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GROUND STATE ENERGY OF THE MAGNETIC LAPLACIAN

ON CORNER DOMAINS

VIRGINIE BONNAILLIE-NOËL, MONIQUE DAUGE, AND NICOLAS POPOFF

ABSTRACT. The asymptotic behavior of the first eigenvalues of magnetic Laplacian operators with

large magnetic fields and Neumann realization in smooth three-dimensional domains is character-

ized by model problems inside the domain or on its boundary. In two-dimensional polygonal do-

mains, a new set of model problems on sectors has to be taken into account. In this paper, we

consider the class of general corner domains. In dimension 3, they include as particular cases poly-

hedra and axisymmetric cones. We attach model problems not only to each point of the closure

of the domain, but also to a hierarchy of “tangent substructures” associated with singular chains.

We investigate spectral properties of these model problems, namely semicontinuity and existence

of bounded generalized eigenfunctions. We prove estimates for the remainders of our asymptotic

formula. Lower bounds are obtained with the help of an IMS type partition based on adequate two-

scale coverings of the corner domain, whereas upper bounds are established by a novel construction

of quasimodes, qualified as sitting or sliding according to spectral properties of local model prob-

lems. A part of our analysis extends to any dimension.
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1. INTRODUCTION OF THE PROBLEM AND MAIN RESULTS

In this work we investigate the ground state energy of the magnetic Laplacian associated with a

large magnetic field, posed on a bounded three-dimensional domain and completed by Neumann

boundary conditions. This problem can be obtained by linearization from a Ginzburg-Landau

equation [23]. The operator can also be viewed as a Schrödinger operator with magnetic field.

The problematics of large magnetic field for the magnetic Laplacian is trivially equivalent to the

semiclassical limit of the Schrödinger operator as the small parameter h tends to 0. This problem

has been addressed in numerous works in various situations (smooth two- or three-dimensional

domains, see e.g. the papers [5, 38, 29, 31, 52] and the book [24], and polygonal domains in

dimension 2, see e.g. [33, 44, 7, 8]). Much less is known for corner three-dimensional domains,

see e.g. [44, 50], and this is our aim to provide a unified treatment of smooth and corner domains,

possibly in any space dimension n. As we will see, we have succeeded at this level of generality

for n = 2 and 3, and have also obtained somewhat less precise results for any value of n.

The semiclassical limit of the ground state energy is provided by the infimum of local energies

defined at each point of the closure of the domain. Local energies are ground state energies of

adapted tangent operators at each point. The notion of tangent operator is fitting the problematics

that one wants to solve. For example if one is interested in Fredholm theory for elliptic boundary

value problems, tangent operators are obtained by taking the principal part of the operator frozen

in each point. Another example is the semiclassical limit of the Schrödinger operator with electric

field. For a rough estimate, tangent operators are then obtained by freezing the electric field at

each point, and, for more information on the semiclassical limit, the Hessian at each point has to

be included in the tangent operator.

In our situation, tangent operators are obtained by freezing the magnetic field at each point, that

is, taking the linear part of the magnetic potential at each point. The domain on which the tangent

operator is acting is the tangent model domain at this point. For smooth domains, this notion is

obvious (the full space if the point is sitting inside the domain, and the tangent half-space if the

point belongs to the boundary). For corner domains, various infinite cones have to be added to the

collection of tangent domains.

Almost all known results concerning the semiclassical limit of the ground state energy rely on an

a priori knowledge (or assumptions) on where the local energy is minimal. For instance, this is

known if the domain is smooth, or if it is a polygon with openings ≤ π
2

and constant magnetic

field. In contrast, for three-dimensional polyhedra, possible configurations involving edges and

corners are much more intricate, and nowadays this is impossible to know where the local energy

attains its minimum. It was not even known whether the infimum is attained.

In this work, we investigate the behavior of the local energy in general 3D corner domains and we

prove in particular that it attains its minimum. The properties that we show allow us to obtain an

asymptotics with remainder for the ground state energy of the Schrödinger operator with magnetic

field. In some situations, the remainder is optimal. We also have partial results for the natural class

of n-dimensional corner domains. Let us now present our problematics and results in more detail.
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1.1. The magnetic Laplacian and its lowest eigenvalue. The Schrödinger operator with mag-

netic field (also called magnetic Laplacian) in a n-dimensional space takes the form

(−i∇ + A)2 =
n∑

j=1

(−i∂xj + Aj)
2,

where A = (A1, . . . , An) is a given vector field and ∂xj is the partial derivatives with respect

to xj with x = (x1, . . . , xn) denoting Cartesian variables. The field A represents the magnetic

potential. When set on a domain Ω of Rn, this elliptic operator is completed by the magnetic

Neumann boundary conditions (−i∇ + A)ψ · n = 0 on ∂Ω, where n denotes the unit normal

vector to the boundary. We assume everywhere that A is twice differentiable on Ω

(1.1) A ∈ W 2,∞(Ω)n.

This realization is denoted by H(A,Ω). If Ω is bounded with Lipschitz boundary1, the form do-

main of H(A,Ω) is the standard Sobolev space H1(Ω) and H(A,Ω) is self-adjoint, non negative,

and with compact resolvent. A ground state of H(A,Ω) is an eigenpair (λ, ψ) associated with the

lowest eigenvalue λ. If Ω is simply connected, its eigenvalues only depend on the magnetic field

defined as follows, cf. [24, §1.1]. If ωA denotes the 1-form associated with the vector field A

(1.2) ωA =
n∑

j=1

Aj dxj ,

the corresponding 2-form σB

(1.3) σB = dωA =
∑

j<k

Bjk dxj ∧ dxk

is called the magnetic field. In dimension n = 2 or n = 3, σB can be identified with

(1.4) B = curlA.

When the domain Ω is simply connected (which will be assumed everywhere unless otherwise

stated), the eigenvectors corresponding to two different instances of A for the same B are deduced

from each other by a gauge transform and the eigenvalues depend on B only.

Introducing a (small) parameter h > 0 and setting

Hh(A,Ω) = (−ih∇ + A)2 with magnetic Neumann b.c. on ∂Ω,

we get the relation

(1.5) Hh(A,Ω) = h2H
(A
h
,Ω

)

linking the problem with large magnetic field to the semiclassical limit h→ 0 for the Schrödinger

operator with magnetic potential. Reminding that eigenvalues depend only on the magnetic field,

we denote by λh = λh(B,Ω) the smallest eigenvalue of Hh(A,Ω) and by ψh an associated eigen-

vector, so that

(1.6)

{
(−ih∇ + A)2ψh = λhψh in Ω ,

(−ih∇ + A)ψh · n = 0 on ∂Ω .

1Or more generally if Ω is a finite union of bounded Lipschitz domains, cf. [39, Chapter 1] for instance.
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The behavior of λh(B,Ω) as h → 0 clearly provide equivalent information about the lowest

eigenvalue of H(Ă,Ω) when B̆ is large, especially in the parametric case when B̆ = BB where

the real number B tends to +∞ and B is a chosen reference magnetic field.

From now on, we consider that B is fixed. We assume that it is smooth enough and, unless oth-

erwise mentioned, does not vanish on Ω. The question of the semiclassical behavior of λh(B,Ω)
has been considered in many papers for a variety of domains, with constant or variable magnetic

fields: Smooth domains [5, 37, 29, 22, 2, 51] and polygons [33, 44, 6, 7, 8] in dimensionn = 2, and

mainly smooth domains [38, 30, 31, 52, 24] in dimension n = 3. Until now, three-dimensional

non-smooth domains are only addressed in two particular configurations—rectangular cuboids

[44] and lenses [47, Chap. 8] and [50], with special orientation of the (constant) magnetic field.

We give more detail and references about the state of the art in Section 2.

1.2. Local ground state energies. Let us make precise what we call local energy in the three-

dimensional setting. The domains that we are considering are members of a very general class of

corner domains defined by recursion over the dimension n (these definitions are set in Section 3).

In the three-dimensional case, each point x in the closure of a corner domain Ω is associated with

a dilation invariant, tangent open set Πx, according to the following cases:

(1) If x is an interior point, Πx = R3,

(2) If x belongs to a face f (i.e., a connected component of the smooth part of ∂Ω), Πx is a

half-space,

(3) If x belongs to an edge e, Πx is an infinite wedge,

(4) If x is a vertex v, Πx is an infinite cone.

Let Bx be the magnetic field frozen at x. The tangent operator at x is the magnetic Laplacian

H(Ax ,Πx) where Ax is the linear approximation of A at x, so that

curlAx = Bx .

We define the local energy E(Bx ,Πx) at x as the ground state energy of the tangent operator

H(Ax ,Πx) and we introduce the global quantity (lowest local energy)

(1.7) E (B,Ω) := inf
x∈Ω

E(Bx ,Πx).

One of our objectives is to show the existence of a minimizer for these ground state energies,

reached for some tangent geometry and associated with suitable generalized eigenfunctions.

The tangent operators H(Ax ,Πx) are magnetic Laplacians set on unbounded domains and with

constant magnetic field. So they have mainly an essential spectrum and, only in some cases when

x is a vertex, discrete spectrum. This fact makes it difficult to study continuity properties of the

ground energy and to construct quasimodes for the initial operator.

In the regular case, the tangent operators are magnetic Laplacians associated respectively with

interior points and boundary points, acting respectively on the full space and on half-spaces. The

spectrum of the operator on the full space is well-known and corresponds to Landau modes. The

case of the half-spaces has also been investigated for a long time ([38, 31]): The ground state

energy depends now on the angle between the (constant) magnetic field and the boundary of the

half-space. It is continuous and increasing with this angle, so that the ground state is minimal
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for a magnetic field tangent to the boundary, and maximal for a magnetic field normal to the

boundary. In all cases, it is possible to find a bounded generalized eigenfunction satisfying locally

the boundary conditions.

For two dimensional domains with corners, new tangent model operators have to be considered,

now acting on infinite sectors ([44, 6]). For openings ≤ π
2
, the ground state energy is an eigenvalue

strictly less than in the regular case for the same value of B. But for larger openings in 2D and

conical or polyhedral singularities in 3D, it becomes harder to compare ground states energies,

and for a given tangent operator, it is not clear whether there exist associated generalized eigen-

functions. Moreover, it is not clear anymore whether the infimum of the ground state energies

over all tangent operators is reached.

In this work, for two or three dimensions of space, we provide positive answers to the questions

of existence for a minimum in (1.7) and for related generalized eigenvectors attached to the min-

imum energy. First we have proved very general continuity and semicontinuity properties for the

function x 7→ E(Bx ,Πx) as described now. Let F be the set of faces f , E the set of edges e and V
the set of vertices of Ω. They form a partition of the closure of Ω, called stratification

(1.8) Ω = Ω ∪
(⋃

f∈F
f
)
∪
(⋃

e∈E
e
)
∪
( ⋃

v∈V
v
)
.

The sets Ω, f , e and v are open sets called the strata of Ω, compare with [40] and [42, Ch. 9]. We

denote them by t and their set by T. We will show the following facts

(a) For each stratum t ∈ T, the function x 7→ E(Bx ,Πx) is continuous on t.

(b) The function x 7→ E(Bx ,Πx) is lower semicontinuous on Ω.

As a consequence, the infimum determining the limit E (B,Ω) in (1.7) is a minimum

(1.9) E (B,Ω) = min
x∈Ω

E(Bx ,Πx) .

From this we can deduce in particular that E (B,Ω) > 0 as soon as B is positive and continuous

on Ω.

But we need more than properties a) and b) to show an upper bound for λh(B,Ω) as h → 0. We

need to construct quasimodes in any case. For this we define a second level of energy attached to

each point x ∈ Ω which we denote by E ∗(Bx,Πx) and call energy on tangent substructures. This

quantity has been introduced on the emblematic example of edges in [49]: If x belongs to an edge,

then Πx is a wedge. This wedge has two faces defining two half-spaces Π±
x in a natural way: This

provides, in addition with the full space R3, what we call the tangent substructures of Πx. In this

situation E ∗(Bx,Πx) is defined as

E
∗(Bx,Πx) = min

{
E(Bx ,Π

+
x ), E(Bx ,Π

−
x ), E(Bx ,R

3)
}
.

For a general point x ∈ Ω, E ∗(Bx,Πx) is the infimum of local energies associated with the tangent

substructures of Πx, that is all cones Πy associated with points y ∈ Πx \ t0 where t0 is the stratum

of Πx containing the origin (for the example of a wedge, t0 is its edge). Equivalently, E ∗(Bx,Πx)
yields the infimum of lim infy→xE(Bx,Πy) for points y ∈ Ω which are not in the same stratum as

x. We show that E(Bx,Πx) ≤ E ∗(Bx,Πx). This may be understood as a monotonicity property of

the ground state energy for a tangent cone and its tangent substructures.
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The quantity E ∗(Bx,Πx) has a spectral interpretation: For a vertex x of Ω, E ∗(Bx,Πx) is the

bottom of the essential spectrum of H(Ax,Πx) so that if E(Bx,Πx) < E ∗(Bx,Πx), there ex-

ists an eigenfunction associated with E(Bx,Πx). For x other than a vertex, the interpretation of

E ∗(Bx,Πx) is less standard: We show that if E(B,Πx) < E ∗(Bx,Πx), then there exists a bounded

generalized eigenfunction associated with E(Bx,Πx).

However, it remains possible that E(Bx,Πx) equals E ∗(Bx,Πx). This case seems at first glance to

be problematic, but we provide a solution issued from the recursive properties of corner domains:

We show that there always exists a tangent substructure of Πx providing generalized eigenfunc-

tions for the same level of energy.

1.3. Asymptotic formulas with remainders.

• Case of 3D domains. A thorough investigation of local energies E(Bx ,Πx) and E ∗(Bx,Πx)
allows us to find asymptotic formulas with remainders for the ground state energy λh(B,Ω) of

the magnetic Laplacian on any 3D corner domain Ω as h → 0. Our remainders depend on the

singularities of Ω: The convergence rate is improved in the case of polyhedral domains in which,

in contrast with conical domains, the main curvatures at any smooth point of the boundary remain

uniformly bounded. Our main results can be stated as follows (Theorems 5.1 and 9.1) as h→ 0

(1.10)
∣∣λh(B,Ω)− hE (B,Ω)

∣∣ ≤
{
CΩ

(
1 + ‖A‖2W 2,∞(Ω)

)
h11/10, Ω corner domain,

CΩ

(
1 + ‖A‖2W 2,∞(Ω)

)
h5/4, Ω polyhedral domain.

Here the constant CΩ only depends on the domain Ω (and not on A, nor on h). Note that the

lower bound in (1.10) for the polyhedral case coincides with the one obtained in the smooth case

in dimensions 2 and 3 when no further assumptions are done, see the state of the art below.

Besides, if B cancels somewhere in Ω, the lowest local energy E (B,Ω) is zero, and we obtain the

upper bound in any 3D corner domain Ω (Theorem 9.1)

(1.11) λh(B,Ω) ≤ CΩ

(
1 + ‖A‖2W 2,∞(Ω)

)
h4/3,

which, in view of [28, 20], is optimal. Indeed, we also improve the upper bound in (1.10) recov-

ering the power h4/3 for general potentials that are 3 times differentiable in polyhedral domains,

namely

(1.12) λh(B,Ω) ≤ hE (B,Ω) +

{
CΩ

(
1 + ‖A‖2W 3,∞(Ω)

)
h9/8, Ω corner domain,

CΩ

(
1 + ‖A‖2W 3,∞(Ω)

)
h4/3, Ω polyhedral domain.

Note that the h4/3 rate was known for smooth three-dimensional domains, [31, Proposition 6.1 &

Remark 6.2] and that (1.12) extends this result to polyhedral domains without loss.

Two-dimensional corner domains are curvilinear polygons. The curvature of their boundary satis-

fies the same property of uniform boundedness than polyhedral domains. That is why the asymp-

totic formulas with remainder in h5/4 (and even h4/3 for the upper bound) are valid.

With the point of view of large magnetic fields in the parametric case B̆ = BB, the identity (1.5)

used with h = B−1 provides

(1.13) λ(B̆,Ω) = B2λB−1(B,Ω),
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therefore (1.10) yields obviously as B → ∞

(1.14)
∣∣λ(B̆,Ω)− BE (B,Ω)

∣∣ ≤
{
CΩ

(
1 + ‖A‖2W 2,∞(Ω)

)
B9/10, Ω corner domain,

CΩ

(
1 + ‖A‖2W 2,∞(Ω)

)
B3/4, Ω polyhedral domain,

where A is a potential associated with B. Note that BE (B,Ω) = E (B̆,Ω) by homogeneity. In

the same spirit, improved upper bounds (1.12) can be written as

(1.15) λ(B̆,Ω) ≤ BE (B,Ω) +

{
CΩ

(
1 + ‖A‖2W 3,∞(Ω)

)
B7/8, Ω corner domain,

CΩ

(
1 + ‖A‖2W 3,∞(Ω)

)
B2/3, Ω polyhedral domain.

• Estimates involving B only. In formulas (1.10) the remainder estimates depend on the magnetic

potential A. It is possible to obtain estimates depending on the magnetic field B and not on the

potential as soon as Ω is simply connected. For this, we consider B as a datum and associate a

potential A with it. Operators A : B 7→ A lifting the curl (i.e., such that curl ◦A = I) and

satisfying suitable estimates do exist in the literature. We quote [16] in which it is proved that

such lifting can be constructed as a pseudo-differential operator of order −1. As a consequence

A is continuous between Hölder classes of non integer order:

∀ℓ ∈ N, ∀α ∈ (0, 1), ∃Kℓ,α > 0, ‖A B‖W ℓ+1+α,∞(Ω) ≤ Kℓ,α‖B‖W ℓ+α,∞(Ω) .

Choosing A = A B with ℓ = 2 and α > 0 in (1.10), or with ℓ = 3 and α > 0 in (1.12), we obtain

remainder estimates depending on B only.

• Generalization to n-dimensional corner domains. We have also obtained a weaker result valid

in any space dimension n, n ≥ 4. Combining Sections 4.4 and 5.3 we can see that the quotient

λh(B,Ω)/h converges to E (B,Ω) as h → 0 and that a general lower bound with remainder is

valid, giving back

(1.16) − CΩ

(
1 + ‖A‖2W 2,∞(Ω)

)
h5/4 ≤ λh(B,Ω)− hE (B,Ω)

for a n-dimensional polyhedral domain.

• Generalization to non simply connected domains. If Ω is not simply connected, the first eigen-

value of the operator H(A,Ω) will depend on A, and not only on B. A manifestation of this is

the Aharonov Bohm effect, see [26] for instance. Our results (1.10)–(1.11) still hold for the first

eigenvalue λh = λh(A,Ω) of Hh(A,Ω). Note that, in contrast, the ground state energies of tan-

gent operators H(Ax,Πx) only depend on the (constant) magnetic field Bx because the potential

Ax is linear by definition. Therefore the lowest local energy only depends on the magnetic field

and can still be denoted by E (B,Ω) even in the non simply connected case.

1.4. Contents of the paper. In the first part of the paper (sections 2 to 5) we introduce classes

of corner domains with attached atlantes, prove some fundamental properties, and deduce a lower

bound and a rough upper bound for the quotient λh(B,Ω)/h. The second part of the paper (sec-

tions 6 to 9) relies on more specific features of the (two- and) three-dimensional model magnetic

Laplacians, and is devoted to the proof of several different upper bounds. The last part of the paper

(sections 10 to 12) deals with improvements and generalizations in various directions.



8 VIRGINIE BONNAILLIE-NOËL, MONIQUE DAUGE, AND NICOLAS POPOFF

• Part I. In Section 2 we place our results in the framework of existing literature. In Section

3 we introduce the class of corner domains defined recursively on the space dimension n ≥ 1,

alongside with their tangent cones and singular chains X = (x0, x1, . . .). We particularize these

notions in the case of three-dimensional domains and prove weighted estimates for local maps

and their derivatives. The weights are powers of the distance to conical vertices around which one

main curvature blows up. We investigate a special class of functions acting on singular chains in

which will enter the local energy. In Section 4, we introduce the tangent operators for magnetic

Laplacians and establish weighted estimates of the linearization error. We deduce a rough general

upper bound for the quotient λh(B,Ω)/h for corner domains in any dimension n ≥ 2.

In Section 5 we prove for 3D corner domains the lower bound hE (B,Ω)− Ch11/10 ≤ λh(B,Ω)
by an IMS formula based on a two-scale partition of unity. In polyhedra, a one-scale standard

partition can be used, which yields the improved lower bound hE (B,Ω) − Ch5/4 ≤ λh(B,Ω).
We can generalize these results to corner domains in any dimension n, letting appear the power

1 + 1/(3 · 2ν+1 − 2) of h with an integer ν ∈ [0, n] depending on Ω.

• Part II. In Section 6 we introduce the lowest energy on tangent substructures E ∗(Bx,Πx) and we

classify magnetic model problems on three-dimensional tangent cones (taxonomy): We charac-

terize as much as possible their ground state energy, their lowest energy on tangent substructures,

and their essential spectrum. We show in Section 7 that to each point x0 in Ω is associated a

tangent structure ΠX (characterized by a singular chain X originating at x0) for which the tangent

operator H(AX,ΠX) possesses suitable bounded generalized eigenvectors (said admissible) with

energy E(Bx0 ,Πx0). Section 8 is devoted to the investigation of various continuity properties of

the local ground energy E(Bx,Πx).

In Section 9 we prove the upper bounds

(1.17) λh(B,Ω) ≤ hE (B,Ω) + Chκ,

with κ = 11/10 or κ = 5/4 depending on whether Ω is a corner domain or a polyhedral domain,

by a construction of quasimodes based on admissible generalized eigenvectors for tangent prob-

lems. Our construction critically depends on the length ν of the singular chain X that provides the

generalized eigenvector. When ν = 1, we are in the classical situation: It suffices to concentrate

the support of the quasimode around x0, and we qualify it as sitting. When ν = 2, the chain

has the form X = (x0, x1): Our quasimode is decentered in the direction provided by x1, has a

two-scale structure in general, and we qualify it as sliding. When ν = 3, the chain has the form

X = (x0, x1, x2) and our quasimode is doubly sliding. In dimension n = 3, considering chains of

length ν ≤ 3 is sufficient to conclude.

• Part III. To show the improved upper bounds (1.12), we revisit, in Section 10, admissible

generalized eigenvectors by analyzing the stability of their structure under perturbation. In Section

11, we prove refined upper bounds of type (1.17) with improved rates κ = 9/8 and κ = 4/3
when Ω is a general corner domain and a polyhedral domain, respectively, but with a constant C
involving now the norm W 3,∞ of the magnetic potential instead of the norm W 2,∞. This proof is

based on the same stratification as the previous one, combined with a new classification depending

on the number of directions along which the admissible generalized eigenvector is exponentially

decaying. We conclude our paper in Section 12.



GROUND STATE ENERGY OF THE MAGNETIC LAPLACIAN ON CORNER DOMAINS 9

1.5. Notations. We denote by 〈·, ·〉O the L2 Hilbert product on the open set O of Rn

〈
f, g

〉
O =

∫

O
f(x) g(x) dx.

When there is no confusion, we simply write 〈f, g〉 and ‖f‖ = 〈f, f〉1/2.
For a generic (unbounded) self-adjoint operator L we denote by Dom(L) its domain and S(L) its

spectrum. Likewise the domain of a quadratic form q is denoted by Dom(q).

Domains as open simply connected subsets of Rn are in general denoted by O if they are generic,

Π if they are invariant by dilatation (cones) and Ω if they are bounded.

