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Numerical analysis of frictional contact effects inpush-out tests

Samy GUEZOULI and Alain LACHAL
National Institute of Applied Sciences (INSA) — Res — France

Abstract

This paper proposes an accurate and efficient Zilimear finite element model to investigate
the mechanical behaviour of the shear connectiawdam prefabricated concrete slab and
steel girder in composite bridges. Beside materallinear constitutive laws and 4-noded
plane elements, frictionalontact finite elements are introduced in the matelhe steel-
concrete interface between the girder flange aadcctimcrete slab, between the studs and the
embedding concrete and at the base of the conslabe Numerical results are compared
against experimental results of push-out tests.tébied specimens comprise 4 or 9 studs per
slab. Firstly, it is shown that 2D numerical anay®ay be accurately used for simulating the
original truly 3D problem: a “layer-equivalence” thedology is proposed. A numerical
investigation is then carried out to study theuafice of the friction coefficient on the load-
slip behaviour of the specimen and the distribubbmternal deformations and forces in the
specimen. A parametric study and some practicabmetendations could follow this
numerical approach for a better design of the coinoe

1 INTRODUCTION

A good understanding of the shear connection beh&viessential in composite construction.
The first researches on this topic were carriedesgperimentally from push-out tests [1], [2]
and [3]. They are numerous, for example for pushtesis with composite slabs and profiles
steel sheeting Johnson [4] and Yuan [5] have delte269 push-out test results!. Today, the
understanding of the behavior of the shear conmeatiith headed stud in solid slabs or in
composite slabs under monotonic loading is satsfgcand currently included in design
codes [6], [7]. For other types of connection oheot applications, the knowledge is
sometimes more limited. It is the case of groupedded stud steel connectors used to
connect prefabricated slab with girder steel flamgeere experimental data and studies are
less numerous. First research on the topic werertaicen in Europe by Lebet [8], Roik and
Hanswille [9] which gave first practical design sezamendations. Few years later in Japan
([20], [11]), and in Europe ([12], [13] and [14]her extensive studies were carried out.

Beside the experimental approaches, numerical egudiere undertaken to provide an
alternative to push-out tests and to allow paramstudies. Many searchers have developed
3D FE numerical models these last years but somstwith a limited success due to the
complexity of the numerical modelling of a push-test. First 3D numerical studies started
fifteen years ago with Oguejiofor and Hosain [156] dnalyse push-out specimens with
perfobond rib connectors. The push-out test spatimas modelled using two types of
elements from the ANSYS element library: 3D reickat concrete solid elements and
membrane shell elements for structural steel ofrbtanges and perfobond rib connectors.
No contact-friction elements were used in this nlode Nevertheless, coincident element
nodes were either constrained or merged in functfaiheir interaction. In addition, bilinear
elements having two different stiffness values atiog to the relative displacement of the
element were introduced. Numerical results weradon good agreement with experimental



