, 91405 OrRsAY CEDEX FRANCE
E-mail address: christian.gerard@math.u-psud.fr, michal.wrochna@math.u-psud.fr