The quadratic forms of interest are those associated with magnetic Laplacians, namely, for a pos-

itive constant h, a smooth magnetic potential A, and a generic domain O

(1.18) qh[A,O](f) :=
〈
(−ih∇+A)f, (−ih∇+A)f

〉
O =

∫

O
(−ih∇+A)f · (−ih∇ + A)f dx,

with its domain Dom(qh[A,O]) = {f ∈ L2(O), (−ih∇+A)f ∈ L2(O)}. For a bounded domain

Ω, Dom(qh[A,Ω]) coincides with H1(Ω). For h = 1, we omit the index h, denoting the quadratic

form by q[A,O]. In the same way we introduce the following notation for Rayleigh quotients

(1.19) Qh[A,O](f) =
qh[A,O](f)

〈f, f〉O
, f ∈ Dom(qh[A,O]), f 6= 0,

and recall that, by the min-max principle

(1.20) λh(B,Ω) = min
f∈Dom(qh[A,Ω])\ {0}

Qh[A,Ω](f) .

In relation with changes of variables, we will also use the more general form with metric:

(1.21) qh[A,O,G](f) =

∫

O
(−ih∇ + A)f ·G

(
(−ih∇ + A)f

)
|G|−1/2 dx,

where G is a smooth function with values in 3× 3 positive symmetric matrices and |G| = detG.

Its domain is Dom(qh[A,O,G]) = {f ∈ L2
G(O), G1/2(−ih∇ + A)f ∈ L2

G(O)} , where L2
G(O)

is the space of the square-integrable functions for the weight |G|−1/2 and G1/2 is the square root

of the matrix G. The corresponding Rayleigh quotient is denoted by Qh[A,O,G].

The domain of the magnetic Laplacian with Neumann boundary conditions on the set O is

(1.22) Dom(Hh(A,O)) =
{
f ∈ Dom(qh[A,O]),

(−ih∇ + A)2f ∈ L2(O) and (−ih∇ + A)f · n = 0 on ∂O
}
.

We will also use the space of the functions which are locally2 in the domain of Hh(A,O):

(1.23) Dom loc (Hh(A,O)) := {f ∈ H1
loc(O),

(−ih∇ + A)2f ∈ H0
loc(O) and (−ih∇ + A)f · n = 0 on ∂O}.

When h = 1, we omit the index h in (1.22) and (1.23).

2Here Hm
loc

(O) denotes for m = 0, 1 the space of functions which are in Hm(O ∩ B) for any ball B.
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2. STATE OF THE ART

Here we collect some results of the literature about the semiclassical limit for the first eigenvalue

of the magnetic Laplacian depending on the geometry of the domain and the variation of the

magnetic field. We briefly mention the case when the domain has no boundary, before reviewing

in more detail what is known on bounded domains Ω ⊂ Rn with Neumann boundary conditions

depending on the dimension n ∈ {2, 3}. To keep this section relatively short, we focus more

on results related with our problematics, i.e., the general asymptotic behavior of the ground state

energy without any further assumption on the minimum local energy.

2.1. Without boundary or with Dirichlet conditions. Here M is either a compact Riemannian

manifold without boundary or Rn, and Hh(A,M) is the magnetic Laplacian associated with the

1-form ωA defined in (1.2). In this general framework, the magnetic field B is the antisymmetric

matrix corresponding to the 2-form σB introduced in (1.3). Then for each x ∈M the local energy

at x is the intensity

(2.1) b(x) := 1
2
Tr([B∗(x) ·B(x)]1/2)

and E (B,M) = b0 := infx∈M b(x). It is proved by Helffer and Mohamed in [28] that if b0 is

positive and under a condition at infinity if M = R
n, then

−Ch5/4 ≤ λh(B,M)− hE (B,M) ≤ Ch4/3 .

Note that more precise results can be proved in dimension 2 when b admits a unique positive non-

degenerate minimum [27, 54]. Finally, the case of Dirichlet boundary conditions is very close to

the case without boundary, see [28, 29] and Section 12.4.

2.2. Neumann conditions in dimension 2. In contrast, when Neumann boundary conditions are

applied on the boundary, the local energy drops significantly as was established in [55] by Saint-

James and de Gennes as early as 1963. In this review of the dimension n = 2, we classify the

domains in two categories: those with a regular boundary and those with a polygonal boundary.

2.2.1. Regular domains. Let Ω ⊂ R2 be a regular domain and B be a regular non-vanishing

scalar magnetic field on Ω. To each x ∈ Ω is associated a tangent problem. According to whether

x is an interior point or a boundary point, the tangent problem is the magnetic Laplacian on the

plane R2 or the half-plane Πx tangent to Ω at x, with the constant magnetic field Bx ≡ B(x). The

associated spectral quantities E(Bx,R
2) and E(Bx,Πx) are respectively equal to |Bx| and |Bx|Θ0

where Θ0 := E(1,R2
+) is a universal constant whose value is close to 0.59 (see [55]). With the

quantities

(2.2) b = inf
x∈Ω

|B(x)|, b′ = inf
x∈∂Ω

|B(x)|, and E (B,Ω) = min(b, b′Θ0)

the asymptotic limit

(2.3) lim
h→0

λh(B,Ω)

h
= E (B,Ω)

is proved by Lu and Pan in [37]. Improvements of this result depend on the geometry and the

variation of the magnetic field as we describe now.
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• Constant magnetic field. If the magnetic field is constant and normalized to 1, then E (B,Ω) =
Θ0. The following estimate is proved by Helffer and Morame:

−Ch3/2 ≤ λh(1,Ω)− hΘ0 ≤ Ch3/2 ,

for h small enough [29, §10], while the upper bound was already given by Bernoff and Sternberg

[5]. This result is improved in [29, §11] in which a two-term asymptotics is proved, showing

that a remainder in O(h3/2) is optimal. Under the additional assumption that the curvature of the

boundary admits a unique and non-degenerate maximum, a complete expansion of λh(1,Ω) is

provided by Fournais and Helffer [22].

• Variable magnetic field. In [29, §9], several different estimates for remainders are proved,

function of the place where the local energy attains its minimum: In any case

−Chκ− ≤ λh(B,Ω)− hE (B,Ω) ≤ Chκ
+

.

with (a) κ− = κ+ = 2 if the minimum is attained inside the domain and (b) κ− = 5/4, κ+ = 3/2
if the minimum is attained on the boundary. Under non-degeneracy hypotheses, the optimality in

the first case (a) is a consequence of [27], whereas the eigenvalue asymptotics provided in [51, 53]

yields that the upper bound in the latter case (b) is sharp.

2.2.2. Polygonal domains. Let Ω be a curvilinear polygon and let V be the (finite) set of its

vertices. In this case, new model operators appear on infinite sectors Πx tangent to Ω at vertices

x ∈ V. By homogeneity E(Bx ,Πx) = |B(x)|E(1,Πx) and by rotation invariance, E(1,Πx) only

depends on the opening α(x) of the sector Πx. Let Sα be a model sector of opening α ∈ (0, 2π).
Then

E (B,Ω) = min
(
b, b′Θ0,min

x∈V
|B(x)|E(1,Sα(x))

)
.

In [6, §11], it is proved that −Ch5/4 ≤ λh(B,Ω) − hE (B,Ω) ≤ Ch9/8. Moreover, under the

assumption that a corner attracts the minimum energy

(2.4) E (B,Ω) < min(b, b′Θ0),

the asymptotics provided in [7] yield the sharp estimates from above and below with power h3/2.

From [33, 6] follows that for all α ∈ (0, π
2
] there holds

(2.5) E(1,Sα) < Θ0.

Therefore condition (2.4) holds for constant magnetic fields as soon as there is an angle opening

αx ≤ π
2
. Finite element computations by Galerkin projection as presented in [8] suggest that (2.5)

still holds for all α ∈ (0, π). Let us finally mention that if Ω has straight sides and B is constant,

the convergence of λh(B,Ω) to hE (B,Ω) is exponential.

2.3. Neumann conditions in dimension 3.
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2.3.1. Regular domains. For a continuous magnetic field B it is known ([38] and [30]) that (2.3)

holds. In that case

E (B,Ω) = min
(
inf
x∈Ω

|B(x)|, inf
x∈∂Ω

|B(x)|σ(θ(x))
)
,

where θ(x) ∈ [0, π
2
] denotes the unoriented angle between the magnetic field and the boundary at

point x, and the quantity σ(θ) is the bottom of the spectrum of a model problem, cf. § 6.2.

• Constant magnetic field. Here the magnetic field B is assumed without restriction to be unitary.

Then there exists a non-empty set Σ of ∂Ω on which B(x) is tangent to the boundary, which

implies that E (B,Ω) = Θ0. Then Theorem 1.1 of [31] states that

|λh(B,Ω)− hE (B,Ω)| ≤ Ch4/3.

Under some extra assumptions on Σ, Theorem 1.2 of [31] yields a two-term asymptotics for

λh(B,Ω) showing the optimality of the previous estimate.

• Variable magnetic field. For a smooth non-vanishing magnetic field there holds [24, Theorem

9.1.1] (see also [38]) |λh(B,Ω) − hE (B,Ω)| ≤ Ch5/4. In [31, Remark 6.2], the upper bound is

improved to Ch4/3. Finally, under extra assumptions, a three-term quasimode is constructed in

[52], providing the sharp upper bound Ch3/2.

2.3.2. Singular domains. Until now, two examples of non-smooth domains have been addressed

in the literature. In both cases, the magnetic field B is assumed to be constant.

• Rectangular cuboids. This case is considered by Pan [44]: The asymptotic limit (2.3) holds for

such a domain and there exists a vertex v ∈ V such that E (B,Ω) = E(B,Πv). Moreover, in the

case where the magnetic field is tangent to a face but is not tangent to any edge, there holds

E(B,Πv) < inf
x∈Ω\V

E(B,Πx).

• Lenses. The domain Ω is supposed to have two faces separated by an edge e that is a regular

loop contained in the plane x3 = 0. The magnetic field considered is B = (0, 0, 1). It is proved in

[47] that, if the opening angle α of the lens is constant and ≤ 0.38π,

inf
x∈e

E(B,Πx) < inf
x∈Ω\e

E(B,Πx)

and that the asymptotic limit (2.3) holds with an estimate in Ch5/4 from above and below. When

the opening angle of the lens is variable and under some non-degeneracy hypotheses, a complete

eigenvalue asymptotics is obtained in [50] resulting into the optimal error estimate in Ch3/2.

3. DOMAINS WITH CORNERS AND THEIR SINGULAR CHAINS

For the sake of completeness and for ease of further discussion, in the same spirit as in [18, Section

2], we introduce here a recursive definition of two intertwining classes of domains

a) Pn, a class of infinite open cones in Rn.

b) D(M), a class of bounded connected open subsets of a smooth manifold without boundary

— actually, M = Rn or M = Sn, with Sn the unit sphere of Rn+1,
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3.1. Tangent cones and corner domains. We call a cone any open subset Π of Rn satisfying

∀ρ > 0 and x ∈ Π, ρx ∈ Π,

and the section of the cone Π is its subset Π ∩ Sn−1. Note that S0 = {−1, 1}.

Definition 3.1 (TANGENT CONE). Let Ω be an open subset of M = Rn or M = Sn. Let x0 ∈ Ω.

The cone Πx0 is said to be tangent to Ω at x0 if there exists a local C ∞ diffeomorphism Ux0 which

maps a neighborhood Ux0 of x0 in M onto a neighborhood Vx0 of 0 in Rn and such that

(3.1) Ux0(x0) = 0, Ux0(Ux0 ∩ Ω) = Vx0 ∩ Πx0 and Ux0(Ux0 ∩ ∂Ω) = Vx0 ∩ ∂Πx0 .

We denote by Jx0 the Jacobian of the inverse of Ux0 , that is

(3.2) Jx0(v) := dv(U
x0)−1(v), ∀v ∈ Vx0 .

We assume without restriction that the Jacobian at 0 is the identity matrix: Jx0(0) = In. The open

set Ux0 is called a map-neighborhood and (Ux0,U
x0) a local map.

The metric associated with the local map (Ux0,U
x0) is denoted by Gx0 and defined as

(3.3) Gx0 = (Jx0)−1((Jx0)−1)⊤.

The metric Gx0 at 0 is the identity matrix.

Note that the tangent cone Πx0 does not depend on the choice of the map-neighborhood Ux0 or the

local map (Ux0 ,U
x0) because of the constraint Jx0(0) = In. Therefore when there exists a tangent

cone to Ω at x0, it is unique.

Definition 3.2 (CLASS OF CORNER DOMAINS). The classes of corner domains D(M) (M = Rn

or M = Sn) and tangent cones Pn are defined as follow:

INITIALIZATION: P0 has one element, {0}. D(S0) is formed by all subsets of S0.

RECURRENCE: For n ≥ 1,

(1) Π ∈ Pn if and only if the section of Π belongs to D(Sn−1),

(2) Ω ∈ D(M) if and only if for any x0 ∈ Ω, there exists a tangent cone Πx0 ∈ Pn to Ω at x0.

Polyhedral domains and polyhedral cones form important subclasses of D(M) and Pn.

Definition 3.3 (CLASS OF POLYHEDRAL CONES AND DOMAINS). The classes of polyhedral

domains D(M) (M = Rn or M = Sn) and polyhedral cones Pn are defined as follow:

(1) The cone Π ∈ Pn is a polyhedral cone if its boundary is contained in a finite union of

subspaces of codimension 1. We write Π ∈ Pn.

(2) The domain Ω ∈ D(M) is a polyhedral domain if all its tangent cones Πx are polyhedral.

We write Ω ∈ D(M).

Here is a rapid description of corner domains in lower dimensions.

Example 3.4. In dimensions n = 1, 2, 3 we have:

• The elements of P1 are R, R+ and R−.

• The elements of D(S1) are S1 and all open intervals I ⊂ S1 such that I 6= S1.
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• The elements of P2 are R2 and all sectors with opening α ∈ (0, 2π), including half-spaces.

• The elements of D(R2) are curvilinear polygons with piecewise non-tangent smooth sides

(corner angles α 6= 0, π, 2π). Note that D(R2) includes smooth domains.

• The elements of D(S2) are S
2 and all curvilinear polygons with piecewise non-tangent

smooth sides in the sphere S2.

• The elements of P3 are all cones with section in D(S2). This includes R3, half-spaces,

dihedra and many different cones like octants or axisymmetric cones.

• The elements of D(R3) are tangent in each point x0 to a cone Πx0 ∈ P3. Note that the

nature of the section of the tangent cone determines whether the 3D domain has a vertex,

an edge, or is regular near x0.

We will give later on § 3.5 a more exhaustive description of the class D(R3) of 3D corner domains.

Remark 3.5. In dimension 2, the cones are sectors. So their sides are contained in one-dimensional

subspaces, and they are “polyhedral”. We deduce that

(3.4) P2 = P2 and D(M) = D(M) for M = R
2 or S2.

In dimension 3, a non-degenerate axisymmetric cone (i.e., different from R
3 or a half-space) is

not polyhedral, whereas an octant is.

3.2. Admissible atlantes. We are going to introduce the notion of admissible atlas for a corner

domain, so that the associated diffeomorphisms satisfy some uniformity properties. We need some

definition and preliminary result first.

Notation 3.6. For v ∈ Rn, we denote by 〈v〉 the vector space generated by v. For r > 0, we

denote by Nr(v) := r−1v the scaling of ratio r−1. Note that Nr−1 = N−1
r .

The following lemma illustrates the coherence of Definition 3.1.

Lemma 3.7. Let Ω be an open subset of M and x0 ∈ Ω such that there exists a tangent cone

Πx0 ∈ Pn to Ω at x0 with map-neighborhood Ux0 . Then for all u0 ∈ Ux0 ∩Ω there exists a tangent

cone Πu0 ∈ Pn to Ω at u0.

Proof. Let u0 ∈ Ux0 ∩ Ω. We have to prove that there exists a tangent cone Πu0 at u0 in the sense

of Definition 3.1 and that Πu0 ∈ Pn. Let Ω̂x0 = Πx0 ∩ Sn−1 be the section of Πx0 . Let (Ux0 ,U
x0)

be a local map and v0 = Ux0(u0) ∈ Πx0 . We denote by (r(v0), θ(v0)) ∈ (0,+∞)× Ω̂x0 its polar

coordinates:

(3.5) r(v0) := ‖v0‖ and θ(v0) :=
v0

‖v0‖
.

By the recursive definition there exists a tangent cone Πθ(v0) ∈ Pn−1 to Ω̂x0 at θ(v0). Let Uθ(v0)

be an associated diffeomorphism which sends a map-neighborhood Uθ(v0) of θ(v0) onto a neigh-

borhood Vθ(v0) of 0 ∈ Rn−1. We may assume without restriction that there exists a n-dimensional

ball with center θ(v0) and radius ρ1 ∈ (0, 1) such that

(3.6) Uθ(v0) = B(θ(v0), ρ1) ∩ S
n−1.
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Then we set3 U(1,θ(v0)) = B(θ(v0), ρ1) and define on U(1,θ(v0)) the diffeomorphism—using polar

coordinates (r(v), θ(v)):

(3.7) U(1,θ(v0)) : v 7→ (r(v)− 1,Uθ(v0)(θ(v))) .

There holds d(1,θ(v0))U
(1,θ(v0)) = In. Define

(3.8) Πv0 := 〈v0〉 ×Πθ(v0) .

Notice that Πv0 ∈ Pn. It is the tangent cone to Πx0 at the point (1, θ(v0)) and U(1,θ(v0)) maps

U(1,θ(v0)) on a neighborhood of 0 ∈ Rn. Let

(3.9) Uv0 := N−1
r(v0)

◦ U(1,θ(v0)) ◦ Nr(v0) .

Then Uv0 is a diffeomorphism defined on

(3.10) Uv0 := ‖v0‖ U(1,θ(v0)) = B(v0, ρ1‖v0‖).
Let us define

(3.11) Uu0 := (Ux0)−1(Uv0) .

It is a neighborhood of u0. Let

(3.12) Uu0(u) := Jx0(v0) (U
v0 ◦ Ux0(u))

be defined for u ∈ Uu0 . Note that the differential of Uu0 at the point u0 is the identity matrix In.

Let us set finally

(3.13) Πu0 := Jx0(v0)(Πv0) .

Then the map-neighborhood Uu0 , the diffeomorphism Uu0 and the cone Πu0 satisfy the require-

ments of Definition 3.1 and Πu0 is the tangent cone to Ω at u0. Since Πv0 ∈ Pn, there holds

Πu0 ∈ Pn. �

Remark 3.8. If the tangent cone Πx0 is polyhedral, the procedure for constructing Uu0 can be

simplified as follows: We define v0 and its polar coordinates (r(v0), θ(v0)) as before. Since Πx0 is

polyhedral, the ball B(θ(v0), ρ1) (3.6) is such that the set Ũ := B(θ(v0), ρ1)∩Πx0 is homogeneous

with respect to θ(v0), that is

v ∈ Ũ and ρ ∈
[
0,

ρ1
‖v− θ(v0)‖

]
=⇒ ρv + (1− ρ)θ(v0) ∈ Ũ .

The set Ṽ := {v ∈ Rn| v + θ(v0) ∈ Ũ} defines a polyhedral cone Π̃ in a natural way by

{v ∈ Rn| ∃ρ > 0 ρv ∈ Ṽ}. Defining Uv0 as the translation Tv0 : v 7→ v − v0, we find that

Π̃ = Πv0 . Then, with this simple definition of Uv0 we still define Uu0 by (3.12). On the other

hand, by uniqueness of tangent cones, the new definition of Πv0 coincides with the old one (3.8).

Finally, Πu0 is still defined by (3.13).

Lemma 3.9. Let (Ux0 ,U
x0) be a local map with image a neighborhood Vx0 of 0, and such that

Jx0(0) = In. There exists r0 > 0 such that B(0, r0) ⊂ Vx0 and for any v, v′ ∈ B(0, r0)
(3.14) ‖u′ − u− (v′ − v)‖ ≤ 1

2
‖v′ − v‖, with u = (Ux0)−1(v), u′ = (Ux0)−1(v′) .

3We distinguish between the point θ(v0) ∈ Ω̂x0 and its polar coordinates (1, θ(v0)).
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Proof. Let r1 be such that v, v′ ∈ B(0, r1) ⊂ Vx0 . A Taylor expansion of (Ux0)−1(v′) around v

gives

‖(Ux0)−1(v′)− (Ux0)−1(v)− Jx0(v)(v′ − v)‖ ≤ 1
2
‖dJx0‖L∞(B(0,r1))‖v′ − v‖2.

Another Taylor expansion of Jx0(v) around 0 gives

‖Jx0(v)− Jx0(0)‖ ≤ ‖dJx0‖L∞(B(0,r1))‖v‖ .
Since (Ux0)−1(v) = u, (Ux0)−1(v′) = u′ and Jx0(0) = In, we deduce

‖(u′ − u)− (v′ − v)‖ ≤
(
‖dJx0‖L∞(B(0,r1))‖v‖ + 1

2
‖dJx0‖L∞(B(0,r1))‖v′ − v‖

)
‖v′ − v‖.

If we choose r0 ≤ min
{
r1, 1/(4‖dJx0‖L∞(B(0,r1)))

}
, we have

‖dJx0‖L∞(B(0,r1))‖v‖ + 1
2
‖dJx0‖L∞(B(0,r1))‖v′ − v‖ ≤ 1

2
, ∀v, v′ ∈ B(0, r0),

which ends the proof. �

Proposition 3.10. (i) The domain Ω belongs to D(Rn) if and only if there exist a finite set X ⊂ Ω
and, for each x0 ∈ X, a cone Πx0 ∈ Pn and a local map (Ux0 ,U

x0) such that (3.1) holds, with the

condition that, moreover, ∪x0∈X Ux0 ⊃ Ω.

(ii) The equivalence (i) still holds if one requires moreover that for all x0 ∈ X and all u, u′ ∈ Ux0 ,

(3.14) holds.

Proof. (i) The “if” direction is a consequence of the definition of D(Rn) and, in particular, the

fact that Ω is compact and can be covered by a finite number of map-neighborhoods. The “only

if” direction is a consequence of Lemma 3.7.

(ii) is then a consequence of Lemma 3.9 (and of the compactness of Ω, of course). �

Definition 3.11 (ADMISSIBLE ATLAS). Let Ω ∈ D(M). An atlas (Ux,U
x)x∈Ω is called admissible

if it comes from the following recursive procedure:

(1) Take a finite set X ⊂ Ω as in Proposition 3.10 together with the associated map-neighbor-

hoods and diffeomorphisms (Ux0 ,U
x0) for x0 ∈ X, satisfying moreover (3.14).

(2) We assume moreover that for each x0 ∈ X the map-neighborhood Ux0 contains a ball

B(x0, 2Rx0) for some Rx0 > 0 and that the balls with half-radius B(x0, Rx0) cover Ω.

(3) All the other map-neighborhoods and diffeomorphisms (Ux,U
x) with x ∈ Ω \ X are con-

structed by the recursive procedure (3.5)–(3.12), based on admissible atlantes for the sec-

tions Ω̂x0 associated with the set of reference points x0 ∈ X. In the polyhedral case, the

straightforward construction described in Remark 3.8 is preferred.

As a direct consequence of Lemmas 3.7, 3.9, and Proposition 3.10, we obtain the existence of

admissible atlantes.

Theorem 3.12. Let Ω be a corner domain in D(M). Then Ω admits an admissible atlas.

For an admissible atlas, we can express the derivative of the diffeomorphism as follows: Let

x0 ∈ X, u0 ∈ Ux0 and v0 := Ux0(u0). Differentiating (3.12), we get

(3.15) ∀v ∈ Vu0 , Ju0(v) = Jx0(v) Jv0(Uv0(v)) (Jx0(v0))
−1 ,
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and (3.9) provides:

(3.16) Jv0(Uv0(v)) = J(1,θ(v0))
(
U(1,θ(v0))( v

‖v0‖)
)
.