ones. Recently, Al-Darzi et al. [16] have developdath ANSYS software V90 a similar
modelling for similar perfobond rib connections.nTgears ago, Kim et al. [17] have
developed 2D and 3D FE models using LUSAS FE pragta study the behaviour of
through-deck welded shear connectors. The separagiveen the stud and the concrete on
the surface of the stud shank opposite to the \easl experimentally observed by Johnson
and Oehlers [18] and by Jayas [19]. They showetttha phenomenon occurs at low load
level and was simulated by giving zero stiffnesghi® coincident concrete elements with this
stud shank surface. A similar method was used bja&and Pavlidis [20]. Ellobody and
Lam [20] have studied the behaviour of headed s$te@r anchors in steel-precast composite
beams. El-lobody and Young [22] have investigatee behaviour of headed shear stud
anchors in composite beams with profiled steel tahgeln these two papers non-linear finite
element model with 3D solid elements (ABAQUS) wavealoped. The only problems of
contact tackled by the authors concerns the separbetween the concrete and the shear
connector, on the surface of the stud shank omptisihe load. For that, differently from Kim
et al. [17], coincident steel stud nodes have bdstached from the surrounding concrete
elements while nodes on the surface of the studksiva the direction of loading were
connected with the surrounding concrete nodeshénsame years, Okada et al. [23] have
investigated the shear strength behaviour of grdghed connectors. Based on both push-test
tests and a numerical modelling, their study lefirtdings useful for design rules. The finite
element package DIANA was used for the 3D FE-maugllin addition to the usual solid
and shell 3D elements used in such a modelling nathlinear material properties, a bond-
friction model was introduced at the interface lew the steel beam and the concrete slab
and between the studs and the concrete. A maximond Istress of 0.9 N/mmfor a
maximum slip of 0.05 mm were used by the authorsrder to obtain the better agreement
with experimental results. More recently, Nguyenakt[24] have developed a refined 3D
finite element model to simulate the behaviour afyé stud shear connectors in push-out
tests. ABAQUS finite element program was used iis #malysis. The concrete slab was
meshed with 8-node brick elements usable for noatim@alysis including of contact, large
deformation, plasticity and failure. A thin cohesilger of 0.05 mm in thickness meshed
with 8-node three-dimensional cohesive elementmeefin terms of traction-separation was
used between the steel flange and concrete sldbeopush-out test. A tie constrain was
applied to the concrete-to-stud interface. In addita contact interaction with a friction
coefficient of 0.25 was introduced at the interfaeéween concrete slab and rigid base. After
experimental calibration of the model, an extengi@emetric study conducted by the authors
allowed to analyse the effect of the changes of siadtheter and concrete strength on the
capacity and behaviour of the shear connection. cnestill underline the very recent works
of Mirza and Uy [25] to study the effects of thexdmnation of axial and shear loading on the
behaviour of headed stud steel connectors. They ABAQUS program to develop a three
dimensional nonlinear finite element model. Brid&neents were used for the concrete slab,
structural steel beam and steel connectors. Slesflents were employed for the profile steel
sheeting. Coincident concrete and steel elemenesiagtre coupled and no contact/friction
elements were introduced. This fast overview on enigal models of push-out test recently
developed shows that all the main civil engineefiigcodes were used alternately to develop
more or less refined FE models for different typésonnections. To the best knowledge of
the authors, in any of the considered model, coffitation elements able to simulate both
contact/separation and friction were not introduckdirst reason is certainly the lack of
accurate and efficient frictional contact algoritimthe 3D FE code libraries. Other reasons
are the real computational effort and the consurtimg required to develop a 3D numerical
model for the analysis of a steel-concrete strectdnich remains always complex. It is the
reason why we have try to develop an efficient maar finite element model to investigate



the influence of the contact and the friction betwesteel and concrete on the global
behaviour of a shear connection in a push-out Tesiget a better insight into the complex
interaction occurring at the interface, we have attee option to develop a 2D FE model
with efficient frictional-contact algorithm. It shown that this model is able to highlight some
key phenomena occurring at the interface duringshgest. Contrarily to 3D codes worked
out contact/friction elements can be easily foum@D FE code libraries and lead to a best
convergence of the iterative process. The aim &f plajper is to present this new numerical
approach and the effects on the global behaviodil@sal internal forces and deformations of
the connection in a push-out test. It is expedbed the results of this study will also make it
possible to improve other finite element modelsamposite structures as for example the
model developed by Guezouli S. and Yabuki T. [26$tudy continuous composite beams at
real scale.

2. EXPERIMENTATION

2.1 The push-out test specimen

Figure 1. Push-out test specimen. Figure 2. HER266s-section. Figure 3. The stud.

Table 1. Geometrical characteristics of HEB260 sind (p19).

Variable h tw b t h d r ¢) 5 d; k
Value(mm)| 225 10| 26Q 17pb 260 177 24 19 100 31.7 |10

The particular type of push-out test specimen itigated in this paper is shown in Figure 1.
It was designed according to the recommendatiovsngn EN 1994-1-1 — Annexe B [6]. It
includes one HEB 260 (S 355) steel section witkeanto length of 750 mm. The geometrical
characteristics of the profile cross-section: wapgnd flanges (B), are presented in Figure 2
and Table 1. Two prefabricated slabs (650 mm h&pQ mm wide, 150 mm thick) are
symmetrically arranged on each side of the stea@nmbeEach slab includes a double
reinforcement layer with>2@l0 mm longitudinal rebars of 550 mm length an&@.0 mm
transversal rebars of 520 mm length both in steatigg S500 (f= 500 N/mn3, f, = 550
N/mm?, Es = 210 000 N/mrf). The two prefabricated slabs (C) are connectethéosteel
girder flanges by means of 9 welded headed stud@-(gure 3 and Table 1) grouped inside a
rectangular (24¢280 mm) recess. The arrangement of the studsisatitie requirements of
EN 1994-1, clause 6.6.5.7 on minimum spacing. Tiieg material used to achieve the
connection had the same composition as the con©4®50 of the prefabricated slab, i.e.



