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Abstract—In this paper, we address the problem of periodic
task scheduling in a sensor node powered with energy harvester.
The scheduler can be occasionally forced to skip jobs because
of energy shortage or processing overload. Every task executes
jobs in conformance with the so-called Skip-Over model where
blue jobs may be aborted at any time in contrast to red ones
that should complete before deadline. The work presented here
aims to consider stability and robustness issues for the Skip-Over
model in a uniprocessor energy harvesting system. We present
two scheduling strategies, called Green-BWP-LF and Green-
BWP-MS specifically adapted to that context. A simulation study
shows that these policies outperform the conventional Green-
BWP algorithm based on the classical Earliest Deadline rule.

Index Terms—energy harvesting; real-time scheduling; fairness
stability; robustness; deadlines.

I. INTRODUCTION

Energy harvesting defined as a process in which ambient

energy is converted into electrical energy, has emerged to

power wireless sensor nodes. Energy harvesting has the po-

tential to address the conflicting design goals of lifetime and

performance. It exploits renewable energy and resolves the

issues of battery life and replacement. Energy harvesting tar-

gets consumer applications as well as industrial and healthcare

ones. Today, technology for harvesting includes piezoelectric,

radio frequency, thermoelectric, inductive coupling, wind, and

solar power.

The micropower sources used in energy harvesting appli-

cations raise specific challenges for energy management. The

ambient energy is often intermittently available. Consequently,

this leads to store excess power in order to match supply and

demand.

Exploiting an energy harvesting source is fundamentally

different from simply using a battery. Rather than a limit

on the maximum energy available, it has a limit on the

maximum rate at which the energy can be used. Further,

the harvested energy availability typically varies over time

in a nondeterministic manner. While a deterministic metric

(i.e. residual energy level) suffices to characterize the energy

availability in the case of batteries, a more sophisticated char-

acterization may be required for a harvesting source. The time-

varying characteristics of renewable energy sources creates a

shift in research focus from energy-efficient to energy-neutral

approaches. Wireless sensor networks (WSN) are deployed in

infrastructures such as buildings or bridges and enable various

data collection applications (e.g. structural monitoring). Sen-

sors collect information about their surrounding environment,

update a base station and respond to frequent or sporadic

monitoring requests.

A wireless sensor has a real-time behaviour since the overall

correctness of the system depends on both the functional and

the timing correctness. A firm real-time system must meet its

deadlines with a degree of flexibility in contrast to hard real-

time systems where all deadlines have to be met. A missed

deadline will just degrade the system’s Quality of Service

(QoS).

The energy cost of sensing applications relates heavily to the

frequency of data requests and updates between sensors and

the base station. The frequency in turn affects accuracy of the

collected data. In systems with energy harvesting capabilities,

we envision that sensors only communicate when there is

sufficient harvested energy. There is therefore a tight coupling

between the ability of the system to harvest energy and data

accuracy: intuitively better harvesting leads to better data

quality, poor harvesting conditions imply loss of accuracy.

Our contribution includes: (1) exploiting application tole-

rance to quality degradation to adapt the sensor data collec-

tion process under unstable energy harvesting conditions, (2)

designing an energy harvesting management framework with

2 stages (online and offline) that utilizes energy harvesting

prediction and knowledge of application tolerance energy cost

to maintain system sustainability and optimize data qual-

ity and (3) evaluating the performance of the management

framework compared with other strategies. Our simulator is

also a valuable tool for designers to tune system parameters,

to check feasibility of application constraints under various

energy harvesting conditions and to study system performance.

The remainder of this paper is organized as follows. Section

II presents some related work. Section III states the problem.

The energy harvesting system model and two existing schedu-

lers are presented in Section IV. Two novel scheduling poli-

cies compliant with the definitions of stability and robustness

are described in Section V. Their performance is evaluated in

Section VI. Finally Section VII concludes the paper.



II. RELATED WORK

A. Scheduling and processor overload

Earliest Deadline First (EDF) [8] is today one of the most

attractive real-time scheduler. However, should the processor

experience a transient overload, Earliest Deadline scheduling

can not directly ensure that almost the most important tasks

of the application are guaranteed. The Skip-Over model [7]

aims to consider situations in which periodic tasks may

occasionally have deadline violations because of transient

processor overloads. A task τi is characterized by a worst-case

computation time Ci, a period Ti, a relative deadline equal to

its period and a skip parameter si. The distance between two

consecutive skips must be at least si periods. When si equals

to infinity, no skips are allowed and τi is a hard periodic

task. Every job of a task is either red or blue [7]. A red job

must complete before its deadline whereas a blue job can be

aborted at any time.