3.3. Estimates for local Jacobian matrices. We give in Proposition 3.13 several estimates for

the Jacobians Jx0 (3.2) and the metric Gx0 (3.3) of all the diffeomorphisms contained in an admis-

sible atlas of a corner domain Ω. All estimates are consequence of local bounds in L∞ norm on

the derivative of Jacobian functions. We denote for any x0 ∈ Ω

(3.17) Kx0(v) = dvJ
x0(v), v ∈ Vx0 .

After considering the case of reference points x0 ∈ X, we deal with points u0 ∈ Ω close to

a reference point x0 such that Πx0 ∈ Pn: in that case the quantities Ku0 for u0 ∈ Ux0 remain

bounded uniformly in Ux0 . The next estimate is a global version of the first one when assuming

that Ω ∈ D(M). The last estimate deals with points u0 close to a reference point x0 such that

the section Ω̂x0 of Πx0 is polyhedral4: in that case we show that for u0 ∈ Ux0 , the quantity Ku0

is controlled by ‖u0 − x0‖−1. These estimates will be useful when using change of variables on

quadratic form defined on corner domains in dimension 3. An important feature of these estimates

is a recursive control of their domain of validity: In each case we exhibit such domains as balls

with explicit centers and implicit radii. The principle is to start from the finite number of reference

points x0 ∈ X provided by an admissible atlas and proceed with points u0 which are not in this

set using Lemma 3.7 and Remark 3.8. The outcome is that estimates are valid in a ball around u0

with radius ρ(u0) proportional to the distance dist(u0,X) of u0 to the set of reference points, the

proportion ratio ρ(û1) being a similar radius associated with the section Ω̂x0 ∈ D(Sn−1).

Proposition 3.13. Let Ω ∈ D(M) and (Ux,U
x)x∈Ω be an admissible atlas with set of reference

points X ⊂ Ω. Then we have the following assertions:

(a) Let x0 ∈ X. With Rx0 introduced in Definition 3.11, there exists c(x0) such that

(3.18)
‖Kx0‖L∞(B(0,Rx0 ))

≤ c(x0),

‖Jx0 − In ‖L∞(B(0,r)) + ‖Gx0 − In ‖L∞(B(0,r)) ≤ rc(x0) for all r ≤ Rx0 .

(b) Let x0 ∈ X such that Πx0 ∈ Pn. Then there exists a constant c(x0) such that for all u0 ∈
Ω ∩ B(x0, Rx0), u0 6= x0, there holds, denoting û1 := Ux0u0/‖Ux0u0‖ ∈ Ω̂x0

(3.19)
‖Ku0‖L∞(B(0,ρ(u0))) ≤ c(x0) with ρ(u0) =

1
3
ρ(û1) ‖u0 − x0‖,

‖Ju0 − In ‖L∞(B(0,r)) + ‖Gu0 − In ‖L∞(B(0,r)) ≤ rc(x0) for all r ≤ ρ(u0) .

(c) Let Ω ∈ D(Rn), then there exists c(Ω) such that for all u0 ∈ Ω, there holds, with û1 as above,

(3.20)
‖Ku0‖L∞(B(0,ρ(u0))) ≤ c(Ω) with ρ(u0) =

1
3
ρ(û1) dist(u0,X),

‖Ju0 − In ‖L∞(B(0,r)) + ‖Gu0 − In ‖L∞(B(0,r)) ≤ rc(Ω) for all r ≤ ρ(u0) .

4But this does not imply that the tangent cone Πx0 is polyhedral.
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(d) Let x0 ∈ X be such that the section Ω̂x0 = Πx0 ∩ S
n−1 belongs to D(Sn−1). Then there exists

c(x0) such that for all u0 ∈ Ω ∩ B(x0, Rx0), u0 6= x0, there holds,

(3.21)

‖Ku0‖L∞(B(0,ρ(u0))) ≤
1

‖u0 − x0‖
c(x0) with ρ(u0) =

1
3
ρ(û1) ‖u0 − x0‖,

‖Ju0 − In ‖L∞(B(0,r)) + ‖Gu0 − In ‖L∞(B(0,r)) ≤
r

‖u0 − x0‖
c(x0) for all r ≤ ρ(u0) .

Proof. (a) The estimate for Kx0 in (3.18) comes from the definition of a map-neighborhood. The

bound in (3.18) on Jx0 − In follows immediately because of the Taylor estimate

(3.22) ‖Jx0(v)− In ‖ ≤ ‖v‖ ‖Kx0‖L∞(B(0,‖v‖)), v ∈ Vx0 .

Concerning the bound (3.18) on Gx0 − In, we rely on the Taylor estimate

(3.23) ‖Gx0(v)− In ‖ ≤ ‖v‖ ‖Kx0‖L∞(B(0,‖v‖)) ‖(Jx0)−1‖3L∞(B(0,‖v‖)) .

(b) Since Πx0 is polyhedral, we can take advantage of Remark 3.8: For u0 in the ball B(x0, Rx0),
the local map (Uu0 ,U

u0) is defined by (3.10)–(3.12) where, for some ρ1 < 1,

v0 = Ux0(u0), Uv0 = B(v0, ρ1‖v0‖), and Uv0(v) = v − v0 .

Note that the radius ρ1 is the radius ρ(û1) of a map neighborhood of û1 := v0/‖v0‖, which plays

the same role as ρ(u0) in one dimension less.

We recall that our admissible atlas satisfies Condition (1) of Definition 3.11. Applying (3.14)

with the couples {(u, u0), (v, v0)} and {(u0, x0), (v0, 0)}, we deduce that Uu0 contains the ball

B(u0,
1
3
ρ1‖u0 − x0‖). On the other hand, in this case (3.15) reduces to

(3.24) ∀v ∈ Vu0 , Ju0(v) = Jx0(v) (Jx0(v0))
−1.

Thus, we deduce from the above formula that

(3.25) ‖Ku0‖L∞(Vu0 )
≤ ‖Kx0‖L∞(Vx0)

‖(Jx0)−1‖L∞(Ux0 )
.

All of this proves estimate for Ku0 in (3.19).

The bound in (3.19) on Ju0 − In follows immediately because of the Taylor estimate (3.22) where

x0 is replaced by u0. Concerning the bound on Gu0 − In, we start from the Taylor estimate (3.23)

where we replace x0 by u0. It remains to bound ‖(Ju0)−1‖. We note that we have, thanks to (3.24)

Ju0(v)−1 = (Jx0(v0)) (J
x0(v))−1 .

Whence the bound (3.19) on Gu0 − In.

(c) Applying Proposition 3.10 to Ω ∈ D(M), we deduce from (3.25):

(3.26) sup
x∈Ω

‖Kx‖L∞(Vx) ≤ max
x0∈X

(
‖Kx0‖L∞(Vx)‖(Jx0)−1‖L∞(Ux)

)
< +∞.

(d) Differentiating (3.15) with respect to v yields

(3.27) Ku0(v) = Kx0(v) Jv0(Uv0(v)) (Jx0(v0))
−1 + Jx0(v) dvJ

v0(Uv0(v)) (Jx0(v0))
−1.
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Using in turn (3.16) we calculate

dvJ
v0(Uv0(v)) = dv

{
J(1,θ(v0))

(
U(1,θ(v0))( v

‖v0‖)
)}

= 1
‖v0‖ K

(1,θ(v0))
(
U(1,θ(v0))( v

‖v0‖)
) (

J(1,θ(v0))
(
U(1,θ(v0)( v

‖v0‖)
))−1

.(3.28)

Recall that U(1,θ) is deduced from Uθ by formula (3.7) on the domain U(1,θ(v0)) = B(θ(v0), ρ0), cf.

(3.6). Therefore there exists a constant c(ρ0) ≥ 1 such that

‖J(1,θ)‖L∞(V(1,θ)) ≤ c(ρ0)‖Jθ‖L∞(Vθ) and ‖K(1,θ)‖L∞(V(1,θ)) ≤ c(ρ0)‖Kθ‖L∞(Vθ) .

We deduce

(3.29) ‖Ku0‖ ≤ c′(ρ0)

(
‖Kx0‖ ‖Jθ(v0)‖ ‖(Jx0)−1‖ +

‖(Jθ(v0))−1‖
‖v0‖

‖Jx0‖ ‖Kθ(v0)‖ ‖(Jx0)−1‖
)

where we have omitted the mention of the L∞ norms. Since the section Ω̂x0 belongs to D(Sn−1),

we deduce from (c) and (3.26) applied to the section Ω̂x0 that

sup
θ∈Ω̂x0

‖Jθ‖L∞(Vθ) < +∞ and sup
θ∈Ω̂x0

‖Kθ‖L∞(Vθ) < +∞ .

Therefore the r.h.s. of (3.29) is controlled by c(x0)/‖v0‖. Using (3.14) we obtain that ‖v0‖ ≃
‖u0 − x0‖, whence the bound (3.21) on Ku0 . The bound (3.21) for Ju0 − In follows immediately

as in point (a). Finally, to prove the bound on Gu0 − In, we combine the Taylor estimate (3.23) (at

u0) with the estimate of Ku0 in (3.21) and the formula for (Ju0)−1

(Ju0(v))−1 = (Jx0(v0)) (J
v0(Uv0(v)))−1 (Jx0(v))−1 ,

deduced from (3.15). It remains to use (3.16) to bound (Jv0(Uv0(v)))−1, which ends the proof. �

Remark 3.14. In dimension n = 2, domains Ω ∈ D(R2) are always in case (b) or (c) of Propo-

sition 3.13 since D(R2) = D(R2), cf. (3.4). In dimension n = 3, Proposition 3.13 still covers

all possibilities: Indeed, since D(S2) = D(S2), one is at least in case (d). In higher dimensions

n ≥ 4, Proposition 3.13 does not provide estimates for all possible singular points. General

estimates would involve distance to non-discrete sets of points, see (3.36) later on. However

Proposition 3.13 is sufficient for the core of our investigation, which, for independent reasons, is

limited to dimension n ≤ 3.

Remark 3.15. We can use the computation of Ku0 in the proof of Proposition 3.13 to obtain es-

timates for its differentials dℓKu0 , ℓ = 1, 2, . . . Note that in (3.29), the worst term is 1/‖v0‖. By

differentiating ℓ times (3.27), we obtain an upper bound in 1/‖v0‖ℓ+1. Thus we have the following

improvements in Proposition 3.13:

(1) In cases (a), (b) and (c), the estimates for Kx0 and Ku0 are still valid for their differentials

dℓKx0 and dℓKu0 , respectively.

(2) Let x0 ∈ X such that Ω̂x0 = Πx0 ∩ Sn−1 belongs to D(Sn−1). Then there exists c(x0) such

that for all u0 ∈ Ω ∩ B(x0, Rx0), u0 6= x0, there holds, with û1 := Ux0u0/‖Ux0u0‖

(3.30) ‖dℓKu0‖L∞(B(0,ρ(u0))) ≤
1

‖u0 − x0‖ℓ+1
c(x0) with ρ(u0) =

1
3
ρ(û1) ‖u0 − x0‖.
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3.4. Strata and singular chains. In this section, we exhibit a canonical structure of tangent cones

and corner domains.

Definition 3.16. Let On denote the group of orthogonal linear transformations of Rn.

a) We say that a cone Π is equivalent to another cone Π′ and denote Π ≡ Π′ if there exists U ∈ On

such that UΠ = Π′.

b) Let Π ∈ Pn. If Π is equivalent to Rn−d × Γ with Γ ∈ Pd and d is minimal for such an

equivalence, Γ is said to be a minimal reduced cone associated with Π and we denote by

d(Π) := d the reduced dimension of the cone Π.

c) Let x ∈ Ω and let Πx be its tangent cone. We denote by d0(x) the dimension of the minimal

reduced cone associated with Πx.

Remark 3.17. If there exists a linear isomorphism between Π and Π′ then d(Π) = d(Π′).

3.4.1. Recursive definition of the singular chains. A singular chain X = (x0, x1, . . . , xp) ∈ C(Ω)
(with p a non negative integer) is a finite collection of points according to the following recursive

definition.

Initialization: x0 ∈ Ω,

• Let Cx0 be the tangent cone to Ω at x0 (here Cx0 = Πx0).

• Let Γx0 ∈ Pd0 be its minimal reduced cone: Cx0 = U0(Rn−d0 × Γx0).

• Alternative:

– If p = 0, stop here.

– If p > 0, then5 d0 > 0 and let Ωx0 ∈ D(Sd0−1) be the section of Γx0

Recurrence: xj ∈ Ωx0,...,xj−1
∈ D(Sdj−1−1). If dj−1 = 1, stop here (p = j). If not:

• Let Cx0,...,xj be the tangent cone to Ωx0,...,xj−1
at xj ,

• Let Γx0,...,xj ∈ Pdj be its minimal reduced cone: Cx0,...,xj = Uj(Rdj−1−1−dj × Γx0,...,xj).

• Alternative:

– If p = j, stop here.

– If p > j, then dj > 0 and let Ωx0,...,xj ∈ D(Sdj−1) be the section of Γx0,...,xj .

Note that n ≥ d0 > d1 > . . . > dp. Hence p ≤ n. Note also that for p = 0, we obtain the trivial

one element chain (x0) for any x0 ∈ Ω.

Definition 3.18. For any x ∈ Ω, we denote by Cx(Ω) the subset of chains X ∈ C(Ω) originating

at x, i.e., the set of chains X = (x0, . . . , xp) with x0 = x. Note that the one element chain (x)
belongs to Cx(Ω). We also set

(3.31) C∗
x(Ω) = {X ∈ Cx(Ω), p > 0} = Cx(Ω) \ {(x)}.

5If d0 = 0, we have necessarily p = 0.
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We set finally, with the notation 〈y〉 for the vector space generated by y,

(3.32)

ΠX =





Cx0 = Πx0 if p = 0,

U0
(
Rn−d0 × 〈x1〉 × Cx0,x1

)
if p = 1,

U0
(
Rn−d0 × 〈x1〉 × . . .× Up−1

(
Rdp−2−1−dp−1 × 〈xp〉 × Cx0,...,xp

)
. . .

)
if p ≥ 2.

Note that if dp = 0, the cone Cx0,...,xp coincides with R
dp−1−1, leading to ΠX = R

n.

Definition 3.19. Let X = (x0, . . . , xp) be a chain in C(Ω).

(i) The cone ΠX defined in (3.32) is called a tangent structure [of Ω] at x0, and if X 6= (x0), ΠX

is called a tangent substructure of Πx0 .

(ii) Let X′ = (x′0, . . . , x
′
p′) be another chain in C(Ω). We say that X′ is equivalent to X if x′0 = x0

and ΠX′ = ΠX.

This notion of equivalence is well suited to the class of operators that we consider in this paper.

3.4.2. Strata of a corner domain. For d ∈ {0, . . . , n}, let

(3.33) Ad(Ω) = {x ∈ Ω, d0(x) = d}.
The strata of Ω are the connected components of Ad(Ω), for d ∈ {0, . . . , n}. They are denoted by

t and their set by T.

Examples:

• A0(Ω) coincides with Ω.

• A1(Ω) is the subset of ∂Ω of the regular points of the boundary (the corresponding strata

being the faces in dimension n = 3 and the sides in dimension n = 2).

• If n = 2, A2(Ω) is the set of corners.

• If n = 3, A2(Ω) is the set of edge points.

• If n = 3, A3(Ω) is the set of corners.

Proposition 3.20. Let t ∈ Ad(Ω) be a stratum. Then t is a smooth submanifold6 of codimension

d. In particular An(Ω) is a finite subset of ∂Ω.

Proof. Let x0 ∈ t and (Ux0 ,U
x0) be an associated local map. The tangent cone at x0 writes

Πx0 = U
(
Rn−d × Γx0

)
, with Γx0 ∈ Pd. For simplicity, we may assume that U = In. Denote by π

the orthogonal projection on Rn−d and set π⊥ := In−π. Let u ∈ Ux0 and v = Ux0(u). According

as π⊥(v) is 0 or not, the tangent cone Πv at v to Πx0 has distinct expressions.

(1) If π⊥(v) = 0, then Uv can be taken as the translation by v and Πv = Πx0 .

6This means that for each x0 ∈ t there exists a neighborhood U ⊂ t of x0 and an associate local diffeomorphism

from U onto an open set in Rn−d.
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(2) If π⊥(v) 6= 0, we introduce the cylindrical coordinates (r(v), θ(v), π(v)) of v with:

(3.34) r(v) = ‖π⊥(v)‖, θ(v) =
π⊥(v)

‖π⊥(v)‖ ∈ Ωx0 with Ωx0 = Γx0 ∩ S
d−1 .

Let Πθ(v) ∈ Pd−1 be the tangent cone to Ωx0 at θ(v). We have, cf. proof of Lemma 3.7,

(3.35) Πv := R
n−d × 〈π⊥(v)〉 ×Πθ(v) .

In any case, the tangent cone Πu is linked to Πv by the formula Πu = Jx0(v)(Πv). We deduce:

(1) If π⊥(v) = 0, then d(Πu) = d(Πx0) (cf. Remark 3.17), therefore d0(u) = d0(x0) = d and

u ∈ Ad(Ω).

(2) If π⊥(v) 6= 0, then d(Πu) = d(Πv) and we have d0(u) ≤ d− 1 < d0(x0) = d.

Therefore u ∈ Ad(Ω) if and only if π⊥(v) = 0. We conclude that

Ad(Ω) ∩ Ux0 = (Ux0)−1(π(Vx0)).

Hence the stratum t is a smooth submanifold of codimension d. �

Remark 3.21. Let Ω be a corner domain and X be the set of reference points of an admissible

atlas, cf. Definition 3.11. Let x0 ∈ X. As a consequence of the above proof we find that for any

u0 ∈ B(x0, Rx0), d0(u0) ≤ d0(x0). Thus, in particular, the set of corners An(Ω) is contained in X.

3.4.3. Topology on singular chains. Here we introduce a distance on equivalence classes of the

set of chains C(Ω), for the equivalence already introduced in Definition 3.19. This will allow to

introduce natural notions of continuity and lower semicontinuity on chains.

Let us denote by BGL(n) the ring of linear isomorphisms L with norm ‖L‖ ≤ 1, where

‖L‖ = max
x∈Rn\{0}

‖Lx‖
‖x‖ .

Definition 3.22. Let X = (x0, . . . , xp) and X
′ = (x′0, . . . , x

′
p′) be two singular chains in C(Ω). We

define the distance D(X,X′) ∈ R+ ∪ {+∞} as

D(X,X′) = ‖x0 − x′0‖+
1

2

{
min

L∈BGL(n)
LΠX=Π

X′

‖L− In ‖+ min
L∈BGL(n)
LΠ

X′
=ΠX

‖L− In ‖
}
,

where the second term is set to +∞ if ΠX and ΠX′ do not belong to the same orbit for the action

of BGL(n) on Pn.

Remark 3.23. (a) The distance D(X,X′) is zero if and only if the chains X and X′ are equivalent.

(b) As a consequence of the proof of Proposition 3.20, the strata of Ω are contained in orbits of

the natural action of BGL(n) on chains.

(c) For strata of polyhedral domains, the distance D between chains of length 1 is equivalent to

the standard distance in Rn. This is no longer true for strata containing conical points in their

closure.

We define a partial order on chains.
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Definition 3.24. Let X = (x0, . . . , xp) and X′ = (x′0, . . . , x
′
p′) be two singular chains in C(Ω). We

say that X ≤ X′ if p ≤ p′ and xj = x′j for all 0 ≤ j ≤ p.

Theorem 3.25. Let Ω be a corner domain in D(M) with M = Rn or Sn, and F : C(Ω) → R be

a function such that

(i) F is continuous on C(Ω) for the distance D

(ii) F is order-preserving on C(Ω) (i.e., X ≤ X′ implies F (X) ≤ F (X′)).

Then for all chain X = (x0, . . . , xp) ∪ {∅}, the function (with the convention that Ω∅ = Ω)

Ωx0,...,xp ∋ x 7−→ F ((x0, . . . , xp, x))

is lower semicontinuous. In particular Ω ∋ x 7→ F ((x)) is lower semicontinuous.

Proof. The proof is recursive over the dimension n.

Initialization. n = 1. Let Ω belong to D(M) with M = R or S1. Then Ω is an open interval

(c, c′). The chains in C(Ω) are

• X = (x0) for x0 ∈ (c, c′) with ΠX = R,

• X = (x0) for x0 = c and x0 = c′, with ΠX = R+ and R−, respectively,

• X = (x0, x1) for x0 = c or x0 = c′, and x1 = 1, with ΠX = R.

The function F is continuous on C(Ω). By definition of the distance D there holds

D
(
(x), (c, 1)

)
= ‖x− c‖ and D

(
(x), (c′, 1)

)
= ‖x− c′‖, ∀x ∈ (c, c′) .

Therefore, as x → c, with x 6= c, F ((x)) tends to F ((c, 1)). By assumption F ((c, 1)) ≥ F ((c)),
and the same at the other end c′. This proves that F is lower semicontinuous on Ω = [c, c′].

Recurrence. We assume that Theorem 3.25 holds for any dimension n⋆ < n. Let us prove it for

the dimension n.

a) Let X0 be a non-empty chain in C(Ω). Then ΩX0 belongs to D(Sn
⋆
) for a n⋆ < n. The chains

Y ∈ C(ΩX0) correspond to the chains (X0,Y) in C(Ω) and the corresponding tangent substructures

ΠY ∈ Pn⋆ and ΠX0,Y ∈ Pn are linked by a relation of the type, cf. (3.32)

ΠX0,Y = U0
(
R
n−d0 × 〈x1〉 × . . .× ΠY

)
.

Hence the distances D
(
(X0,Y), (X0,Y

′)
)

and D
(
Y,Y′) can be compared:

D
(
(X0,Y), (X0,Y

′)
)
=

1

2

{
min

L∈BGL(n)
LΠX0,Y

=Π
X0,Y

′

‖L− In ‖+ min
L∈BGL(n)

LΠ
X0,Y

′=ΠX0,Y

‖L− In ‖
}

≤ 1

2

{
min

L⋆∈BGL(n⋆)
L⋆ΠY=Π

Y′

‖L⋆ − In⋆ ‖+ min
L⋆∈BGL(n⋆)
L⋆Π

Y′
=ΠY

‖L⋆ − In⋆ ‖
}

≤ D
(
Y,Y′).

Let us define the function F ⋆ on C(ΩX0) by the partial application

F ⋆(Y) = F ((X0,Y)), Y ∈ C(ΩX0).
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Since F is continuous on C(Ω), the above inequality between distances proves that F ⋆ is con-

tinuous on C(ΩX0). Likewise the monotonicity property is obviously transported from F to F ⋆.

Therefore the recurrence assumption provides the lower semicontinuity of F ⋆ on ΩX0 , hence of

x 7→ F ((X0, x)) on the same set.

b) It remains to prove that x 7→ F ((x)) is lower semicontinuous on Ω. Let x0 ∈ Ω. At this point

we follow the proof of Proposition 3.20. For any u ∈ Ux0 , we define π, π⊥ and v like there and

encounter the same two cases:

(1) If π⊥(v) = 0, then Πv = Πx0 . Hence Πu = Jx0(v)(Πx0). Since Jx0(v) tends to In as

v → 0, the distance D((x0), (u)) tends to 0 as u tends to x0. By the continuity assumption,

F ((u)) tends to F ((x0)).

(2) If π⊥(v) 6= 0, let x1 be the element of Ωx0 defined by x1 = π⊥(v) ‖π⊥(v)‖−1. Let Πx1 ∈
Pd−1 be the tangent cone to Ωx0 at x1. We find

Πv = R
n−d × 〈π⊥(v)〉 ×Πx1 = Πx0,x1 .