Cement CPA, CEMI, 0/14 TP : 405 kg/mAggregates 6,3/14: 966 kgimSand 0/4: 834
kg/m®, Admixtures: 1.62 kg/th Water: 189 kg/h The mean value of the compressive
strength of the concrete slab and filling materialstained from testing of cylinders, is 56
MPa. The specimen geometry is given in Figure 4.
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Figure 4. Geometry of the specimen (mm).
2.2Test setup, loading procedure and instrumentation

A 3000 kN AMSLER four columns hydraulic testing
machine (CEBTP Paris) was used by the Structures
Laboratory of INSA — Rennes to test the specimen.
| A vertical load was applied at the top end of tteels
beam, the two concrete slab lying at their bottom
ends on an horizontal support.

The relative longitudinal displacement between each
concrete slab and the steel beam was measured at
two levels: at the upper end of the slabs and et th
centroid of the grouped studs; these two kinds of
- | measurement have given very close results. The
relative transverse displacement between the slabs
and the steel beam was controlled at the upper and
lower ends of the slabs.

Figure 5: Test setup.

The relative longitudinal displacement between filimg material and the concrete of the
prefabricated slab was also measured using traasslfiszed on the outside face of the two
slabs. A total of 12 potentiometric transducers used for the test.

2.3Test results

Test results deal essentially with the load-slipres as presented in Figure 11. In addition, it
was observed the average relative displacementeleetihe centre of the filling material and
the recess wall as a function of the load remaloedup to failure. Nevertheless, the bottom
part deformation of the filling material block agpe greater than the upper one. The relative
transverse displacement between the slabs andehm lange remains low. It is worth
mentioning that it is difficult in such test to abt experimental information about internal
force transfers near the connection or at the-si@etrete interface. This is the reason for the
development of a numerical model.



3. 2D EQUIVALENT MODEL
3.1 “Zone-equivalence” methodology

The truly 3D problem is reduced to a 2D equivalemddel using a “Zone-equivalence”
methodology. This equivalence reduces the deptthefpecimen along Y axis direction to
equivalent material of 1mm thickness taking intacamt the depth of each material
encountered in this direction on one hand and timedgenization principle on second hand.

In plan XY, the specimen is divided into zones wledi by two series of bands in X and Z
directions each time the nature or the thicknessaterial varies in Y direction (figure 6).
Thus one can distinguish five zones indicates byl2] L3, L4 and L5 : L1 corresponds to
the web (A), L2 corresponds to the flanges (B) loé tsteel segment of depth, b3
corresponds to the normal concrete (C) of the sfatepth B1, L4 corresponds to a part of the
normal concrete of the slab of depth 2xB3 plusfitieg concrete (D)on the depth of the
recess B2 and L5 defined on the surface limitedhay height and the diametes df the
connectors corresponds to the steel of the conn€¢€)oon the depth 3xsdplus the filling
concrete on the depth (B2 — 3xdnd a part of the normal slab concrete on théhd2pB3.

The real materials (A, B, C, D, E) are replaced“bgne-equivalent” materials of 1mm

thickness in Y axis direction. Especially for L4 gHirstly requires that normal and filling

concretes should be homogenized into filling cotecreaterial and for L5 normal and filling

concretes and the studs should be homogenizedsiaed material of the studs. The final
equivalent materials for which the behavior modelsain unchanged have new Young's
moduli and yield stresses that are calculated as/rsho table 2. In this table, the steel
Young's moduli (Y, E® and E“) correspond respectively to the web and the flasfgbe

steel segment and the studs; the slab concretatséocang’s modulus i€€/¢) and the filling

cm

concrete isE®). The equivalence coefficient representing the hgenation is the ratio

between the Young's moduli; for exampllaqu”E is the equivalence coefficient of normal

concrete into steel material of the stud. While Ng'8 moduli of each material (A, B, C, D

and E — figure 1) are known, the equivalent Youmgtdulus of each zone (L1 to L5 — table
2) can be easily calculated. Final equivalent nitéor each zone is: (L1, A), (L2, B), (L3,

C), (L4, D) and (L5, E). For each equivalent zotes equivalent Young’s modulus E (in
MPaxmm) can be written as follows:

E=E™ x(¥B) (1)
where:

E™ is the Young's modulus of the homogenized materfizhe concerned layer,
> B, is the sum of all included lengths in the concdrieyer after homogenization. For
example concerning the layer L5:

Y B, =ng © x2B3+ np; © x (B2~ 3d, )+ 34, (2)

Remark For reminder, C and D concretes must includeléteof reinforcing steel. This will
appear as a correction of the lengths B1, B2 andTB8.index R represents the reinforcing
steel for which the Young's modulus i§E



BI™" = B1[ 0.99+ 0.01f °| (3.3)

B2"" = B2] 0.99+ 0.01f} °] (3.b)
B3™" = B3 0.99+ 0.01ff °] (3.c)
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Figure 6. “Layer-equivalence” details.