Two Skip-over scheduling algorithms were introduced about

fifteen years ago by Koren and Shasha in [7]. The first one

proposed is the Red Tasks Only (RTO) algorithm. Red jobs are

scheduled as soon as possible according to EDF algorithm [8],

while blue ones are always rejected. The second one, called

Blue When Possible (BWP) algorithm, is an improvement

of RTO. BWP schedules blue jobs whenever their execution

does not prevent the red ones from completing within their

deadlines. In other words, blue jobs are served in background

relatively to red jobs.

B. Scheduling and energy harvesting

Liu et al. [9] and Moser et al.[11] propose scheduling

techniques for energy harvesting systems at operating system

layer. In [14], Han et al. propose an adaptive data collection

protocol which aims to minimize energy consumption and

prolong battery life-time. This approach is designed for battery

powered sensor systems. Our work, on the other hand, exploits

error tolerance in both offline and online stages to adapt the

system to fluctuations of renewable energy.

Based on the work in [3], the authors in [5] proposed a real-

time scheduling algorithm called Earliest Deadline with energy

guarantee (EDeg). According to EDeg, the processor executes

tasks as soon as possible according to the EDF rule. However,

the system starts executing a task only if the so-called slack

energy is positive and the reservoir is non empty. Slack energy

enables us to quantify the energy consumed by future jobs

and prevent them to violate their deadlines because of energy

shortage. The system may be inactive as long as the slack

time is positive and the reservoir has not fully replenished.

The key issues in this algorithm are properly predicting the

energy production and measuring the current energy level of

the reservoir.

III. PROBLEM STATEMENT

Our system consists of a wireless sensor node. Every

sensor periodically collects information about its surrounding

environment by reading values from its embedded sensor and

periodically sends an update to the base station(s). This value

can be a property of the environment such as temperature,

humidity or sound, that the application needs to monitor. We

assume that the sensor node is equipped with an harvesting

circuitry and an energy buffer that supplies power for the

operation of the sensor.

The first challenge is to utilize the prediction information

about future harvested energy to sustain the system and ma-

ximize the overall Quality of Service (i.e the success deadline

ratio). If high data accuracy is assigned to an interval with

predicted low energy, the energy supply will not meet the

energy demand and the system might run out of battery

and shut down, suspending monitoring activities. If low data

accuracy is assigned to an interval with predicted high energy,

the harvested energy is not utilized and might be wasted.

IV. MODELING AND HARVESTING SCHEDULING

A. Definitions

We extend the Skip-over model to real-time energy
harvesting applications. We assume that tasks may miss their
deadline due to either transient processor overload (i.e. time
limitation) or energy overload (i.e. energy shortage). We
consider a uniprocessor system that executes a set of firm
periodic tasks as described previously. In addition, each task
τi consumes a certain amount of energy, Ei, called Worst
Case Energy Consumption (WCEC). It follows that a task set
τ is characterized as : τ = τi(Ci, Di, Ti, si, Ei), i = 1...n.
Let us define:
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as the energy consumed by red jobs of τi in the interval [0, L(.
We define the equivalent energy factor U∗

e , as :

U
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}

. (2)

E(0) represents the initial level of energy in the battery,

Er(0, L) represents the energy received by the battery during

the interval [0,L(.

In this paper, we assume that the power received by the

environment is constant during an hyperperiod H with

H = LCM(T1s1, .., Tisi, .., Tnsn). As Pr(t) = Pr ∀t,
Er(0, L) = Pr.L, where L represents the red jobs’ end points

during the interval [0,H(.

U∗

e ≤ 1 and U∗

p ≤ 1 are necessary feasibility conditions

where U∗

p is the equivalent utilization processor defined in [2].

Our approach consists in using the spare time saved by the

skipped jobs to recharge the battery whenever necessary as

described hereafter. We next recall two scheduling strategies

initially presented by the authors in [10].

The Slack Time is the maximum allowable time to postpone

red jobs considering all timing constraints. It is computed

using EDL (Earliest Deadline as Late as possible) algorithm

[3] and will be used to recharge the battery.