Hence Πu = Jx0(v)(Πx0,x1). Like before, we deduce that the distance D((x0, x1), (u))
tends to 0 as u tends to x0. By the continuity assumption, F ((u)) tends to F ((x0, x1)),
which by the monotonicity assumption, is larger than F ((x0)).

This ends the proof of the theorem. �

3.4.4. Singular chains and admissible atlantes. The aim of this section is to provide an overview

of map-neighborhoods and Jacobian estimates in the framework of singular chains. In their gen-

erality, these facts are not needed for our study of magnetic Laplacians, which is restricted to

dimension n ≤ 3 for distinct reasons that we will explain later on. Nevertheless, full generality

sheds some light on the recursive process present in the very definition of admissible atlantes and

in the domain of validity of estimates in Proposition 3.13.

• Chains of atlantes. Denote by X(Ω) the set of reference points of an admissible atlas for a

corner domain Ω. The chain of atlantes of a corner domain Ω is defined as follows:

(0) Start from the set X(Ω) of reference points x0 ∈ Ω, as in Definition 3.11.

(1) For each x0 ∈ X(Ω), choose an admissible atlas of the section Ωx0 ∈ D(Sd0−1), with set

X(Ωx0) of reference points x1 ∈ Ωx0 .

(2) For each x1 ∈ X(Ωx0), choose an admissible atlas of the section Ωx0,x1 ∈ D(Sd1−1), with

set X(Ωx0,x1) of reference points x2 ∈ Ωx0,x1 . And so on...

• Cylindrical coordinates. The natural coordinates associated with chains of atlantes are recur-

sively defined cylindrical coordinates. Let u0 ∈ Ω.

(1) If u0 6∈ X(Ω), pick x0 ∈ X(Ω) such that u0 ∈ Bn(x0, Rx0) (n-dimensional ball). Then

define v0 = Ux0u0 and, if d0 > 0, its cylindrical coordinates

π0(v0) ∈ R
n−d0 , r(v0) = ‖v0 − π0(v0)‖, and u1 =

v0 − π0(v0)

r(v0)
∈ Ωx0 .

If d0 = 0, π0 = In, then stop.
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(2) If u1 6∈ X(Ωx0), pick x1 ∈ X(Ωx0) such that u1 ∈ Bd0(x1, Rx1) ∩ Sd0−1. Then define

v1 = Ux0,x1u1 and, if d1 > 0, its cylindrical coordinates

π1(v1) ∈ R
d0−1−d1 , r(v1) = ‖v1 − π1(v1)‖, and u2 =

v1 − π1(v1)

r(v1)
∈ Ωx0,x1 .

If d1 = 0, π1 = In, then stop. And so on...

Let vp∗ be the last element of the sequence v0, v1, . . . . In any case p∗ ≤ n.

• Local maps. The local maps are recursively constructed using the natural coordinates associated

with chains.

(0) If u0 = x0 ∈ X(Ω), use the local map (Ux0 ,U
x0) and stop.

(1) If u0 6∈ X(Ω), a local map (Uu0 ,U
u0) is defined by the formulas hereafter. The map

neighborhood Uu0 can be chosen as (Ux0)−1(Uv0) with

Uv0 = Bn−d0(π0(v0), Rx0) × r(v0) U(1,u1), U(1,u1) = Bd0(u1, ρ1), Uu1 = U(1,u1) ∩ S
d0−1.

The diffeomorphism Uu0 is defined by Jx0(v0) (U
v0 ◦ Ux0) with

Uv0 =
(
Tπ0(v0) , N

−1
r(v0)

◦U(1,u1) ◦Nr(v0)

)
and U(1,u1) = (T1 , U

u1) ,

where Tπ0(v0) is the translation v 7→ v − π0(v0) in Rn−d0 , and T1 is the translation by 1
for the radius in polar coordinates. If u1 = x1 ∈ X(Ωx0), stop.

(2) If u1 6∈ X(Ωx0), a local map (Uu1 ,U
u1) is defined like in step (1), replacing x0 by x1, v0 by

v1, Bn−d0 by Bd0−1−d1 , π0(v0) by π1(v1), Bd0 by Bd1 , and finally u1 by u2. . .

• Estimates on Jacobian matrices. Let u0 ∈ Ω. As explained in Remark 3.8, as soon as a poly-

hedral cone Γx0,...,xp is reached in the construction, the corresponding diffeomorphism U(1,up+1) is

chosen as a translation, so it is the same for Uup+1 , and the norm of its differential is bounded. By

recursion, this implies the estimate for the differential Ku0 of Ju0

(3.36) ‖Ku0‖ ≤ c(Ω)

r(v0) · · · r(vp−1)

with the convention that if p − 1 < 0, the denominator is 1.The same estimate is valid if up ∈
X(Ωx0,...,xp−1) with the convention that Ωx0,...,xp−1 = Ω if p− 1 < 0. Note that p = 0 for any u0 if

the domain Ω is polyhedral. In turn, the domain of validity of estimates (3.36) is (at least) a ball

centered at u0 of radius

(3.37) ρ(u0) = r(Ω) r(v0) · · · r(vp∗) .

3.5. 3D domains. In this section we refine our analysis for the particular case of 3D domains. In

each case we provide an exhaustive description of the possible singular chains. We also give the

consequences of Proposition 3.13.

3.5.1. Faces, edges and corners.

Definition 3.26. Let Ω ∈ D(R3). We denote by F the set of the connected components of A1(Ω)
(faces), E those of A2(Ω) (edges) and V the finite set A3(Ω) (corners).

Let x0 ∈ Ad(Ω) with d < 3, then Πx0 ∈ P3. Let x0 ∈ V, we distinguish between two cases:
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(1) If Πx0 ∈ P3, then x0 is a polyhedral corner.

(2) If Πx0 /∈ P3, then x0 is a conical corner. We denote by V◦ the set of conical corners.

Combining Proposition 3.13 and Remark 3.5, we obtain local estimates for the Jacobian matrix

and the metric issued from changes of variables pertaining to an admissible atlas:

Corollary 3.27. Let Ω ∈ D(R3) and (Ux,U
x)x∈Ω be an admissible atlas. Note that the set of its

reference points X contains V (cf. Remark 3.21), thus in particular the set of conical corners V◦.
There exists c(Ω) > 0 such that

(a) for all x0 ∈ X, there holds

‖Jx0 − I3 ‖L∞(B(0,r)) + ‖Gx0 − I3 ‖L∞(B(0,r)) ≤ rc(Ω), for all r ≤ Rx0 ,

(b) for all u0 ∈ Ω \X, there holds

‖Ju0 − In ‖L∞(B(0,r)) + ‖Gu0 − In ‖L∞(B(0,r)) ≤
r

dV◦(u0)
c(Ω), for all r ≤ ρ(u0) ,

with ρ(u0) as in Proposition 3.13 and

(3.38) dV◦(u0) =

{
1 if V◦ = ∅,
dist(u0,V

◦) else.

Remark 3.28. Note that estimate (b) blows up when we get closer to a conical point without

reaching it, while at any conical point x0 ∈ V◦, we have the good estimate (a). This will lead to

distinct analyses depending on how far x0 is from V◦.

3.5.2. Singular chains of 3D corner domains.

Proposition 3.29. Let Ω ∈ D(R3). Then chains of length ≤ 3 are sufficient to describe all

equivalence classes of the set of chains C(Ω). If moreover Ω ∈ D(R3), chains of length 2 are

sufficient.

Proof. Let x0 ∈ Ω. In Description 3.30 we enumerate all chains starting from x0 with their tangent

substructures according as x0 is an interior point, a face point, an edge point, or a vertex.

Description 3.30.

(1) Interior point x0 ∈ Ω. Only one chain in Cx0(Ω): X = (x0). ΠX ≡ R3.

(2) Let x0 belong to a face. There are two chains in Cx0(Ω):
(a) X = (x0) with ΠX = Πx0 , the tangent half-space. ΠX ≡ R2 × R+.

(b) X = (x0, x1) where x1 = 1 is the only element in R+ ∩ S
0. Thus ΠX = R

3.

(3) Let x0 belong to an edge. There are three possible lengths for chains in Cx0(Ω):
(a) X = (x0) with ΠX = Πx0 , the tangent wedge (which is not a half-plane). The reduced

cone of Πx0 is a sector Γx0 the section of which is an interval Ix0 ⊂ S1.

(b) X = (x0, x1) where x1 ∈ Ix0 .

(i) If x1 is interior to Ix0 , ΠX = R3. No further chain.

(ii) If x1 is a boundary point of Ix0 , ΠX is a half-space, containing one of the two

faces ∂±Πx0 of the wedge Πx0 .

(c) X = (x0, x1, x2) where x1 ∈ ∂Ix0 , x2 = 1 and ΠX = R3.
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FIGURE 1. The tree of singular chains with numbering according to Description

3.30 (Half is for half-space)

(4) Let x0 be a corner. There are four possible lengths for chains in Cx0(Ω):

(a) X = (x0) with ΠX = Πx0 , the tangent cone (which is not a wedge). It coincides with

its reduced cone. Its section Ωx0 is a polygonal domain in S2.

(b) X = (x0, x1) where x1 ∈ Ωx0 .

(i) If x1 is interior to Ωx0 , ΠX = R
3. No further chain.

(ii) If x1 is in a side of Ωx0 , ΠX is a half-space.

(iii) If x1 is a corner of Ωx0 , ΠX is a wedge. Its edge contains one of the edges of

Πx0 .

(c) X = (x0, x1, x2) where x1 ∈ ∂Ωx0

(i) If x1 is in a side of Ωx0 , x2 = 1, ΠX = R3. No further chain.

(ii) If x1 is a corner of Ωx0 , Cx0,x1 is plane sector, and x2 ∈ Ix0,x1 where the interval

Ix0,x1 is its section.

(A) If x2 is an interior point of Ix0,x1 , then ΠX = R
3.

(B) If x2 is a boundary point of Ix0,x1 , then ΠX is a half-space.

(d) X = (x0, x1, x2, x3) where x1 is a corner of Ωx0 , x2 ∈ ∂Ix0,x1 and x3 = 1. Then

ΠX = R3.

As a consequence of this description we may identify equivalence classes in Cx0(Ω):

— If x0 is an edge point, there are 4 equivalence classes: X = (x0), X = (x0, x
±
1 ) with x−1 , x

+
1 the

ends of Ix0 , and X = (x0, x
◦
1) with x◦1 any chosen point in Ix0 .
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— If x0 is a polyhedral corner, the set of the equivalence classes of Cx0(Ω) is finite according to

the following description. Let x
j
1, 1 ≤ j ≤ N , be the corners of Ωx0 , and f

j
1, 1 ≤ j ≤ N , be

its sides (notice that there are as many corners as sides). There are 2N + 2 equivalence classes:

X = (x0) (vertex), X = (x0, x
j
1) with 1 ≤ j ≤ N (edge-point limit), X = (x0, x

◦,j
1 ) with x

◦,j
1

any chosen point inside f
j
1 (face-point limit), and X = (x0, x

◦
1) with x◦1 any chosen point in Ωx0

(interior point limit).

— If x0 belongs to V◦, the set of chains which are face-point limits is infinite. Moreover, chains

(x0, x1, x2) obtained by the general above procedure (4)-(c)-(ii)-(B) can be irreducible: Such

chains represent the limit of a conical face close to an edge. �

4. MAGNETIC LAPLACIANS AND THEIR TANGENT OPERATORS

Let A be a magnetic potential associated with the magnetic field B on a corner domainΩ ∈ D(R3).
We recall that the corresponding magnetic Laplacian is Hh(A,Ω) = (−ih∇+A)2. At each point

x0 ∈ Ω is associated a local map (Ux0 ,U
x0) and a tangent cone Πx0 , cf. (3.1). We will associate a

tangent magnetic potential to Πx0 and provide formulas and estimates for the operator transformed

from the magnetic Laplacian Hh(A,Ω) by the local map (Ux0 ,U
x0).

4.1. Change of variables. Let Ω ∈ D(R3). We consider a magnetic potential A ∈ C 1(Ω). Let

x0 ∈ Ω. Let us recall that with x0 are associated the local smooth diffeomorphism Ux0 (3.1), the

Jacobian matrix Jx0 (3.2) of the inverse of Ux0 and the associated metric Gx0 (3.3). According to

formulas (A.4)–(A.5), we introduce the magnetic potential Ax0 and magnetic field Bx0 = curlAx0

transformed by Ux0 in Vx0 ∩ Πx0

(4.1) Ax0 := (Jx0)⊤
(
(A− A(x0)) ◦ (Ux0)−1

)
and Bx0 := | det Jx0 | (Jx0)−1

(
B ◦ (Ux0)−1

)
.

We also introduce the phase shift

(4.2) ζx0h (x) = ei〈A(x0),x〉/h, x ∈ Ω,

so that there holds for any f in H1(Ω)

(4.3) qh[A,Ω](f) = qh[A− A(x0),Ω](ζ
x0
h f).

To f ∈ H1(Ω) with support in Ux0 we associate the function ψ

(4.4) ψ := (ζx0h f) ◦ (Ux0)−1,

defined in Πx0 , with support in Vx0 . For any h > 0 Lemma A.3 provides the identities

(4.5) qh[A,Ω](f) = qh[A
x0 ,Πx0 ,G

x0 ](ψ) and ‖f‖L2(Ω) = ‖ψ‖L2
Gx0

(Πx0 )
,

where the quadratic forms qh[A,Ω] and qh[A
x0 ,Πx0,G

x0 ] are defined in (1.18) and (1.21), respec-

tively. Using the Rayleigh quotient, we immediately deduce

(4.6) Qh[A,Ω](f) = Qh[A
x0,Πx0 ,G

x0](ψ).
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4.2. Model and tangent operators.

Definition 4.1. We call model operator any magnetic Laplacian H(A,Π) where Π ∈ P3 and A is

a linear potential associated with the constant magnetic field B. We denote byE(B,Π) the bottom

of the spectrum (ground state energy) of H(A,Π) and by λess(B,Π) the bottom of its essential

spectrum.

Let Ω ∈ D(R3) and A ∈ C 1(Ω). For each x0 ∈ Ω we set

(4.7) Bx0 = B(x0) and Ax0(v) = ∇A(x0) · v, v ∈ Πx0 ,

so that Bx0 is the magnetic field frozen at x0 and Ax0 the linear part7 of the potential at x0.

By extension, for each singular chain X = (x0, x1, . . . , xp) ∈ C(Ω) we set

(4.8) BX = B(x0) and AX(x) = ∇A(x0) · x, x ∈ ΠX.

We have obviously

curlAX = BX .

Definition 4.2. Let Ω ∈ D(R3) and A ∈ C 1(Ω). Let X ∈ C(Ω) be a singular chain of Ω. The

model operator H(AX ,ΠX) is called a tangent operator.

Remark 4.3. The notion of equivalence classes between singular chains as introduced in Definition

3.19 is sufficient for the analysis of operators Hh(A,Ω) in the case of magnetic fields B smooth in

Cartesian variables. Should B be smooth in polar variables only, the whole hierarchy of singular

chains would be needed.

The potential Ax0 and the field Bx0 are connected to the potential Ax0 and field Bx0 (4.1) obtained

through the local map: Since dUx0(x0) = I3 by definition, there holds

(4.9) Bx0(0) = B(x0) .

Likewise, let Ax0
0

be the linear part of Ax0 at the vertex 0 of Πx0 . Then, there holds

(4.10) Ax0(0) = 0 and Ax0
0
= Ax0 .

Local and minimum energies are introduced as follows.

Definition 4.4. Let Ω ∈ D(R3) and B ∈ C 0(Ω). The application x 7→ E(Bx ,Πx) is called local

ground energy (with E(B,Π) introduced in Definition 4.1). We define the lowest local energy of

B on Ω by

(4.11) E (B,Ω) := inf
x∈Ω

E(Bx ,Πx). �

The relations with singular chains and the question whether E (B,Ω) is a minimum are addressed

later on Section 8.

7In (4.7), ∇A is the 3× 3 matrix with entries ∂kAj , 1 ≤ j, k ≤ 3, and · v denotes the multiplication by the column

vector v = (v1, v2, v3)
⊤.
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4.3. Linearization. Starting from the identity (4.5) qh[A,Ω](f) = qh[A
x0 ,Πx0,G

x0 ](ψ), we want

to compare qh[A
x0 ,Πx0 ,G

x0 ](ψ) with the term qh[A
x0
0
,Πx0 ](ψ) = qh[Ax0 ,Πx0 ](ψ) obtained by

linearizing the potential and the metric.

4.3.1. Change of metric. Here we compare L2 norm and quadratic forms associated with the met-

ric Gx0 , with the corresponding quantities associated with the trivial metric I3. Like in Proposition

3.13 and Corollary 3.27, and for the same reasons, we have essentially two distinct cases, resulting

into a uniform approximation in a polyhedral domain, and a controlled blow up close to conical

points when they are present.

Lemma 4.5. Let Ω ∈ D(R3) and (Ux,U
x)x∈Ω be an admissible atlas. We recall that the set of

reference points X contains the set of conical vertices V◦. Let A ∈ W 1,∞(Ω) be a magnetic

potential and, for x0 ∈ Ω, let Ax0 be the potential (4.1) produced by the local map Ux0 . There

exists c(Ω) such that

(a) for all x0 ∈ X and r ∈ (0, Rx0), for all ψ ∈ H1(Πx0) satisfying supp(ψ) ⊂ B(0, r), there

holds

(4.12)

∣∣qh[Ax0 ,Πx0 ,G
x0 ](ψ)− qh[A

x0 ,Πx0](ψ)
∣∣ ≤ c(Ω) r qh[A

x0 ,Πx0 ,G
x0 ](ψ),

∣∣‖ψ‖L2
Gx0

(Πx0 )
− ‖ψ‖L2(Πx0 )

∣∣ ≤ c(Ω) r ‖ψ‖L2(Πx0 )
.

(b) for all u0 ∈ Ω \ X and r ∈ (0, ρ(u0)) (with ρ(u0) given by Proposition 3.13), for all ψ ∈
H1(Πu0) satisfying supp(ψ) ⊂ B(0, r), there holds

(4.13)

∣∣qh[Au0 ,Πu0 ,G
u0 ](ψ)− qh[A

u0 ,Πu0 ](ψ)
∣∣ ≤ c(Ω)

r

dV◦(u0)
qh[A

u0 ,Πu0,G
u0 ](ψ),

∣∣‖ψ‖L2
Gu0

(Πu0 )
− ‖ψ‖L2(Πu0 )

∣∣ ≤ c(Ω)
r

dV◦(u0)
‖ψ‖L2(Πu0 )

,

with dV◦ defined in (3.38).

Proof. The lemma is a direct consequence of Corollary 3.27 providing estimates for the L∞ norm

of the difference Gx0 − I3. Let τi = τi(x) be the eigenvalues of Gx0(x). The estimate on Gx0 − I3

implies a similar estimate for max{‖τi−1‖L∞ , 1 ≤ i ≤ 3}, which allows to compare the quadratic

forms associated with Gx0 and with I3. �

Combining the identities (4.5) with Lemma 4.5, we see that it is equivalent to deal with qh[A,Ω](f)
or qh[A

x0,Πx0 ](ψ) modulo a well-controlled error. This will be useful later on when we will

estimate the corresponding Rayleigh quotients (see Sections 5 and 9).

4.3.2. Linearization of the potential. We estimate the remainders due to the linearization Ax0
0

at

the vertex 0 of the tangent cone Πx0 of the potential Ax0 resulting from a local map. For this, we

first use a Taylor expansion around 0 in Πx0 .

Lemma 4.6. Let x0 ∈ Ω. For any r > 0 such that Vx0 ⊃ B(0, r)
(4.14) ∀v ∈ B(0, r) ∩Πx0 , |Ax0(v)−Ax0

0
(v)| ≤ 1

2
‖Ax0‖W 2,∞(B(0,r)∩Πx0)

|v|2 .

So we have to estimate the second derivatives of the mapped potentials Ax0 .
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Lemma 4.7. Let Ω ∈ D(R3) with an associated admissible atlas with set of reference points X.

Let A ∈ W 2,∞(Ω) be a magnetic potential. For x0 ∈ Ω, let Ax0 be the potential (4.1). There exists

c(Ω) such that

(a) for all x0 ∈ X,

(4.15) ‖d2Ax0(v)‖ ≤ c(Ω)‖A‖W 2,∞(Ω), ∀v ∈ B(0, Rx0).

(b) for all u0 ∈ Ω \ X, with ρ(u0) given in Proposition 3.13 and dV◦ defined in (3.38),

(4.16) ‖d2Au0(v)‖ ≤ c(Ω)

(‖A‖W 1,∞(Ω)

dV◦(u0)
+ ‖A‖W 2,∞(Ω)

)
, ∀v ∈ B(0, ρ(u0)).

Proof. Let u0 ∈ Ω. Differentiating twice (4.1), we obtain, for u ∈ Ux0 and v = Uu0(u),

‖d2Au0(v)‖ . ‖dKu0(v)‖ |A(u)−A(u0)|+ ‖Ku0(v)‖ ‖Ju0(v)‖ ‖dA(u)‖+ ‖Ju0(v)‖3 ‖d2A(u)‖.
(a) When u0 = x0 ∈ X, (4.15) is a consequence of Proposition 3.13 and Remark 3.15 (1).

(b) Let u0 ∈ Ω \ X and x0 ∈ X such that u0 ∈ Ux0 . The above inequality, Proposition 3.13 and

Remark 3.15 (2) yield for v ∈ B(0, ρ(u0)),

‖d2Au0(v)‖ .
|u− u0|
|u0 − x0|2

‖A‖W 1,∞ +
1

|u0 − x0|
‖A‖W 1,∞ + ‖A‖W 2,∞

.
1

|u0 − x0|
‖A‖W 1,∞ + ‖A‖W 2,∞.

Here we have used the inequality |u − u0| ≤ |u0 − x0| which holds by construction of the

admissible atlas. �

Estimates between Ax0 and Ax0
0

deduced from the combination of Lemmas 4.6 and 4.7 allow to

compare qh[A
x0 ,Πx0 ](ψ) and qh[A

x0
0
,Πx0](ψ) via identity (A.6) which writes

qh[A
x0 ,Πx0 ](ψ) = qh[A

x0
0
,Πx0 ](ψ) + 2Re

〈
(−ih∇+ Ax0

0
)ψ, (Ax0 −Ax0

0
)ψ

〉
+ ‖(Ax0 − Ax0

0
)ψ‖2.

This will be extensively used in Sections 5 and 9.

4.4. A general rough upper bound. As a first consequence of a weaker form of Lemmas 4.5 and

4.7, we are going to prove a very general rough upper bound for the Rayleigh quotients Qh[A,Ω]
(1.19) as h → 0. In fact this reasoning holds in a natural way for n-dimensional corner domains.

In the n-dimensional case, the magnetic field is a 2-form and associated magnetic potentials are

1-forms that we write by using their representation as vector fields in a canonical basis of Rn, see

(1.2)–(1.3). In dimension n, E(B,Π) and E (B,Ω) are defined as in Definition 4.4.

In this context we prove a rough upper bound on the first eigenvalue of Hh(A,Ω) by using only

elementary arguments. We need the following Lemma, that will also be useful later:

Lemma 4.8. Let Ω ∈ D(Rn) and let A ∈ W 2,∞(Ω) be a twice differentiable magnetic potential

associated with the magnetic field B. Let x0 ∈ Ω be a chosen point and let ε > 0. Then there

exists h0 > 0 such that for all h ∈ (0, h0) there exists a function fh supported near x0 satisfying

Qh[A,Ω](fh) ≤ h
(
E(Bx0 ,Πx0) + ε

)
,
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where E(Bx0 ,Πx0) is the ground state energy of H(Ax0 ,Πx0).