Table 2. Equivalent Young’s moduli.

Layer Materlals E calculation (/Imm) Homoge_mzed
included material
Web girder
(A)
L1 t, of (A) E® xt, A
L2 by of (B) E® xb Flange girder
(B)
Classic
(©)
L3 B1 of (C) EC© xB1 concrete (C)
E®) x(nS, ° x 2B3+ B
L4 2B3 of (C) © Filling
+ B2 of (D) nc-P = Ecn concrete (D)
" ED
(E) C-E D E _
283 of (C) E® x(ng, ©x 2B3+ r; £ x (B2- 3d, )+ 3d)
L5 | +(B2-3d)of (D) e EO© e (D) Stud (E)
+ 3d, of (E) Neq :% and ng, :%




3.2 Behavior models for equivalent materials

The equivalent 2D model and the real 3D specimenuldhhave same deformation. This
means that the mechanical behaviors should be edlapthile the Young’'s moduli have been
changed as shown previously, the yield stressegifgion as well as in compression) should

be multiplied by appropriate value of @B, ) that depends on the concerned layer along Z
axis.

- For the girder (web and flange) and the studelastic-perfect plastic behavior is used in
tension as-well-as in compression (figure 7.a).

- For the concrete slab (figure 7.b), the non-lineshavior combines Rankine cracking model
in tension with Driucker-Prager plastic model in @oession. This model needs the uniaxial

stress strengthsf(, and f_ ) and the ultimate strainse{, and g), in tension and
compression for both principal stress directionsaddition, it needs the concrete strength for
a bi-axial compressionf( ). In case of cracking, one of the principal stressaches the

concrete resistance in tension, the shear resestargecreased reducing about 10% the shear
modulus [27].

0‘“ o A

f

y

Tension

v

(e2]

Compression

(a) — Girder and stud. (b) — Concrete.
Figure 7. 2D-3D equivalent material behaviors.

4 F.E. MODEL

4.1 Finite element type and mesh

Taking advantage of the symmetry of the specimely, @ half of the push-out specimen was
modeled (Figure 8). The calculation will be perfednn plane stress. All the components of
the push-out specimen were meshed with quadrandgukar (Figure 8). Contact friction
elements were modeled by two lines of nodes.



4.2 Boundary and loading conditions

Boundary conditions are shown in figure 8. Symmngetondition was applied to Z axis.
According to experimental arrangement conditiong,(8@des at the base of the concrete slab
were only restricted to move in Z-direction. Thadong history of the specimen is given in
figure 9; a Z-vertical displacement W is imposedthattop of the steel girder. It is pointed out
that the numerical displacement values are the samethose measured during the
experimental test. The load was measured as thergsction acting under the base of the
concrete slab. The studs welded to the flange giade the only mechanical connection
between the steel girder and the concrete panisl.tét point out that the FE model does not
take into account the possible stud failure or cetecdamage for a high value of vertical
displacement. The maximum vertical displacementdegs limited to 8 mm.

7 i
" Vertical ﬂ
displacement L1 E
W L2 i
L3 g
o v y - L4 §
s L5 E
&
= 8
(] =
P £
2
& 0 0,2 04 06 0.8 1
i —HH Step increment
L L%P iniii Figure 9. Loading history.
e T
0 X
Figure 8. 2D F.E. model. Figure 10. Contact vdesb

4.3 Contact friction finite elements

Contact finite element formulation introduced ire tmodelling is based on the kinematic
method: contact without penetration and frictiomaitions are described kinematically at the
nodes. They are expressed in terms of displaceraedtforces. In accordance with figure 10,
the normal displacement and corresponding normatefoare (J,, N) and tangent
displacement with corresponding force ddg T), both conditions can be written as follows:



- Contact without penetration condition:
(U,20 and N2 Q = UN=C (4)

- Friction condition:

— —

(U>0 = -T=ub) or (U =0 = -T<uD) (5)
T . - . .U,
where: :N is the friction coefficient andD —m.
t
In practice, two lines of nodes must be createthftwo different materials (figure 10). These
lines must be as close as possible that makestitaat between the closer front-nodes. This
precaution ensures good convergence of the iterptoeess.