The Slack Energy at time t [4] is the maximum amount of

energy that can be consumed from t until di, the deadline of



the highest priority red job ready at t when still guaranteeing

all timing constraints of red jobs. It represents the minimum

slack energy of red jobs that have to be executed between t

and di.

The Slack energy of red job ℜi at time t is the amount

of energy that can be consumed from t until di while still

satisfying timing and energy constraints [1]:

SlackEnergy(t,ℜi) = E(t) +

∫ di

t

Pr(x)dx−
n
∑

j=1

Ej (3)

E(t) is the residual capacity at time t, Pr(x) is the power of

the fluctuating energy source at time x and Ej is the energy

required by red jobs ready to be executed between t and di.

B. Green-RTO Scheduler

Green-RTO [1] results from RTO and EDeg algorithms.

EDeg considers hard real-time periodic tasks in the sense that

all jobs must be executed before deadlines. Only red jobs have

to be executed before their deadlines under Green-RTO.

Green-RTO runs as follows: The processor is active if the

system has positive slack energy and the battery is not empty.

Then it will execute ready red jobs according to EDF algo-

rithm. The processor is inactive if the slack time is not equal

to zero or if there are no ready red jobs to be executed.

C. Green-BWP Scheduler

Green-BWP is based on BWP and Green-RTO algorithms. It

incorporates modifications to enhance the QoS in the sense that

according to BWP algorithm, blue jobs are executed whenever

possible (i.e as soon as there is no ready red jobs) considering

both timing and energy constraints of red jobs. Red jobs are

ordered according to the EDF rule.

Green-BWP uses a similar framework to Green-RTO

and the same dynamic data. However, the main differences

between Green-RTO and Green-BWP can be summarized as

follows:

- under Green-RTO, slack time is computed only from the

current and future occuring red jobs. Under Green-BWP, it is

computed taking into account both red and blue jobs.

- under Green-RTO, slack energy is the maximum amount

of energy that can be consumed by a red job while still

satisfying all timing constraints of red jobs only. Under

Green-BWP, slack energy, at time t, is the maximum amount

of energy that can be consumed by either a red or a blue job

while still guaranteeing all timing constraints of red jobs. If

the job in execution at time t is red, slack energy is computed

like under Green-RTO. If the job in execution at time t is

blue, slack energy represents the minimum between slack

energy of the blue job and slack energy of red jobs which

have to be executed between t and di (i.e the deadline of the

ocurring blue job).

Let us denote the blue job in execution, βi. The slack energy

of βi is computed as follows [1]:

SlackEnergy(t, βi) = E(t)+

∫ di

t

Pr(t)dt−Ei−
n
∑

j=1

Ej (4)

Ei is the energy required by βi and
∑n

j=1
Ej is the amount

of energy required by red jobs ready to be executed between

t and di.

V. STABILITY AND ROBUSTNESS OF ENERGY

HARVESTING SYSTEMS

A. Definitions

Robustness and stability have multiple definitions. Thus,

we will use the following one: Robustness of a real-

time scheduling strategy refers to the global success ratio

(i.e. the total number of job completions over the total

number of jobs launched) for a given task set. Let us consider

the following definition of robustness for a computer system:.

Definition 1: [12] A scheduling algorithm X is more ro-

bust than a scheduling algorithm Y if the global success ratio

with X is greater than the global success ratio with Y.

Loosely speaking, a scheduling solution for a task set is

said to be stable if small perturbations to the task set (e.g.

variations in processor workload) result in a new scheduling

solution that stays close to the original solution. More

precisely, we consider here the definition in terms of success

balancing similar to that of fairness:

Definition 2: [12] A scheduling algorithm X is more stable

than a scheduling algorithm Y if the greatest difference in

success ratio of any tasks with X is less than the greatest

difference in success ratio of any tasks with Y.

Note that stability does not refer to the ability of the system

to maintain a certain level of performance.

The performance evaluation of a firm scheduling strategy

should be performed by measuring its robustness (i.e. the

global success ratio) and its stability (i.e. the individual

performance of each task).

The analysis reported in [10] shows that the classical EDF

is not a stable scheduler. Scheduling blue jobs according to

the EDF rule tends to priviledge some tasks relatively to other

ones. EDF is clearly a robust scheduler but not a stable one.