Proof. Let (Ux0,U
x0) be a local map with Ux0 : Ux0 7→ Vx0 ⊂ Πx0 , cf. (3.1). This change of

variables transforms the magnetic potential into Ax0 given by (4.1):

Ax0 = (Jx0)⊤
(
(A−A(x0)) ◦ (Ux0)−1

)
.

Denote by Ax0
0

its linear part. Recall that curlAx0
0
= Bx0 . By definition ofE(Bx0,Πx0) there exists

ψ ∈ Dom(q[Ax0
0
,Πx0 ]) a L2-normalized function such that

q[Ax0
0
,Πx0 ](ψ) ≤ E(Bx0 ,Πx0) +

ε
4
.

Let us consider a smooth cut-off function χ with support in B(0, 1) and equal to 1 on B(0, 1
2
).

Then the functions with compact support x 7−→ χ( x
R
)ψ(x) converge to ψ in Dom(q[Ax0

0
,Πx0 ]) as

R → ∞. Therefore there exists R = R(ε, x0) > 0 and a new function ψ ∈ Dom(q[Ax0
0
,Πx0 ])

with support in B(0, R) which satisfies

q[Ax0
0
,Πx0 ](ψ) ≤ E(Bx0 ,Πx0) +

ε
2
.

For h > 0, define the L2-normalized function ψh(x) = h−n/4ψ(h−1/2x) so that, cf. Lemma A.4,

qh[A
x0
0
,Πx0 ](ψh) ≤ h

(
E(Bx0 ,Πx0) +

ε
2

)
.

We have the inclusion supp(ψh) ⊂ B(0, h1/2R) and therefore there exists hε > 0 such that for all

h ∈ (0, hε), supp(ψh) ⊂ Vx0 . Combining (A.6) with a Cauchy-Schwarz inequality we find

(4.17) qh[A
x0 ,Πx0 ](ψh) ≤ qh[A

x0
0
,Πx0 ](ψh)

+ 2
√
qh[A

x0
0
,Πx0 ](ψh) ‖(Ax0 − Ax0

0
)ψh‖+ ‖(Ax0 −Ax0

0
)ψh‖2.

Notice now that the estimates (a) of Proposition 3.13 are still valid for any chosen x0 in Ω with

constants c(x0) and radius Rx0 depending on x0. Hence estimates (a) of Lemma 4.7 holds at x0
with a constant c(x0) replacing the uniform constant c(Ω). Therefore applying Lemma 4.6 with

r = h1/2R we get c = c(ε, x0) > 0 such that

‖(Ax0 − Ax0
0
)ψh‖ ≤ cR2h‖ψh‖, ∀h ∈ (0, hε).

Let Gx0 be the metric associated with the change of variables (see Section 4.1). Again (a) of

Lemma 4.5 is valid for all x0 ∈ Ω with c(x0) instead of c(Ω). Applying this with r = h1/2R
provides another constant c = c(ε, x0) > 0 such that

∣∣qh[Ax0 ,Πx0,G
x0 ](ψh)− qh[A

x0 ,Πx0 ](ψh)
∣∣ ≤ cRh1/2 qh[A

x0,Πx0 ](ψh),(4.18)
∣∣∣‖ψh‖L2

Gx0
(Πx0)

− ‖ψh‖L2(Πx0 )

∣∣∣ ≤ cRh1/2 ‖ψh‖L2(Πx0 )
.(4.19)

According to Section 4.1 (4.1)–(4.5), we define for h ∈ (0, hε):

fh := (ζx0h )−1 ψh ◦ Ux0 with ζx0h (x) = ei〈A(x0),x〉/h, x ∈ Ux0 ∩ Ω

and we have

qh[A,Ω](fh) = qh[A
x0,Πx0 ,G

x0](ψh) and ‖fh‖L2(Ω) = ‖ψh‖L2
Gx0

(Πx0)
.
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Thus, combining with (4.17)–(4.19) we deduce

Qh[A,Ω](fh) ≤ (1 + cRh1/2)
(
Qh[A

x0
0
,Πx0 ](ψh) + c

(
R2h3/2 +R4h2

) )

≤ (1 + cRh1/2)
(
h
(
E(Bx0,Πx0) +

ε
2

)
+ c

(
R2h3/2 +R4h2

) )
.

We can write this in the form

Qh[A,Ω](fh) ≤ h
(
E(Bx0 ,Πx0) +

ε
2
+ h1/2Mε(h)

)
,

where Mε(h) is a bounded function for h ∈ [0, hε] that depends on ε > 0. We deduce the lemma

by choosing h so small that h1/2Mε(h) ≤ ε
2
. �

As a consequence of Lemma 4.8 and the min-max principle we obtain:

Proposition 4.9. Let Ω ∈ D(Rn) and let A ∈ W 2,∞(Ω) be a magnetic potential associated with

the magnetic field B. Then the first eigenvalue λh(B,Ω) of H(A,Ω) satisfies

lim sup
h→0

λh(B,Ω)

h
≤ E (B,Ω) .

5. LOWER BOUNDS FOR GROUND STATE ENERGY IN CORNER DOMAINS

In this section we establish a lower bound for the first eigenvalue λh(B,Ω) of the magnetic Lapla-

cian Hh(A,Ω) with Neumann boundary conditions.

Theorem 5.1. Let Ω ∈ D(R3) be a corner domain, and let A ∈ W 2,∞(Ω) be a twice differentiable

magnetic potential. Then there exist CΩ > 0 and h0 > 0 such that for all h ∈ (0, h0) there holds

(5.1) λh(B,Ω) ≥
{
hE (B,Ω)− CΩ

(
1 + ‖A‖2W 2,∞(Ω)

)
h11/10, Ω general corner domain,

hE (B,Ω)− CΩ

(
1 + ‖A‖2W 2,∞(Ω)

)
h5/4, Ω polyhedral domain.

We recall that the quantity E (B,Ω) is the lowest local energy defined in (4.11).

Remark 5.2. If the magnetic field B vanishes, then E (B,Ω) = 0 and Theorem 5.1 is obvious. In

contrast, if B does not vanish on Ω, we will see in Corollary 8.5 that E (B,Ω) > 0.

• Structure of the proof. The proof proceeds from an IMS partition argument coupled with the

analysis of remainders due to the cut-off effects, the local maps and the linearization of the po-

tential. The less classical piece of the analysis is our special construction of cut-off functions in

regions close to conical points x0 ∈ V◦, where a second, smaller, scale is introduced.

We choose first an admissible atlas on Ω according to Definition 3.11 and we recall that the conical

points are part of the set X of its reference points.



34 VIRGINIE BONNAILLIE-NOËL, MONIQUE DAUGE, AND NICOLAS POPOFF

• Splitting off the conical points. We start with a (smooth) macro partition of unity on Ω, inde-

pendent of h, (Ξ0, (Ξx)x∈V◦) which aims at separating the conical points, i.e., such that

• supp Ξ0 ∩V◦ = ∅,

• for any x0 ∈ V◦, supp Ξx0 ⊂ B(x0, Rx0).

Here Rx0 is the radius associated with the reference point x0 in the admissible atlas. In the poly-

hedral case, i.e., when V◦ = ∅, we simply set Ξ0 ≡ 1.

For any f ∈ H1(Ω) IMS formula (see Lemma A.5) gives

qh[A,Ω](f) = qh[A,Ω](Ξ0f) +
∑

x∈V◦

qh[A,Ω](Ξxf)− h2
(
‖(∇Ξ0)f‖2 +

∑

x∈V◦

‖(∇Ξx)f‖2
)

≥ qh[A,Ω](Ξ0f) +
∑

x0∈V◦

qh[A,Ω](Ξxf)− Ch2‖f‖2.(5.2)

In Section 5.1, we give a lower bound of qh[A,Ω](Ξ0f). In the polyhedral case, this will finish the

proof. Section 5.2 is devoted to conical points and estimates of qh[A,Ω](Ξxf).

5.1. Estimates outside conical points. Here we prove a lower bound for qh[A,Ω](Ξ0f).

• IMS localization. Let δ ∈ (0, 1
2
) be an exponent which will be determined later on. Now,

we make a h-dependent partition of suppΞ0 ∩ Ω with size hδ. Relying on Lemma B.1, we can

choose for 0 < h ≤ h0 (h0 small enough) a finite set C (h) of points c ∈ Ω together with radii ρc
equivalent to hδ (with uniformity as h→ 0) such that

(1) The union of balls B(c, ρc) covers supp Ξ0 ∩ Ω

(2) Each ball B(c, 2ρc) is contained in a map-neighborhood of the admissible atlas

(3) The finite covering condition holds

Relying on Lemma B.2, we choose an associate partition of unity
(
ξc
)
c∈C (h)

such that

ξc ∈ C
∞
0 (B(c, ρc)), ∀c ∈ C (h) and Ξ0

∑

c∈C (h)

ξ2c = Ξ0 on Ω,

and satisfying the uniform estimate of gradients

(5.3) ∃C > 0, ∀h ∈ (0, h0), ∀c ∈ C (h), ‖∇ξc‖L∞(Ω) ≤ Ch−δ .

The IMS formula (see Lemma A.5) provides for all f ∈ H1(Ω)

qh[A,Ω](Ξ0f) =
∑

c∈C (h)

qh[A,Ω](ξc Ξ0f)− h2
∑

c∈C (h)

‖∇ξc Ξ0f‖2L2(Ω)

and using (5.3) we get C = C(Ω) > 0 such that

(5.4) qh[A,Ω](Ξ0f) ≥
∑

c∈C (h)

qh[A,Ω](ξcΞ0f)− C h2−2δ‖Ξ0f‖2L2(Ω) .
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• Local control of the energy. For each center c ∈ C (h), we are going to bound from below

the term qh[A,Ω](ξc Ξ0f) appearing in (5.4). By construction supp(ξc Ξ0f) is contained in the

map-neighborhood Uc. Using (4.2) and (4.4), we set

(5.5) ψc := (ζch ξc Ξ0f) ◦ (Uc)−1, with ζch(x) = ei〈A(c),x〉/h.

According to (4.5) with x0 replaced by c, we have

(5.6) qh[A,Ω](ξcΞ0f) = qh[A
c,Πc,G

c](ψc) and ‖ξc Ξ0f‖L2(Ω) = ‖ψc‖L2
Gc(Πc) .

In order to replace the metric Gc by the identity, we apply Lemma 4.5 with r ≃ hδ. Using that the

distance dV◦ to conical points is bounded from below by a positive number on supp Ξ0, we obtain

the existence of a constant c(Ω) > 0 such that for all centers c ∈ C (h)

(5.7) Qh[A
c,Πc,G

c](ψc) ≥ (1− c(Ω)hδ)Qh[A
c,Πc](ψc) .

We now want to replace Ac in the above Rayleigh quotient by its linear part Ac
0

at 0. For this we

use identity (A.6) with ψ = ψc and O = Πc:

(5.8) qh[A
c,Πc](ψc) = qh[A

c
0
,Πc](ψc)

+ 2Re
〈
(−ih∇ + Ac

0
)ψc, (A

c −Ac
0
)ψc

〉
+ ‖(Ac − Ac

0
)ψc‖2.

This yields qh[A
c,Πc](ψc) ≥ qh[A

c
0
,Πc](ψc)− 2 (qh[A

c
0
,Πc](ψc))

1/2 ‖(Ac − Ac
0
)ψc‖ by Cauchy-

Schwarz inequality, leading to the parametric estimate (based on inequality 2ab ≤ ηa2 + η−1b2)

(5.9) ∀η > 0, qh[A
c,Πc](ψc) ≥ (1− η)qh[A

c
0
,Πc](ψc)− η−1‖(Ac − Ac

0
)ψc‖2 .

Since curlAc
0
= Bc, we have the lower bound by the minimum local energy at c:

qh[A
c
0
,Πc](ψc) ≥ hE(Bc,Πc)‖ψc‖2(5.10)

≥ hE (B,Ω)‖ψc‖2 .(5.11)

According to Lemmas 4.6 and 4.7 (note that dV◦ ≥ r0 > 0 on supp Ξ0), we have

(5.12) ‖(Ac − Ac
0
)ψc‖ ≤ c(Ω)‖A‖W 2,∞(Ω)h

2δ‖ψc‖ .
Combining (5.9)–(5.12) we deduce for all η > 0:

qh[A
c,Πc](ψc) ≥ (1− η)hE (B,Ω)‖ψc‖2 − η−1h4δc(Ω)2‖A‖2W 2,∞(Ω)‖ψc‖2.

Choosing η = h2δ−
1
2 to equilibrate ηh and η−1h4δ, we get the following lower bound

(5.13) qh[A
c,Πc](ψc) ≥

(
hE (B,Ω)− CΩ

(
1 + ‖A‖2W 2,∞(Ω)

)
h2δ+

1
2

)
‖ψc‖2, ∀c ∈ C (h).

• Conclusion. Combining the previous localized estimate (5.13) with (5.7) we deduce:

(5.14) qh[A,Ω](ξc Ξ0f) ≥
(
hE (B,Ω)− CΩ(1 + ‖A‖2W 2,∞(Ω))(h

2δ+ 1
2 + h1+δ)

)
‖ξc Ξ0f‖2.

Summing up in c ∈ C (h), we obtain

(5.15)

∑
c∈C (h) qh[A,Ω](ξc Ξ0f)

‖Ξ0f‖2L2(Ω)

≥ hE (B,Ω)− CΩ(1 + ‖A‖2W 2,∞(Ω))(h
2δ+ 1

2 + h1+δ).
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Using (5.4), we get another constant CΩ > 0 such that for all f ∈ H1(Ω),

(5.16) Qh[A,Ω](Ξ0f) ≥ hE (B,Ω)− CΩ(1 + ‖A‖2W 2,∞(Ω))
(
h2δ+

1
2 + h1+δ + h2−2δ

)
.

In the polyhedral case, Ξ0 ≡ 1 and the remainders are optimized by taking δ = 3
8

in (5.16), which

implies Theorem 5.1 in this case.

5.2. Estimates near conical points. Let x0 ∈ V◦. We estimate qh[A,Ω](Ξx0f) from below.

• IMS partition. For h > 0 small enough we construct a special covering of the support of Ξx0 .

We recall that this support is included in the ball B(x0, Rx0). We cover B(x0, Rx0) ∩ Ω by a finite

collection of h-dependent balls B(c, ρc):
• The first ball is centered at x0 itself and its radius is 2hδ0 : B(c, ρc) = B(x0, 2hδ0). Here

the exponent δ0 ∈ (0, 1
2
) will be chosen later on.

• The other balls B(c, ρc) cover the annular region hδ0 ≤ |x− x0| < Rx0 and their radii are

≃ hδ0+δ1 where the new exponent δ1 > 0 is such that δ0 + δ1 <
1
2

and will be also chosen

later on. Thanks to Lemma B.1 the set C (h, x0) of the centers and the corresponding

radii can be taken so that the conditions of this lemma are satisfied (inclusion in map-

neighborhoods, finite covering), see previous case § 5.1.

So this covering contains a “large” ball centered at the corner and a whole bunch of smaller ones

covering the remaining part.

Relying on Lemma B.2, we choose an associate partition of unity
(
ξc
)
c∈{x0}∪C (h,x0)

such that

ξc ∈ C
∞
0 (B(c, ρc)), ∀c ∈ {x0} ∪ C (h, x0), and Ξx0

∑

c∈{x0}∪C (h,x0)

ξ2c = Ξx0 on Ω,

and satisfying the following uniform estimate of gradients for all h ∈ (0, h0):

(5.17) for c = x0, ‖∇ξc‖L∞(Ω) ≤ Ch−δ0 and ∀c ∈ C (h, x0), ‖∇ξc‖L∞(Ω) ≤ Ch−δ0−δ1 .

Using the IMS formula (see Lemma A.5), we have like previously in (5.4)

(5.18) qh[A,Ω](Ξx0f) ≥ qh[A,Ω](ξx0 Ξx0f) +
∑

c∈C (h,x0)

qh[A,Ω](ξc Ξx0f)− Ch2−2(δ0+δ1)‖Ξx0f‖2.

• Local control of the energy. When c = x0, we can proceed in the same way as in the polyhedral

case due to the “good” estimates stated in Lemma 4.5 (a) and Lemma 4.7 (a). So we obtain a

similar estimate as in (5.14): There exists a constant C = C(Ω) such that for any function f ∈
H1(Ω)

(5.19) qh[A,Ω](ξx0Ξx0f) ≥
(
hE (B,Ω)− C(1 + ‖A‖2W 2,∞(Ω))(h

2δ0+
1
2 + h1+δ0)

)
‖ξx0Ξx0f‖2.

When c ∈ C (h, x0), we have to revisit the arguments leading from (5.5) to the final individual

estimate (5.14). First we define ψc like in (5.5), replacing the cut-off Ξ0 by Ξx0 . Then we have

(5.6) mutatis mutandis. Next we have to use Lemma 4.5 (b) with u0 = c to flatten the metric.

Here we have to take the distance dV◦(c) to conical points into account. By construction dV◦(c)
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coincides with |c − x0|, so is larger than hδ0 , while the quantity r equals ρc, thus is . hδ0+δ1: In

short
r

dV◦(c)
=

ρc
|c− x0|

. hδ1 .

Hence, we obtain in place of (5.7):

(5.20) Qh[A
c,Πc,G

c](ψc) ≥ (1− c(Ω)hδ1)Qh[A
c,Πc](ψc) .

For the linearization of the potential Ac, the expressions (5.8)–(5.11) are still valid, leading to the

parametric estimate

(5.21) ∀η > 0, qh[A
c,Πc](ψc) ≥ (1− η)hE (B,Ω)‖ψc‖2 − η−1‖(Ac − Ac

0
)ψc‖2 .

Here we use Lemmas 4.6 and 4.7 (b) and obtain, since ρc . hδ0+δ1 and dV◦(c) ≥ hδ0

(5.22) ‖(Ac − Ac
0
)ψc‖ ≤ c(Ω)

ρ2c
dV◦(c)

‖A‖W 2,∞(Ω)‖ψc‖ ≤ c(Ω)hδ0+2δ1‖A‖W 2,∞(Ω)‖ψc‖ .

Combining (5.21) with (5.22) and taking η = hδ0+2δ1− 1
2 we deduce

(5.23)

qh[A
c,Πc](ψc) ≥

(
hE (B,Ω)− C(Ω)

(
1 + ‖A‖2W 2,∞(Ω)

)
hδ0+2δ1+

1
2

)
‖ψc‖2, ∀c ∈ C (h, x0),

and then with (5.20) (and (5.6) with Ξx0)

(5.24) qh[A,Ω](ξcΞx0f) ≥
(
hE (B,Ω)− C(1 + ‖A‖2W 2,∞(Ω))(h

δ0+2δ1+
1
2 + h1+δ1)

)
‖ξcΞx0f‖2.

Summing up (5.19) and (5.24) for c ∈ C (h, x0), and combining with the IMS formula, we deduce

(5.25) Qh[A,Ω](Ξx0f) ≥ hE (B,Ω)− C(h2δ0+
1
2 + h1+δ0 + h

1
2
+δ0+2δ1 + h1+δ1 + h2−2(δ0+δ1)),

with C = c(Ω)(1 + ‖A‖2W 2,∞(Ω)).

• Conclusion. Combining (5.2), (5.16) and (5.25), we deduce

(5.26) Qh[A,Ω](f) ≥ hE (B,Ω)− Ch2 − C
(
h2δ+

1
2 + h1+δ + h2−2δ

)

− C
(
h2δ0+

1
2 + h1+δ0 + h

1
2
+δ0+2δ1 + h1+δ1 + h2−2(δ0+δ1)

)
,

with C = c(Ω)(1 + ‖A‖2W 2,∞(Ω)).

Remind that the error with power δ0 and δ1 only appears when Ω has conical points. To optimize

the remainder, we first choose δ = 3/8. We have now to optimize parameters δ0, δ1 under the

constraints 0 < δ0 + δ1 <
1
2
, δ0 > 0, δ1 > 0. We have

min(1 + δ0,
1
2
+ 2δ0) =

1
2
+ 2δ0,

and

min(1 + δ1,
1
2
+ δ0 + 2δ1) =

1
2
+ δ0 + 2δ1.

We are reduced to solve{
1
2
+ 2δ0 =

1
2
+ δ0 + 2δ1

1
2
+ 2δ0 = 2− 2δ0 − 2δ1

⇐⇒
{
2δ1 = δ0
3
2
= 4δ0 + 2δ1

⇐⇒ δ0 =
3

10
and δ1 =

3

20
.
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Then we get C(Ω) > 0 such that

(5.27) ∀f ∈ H1(Ω), Qh[A,Ω](f) ≥ hE (B,Ω)− C(Ω)
(
1 + ‖A‖2W 2,∞(Ω)

)
h11/10.

For further use we extract the following corollary of the previous proof:

Corollary 5.3. Let x0 ∈ Ω and K := B(x0, δ) with δ > 0. We define

EK(B,Ω) := inf
x∈Ω∩K

E(Bx,Πx) .

Then there exists C > 0 and h0 > 0 such that for all h ∈ (0, h0) and for all f ∈ Dom(qh[A,Ω])
with support supp f ⊂⊂ K, there holds

Qh[A,Ω](f) ≥ hEK(B,Ω)− Ch11/10 .

Proof. The corollary is obtained by slight modifications in the above proof. First we make a

covering of Ω ∩ K instead in Ω. Therefore in the lower bound (5.10), we only have to consider

c ∈ K, and the energy is bounded below by EK(B,Ω) in (5.11). We finally reached (5.27) and

deduce the Corollary. �

5.3. Generalization. For the proofs above, we used very few knowledge on the magnetic Lapla-

cians—essentially the change of gauge, the change of variables, and the perturbation identity

(A.6). The finest part of the analysis is related to the corner structure. With the same approach and

relying on the general estimates presented in Section 3.4.4, we are able to establish lower bounds

for the ground state energy of magnetic Laplacians in n-dimensional corner domains.

Let Ω ∈ D(Rn), and let us introduce ν as the maximal integer such that there exists a singular

chain (x0, . . . , xν−1) of length ν with a non-polyhedral reduced cone Γx0,...,xν−1 . We make the

convention that ν = 0 if all tangent cones are polyhedral.

Using an IMS partition on a hierarchy of balls of size hδ0 , hδ0+δ1 , . . . , hδ0+δ1+...+δν according to

the position of their centers, and taking advantage of estimates (3.36), we arrive to the following

collection of errors

h1+δ0 , h1+δ1 , . . . , h1+δν

h
1
2
+2δ0 , h

1
2
+δ0+2δ1 , . . . , h

1
2
+δ0+...+δν−1+2δν

h2−2(δ0+δ1+...+δν),

which is optimized choosing

δk = 2ν−kδν , k = 0, . . . , ν, with δν =
3

3 · 2ν+2 − 4
.

The outcome is the following lower bound

λh(B,Ω) ≥ hE (B,Ω)− C(Ω)
(
1 + ‖A‖2W 2,∞(Ω)

)
h1+1/(3·2ν+1−2) .

Here E (B,Ω) is the natural generalization of (4.11) to n-dimensional domains. The results of

Theorem 5.1 correspond to the values ν = 1 and ν = 0. Note that the remainder O(h5/4) is valid

in a polyhedral domain in any dimension (ν = 0).
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6. TAXONOMY OF MODEL PROBLEMS

Refined estimates for an upper bound of the ground state energy λh(B,Ω) will be obtained with

the help of quasimode constructions. This relies on a better knowledge of tangent model problems

H(AX,ΠX) for any singular chain X of Ω. In this section, we review and, when required, com-

plete, essential facts concerning three-dimensional model problems, that is magnetic Laplacians

H(A,Π) where Π is a cone in P3 and A is a linear potential.