5 CALIBRATION OF THE FE MODEL AGAINST EXPERIMENTAL  TEST

5.1 Process and definitions

In order to undertake the comparison with the tssaf the experimental test presented
before, the numerical model must be adapted taghlkeconditions. It is pointed out that the
comparison depends on several parameters; particabe introduction or not of contact
friction elements and boundary conditions. Thes$emrint parameters will be introduced and
discussed in the following paragraphs. For compagsetween numerical and experimental
results load-slip curve per stud have been used; slip being equal to the vertical
displacement imposed at the top of the girder &eddad being the resultant load calculated
from node-Forces obtained by the numerical mod#ieatop (action load) or at the bottom of
the slab (reaction load) divided by the total numisestuds which connects the slab to the
flange steel girder in order to obtain an averagee per stud. It is clear that in reality this
force is not the same for all the studs (that il clearly shown further), but it represents a
variable that is easy to plot.

5.2 Mechanical properties

Reinforcing steel Young's modulus is E 210000 MPa representing 1% of the concrete
volume and that the specimen is made of the sameretenC40/50 (B and C - figure 1).
Introducing fx as the characteristic value of the compressivength, yield compression,
yield tension and Young’s modulus are respectively:

f.,=56MPa, f . =0.3xf3° =3.96 MPs (f =f_, -8MPa) (6)

ctm

E., = 24 (f,,)/10] "~ = 36900 MP (7)

According to equations 3, the lengths B1, B2 anduB&d in table 2 (with initial values: 600
mm, 240 mm and 190 mm respectively) must be cardeas follows:

B[ = 31{0.99+ O.OlEE—S} = 627 mr (8.a)

cm



BI™" = B,| 0.99+ 0.01E5 = 251mr (8.b)

cm

B = B,| 0.99+ 0.015—5

cm

199 mr (8.c)

In table 3, E is the equivalent Young's moduluscakdted with the formulas given in table 2
and knowing that real materials Young’'s moduli a2&€0000 MPa (girder and stud) and
36900 MPa (concrete — Eg. 5). The Poisson’s maii® equal to 0.3 for the steel and 0.2 for
the concrete. The yield stress of the steel pradilequal to 355 MPa and the one of the stud
material is equal to 500 MPa (similar value waspaed in [21], [22] and [23]). Concerning
the concrete slab, the strength in compressiomusileto 56 MPa and the one in tension is
equal to 3.96 MPa.

Table 3. Equivalent 2D mechanical properties ofamak

Layer Variable values (MPaxmm for E and f)

L1 | E* =210000¢ v =0.3,f" = 3550

L2 | E*® =5460000( v*? = 0.3,f? = 92300

L3 | E =2317860( v = 0.2,f-¥ = 35176,f (- = 2487

7°cm ctm

L4 | EY =2317860( v = 0.2,f4 = 35176,f -4 = 2487

ctm

L5 | E*® =3304530( v =0.3,f* = 60383

The rest of variables defining the concrete behamodel are given in table 4. The same
uniaxial behavior is considered for both princigtess directions.

Table 4. Rest of variable values for concrete behav

f... =1.2f_ (MPaxmm)

3.22 10 1.51 10 42211

5.3 Contact finite element introduction

5.3.1 FE model without contact finite elements

Before starting the comparison between numericdlextperimental results, a first calculation
has to proof the importance of the use of contentef elements in the model. In this aim,
figure 11 compares both result curves where theemigad one corresponds to the model
without contact elements and the second is thererpatal one. All materials are in constant
contact during the loading history, the hypothesdigisplacement continuity appears non-



satisfactory because the numerical model seemstmolbauch more resistant than the reality.
This result is especially due to the constant ainfaetween the materials and the
impossibility of separation whatever the load le(feggure 12). The horizontal part of the

curve over 1lmm of vertical displacement seems touloevhen the top part of the steel
segment begins to be deformed because the rebeahodel is a “rigid” panel. The force

distribution inthe stud rows (given in percentage on the right sidegure 12) appears quasi

uniformly distributed between the different stud sow

250
200
2
= 150
2
T 100 -
3 -®-Experimental reference curve
—o-Numerical model without contact elements
50
0
0 1 2 3 4 5 6 7 8 9 10
Stud slip (mm)
Figure 11. Importance of contact finite elements.
i ﬂ Unrealistic

phenomenon

|

FX=40% -FZ=31%

l

FX=36%-FZ=33%

l

e 3 FX=24%-FZ=35%

Figure 12. Model deformation and stud force perages
for imposed Z-vertical displacement W = 3 mm.



5.3.2 Introduction of contact finite elements betwen the concrete slab and the flange
girder and the studs

Contact finite elements have been introduced botlvdsn the concrete slab and the steel
flange girder and the studs and the embedding etcAt this stage of the study, the
concrete slab is supported without any frictionitatbase.For this first investigation, the
friction coefficientsy; andp, are varying as followg; =, =[0.0-0.1-0.2-0.3-0.4 -
0.5]. It appears clearly in figure 13 that the nuo® solution obtained witl; = p, = 0.3 is
closer to the experimental reference curve thamther values. It is pointed out that:

- The 2D approach gives initial stud stiffness Idsantthe one calculated from the
experimental results. This could be due to the tlaat the chemical bond friction of

the filling concrete at the beginning of the loadisgot taken into account.