B. Two novel scheduling policies

We define Green-BWP-LF (Blue When Possible - Last

Failure) which schedules at each time instant, the ready blue

job whose number of successive successes from the last failure

is the lowest one. The earliest deadline rule is used to break

ties between blue jobs of equal priorities.

Green-BWP-MS (Blue When Possible - Minimum Success)

schedules at each time instant, the ready blue job whose

individual success ratio, computed from the initialization time,

is the least. As for Green-BWP-LF case, ties are broken in

favor of the task with the earliest deadline. These two variants

of the Green-BWP scheduling framework guarantee that any

task gets the highest priority at the end of a finite time interval.



C. Illustrative example

We consider a task set τ = {τi(Ci, Di, Ti, si, Ei)} with

T1(5, 10, 10, 2, 16), T2(4, 15, 15, 2, 14) and T3(2, 6, 6, 2, 7).

We give E(0)=Emax = H∗Pr

20
= 9 with Pr = 3.

Up =
∑n

i=1

Ci

Ti

= 1.1 and Re = Pe

Pr

= 1.23 where Up is

the processor utilization, Pe =
∑n

i=1

Ei

Ti

is the average power

consumption and Re is the energy criticity ratio.

As Up > 1 and Re > 1, the system is overloaded in terms of

both energy and time. U∗

p = 0, 733 < 1. As U∗

p < 1, red tasks

are schedulable, abstracting from energy considerations.

U∗

e = 0.698. As U∗

e < 1, red tasks are schedulable, consider-

ing only the energy constraints.

Figures 1, 2 and 3 represent the resulting schedules un-

der Green-BWP, Green-BWP-LF and Green-BWP-MS respec-

tively during an hyperperiod H. They show that blue jobs are

scheduled differently according to the 3 strategies.

In Figure 1, the individual success ratios are respectively equal

to 66.66% for T1, 100% for T2 and 70% for T3. The maximal

difference between the individual success ratios is 33.33%.

Figure 2 shows that individual success ratios are equal to

83.33% for T1, 75% for T2 and 70% for T3. Then the maximal

difference between the individual success ratios is 13.33%.

In Figure 3, the blue job with the minimum success ratio

is executed first among blue ready jobs then the individual

success ratios are more similar: 66.66% for T1, 50% for T2 and

70% for T3 then the maximal difference between the individual

success ratios is only 20%. This example shows the impact

of blue job executions on the stability of the system during

an hyperperiod. We notice that Green-BWP-LF and Green-

BWP-MS are more stable that Green-BWP. As the blue job

are executed according to the EDF algorithm, there is a big

dispersion of the individual success ratios.
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: blue job

Fig. 1. Green-BWP scheduling

VI. EVALUATION

We now briefly describe simulation results that illustrate the

tradeoff between robustness and stability. For our experiments,

we use a home-grown simulator written in C. We first describe

the experimental setup to evaluate the effectiveness of our

proposed scheduling variants and then we compare the results
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R: there is no more enrgy in the system
S: the slack energy of the system is negative

: red job
: blue job

Fig. 2. Green-BWP-LF scheduling
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Fig. 3. Green-BWP-MS scheduling

with the classical Green-BWP scheduler in terms of robustness

and stability.

A. Experimental Setup

The simulator generates 100 periodic task sets for a given

processor utilization Up and an average power consumption

Pe. Each task set is composed of 10 tasks with a least common

multiple equal to 3600. Deadlines are assumed to be equal to

periods. The worst case execution time (WCET) of a task is

randomly choosen and depends on the processor utilization.

The energy consumption Ei is randomly based on the average

power consumption Pe. Simulations have been processed over

10 hyperperiods. We assume than the battery is initially fully

charged and the power received Pr is constant. We consider

a system which is overloaded in terms of energy. Hereafter,

we will present an illustration of the system behaviour by

applying Green-BWP, Green-BWP-LF and Green-BWP-MS to

the generated task sets with a constant energy criticity ratio

Re = 1.2 and making varying the processor utilisation Up.

We fix si = 2 and E(0) = P∗Pr

10
where H is the hyperperiod

(i.e H = LCM(T1s1, .., Tisi, .., Tnsn)).

B. Experimental results

We report here some simulation results in order to evaluate

stability and robustness of Green-BWP variants.