With the aim of constructing quasimodes for our original problem on Ω, we need (bounded)

generalized eigenvectors for its tangent problems. To introduce such eigenvectors we make use of

the localized domain Dom loc (H(A,Π)) of the model magnetic Laplacian H(A,Π) as introduced

in (1.23):

Definition 6.1 (Generalized eigenvector). Let Π ∈ P3 be a cone and A a linear magnetic poten-

tial. We call generalized eigenvector for H(A,Π) a nonzero function Ψ ∈ Dom loc(H(A,Π))
associated with a real number Λ, so that

(6.1)

{
(−i∇ + A)2Ψ = ΛΨ in Π,

(−i∇ + A)Ψ · n = 0 on ∂Π.

Let Π ∈ P3 be a 3D cone and let B be a constant magnetic field associated with a linear potential

A. Let d be the reduced dimension of Π and Γ ∈ Pd be a minimal reduced cone associated with

Π. We recall from Definition 3.16 that this means that Π ≡ R3−d × Γ and that the dimension d
is minimal for such an equivalence. By analogy with Definition 3.18, C0(Π) denotes the set of

singular chains of Π originating at its vertex 0 and C∗
0
(Π) is the subset of chains of length ≥ 2.

Note that C∗
0
(Π) is empty if and only if Π = R3, i.e., if d = 0. We introduce the energy on tangent

substructures:

Definition 6.2 (Energy on tangent substructures). We define the quantity

(6.2) E
∗(B,Π) :=

{
infX∈C∗

0(Π)E(B,ΠX) if d > 0,

+∞ if d = 0,

which is the infimum of the ground state energy of the magnetic Laplacian over all the singular

chains of length ≥ 2.

We will see later in Section 7 that this quantity plays a key role in the existence of generalized

eigenvectors that have exponential decay properties in certain directions.

Now, in each of Sections 6.1–6.4 we consider one value of the reduced dimension d, ranging from

0 to 3 and give in each case relations between the ground state energy E(B,Π) and the energy on

tangent substructures E ∗(B,Π), and we provide generalized eigenvectors Ψ if they exist.

On the one hand, thanks to Lemma A.4, we may reduce to deal with unitary magnetic field |B| =
1. On the other hand, quantities E(B,Π) and E ∗(B,Π) are independent of a choice of Cartesian

coordinates. Thus, once Π and a constant unitary magnetic field B are chosen, we exhibit a

system of Cartesian coordinates x = (x1, x2, x3) that allows the simplest possible description of

the configuration (B,Π). In these coordinates, the magnetic field can be viewed as a reference
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field, and for convenience, we denote it by B = (b0, b1, b2). We also choose a corresponding

reference linear potential A, since we have gauge independence by virtue of Lemma A.1.

6.1. Full space. d = 0. Π is the full space. We take coordinates x = (x1, x2, x3) so that

Π = R
3 and B = (1, 0, 0),

and choose as reference potential A = (0,−x3
2
, x2

2
). It is classical (see [35]) that the spectrum of

H(A,R3) is [1,+∞). Therefore

(6.3) E(B,R3) = 1 .

A generalized eigenvector associated with the ground state energy is

(6.4) Ψ(x) = e−(x22+x
2
3)/4 with Λ = 1.

6.2. Half space. d = 1. Π is a half-space. We take coordinates x = (x1, x2, x3) so that

Π = R
2 × R+ := {(x1, x2, x3) ∈ R

3, x3 > 0} and B = (0, b1, b2) with b21 + b22 = 1 ,

and choose as reference potential A = (b1x3 − b2x2, 0, 0). We note that

(6.5) E
∗(B,R2 × R+) = E(B,R3) = 1.

There exists θ ∈ [0, 2π) such that b1 = cos θ and b2 = sin θ. Due to symmetries we can reduce to

θ ∈ [0, π
2
]. Denote by F1 the Fourier transform in x1-variable and by τ the dual variable. There

holds

F1 H(A,R2 × R+) F∗
1 =

∫ ⊕

τ∈R
Ĥτ (A,R

2 × R+) dτ.

where Ĥτ (A,R
2 × R+) = (τ + b1x3 − b2x2)

2 − ∂22 − ∂23 . We discriminate three cases:

• Tangent field. θ = 0, then Ĥτ (A,R
2 ×R+) = (τ + x3)

2 − ∂22 − ∂23 . Let ξ be the partial Fourier

variable associated with x2. Define the operators Ĥξ,τ(A,R
2 × R+) = (τ + x3)

2 + ξ2 − ∂23 and

H(τ) = D2
3 + (τ + x3)

2 , where H(τ) (sometimes called the de Gennes operator) acts on L2(R+)
with Neumann boundary conditions. Its first eigenvalue is denoted by µ(τ). There holds

infS(Ĥτ,ξ(A,R
2 × R+)) = µ(τ) + ξ2.

From [19]) we know that µ admits a unique minimum denoted by Θ0 ≃ 0.59 for the value τ0 =
−
√
Θ0. Hence

(6.6) E(B,R2 × R+) = Θ0 < E
∗(B,R2 × R+).

If Φ denotes an eigenvector of H(τ0), the corresponding generalized eigenvector for H(A,Π) is

(6.7) Ψ(x) = e−i
√
Θ0 x1 Φ(x3) with Λ = Θ0.

• Normal field. θ = π
2
, then Ĥτ (A,R

2 ×R+) = (τ − x2)
2 − ∂22 − ∂23 . There holds for all τ ∈ R,

infS(Ĥτ(A,R
2 × R+)) = 1 (see [38, Theorem 3.1]), hence

(6.8) E(B,R2 × R+) = 1 = E
∗(B,R2 × R+).
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• Neither tangent nor normal. θ ∈ (0, π
2
). Then for any τ ∈ R, Ĥτ (A,R

2 ×R+) is isospectral to

Ĥ0(A,R
2 ×R+) the ground state energy of which is an eigenvalue σ(θ) < 1, cf. [30]. We deduce

(6.9) E(B,R2 × R+) = σ(θ) < 1 = E
∗(B,R2 × R+)..

This eigenvalue σ(θ) is associated with an exponentially decreasing eigenvector Φ that is a func-

tion of (x2, x3) ∈ R× R+. The corresponding generalized eigenvector for H(A,Π) is

(6.10) Ψ(x) = Φ(x2, x3) with Λ = σ(θ).

We recall from the literature:

Lemma 6.3. The function θ 7→ σ(θ) is continuous and increasing on (0, π
2
) ([30, 38]). Set σ(0) =

Θ0 and σ(π
2
) = 1. Then the function θ 7→ σ(θ) is of class C 1 on [0, π

2
] ([10]).

6.3. Wedges. d = 2. Π is a wedge and let α ∈ (0, π) ∪ (π, 2π) denote its opening. Let us

introduce the model sector Sα and the model wedge Wα

(6.11) Sα =

{
{x = (x2, x3), x2 tan

α
2
> |x3|

}
if α ∈ (0, π)

{x = (x2, x3), x2 tan
α
2
> −|x3|

}
if α ∈ (π, 2π)

and Wα = R× Sα .

We take coordinates x = (x1, x2, x3) so that

Π = Wα and B = (b0, b1, b2) with b20 + b21 + b22 = 1 ,

and choose as reference potential A = (b1x3−b2x2, 0, b0x2) . The singular chains of C∗
0
(Wα) have

three equivalence classes, cf. Definition 3.19 and Description 3.30 (3): The full space R3 and the

two half-spaces Π±
α corresponding to the two faces ∂±Wα of Wα. Thus

E
∗(B,Wα) = min{E(B,R3), E(B,Π+

α ), E(B,Π
−
α )}.

Let θ± ∈ [0, π
2
] be the angle between B and the face ∂Π±

α . We have, cf. Lemma 6.3,

(6.12) E
∗(B,Wα) = min{1, σ(θ+), σ(θ−)} = σ(min{θ+, θ−}).

With τ the dual variable of x1 and

(6.13) Ĥτ (A,Wα) = (τ + b1x3 − b2x2)
2 − ∂22 + (−i∂3 + b0x2)

2

we have

F1 H(A,Wα) F∗
1 =

∫ ⊕

τ∈R
Ĥτ (A,Wα) dτ .

Thus

(6.14) E(B,Wα) = inf
τ∈R

s(B,Sα; τ) with s(B,Sα; τ) := infS(Ĥτ (A,Wα)) .

We quote from [49, Theorem 3.5]:

Lemma 6.4. Let α ∈ (0, π) ∪ (π, 2π). There holds the inequality

(6.15) E(B,Wα) ≤ E
∗(B,Wα).
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Moreover, if E(B,Wα) < E ∗(B,Wα), then the function τ 7→ s(B,Sα; τ) reaches its infimum. Let

τ ∗ be a minimizer. Then E(B,Wα) is the first eigenvalue of the operator Ĥτ∗(A,Wα) and any

associated eigenfunction Φ has exponential decay. The function

(6.16) Ψ(x) = eiτ
∗x1Φ(x2, x3)

is a generalized eigenvector for the operator H(A,Wα) associated with Λ = E(B,Wα).

Finally, let us quote now the continuity result on dihedra from [49, Theorem 4.5]:

Lemma 6.5. The function (B, α) 7→ E(B,Wα) is continuous on S2 × ((0, π) ∪ (π, 2π)).

6.4. 3D cones. d = 3. Denote by λess(B,Π) the bottom of the essential spectrum of H(A,Π).

Theorem 6.6. Let Π ∈ P3 be a cone with d = 3, which means that Π is not a wedge, nor a

half-space, nor the full space. Let B be a constant magnetic field. With the quantity E ∗(B,Π)
introduced in (6.2), there holds

λess(B,Π) = E
∗(B,Π) .

Recall Persson’s Lemma [46] that gives a characterization of the bottom of the essential spectrum:

Lemma 6.7. Let Π ∈ P3 and let A be a linear magnetic potential associated with B. For R > 0,

we define DomR
0 (q[A,Π]) as the subspace of functions Ψ in Dom(q[A,Π]) with compact support,

and suppΨ ∩ B(0, R) = ∅. Then we have

λess(B,Π) = lim
R→+∞

(
inf

Ψ∈DomR
0 (q[A,Π])\ {0}

Q[A,Π](Ψ)

)
.

Before proving Theorem 6.6, we show

Lemma 6.8. Let Π ∈ P3 be a cone with d = 3, let Ω0 = Π ∩ S2 be its section. Then E ∗(B,Π)
coincides with the infimum of the local energy over singular chains of length 2:

(6.17) E
∗(B,Π) = inf

x1∈Ω0

E(B,Π0,x1) .

Proof. For all singular chains X and X′ in C∗(Π) such that X ≤ X′ , we have E(ΠX,B) ≤
E(ΠX′,B) as a consequence of (6.6), (6.8), (6.9), and (6.15). Hence (6.17). �

Proof of Theorem 6.6. Combining Lemmas 6.7 and A.4, we get that

(6.18) λess(B,Π) = lim
h→0

(
h−1 inf

Ψ∈Dom1
0(qh[A,Π])\ {0}

Qh[A,Π](Ψ)

)
.

• Upper bound for λess(B,Π). Let ε > 0. By Lemma 6.8 there exist x ∈ Ω0 and an associated

chain X = (0, x) of length 2 such that

(6.19) E(B,ΠX) < E
∗(B,Π) + ε .

Let x′ := 2x. Notice that the tangent cone to Π at x′ is Πx′ = ΠX and therefore E(B,Πx′) =
E(B,ΠX). We use Lemma 4.8 (that clearly applies even though Π is unbounded): So there exists

h0 > 0 such that for all h ∈ (0, h0) we can find fh normalized and supported near x′ satisfying
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h−1Qh[A,Π](fh) ≤ E(B,ΠX) + ε. Since |x′| = 2, we may assume without restriction that

supp(fh) ∩ B(0, 1) = ∅. Combining this with (6.19) we get

1

h
Qh[A,Π](fh) ≤ E

∗(B,Π) + 2ε ,

and therefore deduce from (6.18) the upper bound of λess(B,Π) by E ∗(B,Π).

• Lower bound for λess(B,Π). Notice that for all x ∈ Π \ B(0, 1), we have Πx = ΠX where

X = (0, x/|x|). Therefore (see (6.17)):

inf
x∈Π\B(0,1)

E(B,Πx) = E
∗(B,Π) .

Then we easily deduce the lower bound from Corollary 5.3 and (6.18). �

Corollary 6.9. Let Π ∈ P3 be a cone with d = 3. Assume that E(B,Π) < E ∗(B,Π). Then any

eigenfunction Ψ ofH(A,Π) associated with the lowest eigenvalueE(B,Π), satisfies the following

exponential decay estimates:

∀c <
√

E ∗(B,Π)−E(B,Π), ∃C > 0, ‖ec|x|Ψ‖ ≤ C‖Ψ‖.

Proof. Recall that Theorem 6.6 states that the bottom of the essential spectrum is E ∗(B,Π).
Therefore we are in the standard framework for the techniques à la Agmon, see [1], and also

[6, Section 7] for its application on plane sectors. �

7. DICHOTOMY AND SUBSTRUCTURES FOR MODEL PROBLEMS

Relying on the exhaustive description of model problems provided above, we arrive to one of the

main results, the “dichotomy” Theorem 7.3 that states the existence of a generalized eigenvector

(called admissible) living on a tangent structure of a cone Π ∈ P3 and associated with the ground

state energy. In this section, the local energies E(B,ΠX) related to singular chains X ∈ C0(Π),
play for the first time a major role in the analysis.

7.1. Admissible Generalized Eigenvectors.

Definition 7.1 (Admissible Generalized Eigenvector). Let Π ∈ P3 be a cone. Recall that d(Π) ∈
[0, 3] is the dimension of its minimal reduced cone. Let A be a linear magnetic potential. A

generalized eigenvector Ψ for H(A,Π) (cf. Definition 6.1) is said to be admissible if there exist

an integer k ≥ d(Π) and a rotation U : x 7→ (y, z) that maps Π onto the product R3−k ×Υ with Υ
a cone in Pk, and such that

(7.1) Ψ ◦ U−1(y, z) = eiϑ(y,z)Φ(z) ∀y ∈ R
3−k, ∀z ∈ Υ,

with some real polynomial function ϑ of degree ≤ 2 and some exponentially decreasing function

Φ, namely there exist positive constants cΨ and CΨ such that

(7.2) ‖ecΦ|z|Φ‖L2(Υ) ≤ CΦ‖Φ‖L2(Υ) .

“Admissible Generalized Eigenvector” will be shortened as AGE.
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The following lemma will be used for going from any tangent operator to one of the reference

situations described in Section 6. Its proof is straightforward and relies on Lemmas A.1, A.3, A.4,

and A.7.

Lemma 7.2. Let Π ∈ P3 be a cone and A be a linear potential. Assume that Ψ is an AGE for

H(A,Π) associated with the energy E(B,Π), of the form (7.1).

a1) For all b > 0, the function

Ψb : x 7→ Ψ(
x√
b
),

is an AGE for H(b−1A,Π) associated with the energy E(b−1B,Π) = b−1E(B,Π). This

AGE has the form (7.1) with Ub = U, ϑb(y, z) = ϑ(b−1/2y, b−1/2z) and Φb(z) = Φ(b−1/2z).

a2) The function

Ψ− : x 7→ Ψ(x),

is an AGE for H(−A,Π) associated with the energy E(−B,Π) = E(B,Π). This AGE

has the form (7.1), with U− = U, ϑ−(y, z) = −ϑ(y, z) and Φ−(z) = Φ(z).

b) Let A′ be another linear potential such that curlA′ = curlA. Then there exists a polyno-

mial φ of degree ≤ 2 such that A′ = A+∇φ. The function

Ψ′ : x 7→ e−iφ(x)Ψ(x),

is an AGE for H(A′,Π) associated with E(B,Π). This AGE has the form (7.1), with

U′ = U, ϑ′ = ϑ− φ ◦ U−1 and Φ′ = Φ.

c) Let J ∈ O3 be a rotation, ΠJ := J(Π) and AJ := J ◦ A ◦ J−1. Introduce the constant

magnetic field BJ = J(B), so that curlAJ = BJ. Then

ΨJ : x 7→ Ψ ◦ J−1(x)

is an AGE for H(AJ,ΠJ) associated with E(BJ,ΠJ) = E(B,Π). It has the form (7.1),

with UJ = U ◦ J−1, ϑJ = ϑ and ΦJ = Φ.

7.2. Dichotomy Theorem.

Theorem 7.3 (Dichotomy Theorem). Let Π ∈ P3 be a cone and B 6= 0 be a constant magnetic

field. Let A be any associated linear magnetic potential. Recall that E(B,Π) is the ground state

energy of H(A,Π) and E ∗(B,Π) is the energy on tangent substructures, see Definition 6.2. Then,

(7.3) E(B,Π) ≤ E
∗(B,Π),

and we have the dichotomy:

(i) If E(B,Π) < E ∗(B,Π), then H(A,Π) admits an Admissible Generalized Eigenvector asso-

ciated with the value E(B,Π).

(ii) If E(B,Π) = E
∗(B,Π), then there exists a singular chain X ∈ C∗

0
(Π) such that

E(B,ΠX) = E(B,Π) and E(B,ΠX) < E
∗(B,ΠX).

Remark 7.4. In the case (ii), we note that by statement (i) applied to the cone ΠX, H(A,ΠX)
admits an AGE associated with the value E(B,Π).
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Remark 7.5. If B = 0, there is no magnetic field and E(Π,B) = 0. An associated AGE is the

constant function Ψ ≡ 1.

Proof of Theorem 7.3. The proof relies on an exhaustion of cases based on Section 6 combined

with a hierarchical classification of model problems on tangent structures of a cone Π.

• Geometrical invariance. Thanks to Lemma 7.2, we may assume that B is unitary, choose any

suitable Cartesian coordinates and any suitable linear potential. Hence, to prove the theorem, we

may reduce to the reference configurations investigated in Sections 6.1–6.3.

• Algorithm of the proof. We first establish the theorem when d = 0, then we apply the following

analysis for increasing values of d = d(Π) from 1 to 3:

(1) Check inequality (7.3).

(2) Check assertion (i).

(3) Prove that there exists a singular chain X ∈ C∗
0
(Π) such that E

∗(B,Π) = E(B,ΠX). Since

d(ΠX) < d, assertion (ii) will be a consequence of the analysis made for lower dimensions.

This procedure applied to reference problems described in Section 6 will provide the theorem.

• d = 0. Here Π = R3, see Section 6.1. We haveE(B,R3) = 1 and E ∗(B,R3) = +∞, moreover

there always exists an admissible generalized eigenvector associated with 1, see (6.4). Theorem

7.3 is proved for d = 0.

• d = 1. The model cone is R2 × R+, see Section 6.2. Inequality (7.3) has already been proved,

see (6.6), (6.8), (6.9). We also know thatE(B,R2×R+) < E ∗(B,R2×R+) if and only if B is not

normal to the boundary. In this case, AGE have already been written, see (6.7) and (6.10), so point

(i) of Theorem 7.3 holds in the non-normal case. When B is normal,E(B,R2×R+) = E ∗(B,R2×
R+). The sole tangent substructure is R3 and we have E

∗(B,R2×R+) = E(B,R3) < E
∗(B,R3)

(see the above paragraph d = 0). Therefore Theorem 7.3 is proved for d = 1.

• d = 2. The model cone is the wedge Wα, see Section 6.3. Inequality (7.3) and assertion (i)

come from Lemma 6.4. To deal with case (ii), we define ◦ ∈ {−,+} satisfying θ◦ = min(θ−, θ+)
and Π◦

α as the corresponding face. Due to (6.12) E ∗(B,Wα) = σ(θ◦) = E(B,Π◦
α). Therefore in

case (ii) we reduce to the situation d = 1 and Theorem 7.3 is proved for d = 2.

• d = 3. Due to Theorem 6.6, we have E ∗(B,Π) = λess(B,Π) and therefore (7.3). Moreover

if E(B,Π) < E
∗(B,Π), the existence of an eigenfunction with exponential decay is stated in

Corollary 6.9. Therefore (i) is proved.

It remains to find X ∈ C∗
0(Π) such that E ∗(B,Π) = E(B,ΠX). Define on C∗

0
(Π) the function

F (X) = E(B,ΠX). Let Ω0 denotes the section of Π, define the function F ⋆ on C(Ω0) by the

partial application

F ⋆(Y) = F ((0,Y)), Y ∈ C(Ω0).

Since (7.3) has already been proved for d ≤ 2, we have for all Y and Y′ in C(Ω0):

(7.4) Y ≤ Y
′ =⇒ F ⋆(Y) ≤ F ⋆(Y′) .
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Let us show that F ⋆ is continuous with respect to the distance D introduced in Definition 3.22.

Since Ω0 has a finite number of vertices, the chains Y ∈ C(Ω0) such that ΠY is a sector (and

ΠX = Π(0,Y) is a wedge) are isolated for the topology associated with the distance D. If Y is such

that Π(0,Y) = R3, then F ⋆(Y) = 1 (see (6.3)). Therefore it remains to treat the case where the

tangent substructures Π(0,Y) are half-spaces. Let Y and Y′ be such chains. Denote by θ (resp. θ′)
the unoriented angle in [0, π

2
) between B and ΠX (resp. between B and ΠX′). We have |θ−θ′| → 0

as D(Y,Y′) → 0. Moreover

F ⋆(Y)− F ⋆(Y′) = E(B,ΠX)− E(B,ΠX′) = σ(θ)− σ(θ′) .

As a consequence of the continuity of the function σ, see Lemma 6.3, we get that F ⋆(Y)−F ⋆(Y′)
goes to 0 as D(Y,Y′) goes to 0. This shows that F ⋆ is continuous on C(Ω0). Thanks to (7.4), we

can apply Theorem 3.25: the function Ω0 ∋ x 7→ F ⋆((x)) = E(B,Π0,x) is lower semicontinuous

on Ω0. Since Ω0 is compact, it reaches its infimum. Combining this with Lemma 6.8, we get:

∃x1 ∈ Ω0, E
∗(B,Π) = E(B,Π0,x1) .

Therefore (ii) follows from the analysis of lower dimensions and Theorem 7.3 is proved. �

Remark 7.6. Any AGE provided by case (i) of Theorem 7.3 satisfies:

∀cΦ <
√

E ∗(B,Π)− E(B,Π), ∃CΦ > 0, ‖ecΦ|z|Φ‖L2(Υ) ≤ CΦ‖Φ‖L2(Υ).

This is a consequence of the exponential decays given by [10, Theorem 1.3] for half-planes, [49,

Proposition 4.2] for dihedra, and Corollary 6.9 for 3D cones.

7.3. Examples. In the case d = 1, it is known whether we are in situation (i) or (ii) of the

Dichotomy Theorem. This is not the case in general for model cones Π with d ≥ 2, and only in

few cases it is known whether inequality (7.3) is strict or not. We provide below some examples of

wedges and 3D cones where E(B,Π) has been studied. In this whole section B ∈ S2 is a unitary

constant magnetic field.

Example 7.7 (Wedges). Let α ∈ (0, π) ∪ (π, 2π).

(a) For α small enough there holds E(B,Wα) < E ∗(B,Wα), see [49] and [47, Ch. 7].

(b) Let B = (0, 0, 1) be tangent to the edge. Then E ∗(B,Wα) = Θ0 and E(B,Wα) = E(1,Sα),
cf. Section 2.2.2. According to whether the ground state energy E(1,Sα) of the plane sector

Sα is less than Θ0 or equal to Θ0, we are in case (i) or (ii) of the dichotomy.

(c) Let B be tangent to a face of the wedge and normal to the edge. Then E ∗(B,Wα) = Θ0. It is

proved in [48] that E(B,Wα) = Θ0 for α ∈ [π
2
, π) (case (ii)).

Example 7.8 (Octant). Let Π = (R+)
3 be the model octant. We quote from [44, §8]:

(a) If the magnetic field B is tangent to a face but not to an edge of Π, there exists an edge e such

that E ∗(B,Π) = E(B,Πe) and there holds E(B,Π) < E(B,Πe). We are in case (i).