- Over 6 mm slip the numerical curve remains increasvhile the experimental one
decreases lightly; it is surely due, as said betoréhe concrete damage at this loading
level that is not taken into account in the nunerimodel. Nevertheless, until 6 mm
slip (usual value for limit stud slip), the 2D mbd@pears satisfactory.

200

180 1= =05 _

‘ -o-Experimental reference curve

Load per stud (kIN)
>
[—]

0 1 2 3 4 5 6 7 8 9 10
Stud slip (mm)

Figure 13. Comparison between experimental and noateesults.

5.3.3 Calibration of the friction coefficientp; between the steel flange girder the concrete
slab

For this investigation, the friction coefficienttbeen the steel flange girder and the concrete
slab varies as followg; = [0.0 — 0.1 — 0.2 — 0.3 — 0.4 — 0.5] while thietfon coefficientp,
between the studs and the embedding slab conemt@ins equal to 0.3. It appears clearly in

figure 14 that the numerical solution obtained with= 0.2 is closer to the experimental
reference curve than the other values.

In figure 15 and table 5, it appears that the acowplues of friction coefficients( = 0.2 and
M2 = 0.3) seems to be the most probable one occduedg the push-out test. The average



difference between this numerical solution and @ékperimental result does not exceed 1%
that is enough satisfactory. This small averagteihce has been observed for the several
imposed Z-vertical displacements: W =[1 — 2 —-8—5] mm.

200
180 p1=05p;=03
p1=04p=03
160 m=0.3 =03
= o é i K= 0.2 B2= 0.3
140 = EEP . o hd h - p1=0.1p3=03
= =0.0pu;=03
Z 120 %/ p1=0.0 py
= =
= 100 -
- | -s-Experimental reference curve
2 80
=1
i
e 60
s
40 -
20 r
0
0 1 2 3 4 5 6 7 8 9 10
Stud slip (mm)
Figure 14. Friction coefficient; influence (withu, = 0.3).
180 T I
¢ Experimental reference values
170 1 —————————% W =>5mm
W =4mm
160 W =3mm
J W =2mm
=
2 140
; r/) W=1mm
= 130 /
-g /
®
3 120 _—
a"/
110
100
0 0,1 0,2 0,3 0.4 0,5
Friction coefficient pu1

Figure 15. Results for different vertical displa@ats (withp, = 0.3).



Table 5. Best value qfi (with p = 0.3).

Numerical results (kN)

M1 W=1mm| W=2mm| W=3mm| W =4mm| W = 5mm

0 112 128 137 142 144

0.1 117 137 147 151 152

0.2 121 141 151 155 156

0.3 126 143 152 156 157

0.4 130 149 161 165 166

0.5 135 156 163 166 167
|Experimenta] 123 | 142 | 149 | 153 | 156 |

M1 Difference between numerical and experimental (%) d?f:‘/eer?r?CGe

0 8.8 9.8 7.6 7.0 7.3 8.1

0.1 5.3 3.6 1.2 1.1 2.6 2.8

0.2 1.6 0.4 1.2 1.3 0.2 0.9

0.3 2.0 1.0 1.8 2.0 1.2 1.6

0.4 5.7 5.4 7.9 7.7 6.8 6.7

0.5 9.3 9.8 9.7 8.5 7.2 8.9

5.3.4 Calibration of the friction coefficientp, between the studs and the concrete

It is possible now to vary the friction coefficiemt (between the studs and the concrete) and
keeping constani; and equal to 0.2 (between the girder flange aedctncrete). Figure 16

shows that the couple (0.2 — 0.3) of friction caédints highlighted in table 5 remains the best
result.

200 |
180 p1=02py =05
p=02p=04
160 p1=02p=03
= S p1=02p=0.2
140 7 : % < * =02 py=0.1
_ rr,;'rj'ﬂ"“ﬁ_ p1=0.2 py = 0.0
Z 120 —
=
2 100 -
2 | -o-Experimental reference curve
Z 80 -
=
E 60
=
40
20
l
0@
0 1 2 3 4 5 6 7 8 9 10
Stud slip (mm)

Figure 16. Friction coefficient, influence (withpy = 0.2).