Green-BWP

Green-BWP algorithm executes ready blue jobs if firstly

there is no ready red jobs and secondly if the slack energy

of the system is positive. Then, the job which has the earliest

deadline will always be executed.

Fig. 4. Individual Success Ratio under Green-BWP

Figure 4 shows the variation of the individual and global

success ratios according to processor utilization values. Note

that tasks are ordered such that i < j implies that task periods

Ti > Tj . We notice that τ1 with the largest period, gets the

best success ratio. Indeed, largest be the period, lowest be the

number of successful jobs for the given task.

Moreover, we observe that individual success ratios are

very dispersed around the plain curve which represents the

global success ratio. For Up = 1.2, τ1 has 85% of successfully

executed jobs while τ10 has only 58%. We conclude that

Green-BWP has a poor behaviour in terms of stability.

Green-BWP-LF

Figure 5 depicts the individual success ratios and the

global success ratio under Green-BWP-LF. We notice that

Fig. 5. Individual Success Ratio under Green-BWP-LF

Green-BWP-LF is more stable than Green-BWP because the

individual success ratio curves are less dispersed around the

global success ratio. For Up = 1.2, τ1 has 78% of successfully

executed jobs whereas τ10 has 62%. Then the task with the

shortest period gets a better QoS under Green-BWP-LF

compared to Green-BWP.

Green-BWP-MS

Fig. 6. Individual Success Ratio under Green-BWP-MS

As depicted in Figure 6, stability is very high with Green-

BWP-MS. For Up > 1.1, all curves have the same shape.

C. Performance Comparison

Table I summarizes the main criteria in order to compare

the stability performance of Green-BWP, Green-BWP-LF and

Green-BWP-MS. dmean is the mean difference, dmax is the

maximal difference and σ is the standard deviation between

individual success ratios of tasks. We notice that under Green-

Algorithms dmax dmean σ

Green-BWP 30.56 14.76 8.08

Green-BWP-LF 17.43 8.33 4.10

Green-BWP-MS 6.74 1.96 0.73

TABLE I
RELEVANT STABILITY CRITERIA

BWP, the maximal difference equals 30.56% while it equals

to 17.43% under Green-BWP-LF. It is reduced to 6.74%

under Green-BWP-MS. Moreover, the mean distance between

two individual success ratios is respectively equal to 14.76%

under Green-BWP, 8.33% under Green-BWP-LF and 1.96%

under Green-BWP-MS. Finally, as the standard deviation with

Green-BWP-MS is the lowest one (i.e. 0.73%), we conclude

that in terms of stability, Green-BWP-MS is the best algorithm

while Green-BWP is the worst one.

Figure 7 represents the global success ratio under Green-

BWP, Green-BWP-LF and Green-BWP-MS. For any strategy,

the global success ratio decreases when the processor utiliza-

tion increases. Green-BWP gives the best global success ratio.

Note that the global success ratio observed under Green-BWP-

LF is sligthly higher than the one offered by Green-BWP-MS.

We conclude that when Re > 1, Green-BWP is highly robust

for all values of Up.



Fig. 7. Global Success Ratio under Green-BWP,Green-BWP-LF and Green-
BWP-MS

VII. CONCLUSION AND FUTURE WORKS

In this paper we studied energy-aware scheduling algorithms

with the objective of achieving robustness and stability in a

real-time energy harvesting system that may experience energy

shortage and processor overload. We propose two scheduling

policies, namely Green-BWP-LF and Green-BWP-MS. Simu-

lations show that Green-BWP-MS is a very stable algorithm

with a maximal difference of individual success ratios equal

to 6.76%. Green-BWP-LF is more stable than Green-BWP

with a maximal difference of individual success ratios equal to

17.43% against 30.56% under Green-BWP. Some applications

(e.g. wireless sensor network) have to deal with both stability

and robustness in order to react quickly and provide stable

performance. Hence, according to the characteristics of the

application (overloaded system in terms of energy or time),

designers have to choose a strategy among the 3 strategies

studied in this paper. For example, in real-time surveillance

applications, multi-cameras are used to provide robustness

and accuracy of the monitoring scene. Even if the system is

overloaded in terms of energy, images should be processed

at the same frequency. Therefore, Green-BWP-LF or Green-

BWP-MS should be used.

For future work, we plan to extend that study to less

restrictive task models that include synchronization constraints

and aperiodic tasks.
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