(b) If the magnetic field B is tangent to an edge e of Π, E ∗(B,Π) = E(B,Πe) = E(B,Π).
Moreover by [44, §4], E(B,Πe) = E(1,Sπ/2) < Θ0 = E ∗(B,Πe). We are in case (ii).

Example 7.9 (Circular cone). Let Cα be the right circular cone of angular opening α ∈ (0, π). It

is proved in [12, 13] that



GROUND STATE ENERGY OF THE MAGNETIC LAPLACIAN ON CORNER DOMAINS 47

(a) For α small enough, E(B, Cα) < E ∗(B, Cα).
(b) If B = (0, 0, 1), then E ∗(B, Cα) = σ(α/2).

7.4. Scaling and truncating Admissible Generalized Eigenvectors. AGE’s are corner-stones

for our construction of quasimodes. Here, as a preparatory step towards final construction, we

show a couple of useful properties when suitable scalings and cut-off are performed.

Let H(A,Π) be a model operator that has an AGE Ψ associated with the value Λ. Then for any

positive h, the scaled function

(7.5) Ψh(x) := Ψ
( x√

h

)
, for x ∈ Π,

defines an AGE for the operator Hh(A,Π) associated with hΛ:

(7.6)

{
(−ih∇ + A)2Ψh = hΛΨh in Π,

(−ih∇ + A)Ψh · n = 0 on ∂Π.

We will need to localize Ψh. For doing this, let us choose, once for all, a model cut-off function

χ ∈ C ∞(R+) such that

(7.7) χ(r) = 1 if r ≤ 1 and χ(r) = 0 if r ≥ 2.

For any R > 0, let χ
R

be the cut-off function defined by χ
R
(r) = χ

(
r
R

)
, and, finally

(7.8) χh(x) = χ
R

( |x|
hδ

)
= χ

( |x|
Rhδ

)
with 0 ≤ δ ≤ 1

2
.

Here the exponent δ is the decay rate of the cut-off. It will be tuned later to optimize remainders.

Since Ψh belongs to Dom loc(Hh(A,Π)), we can rely on Lemma A.6 to obtain the following

identity for the Rayleigh quotient of χhΨh:

(7.9) Qh[A,Π](χhΨh) = hΛ + h2ρh with ρh =
‖ |∇χh|Ψh‖2
‖χhΨh‖2

.

The following lemma estimates the remainder ρh:

Lemma 7.10. Let Ψ be an AGE for the model operatorH(A,Π). Let k be the number of indepen-

dent decaying directions of Ψ, cf. (7.1)–(7.2). Let Ψh be the rescaled function given by (7.5) and

let χh be the cut-off function defined by (7.7)–(7.8) involving parameters R > 0 and δ ∈ [0, 1
2
].

Then there exist constants C0 > 0 and c0 > 0 depending only on h0 > 0, R0 > 0 and Ψ such that

ρh =
‖ |∇χh|Ψh‖2
‖χhΨh‖2

≤
{
C0 h

−2δ if k < 3,

C0 h
−2δ e−c0h

δ−1/2
if k = 3,

∀R ≥ R0, ∀h ≤ h0, ∀δ ∈ [0, 1
2
] .

Proof. By assumption Ψ(x) = eiϑ(y,z)Φ(z) for Ux = (y, z) ∈ R3−k × Υ, where U is a suitable

rotation, and there exist positive constants cΨ, CΨ controlling the exponential decay of Φ in the

cone Υ ∈ Pk, cf. (7.2). Let us set T = Rhδ, so that χh(x) = χ(|x|/T ).
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Let us first give an upper bound for ‖ |∇χh|Ψh‖:

If k < 3, then

‖ |∇χh|Ψh‖2 ≤ CT−2

∫

|y|≤2T

dy

∫

Υ∩{|z|≤2T}

∣∣∣∣Φ
( z√

h

)∣∣∣∣
2

dz = CT−2 T 3−k hk/2‖Φ‖2L2(Υ),

else, if k = 3

‖ |∇χh|Ψh‖2 ≤ CT−2

∫

Υ∩{T≤|z|≤2T}

∣∣∣∣Φ
( z√

h

)∣∣∣∣
2

dz = CT−2 hk/2
∫

Υ∩
{
Th−

1
2 ≤|z|≤2Th−

1
2

}
|Φ(z)|2 dz

≤ CT−2 hk/2 e−2cΨT/
√
h

∫

Υ∩
{
Th−

1
2 ≤|z|≤2Th−

1
2

} e2c|z| |Φ(z)|2 dz

≤ CT−2 hk/2 e−2cΨT/
√
h ‖Φ‖2L2(Υ).

Let us now consider ‖χhΨh‖ (we use that 2|y| < R and 2|z| < R implies |x| < R):

‖χhΨh‖2 ≥
∫

2|y|≤T
dy

∫

Υ∩{2|z|≤T}

∣∣∣∣Φ
( z√

h

)∣∣∣∣
2

dz = CT 3−khk/2
∫

Υ∩
{
2|z|≤Th−1

2

} |Φ(z)|2 dz

≥ CT 3−khk/2 I(Th− 1
2 ) ‖Φ‖2L2(Υ)

where we have set for any S ≥ 0

I(S) :=
(∫

Υ∩{2|z|≤S}
|Φ(z)|2 dz

)(∫

Υ

|Φ(z)|2 dz
)−1

.

The function S 7→ I(S) is continuous, non-negative and non-decreasing on [0,+∞). It is more-

over increasing and positive on (0,∞) since Φ, as a solution of an elliptic equation with poly-

nomial coefficients and null right hand side, is analytic inside Υ. Consequently, I(Th− 1
2 ) =

I(Rhδ− 1
2 ) is uniformly bounded from below for R ≥ R0, h ∈ (0, h0), δ ∈ [0, 1

2
] and thus

ρh ≤
{
CT−2

{
I(Th− 1

2 )
}−1 ≤ C0h

−2δ if k < 3,

CT−2 e−2cΨT/
√
h
{
I(Th− 1

2 )
}−1 ≤ C0h

−2δe−c0h
δ−1/2

if k = 3,

where the constants C0 and c0 in the above estimation depend only on the lower bound R0 on

R, the upper bound h0 on h, and on the model problem associated with x0, provided δ ∈ [0, 1
2
].

Lemma 7.10 is proved. �

Remark 7.11. The estimate of ρh provided by Lemma 7.10 is still true when k = 0, i.e., when Ψ
has no decay direction (but is of modulus 1 everywhere).

8. PROPERTIES OF THE LOCAL GROUND STATE ENERGY

In this section we describe the regularity properties of the local ground energy. The main result of

this section is that the function x 7→ E(Bx,Πx) is lower semicontinuous on a corner domain and

therefore it reaches its infimum.
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8.1. Lower semicontinuity.

Theorem 8.1. Let Ω ∈ D(R3) and let B ∈ C 0(Ω) be a continuous magnetic field. Then the

function ΛΩ : x 7→ E(Bx,Πx) is lower semicontinuous on Ω.

Proof. For X = (x0, . . .) ∈ C(Ω), define the function F (X) := E(Bx0 ,ΠX), which coincides on

the chains of length 1 with the function ΛΩ: F ((x0)) = ΛΩ(x0). Recall that we have introduced a

partial order on C(Ω), see Definition 3.24. Then due to (7.3) applied to ΠX for any chain X, the

function F : C(Ω) 7→ R+ is clearly order preserving.

Let us show that it is continuous with respect to the distance D (see Definition 3.22). Let X ∈ C(Ω)
and X′ tending to X. This means that x′0 tends to x0 in R3 and that there exists J ∈ BGL(3) tending

to the identity I3 such that J(ΠX) = ΠX′ . In particular for X′ close enough to X, the reduced

dimensions of the cones ΠX and ΠX′ are equal: d(ΠX′) = d(ΠX).

(1) If ΠX = R3, then F (X) = |Bx0 | and F (X′) = |Bx′0
|, and since B is continuous, F (X′)

converges toward F (X) when D(X′,X) → 0.

(2) When ΠX is a half-space, we denote by θ(X) the angle between ΠX and Bx0 . We have θ(X′) →
θ(X) when D(X′,X) → 0. Moreover

F (X′)− F (X) = |Bx′0
|σ(θ(X′))− |Bx0 |σ(θ(X)),

therefore F (X′) tends to F (X) due to Lemma 6.3 and the continuity of B.

(3) When ΠX is a wedge, there exists (U,U′) in O3 and (α, α′) in (0, π) ∪ (π, 2π) such that

U(ΠX) = Wα and U′(ΠX′) = Wα′ . Therefore

F (X′)− F (X) = E(U(Bx0),Wα)− E(U′(Bx′0
),Wα′),

with α′ → α and U′ → U when D(X′,X) → 0. Lemma 6.5 and the continuity of B ensure

that F (X′) tends to F (X).

(4) Finally chains X such that ΠX is a 3D cone are of length 1 and are isolated in C(Ω) for the

topology associated with D (see Proposition 3.20).

Therefore F is continuous on C(Ω). We apply Theorem 3.25: So the function x 7→ F ((x)) =
ΛΩ(x) is lower semicontinuous on Ω. �

As a consequence of the above theorem, the function x 7→ ΛΩ(x) reaches its infimum over Ω. This

fact will be one of the key ingredients to prove an upper bound with remainder for λh(B,Ω) in the

semiclassical limit.

Remark 8.2. Recall that any stratum t ∈ T has a smooth submanifold structure (see Proposition

3.20). Denote by Λt the restriction of the local ground energy to t. Then it follows from above that

Λt is continuous. Moreover if Ω ∈ D(R3), one can prove that Λt admits a continuous extension

to t. But this is not true anymore if t contains a conical point.

Remark 8.3. Let B be a constant magnetic field and Ω be a straight polyhedron. So, its faces are

plane polygons and its edges are segments of lines. The following properties hold.

a) For each stratum t ∈ T, the function Λt : t ∋ x 7→ E(B,Πx) is constant.
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b) As a consequence of (7.3) and of the lower semicontinuity, E (B,Ω) is the minimum of the

corner local energies:

E (B,Ω) = min
v∈V

E(B,Πv).

c) A stratum t ∈ T being chosen we have

∀x ∈ t, E
∗(B,Πx) = min

t′∈N(t)
Λt′,

where N(t) := {t′ ∈ T, t ⊂ ∂t′} \ {t} is the set of the strata adjacent to t.

d) As a consequence of a), c) and the Dichotomy Theorem, there exists x0 ∈ Ω such that

E (B,Ω) = E(B,Πx0) < E
∗(B,Πx0).

8.2. Positivity of the ground state energy. The classical diamagnetic inequality (see [34, 56] for

example) implies that the ground state energy is in general larger than the one without magnetic

field, that is 0 in our case due to Neumann boundary conditions. Usually it is harder to show that

this inequality is strict. A strict diamagnetic inequality has been proved for the Neumann magnetic

Laplacian in a bounded regular domain, in [24, Section 2.2]. For our unbounded domains Π with

constant magnetic field, we have:

Proposition 8.4. Let Π ∈ P3 and B 6= 0 be a constant magnetic field. Then E(B,Π) > 0.

Proof. It is enough to make the proof for unitary magnetic field, see Lemma A.4. Let d ∈ [0, 3]
be the reduced dimension of the cone Π. If d = 0, then E(B,Π) = 1 (see (6.3)). If d = 1, then

E(B,Π) is expressed with the function σ that satisfies σ(θ) ≥ Θ0 > 0 for all θ ∈ [0, π
2
], see

Lemma 6.3. When d = 2, the strict positivity has been shown in [49, Corollary 3.9].

Assume now that d = 3. If we are in case (i) of Theorem 7.3, then there exists an eigenfunction

Ψ ∈ L2(Π) for H(A,Π) associated with E(B,Π). Assume that E(B,Π) = 0, then due to the

standard diamagnetic inequality (see [34, Lemma A]), we have

0 ≤
∫

Π

∣∣∇|Ψ|
∣∣2 ≤

∫

Π

|(−i∇−A)Ψ|2 = 0,

that leads to Ψ = 0, which is a contradiction. If we are in case (ii) of Theorem 7.3, then there

exists a tangent substructure ΠX of Π with d(ΠX) < 3 such that E(B,Π) = E(B,ΠX) that is

strictly positive due to the analysis of the cases d ≤ 2, see above. �

Combining the above proposition with Theorem 8.1, we get:

Corollary 8.5. Let Ω ∈ D(R3) and let B ∈ C 0(Ω) be non-vanishing. Then we have E (B,Ω) > 0.

9. UPPER BOUNDS FOR GROUND STATE ENERGY IN CORNER DOMAINS

In this section, we prove an upper bound involving error estimates that contains the same powers

of h than the lower bound in Theorem 5.1.

Theorem 9.1. Let Ω ∈ D(R3) be a general 3D corner domain, and let A ∈ W 2,∞(Ω) be a twice

differentiable magnetic potential.
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(a) Then there exist CΩ > 0 and h0 > 0 such that

(9.1) ∀h ∈ (0, h0), λh(B,Ω) ≤ hE (B,Ω) + CΩ

(
1 + ‖A‖2W 2,∞(Ω)

)
h11/10 .

(b) If Ω is a polyhedral domain, this upper bound is improved:

(9.2) ∀h ∈ (0, h0), λh(B,Ω) ≤ hE (B,Ω) + CΩ

(
1 + ‖A‖2W 2,∞(Ω)

)
h5/4 .

(c) If there exists a point x0 ∈ Ω such that B(x0) = 0, then E (B,Ω) = 0 and we have the optimal

upper bound

(9.3) ∀h ∈ (0, h0), λh(B,Ω) ≤ CΩ

(
1 + ‖A‖2W 2,∞(Ω)

)
h4/3 .

(d) If there exists a corner x0 such that E (B,Ω) = E(Bx0 ,Πx0) < E ∗(Bx0,Πx0) then

(9.4) ∀h ∈ (0, h0), λh(B,Ω) ≤ hE (B,Ω) + CΩ(1 + ‖A‖2W 2,∞(Ω)) h
3/2| log h| .

(e) If Ω is a straight polyhedron and B is constant,

(9.5) ∀h ∈ (0, h0), λh(B,Ω) ≤ hE (B,Ω) + Ch2 .

We recall the notation Qh[A,Ω](ϕ) (1.19) for Rayleigh quotients and the min-max principle

λh(B,Ω) = min
ϕ∈H1(Ω) \ {0}

Qh[A,Ω](ϕ) .

9.1. Principles of construction for quasimodes. By lower semicontinuity (see Theorem 8.1),

the energy x 7→ E(Bx,Πx) reaches its infimum over Ω. Let x0 ∈ Ω be a point such that

E(Bx0 ,Πx0) = E (B,Ω).

By the dichotomy result (Theorem 7.3) there exists a singular chain X starting at x0 such that (see

also notation (4.8)):

E(BX,ΠX) = E(Bx0 ,Πx0) and E(BX,ΠX) < E
∗(BX,ΠX).

For shortness, we denote ΛX = E(BX,ΠX). Still by Theorem 7.3, there exists an AGE for the

tangent model operator H(AX,ΠX) denoted by ΨX and associated with ΛX

(9.6)

{
(−i∇ + AX)

2ΨX = ΛXΨ
X in ΠX,

(−i∇ + AX)Ψ
X · n = 0 on ∂ΠX.

For h > 0, we define ΨX

h by using the canonical scaling (7.5). This gives an AGE for the operator

Hh(AX,ΠX) associated with the value hΛX. Let χh be the cut-off function defined by (7.7)–(7.8)

involving the parameter R > 0 and the exponent δ ∈ (0, 1
2
). Then the function

(9.7) (χhΨ
X

h)(x) = χ

( |x|
Rhδ

)
ΨX

( x√
h

)
, for x ∈ ΠX ,

is a canonical quasimode on the tangent structure ΠX for the model operator Hh(AX,ΠX): Indeed

the identity (7.9) and Lemma 7.10 yield

(9.8) Qh[AX,ΠX](χhΨ
X

h) = hΛX +O(h2−2δ).

Let us recall that the fact that ΨX

h belongs to Dom loc(Hh(AX,ΠX)) is essential for the validity of

the identity above.
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In order to prove Theorem 9.1, we are going to construct a family of quasimodes ϕ
[0]
h ∈ H1(Ω)

satisfying the estimate for h > 0 small enough and the suitable power κ

(9.9) Qh[A,Ω](ϕ
[0]
h ) ≤ hΛX + CΩ(1 + ‖A‖2W 2,∞(Ω))h

κ.

The rationale of this construction is to build a link between the canonical quasimode χhΨ
X

h on the

tangent structure ΠX with our original operator Hh(A,Ω).

Let ν be the length of the chain X. By Proposition 3.29, we can always reduce to ν ≤ 3. We write

X = (x0, . . . , xν−1) with ν ∈ {1, 2, 3}.

Our quasimode ϕ
[0]
h will have distinct features according to the value of ν: We will need ν − 1

intermediaries ϕ
[j]
h , 0 < j < ν, between ϕ

[0]
h and the final object ϕ

[ν]
h defined by the truncated AGE

given in (9.7), i.e.,

(9.10) ϕ
[ν]
h = χhΨ

X

h .

For j = 1, . . . , ν, the function ϕ
[j]
h is defined in the tangent structure Πx0,...,xj−1

. At a glance

ν = 1 The quasimode ϕ
[0]
h is deduced from ϕ

[1]
h = χhΨ

X

h through the local map Ux0 . This is the

classical construction: We say that the quasimode is sitting because as h→ 0 the supports

of ϕ
[0]
h are included in each other and concentrate to x0.

ν = 2 The quasimode ϕ
[0]
h is deduced from ϕ

[1]
h through the local map Ux0 , and ϕ

[1]
h is itself de-

duced from ϕ
[2]
h = χhΨ

X

h through another local map Uv1 connected to the second element

x1 of the chain. We say that the quasimode is sliding because as h → 0 the supports of

ϕ
[0]
h are shifted along a direction x̂1 determined by x1. At this point, the construction will

be very different depending on whether x0 is a conical point or not, and we say that the

quasimodes are respectively hard sliding and soft sliding.

ν = 3 The quasimode ϕ
[0]
h is still deduced from ϕ

[1]
h through Ux0 , and ϕ

[1]
h from ϕ

[2]
h through Uv1 .

Finally ϕ
[2]
h is itself deduced from ϕ

[3]
h = χhΨ

X

h through a third local map Uv2 connected

to the third element x2 of the chain. We say that the quasimode is doubly sliding because

as h → 0 the supports of ϕ
[0]
h are shifted along two directions x̂1 and x̂2 determined by x1

and x2, respectively.

At each level of these constructions, different transformations of the quadratic form will be per-

formed. We organize them in 3 steps [a], [b], and [c]:

[a] for a change of variable into a higher tangent substructure,

[b] for a linearization of the metrics,

[c] for a linearization of the potential.

This construction is illustrated in Figure 2.

Let us introduce some notation.

Notation 9.2. (1) If U is a diffeomorphism, let U∗ be the operator of composition: U∗(f) = f ◦U.

(2) If ζvh is a phase, let Zv
h be the operator of multiplication Zv

h(f) = f ζvh.
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We are going to define recursively functions ϕ
[j]
h assuming that ϕ

[j+1]
h is known. Typically, these

relations will take the form

(9.11) ϕ
[j]
h = Z

vj
h ◦ Uvj

∗ (ϕ
[j+1]
h ).

Remark 9.3. Since x0 is determined, we can always assume that x0 belongs to the reference set X
of an admissible atlas. The error rate that we will obtain in the end will depend on whether ν = 1
or is larger, and on whether x0 is a conical point or not.

ν 0 1 2 3

Domain Ω
Ux0

- Πx0

Uv1
- Πx0,x1

Uv2
- Πx0,x1,x2

�
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FIGURE 2. Construction of quasimodes

9.2. First level of construction and sitting quasimodes. We perform the first change of vari-

ables as in Section 4.1: The local diffeomorphism Ux0 sends (a neighborhood of) x0 in Ω to (a

neighborhood of) 0 in Πx0 .

• [a1]. Let Ax0 be the new potential (4.1) deduced from A − A(x0) by the local map Ux0 . Let

ζx0h (x) = ei〈A(x0), x/h〉, for x ∈ Ω. Let us introduce the relation

(9.12) ϕ
[0]
h = Zx0

h ◦ Ux0
∗ (ϕ

[1]
h ),

and let r
[1]
h be the radius of the smallest ball centered at 0 containing the support of ϕ

[1]
h in Πx0 .

The number r
[1]
h is intended to converge to 0 as h tends to 0.
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Using (4.5), we have

(9.13) Qh[A,Ω](ϕ
[0]
h ) = Qh[A

x0,Πx0 ,G
x0](ϕ

[1]
h ).

• [b1]. We now linearize the metric Gx0 in (9.13) by using Lemma 4.5, case (a). We find the

relation between the Rayleigh quotients

(9.14) Qh[A,Ω](ϕ
[0]
h ) = Qh[A

x0,Πx0](ϕ
[1]
h )

(
1 +O(r

[1]
h )

)
,

which implies

(9.15)

∣∣∣Qh[A,Ω](ϕ
[0]
h )− Qh[A

x0 ,Πx0 ](ϕ
[1]
h )

∣∣∣ ≤ CΩ r
[1]
h Qh[A

x0 ,Πx0 ](ϕ
[1]
h ).

• [c1]. We recall that Ax0
0

is the linear part of Ax0 at 0. Using relation (A.6) with A = Ax0 and

A′ = Ax0
0

and a Cauchy-Schwarz inequality, we obtain

(9.16)

∣∣∣qh[Ax0 ,Πx0](ϕ
[1]
h )− qh[A

x0
0
,Πx0 ](ϕ

[1]
h )

∣∣∣ ≤ 2
(
a
[1]
h

√
µ
[1]
h +

(
a
[1]
h

)2)‖ϕ[1]
h ‖2,

where we have set

(9.17) µ
[1]
h = Qh[A

x0
0
,Πx0 ](ϕ

[1]
h ) and a

[1]
h =

‖(Ax0 − Ax0
0
)ϕ

[1]
h ‖

‖ϕ[1]
h ‖

.

By Lemmas 4.6 and 4.7 (a), and since ϕ
[1]
h is supported in the ball B(0, r[1]h ), we have

(9.18) a
[1]
h ≤ C(A)

(
r
[1]
h

)2
with C(A) = CΩ

(
1 + ‖A‖2W 2,∞(Ω)

)
.

Putting together (9.16)–(9.18), we obtain

(9.19)

∣∣∣Qh[A
x0 ,Πx0 ](ϕ

[1]
h )− Qh[A

x0
0
,Πx0 ](ϕ

[1]
h )

∣∣∣ ≤ C(A)
((
r
[1]
h

)2√
µ
[1]
h +

(
r
[1]
h

)4)
.

Using the above estimate (9.19), we have

r
[1]
h Qh[A

x0 ,Πx0](ϕ
[1]
h ) ≤ r

[1]
h

(
Qh[A

x0
0
,Πx0 ](ϕ

[1]
h ) + C(A)

((
r
[1]
h

)2√
µ
[1]
h +

(
r
[1]
h

)4)
)
.

Combining this last inequality, (9.19) and (9.15), we have for r
[1]
h small enough

∣∣∣Qh[A,Ω](ϕ
[0]
h )− Qh[A

x0
0
,Πx0 ](ϕ

[1]
h )

∣∣∣ ≤ C(A)
(
µ
[1]
h r

[1]
h +

(
r
[1]
h

)2√
µ
[1]
h +

(
r
[1]
h

)4)
.(9.20)

• [Conclusion1]. If ν = 1, we set, as already mentioned, ϕ
[1]
h = χhΨ

X

h . Note that Ax0
0

coincides

with AX. To tune the cut-off χh, we choose the exponent δ as δ0 and the radius R as 1. Therefore

r
[1]
h = O(hδ0) and by (9.8) µ

[1]
h = O(h). Using (9.20) and again (9.8), we deduce

(9.21) Qh[A,Ω](ϕ
[0]
h ) ≤ hΛX + C(A)

(
h2−2δ0 + h1+δ0 + h

1
2
+2δ0 + h4δ0

)
.