5.3.5 Stress results

Keeping the couple of friction coefficients = 0.2 andy, = 0.3 and Z-vertical restricted
displacement at the base of the concrete slab, l@svaf 0., 0,; and ok, shown in figures
17.a, 17.b and 17.c, respectively, correspond d¢orélal stresses (MPa) calculated using the
values of equivalent stresses (MPaxmm). For exgntipée equivalent vertical compression
stress obtained by the model at the top of theg#ars : - 58300 MPaxmm, the flange
dimension along Y-axis is 260 mm, so the real stiges - 224 MPa (figure 17.b).

=- 583001260
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Figure 17. Stress isovalors plotted for the wheplecgnen for a Z-vertical displacement W =
3mm and friction coefficientgl; = 0.2, = 0.3. No restraint in X-direction at the baséhw
concrete slab.

- In figures 17.a, 17.b and 17.c, one can obsdrae dt the top of the specimen, the slab
concrete comes in contact with the steel flangelevat the bottom it moves away. The

friction between the concrete slab and the stesigi is then mobilized at the top of the

specimen as soon as there is contact between lagtdriats. The separation between the slab
and the flange increases gradually with the incréroéthe imposed vertical displacement.

- Figure 17.a shows that all stud rows are initensAccording to the amplitude of the
relative displacement between the concrete slabtlamdteel flange, tension forces in stud
rows increase from the top raw to the bottom rowe Dbservation of the distribution of
normal stressegy, around the stud rows in Figure 17a shows thaexufbl bending of the
studs occurs simultaneously with the tension amdisforces in the studs.

- Figure 17.b with the normal stresses, shows a progressive transfer between the
compressed steel girder and the concrete slabghrthe stud rows. The normal stress
value (-224 MPa) obtained by the FE model at thedbthe girder is consistent with the
experimental value observed for 3 mm vertical dispinent and with the support reaction
force at the base of the slab given by the FE model



- Figure 17.c shows that the shear stresses amyntacated at the base of the studs. Shear
bands appear between the stud rows starting justviiee stud heads of a given row to the
base of the adjoining stud row. This observationassistent with the concrete cone failure
mode observed in this part of the push-out speciviean concrete failure occurs.

5.4 Boundary support conditions at the base of theoncrete slab

Observing figures 17.a, 17.b and 17.c, one can wionehether the boundary support
conditions adopted at the base of the concreterslphave an influence on the numerical
stress and displacement results. To recall thagrdmg to experimental test conditions, only
Z-vertical displacements have been restrained kegepee the X-horizontal ones on the
support at the base of the concrete slab. For tiratsame type of contact elements than the
ones used previously have been introduced in traehfetween the base of the concrete slab
and the support with a friction coefficient valug= 0.25. The results of this new modeling
are presented in figures 18 a — b - ¢. No sigmficdhanges were observed compared to the
boundary conditions adopted previously. One can aedhese figures than the relative
horizontal displacement between the base of thie atal the support is equal to the gap
observed between the slab and the bottom of tie¢ stgment. For other valuesgf ranged
between 0.25 and 0.5, no significant plane stréesges were observed throughout the
specimen.
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Figure 18. Stress isovalors plotted for the wheplecgnen for a Z-vertical displacement W =
3mm and friction coefficientgl; = 0.2, = 0.3 anduz = 0.25.

While considering now the situation of a total rastt of Z and X displacements at the base
of the concrete slab, we obtain the results preseint figure 19. Compared to the previous
stress distribution obtained for no or partial r@sits of X-displacements at the base of the
concrete slab, we observe several changes: inefi§@ra, the flexural bending of the studs
seems to be more important than previously (comfttoy displacements observed in figures



19.a,b,c), in figure 19.b, the vertical stressrihistion at the contact between the base of the
slab and its support is inverted (with the invemsid the bending moment). In figure 19.c, the

shear stress action is more located near the lhake stud rows and all the bottom part of the

slab just below the bottom stud row is in shear tdude X-displacement restraint at the base
of the slab.
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Figure 19. Stress isovalors plotted for the wheplecgnen for a Z-vertical displacement W =
3mm, friction coefficientsp; = 0.2 andu; = 0.3 and a total restricted from moving
displacements in Z and X directions at the baseé@®toncrete slab.

6 HORIZONTAL AND VERTICAL FORCES IN THE STUD ROWS

Percentages of resultant forces along X and Z tilex transmitted by a given stud row are
calculated by dividing the resultant force transaditby one stud row by the total resultant
force along X and Z directions of all stud rowsspectively. The percentages thus calculated
are given in figure 20 for an imposed displacenWrnt 3 mm.

For other values of imposed Z-displacements, ircdse of no X-displacement restraint at the
base of the concrete slab (Figure 20-a), percentagees, plotted in figures 21 and 22,
appear quite the same whatever the imposed dispiaudevel.

For a partial X-displacement restraint at the bafethe concrete slab with a friction
coefficient equal to 0.25, the calculated percesdagjven in figure 20-b are not very different
from the ones obtained in the case of no X-dispree restraint. For higher friction
coefficient valuegus at the base of the concrete slab ranged betw@énadd 0.9 even going
to full X-displacement restraint (figure 20-c), grdmall change was observed between the
percentage results with a small tendency towardsdaction of the variation between the
forces transmitted by the stud rows.



Comparing percentages obtained in figure 20 toesponding ones in figure 12, the influence
of the presence of contact friction elements appelmarly as the more important parameter
to be introduced in the numerical model. There liarge difference between the percentages
of horizontal and vertical forces at the studs’ soWwhe percentage of horizontal and vertical
forces at the bottom row is greater than 50% otale forces.

mmmmmi =N e

FX=15%-FZ =11% FX=15%-FZ=15% FX=20%Z = 15%

FX=34% - FZ = 30% FX=33%-FZ=32% FX=31%Z = 36%

& = i gy
FX=51% - FZ = 59% FX=52%-FZ=53% FX=49%Z% = 49%

a — No base restraint b — Partial base restraint — Fuall base restraint
(Friction coefficienfuz = 0.25)

Figure 20. Percentage of forces FX and FZ per siad (W=3mm).
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Figure 21. Percentage force FX per studs’ row fffeidnt loading level.
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Figure 22. Percentage force FZ per studs’ row fiberént loading level.
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Figure 23. Forces at the top of the steel girdathe@base of the concrete slab and at the studs
rows (W = 3mm).



In addition to figure 20, figure 23 gives for tHede boundary conditions, more information
about the transmission of the internal forces msiee specimen through the stud rows and on
the load distribution at the top of the steel girdad the base of the concrete slab, for an
imposed Z-displacement W = 3mm.

If the node-loads at the top of the steel girder quite the same for the three considered
boundary conditions, it is not the same at the lodigbe concrete slab where the node-force
distribution is inverted between the no base regtpg-displacement condition (figure 23a)
and the full restraint X-displacement base condifffigure 23b). However, this important
change of the boundary conditions at the base otdherete slab does not bring important
modification of the forces transmitted through #fwed rows (as seen previously).

5 CONCLUSION

In this paper a new 2D nonlinear finite element mddes been proposed to analyze the
behaviour of push-out specimens. It has been shbatrthe introduction of interface contact
friction elements between the concrete slab and stieel flange girder and studs and
embedded concrete leads to significant changinbeofesults in terms of stiffness, resistance
and force distribution between the studs. On therdhand, a partial restraint of the horizontal
displacements at the base of the concrete slab dgnsnof the introduction of a contact
friction element does not show a significant chaggneither for stresses throughout the
specimen nor for transmitted stud forces. On theerohand, a total restraint of horizontal
displacements at the base of concrete slab reviérsemrmal force distribution at the base of
the slab and leads to some changing of the strestsibdiion and transmitted forces
throughout the specimen.

The validation of the proposed model against expenial data gives satisfactory results and
leads to calibrate friction coefficientg andp, concerned by the push-out test. A valugpf

= 0.2 was adopted for the friction coefficient beem the studs and the concrete and a value
of uz = 0.3 have been selected for the friction coeffitibetween the steel flange and the
concrete slab. It has been observed that the plidysif separation between steel and
concrete in the numerical model and the frictiobwaen the concrete and the flange of the
girder had a strong importance on the results. r@eladifference between the normal and
shear forces transmitted by the stud rows was vbder

It is noteworthy that these results are availabilly @inder the conditions of a conventional
push-out test: vertical pure shear with no horiabsbompression imposed on the external
surface of the concrete slab. In the case of d steerete composite beam subjected to the
weight of the slab and the overloads, some numlesicaulations would be carried out to
draw appropriate conclusions. It is probable that friction would play a more pronounced
role if the concrete slab was under compressiorezGuii et al. [28] studied the influence of
the connection degree on the bending moment cgpaicd steel concrete composite beams,
this investigation should be reexamined to take axtcount the new results contains in this
paper. Recently, researches have been undertakeéne Fyrench national project MIKTI [29]
to study new shear connection types in composiieges. These researches are mostly
experimental and would benefit of numerical workee proposed 2D model seems to be a



good opportunity to develop new numerical invesiagges in these different fields. The
perspective to extend the numerical work presemtetiis paper to a 3D FE model is also
considered.
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