So we can conclude in the sitting case. Choosing δ0 = 3/8, we optimize remainders and we get

the upper bound

λh(B,Ω) ≤ hE (B,Ω) + CΩ

(
1 + ‖A‖2W 2,∞(Ω)

)
h5/4 .
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• Case when B(x0) = 0. If B(x0) = 0, the function ΨX ≡ 1 is an AGE on Πx0 associated with

the value ΛX = 0. We are in the sitting case ν = 1 and the estimate (9.20) is still valid. But now

(9.8) (combined with Remark 7.11) yields

Qh[AX,ΠX](χhΨ
X

h) ≤ Ch2−2δ.

Choosing δ as δ0 as above, we deduce µ
[1]
h = O(h2−2δ0). Hence

(9.22) Qh[A,Ω](ϕ
[0]
h ) ≤ C

(
h2−2δ0 + h2−2δ0+δ0 + h1−δ0+2δ0 + h4δ0

)
.

Choosing δ0 = 1/3, we optimize remainders and we get the upper bound

λh(B,Ω) ≤ CΩ

(
1 + ‖A‖2W 2,∞(Ω)

)
h4/3 .

• Case when x0 is a corner and ΨX is an eigenvector. Since E(Bx0 ,Πx0) < E ∗(Bx0 ,Πx0) and

λess(Bx0 ,Πx0) = E ∗(Bx0 ,Πx0) by Theorem 6.6, the generalized eigenfunction ΨX of H(Ax0 ,Πx0)
provided by Theorem 7.3 is an eigenfunction and has exponential decay. Here X = (x0) and the

quasimode ϕ
[0]
h is sitting. Using (4.14) and Lemma 4.7 (a), we get CΩ > 0 such that

∀x ∈ supp(ϕ
[1]
h ), |(Ax0 − Ax0

0
)(x)| ≤ CΩ‖Ax0‖

W 2,∞(supp(ϕ
[1]
h ))

|x|2 .

Using the change of variable X = xh−1/2 and the exponential decay of ΨX we get

(9.23) a
[1]
h =

‖(Ax0 −Ax0
0
)ϕ

[1]
h ‖

‖ϕ[1]
h ‖

≤ CΩ‖Ax0‖
W 2,∞(supp(ϕ

[1]
h ))

h.

Using (9.16) with estimate (9.23) and Lemma 7.10, for any δ ∈ (0, 1
2
], we get

Qh[A
x0 ,Πx0 ](ϕ

[1]
h ) ≤ hΛX + C

(
h2−2δe−ch

δ−1
2 + ‖A‖W 2,∞(Ω)h

3
2 + ‖A‖2W 2,∞(Ω)h

2
)

≤ hΛX + C
(
1 + ‖A‖2W 2,∞(Ω)

) (
h2−2δe−ch

δ− 1
2 + h

3
2

)
.

Thanks to (9.15), the quasimode ϕ
[0]
h satisfies

Qh[A,Ω](ϕ
[0]
h ) ≤

(
1 +O(hδ)

){
hΛX + C

(
1 + ‖A‖2W 2,∞(Ω)

)
(h2−2δe−ch

δ−1
2 + h3/2)

}

≤ hΛX + C
(
1 + ‖A‖2W 2,∞(Ω)

){
h1+δ + h2−2δe−ch

δ− 1
2 + h3/2

}
.

Here C denotes various constants depending on Ω but independent from h ≤ h0 and δ ≤ 1
2
. We

optimize this by taking δ = 1
2
− ε(h) with ε(h) so that h1+δ = h2−2δe−ch

δ−1
2 , i.e.,

h
3
2
−ε(h) = h1+2ε(h)e−ch

−ε(h)

.

We find

ech
−ε(h)

= h−
1
2
+3ε(h), i.e., h−ε(h) = 1

c
(−1

2
+ 3ε(h)) log h .

The latter equation has one solution ε(h) which tends to 0 as h tends to 0. Replacing h−ε(h) by the

value above in h
3
2
−ε(h), we find that the remainder is a O(h3/2| log h|).
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• Case when Ω is a straight polyhedron and B constant. According to Remark 8.3 d), we may

assume that (B,Πx0) is in case (i) of the Dichotomy Theorem. We construct a sitting quasimode

near x0. Since the magnetic field is constant, we may associate a linear magnetic potential A.

Define now ϕ
[0]
h from ϕ

[1]
h as in (9.12) and tune the cut-off by choosing δ = 0 and R > 0 large

enough such that the support of χh is contained in a map-neighborhood Vx0 of 0 in Πx0 .

Notice that Ux0 is the translation x 7→ x − x0 and that the linear part of the potential satisfies

Ax0
0

= Ax0 . Therefore the error terms due to the change of variables and the linearization of the

potential appearing in step [b1] are zero, and (9.20) is improved in

Qh[A,Ω](ϕ
[0]
h ) = Qh[A

x0
0
,Πx0 ](ϕ

[1]
h ) .

Estimate (9.5) is then a direct consequence of identity (7.9) combined with Lemma 7.10.

9.3. Second level of construction and sliding quasimodes. We have now to deal with the case

ν ≥ 2. So X = (x0, x1) or (x0, x1, x2).

Here we use the same notation as the introduction of singular chains in Section 3.4. Let U0 ∈ O3

such that Πx0 = U0(R3−d0 ×Γx0) where Γx0 is the reduced cone of Πx0 . Let Ωx0 = Γx0 ∩ Sd0−1 be

the section of Γx0 . By definition of chains, x1 belongs to Ωx0 and let Cx0,x1 be the tangent cone to

Ωx0 at x1. Then the tangent substructure Πx0,x1 is determined by the formula

Πx0,x1 = U0
(
R

3−d0 × 〈x1〉 × Cx0,x1

)
.

Let us define the unitary vector x̂1 by the formulas

(9.24) x̂1 := (0, x1) ∈ R
3−d0 × Γx0 and x̂1 = U0 x̂1 ∈ Πx0 ∩ S

2.

With this definition, the substructure Πx0,x1 is the tangent cone to Πx0 at the point x̂1. Note that

in the case when x0 is a vertex of Ω, the above formulas simplify: Πx0 is its own reduced cone,

Πx0,x1 = 〈x1〉 × Cx0,x1 , and x̂1 coincides with x1.

Note also that the cone Πx0,x1 can be the full space, a half-space or a wedge, and that x̂1 gives a

direction associated with Πx0,x1 starting from the origin 0 of Πx0 :

(1) If Πx0,x1 ≡ R3, then x̂1 belongs to the interior of Πx0 .

(2) If Πx0,x1 ≡ R2 × R+, then x̂1 belongs to a face of Πx0 .

(3) If Πx0,x1 ≡ Wα, then x̂1 belongs to an edge of Πx0 .

Unless we are in the latter case (Πx0,x1 is a wedge), the choice of x̂1 is not unique.

Set v1 = d
[1]
h x̂1 where d

[1]
h is a positive quantity intended to converge to 0 with h. The vector v1 is

a shift that allows to pass from the cone Πx0 to the substructure Πx0,x1 , which is also the tangent

cone to Πx0 at the point v1. Let Uv1 be a local diffeomorphism that sends (a neighborhood Uv1 of)

v1 in Πx0 to (a neighborhood Vv1 of) 0 in Πx0,x1 . We can assume without restriction that Uv1 is

part of an admissible atlas on Πx0 .

• [a2]. By the change of variable Uv1 , the potential Ax0
0
− Ax0

0
(v1) becomes Av1 (cf. (4.1))

Av1 = (Jv1)⊤
((

Ax0
0
− Ax0

0
(v1)

)
◦ (Uv1)−1

)
with Jv1 = d(Uv1)−1.
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Let ζv1h (x) = ei〈A
x0
0
(v1), x/h〉, for x ∈ Πx0 . We introduce the relation

(9.25) ϕ
[1]
h = Zv1

h ◦ Uv1
∗ (ϕ

[2]
h ),

and let r
[2]
h be the radius of the smallest ball centered at 0 containing the support of ϕ

[2]
h in Πx0,x1 .

This new quantity is also intended to converge to 0 with h.

We now have a turning point of the algorithm: if x0 is not a conical point, we use the fact that Uv1

is a translation. Then Gv1 = I and Av1 coincides with its linear part Av1
0

. Steps [b] and [c] are

replaced by the following identity:

(9.26) Qh[A
x0
0
,Πx0 ](ϕ

[1]
h ) = Qh[A

v1
0
,ΠX](ϕ

[2]
h ),

and we are able to make a direct estimation of the quasimodes, see the [Conclusion2(a)] below.

We will called them soft sliding quasimodes.

If x0 is a conical point, we continue the algorithm as described below:

• [b2]. Using (4.5) and (4.13) in Lemma 4.5, we find a relation between Rayleigh quotients of

the same form as (9.14), with O(r
[1]
h ) replaced by O(r

[2]
h /d

[1]
h ). Like for (9.15), we deduce

∣∣∣Qh[A
x0
0
,Πx0 ](ϕ

[1]
h )− Qh[A

v1 ,Πx0,x1 ](ϕ
[2]
h )

∣∣∣ . r
[2]
h

d
[1]
h

Qh[A
v1 ,Πx0,x1 ](ϕ

[2]
h ).(9.27)

• [c2]. Let Av1
0

be the linear part of Av1 at 0 ∈ Πx0,x1 . Thus, by relation (A.6) and a Cauchy-

Schwarz inequality, we have

(9.28)

∣∣∣qh[Av1 ,Πx0,x1](ϕ
[2]
h )− qh[A

v1
0
,Πx0,x1 ](ϕ

[2]
h )

∣∣∣ ≤ C
(
a
[2]
h

√
µ
[2]
h +

(
a
[2]
h

)2)‖ϕ[2]
h ‖2,

with

(9.29) µ
[2]
h = Qh[A

v1
0
,Πx0,x1 ](ϕ

[2]
h ) and a

[2]
h =

‖(Av1 − Av1
0
)ϕ

[2]
h ‖

‖ϕ[2]
h ‖

.

By Lemmas 4.6–4.7, case (b), and since ϕ
[2]
h is supported in the ball B(0, r[2]h ), we have

(9.30) a
[2]
h .

(
r
[2]
h

)2

d
[1]
h

.

Using (9.27)–(9.30), we find, if r
[2]
h /d

[1]
h is small enough,

(9.31)

∣∣∣Qh[A
x0
0
,Πx0 ](ϕ

[1]
h )− Qh[A

v1
0
,Πx0,x1 ](ϕ

[2]
h )

∣∣∣ . µ
[2]
h

r
[2]
h

d
[1]
h

+

(
r
[2]
h

)2

d
[1]
h

√
µ
[2]
h +

(
r
[2]
h

)4
(
d
[1]
h

)2 .

• [Conclusion2]. If ν = 2, we set, as already mentioned, ϕ
[2]
h = χhΨ

X

h . Note that Av1
0

coincides

with AX. We have now to distinguish two cases, according as x0 is or not a conical point.

(a) Soft sliding. If x0 is not a conical point, i.e., x0 6∈ V◦, the local map Uv1 is the translation

x 7→ x − v1. To tune the cut-off χh, we choose the exponent δ as δ0 and the shift d
[1]
h as hδ0 .
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We choose the radius R for the cut-off χh (7.8) so that the support of χ
R

is contained in a map

neighborhood Vv1 of 0 in Πx0,x1 , i.e., a neighborhood such that:

Uv1(Uv1 ∩ Πx0) = Vv1 ∩ Πx0,x1 ,

where Uv1(x) = x− v1 and Uv1 = Vv1 + v1. Then the quantities r
[1]
h and r

[2]
h are both O(hδ0) and

we can combine (9.26) with (9.20) and the cut-off estimate (9.8). Moreover for h small enough,

the quantities µ
[1]
h is O(h), and we deduce the estimate (9.21) as in the case ν = 1, which leads,

like in the sitting case, to the upper bound (9.2) with h5/4. The latter step ends in particular the

handling of the polyhedral case since we can always reduce to chains of length ν ≤ 2 in polyhedral

domains, cf. Proposition 3.29.

(b) Hard sliding. If x0 is a conical point, to tune the cut-off χh, we choose the exponent δ as

δ0 + δ1 and the shift d
[1]
h as hδ0 , with δ0, δ1 > 0 such that δ0 + δ1 <

1
2
. We choose the radius R

equal to 1. Therefore r
[2]
h = O(hδ0+δ1) and r

[1]
h = O(hδ0). By (9.8) µ

[2]
h = O(h) and, since for h

small enough, r
[2]
h /d

[1]
h is arbitrarily small, we also deduce with the help of (9.31) that µ

[1]
h = O(h).

Putting this together with (9.20) and (9.31), and using (9.8) once more, we deduce the estimate

(9.32) Qh[A,Ω](ϕ
[0]
h ) ≤ hΛX + C

(
h1+δ0 + h

1
2
+2δ0 + h4δ0

)

+ C
(
h2−2δ0−2δ1 + h1+δ1 + h

1
2
+δ0+2δ1 + h2δ0+4δ1

)
.

The exponents that appear here are the same as for the lower bound (5.26). Thus taking δ0 = 3/10
and δ1 = 3/20, we optimize remainders and deduce

λh(B,Ω) ≤ hE (B,Ω) + CΩ

(
1 + ‖A‖2W 2,∞(Ω)

)
h11/10 .

9.4. Third level of construction and doubly sliding quasimodes. It remains to deal the case

ν = 3. In that case, the chain X = (x0, x1, x2) is such that

• x0 is a conical point,

• x1 is a vertex of Ωx0 , x̂1 coincides with x1, the corresponding edge of Πx0 is generated by

x1, and Πx0,x1 is a wedge,

• x2 is an end of the interval Ωx0,x1 , it corresponds to a point x̂2 on a face of Πx0,x1 , defined

as in (9.24). Finally Πx1,x1,x2 = ΠX is a half-space.

Set v2 = d
[2]
h x̂2 where d

[2]
h is a positive quantity intended to converge to 0 with h. Let Uv2 be the

translation that sends (a neighborhood of) v2 in Πx0,x1 to (a neighborhood of) 0 in ΠX = Πx0,x1,x2 .

• [a3]. By the change of variable Uv2 , since Jv2 = I3, the potential Av1
0
− Av1

0
(v2) becomes

Av2 =
(
Av1

0
−Av1

0
(v2)

)
◦ (Uv2)−1,

and it coincides with its linear part Av2
0

. Let ζv2h (x) = ei〈A
v1
0
(v2), x/h〉, for x ∈ Πx0,x1 . We define

(9.33) ϕ
[2]
h = Zv2

h ◦ Uv2
∗ (ϕ

[3]
h ).

Since Gv2 = I3, we have

(9.34) Qh[A
v1
0
,Πx0,x1 ](ϕ

[2]
h ) = Qh[A

v2
0
,ΠX](ϕ

[3]
h ).
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• [Conclusion3]. We set, as already mentioned ϕ
[3]
h = χhΨ

X

h . We have Av2
0

= AX. We choose the

exponent δ as δ0+ δ1, the shifts d
[2]
h as hδ0+δ1 and d

[1]
h as hδ0 , with δ0, δ1 > 0 such that δ0+ δ1 <

1
2
.

We conclude as the conical case at level 2 and obtain again (9.32). We deduce

λh(B,Ω) ≤ hE (B,Ω) + CΩ

(
1 + ‖A‖2W 2,∞(Ω)

)
h11/10 .

9.5. Conclusion. The outcome of the last four sections is the achievement of the proof of The-

orem 9.1. We may notice that there is only one configuration where we cannot prove the con-

vergence rate h5/4: This is the case when all points with minimal local energy x0 satisfy all the

following conditions

(1) x0 is a conical point (x0 ∈ V◦),

(2) The model operator H(Ax0 ,Πx0) has no eigenvalue below its essential spectrum,

(3) The geometry around x0 is not trivial i.e., the derivative Kx0(0) of the Jacobian is not zero.

10. STABILITY OF ADMISSIBLE GENERALIZED EIGENVECTORS

In order to meet our claim for the improved upper bounds (1.12), we need to revisit AGE’s (Ad-

missible Generalized Eigenvectors) of model problems H(A,Π). In particular we want to know

what are their stability properties under perturbation of the constant magnetic field B = curlA.

10.1. Structure of AGE’s. In this section we recall from Section 6 the model reference configu-

rations (B,Π) owning an AGE and give a comprehensive overview of their structure in a table.

Let B be a constant magnetic field and Π a cone in P3. Remind that d = d(Π) is the reduced

dimension of Π, cf. Definition 3.16. Let us assume that E(B,Π) < E ∗(B,Π). Therefore by

Theorem 7.3 there exists an AGE Ψ that has the form (7.1). We recall the discriminant parameter

k ∈ {1, 2, 3} that is the number of directions in which the generalized eigenvector has an expo-

nential decay. For further use we call (G1), (G2), and (G3) the situation where k = 1, 2, and 3,

respectively. As a consequence of Lemma 7.2, it is enough to concentrate on reference configura-

tions for the magnetic field B, its potential A and the cone Π. In such a reference configuration

the AGE writes as

Ψ(y, z) = eiϑ(y,z)Φ(z) ∀y ∈ R
3−k, ∀z ∈ Υ.

In Table 1 we gather all possible situations for the couple of dimensions (k, d). We provide

the explicit form of an admissible generalized eigenfunction Ψ of H(A,Π) in variables (y, z) ∈
R3−k×Υ where A is a reference linear potential associated with B. Note that the cone Υ on which

Ψ has exponential decay does not always coincide with the reduced cone Γ of Π.

Remark 10.1. Table 1 provides all reference situations where condition (i) of the Dichotomy The-

orem holds. This condition guaranties the existence of an AGE. However there exist cases where

this condition does not hold and, nevertheless, there exists an AGE. An example of this is the half-

space Π = R+ × R2 with coordinates (y, z1, z2), and B the field (1, 0, 0) normal to the boundary.

We take the same reference potential as in the case Π = R3 and we find, as described in [38,

Lemma 4.3], that the same function Ψ : (y, z) 7→ e−|z|2/4 displayed in Row 2 of Table 1 is also
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(k, d)
(y, z)

Reference field B

and cone Π
Reference potential A Υ Explicit Ψ Φ eigenvector of

(1, 1)
(y1, y2, z)

(0, 1, 0)
Π = R2 × R+

(z, 0, 0) R+ = Γ e−i
√
Θ0y1Φ(z) −∂2

z + (z −√
Θ0)

2

(2, 0)
(y, z1, z2)

(1, 0, 0)
Π = R3

(0,− 1

2
z2,

1

2
z1) R2 e−|z|2/4 −∆z + iz×∇z +

|z|2
4

(2, 1)
(y, z1, z2)

(0, b1, b2), b2 6= 0
Π = R2 × R+

(b1z2 − b2z1, 0, 0) R× R+ Φ(z) −∆z + (b1z2 − b2z1)
2

(2, 2)
(y, z1, z2)

(b0, b1, b2)
Π = R× Sα

(b1z2 − b2z1, 0, b0z1) Sα = Γ eiτ
∗yΦ(z) Ĥτ (A,Wα), cf. (6.13)

(3, 3) Π = Γ Φ(z) H(A,Π)

TABLE 1. AGE of H(A,Π) when E(B,Π) < E ∗(B,Π), written in variables (y, z).

an AGE for H(A,R+ × R2), since it satisfies the Neumann boundary conditions at the boundary

y = 0.

10.2. Stability under perturbation. Here we describe stability properties of AGE’s under per-

turbations of the magnetic field B.

Assume that we are in case (i) of the dichotomy (Theorem 7.3). We recall that the notations (G1),

(G2) and (G3) refer to the number k = 1, 2, 3, of independent decaying directions for the AGE,

cf. Section 10.1. We first note that we do not need any stability analysis in situation (G3) since

the points x in Ω ∈ D(R3) for which d(Πx) = 3 are but corners, so they are isolated. In contrast,

points in situation (G1) or (G2) are not isolated, in general. A perturbation of the magnetic field

has distinct effects in each case. The geometrical situation leading to (G1) is clearly not stable.

However, we prove in the following lemma the local stability of case (i) of the dichotomy, together

with local uniform estimates for exponential decay in situation (G2).

Lemma 10.2. Let B0 be a nonzero constant magnetic field and Π be a cone in P3 with reduced

dimension d ≤ 2. Assume that E(B0,Π) < E ∗(B0,Π).

(a) There exists a positive ε0 such that in the ball B(B0, ε0), the function B 7→ E(B,Π) is

Lipschitz-continuous and

E(B,Π) < E
∗(B,Π) ∀B ∈ B(B0, ε0).

(b) We suppose moreover that (B0,Π) is in situation (G2). For B ∈ B(B0, ε0), we denote by

ΨB an AGE given by Theorem 7.3. Then there exists ε1 ∈ (0, ε0] such that (B,Π) is still in

situation (G2) if B ∈ B(B0, ε) and ΨB has the form

ΨB(x) = eiϕ
B(y,z)ΦB(z) for UBx = (y, z) ∈ R×Υ,

with UB a suitable rotation, and there exist constants ce > 0 and Ce > 0 such that there hold

the uniform exponential decay estimates

(10.1) ∀B ∈ B(B0, ε1), ‖ΦBece|z|‖L2(Υ) ≤ Ce‖ΦB‖L2(Υ) .
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Proof. Let us distinguish the three possible situations according to the value of d:

d = 0 : When Π = R3, we haveE(B,Π) = |B| and E ∗(B,Π) = +∞. Combining Row 2 of Table

1 and Lemma 7.2, the admissible generalized eigenvector ΨB is explicit. Thus (a) and (b)

are established in this case.

d = 1 : When Π is a half-space, we denote by θ(B) the unoriented angle in [0, π
2
] between B and

the boundary. Then E(B,Π) = |B| σ(θ(B)). The function B 7→ θ(B) is Lipschitz outside

{0} and, moreover, the function σ is C 1 on [0, π/2] (see Lemma 6.3). We deduce that

the function B 7→ σ(θ(B)) is Lipschitz outside {0}. Thus point (a) is proved. Assuming

furthermore that (Π,B0) is in situation (G2), we have θ(B0) ∈ (0, π
2
) and there exist ε > 0,

θmin and θmax such that

∀B ∈ B(B0, ε), θ(B) ∈ [θmin, θmax] ⊂ (0, π
2
) .

The admissible generalized eigenvector is constructed above. The uniform exponential

estimate is proved in [10, §2].

d = 2 : When Π is a wedge, point (a) comes from [49, Proposition 4.6]. Due to the continuity of

B 7→ E(B,Π) there exist c > 0 and ε > 0 such that

∀B ∈ B(B0, ε), E
∗(B,Π)−E(B,Π) > c.

Point (b) is then a direct consequence of [49, Proposition 4.2].

The proof of Lemma 10.2 is complete. �

Remark 10.3. The latter lemma can be generalized in several directions.

a) Lemma 10.2 (a) is still valid when d = 3. This can be proved by arguments similar to those

employed in [49, Section 4] for dihedra.

b) When d = 2, it is proved in [49] that the ground state energy is also Lipschitz with respect to

the aperture angle of the wedge in case (i) of the Dichotomy Theorem, whereas one can prove

only 1
3
-Hölder regularity under perturbations in the general case (i.e., without the condition

E(B0,Π) < E ∗(B0,Π)).

Remark 10.4. A constant magnetic field enters the family of long range magnetic fields. So

Lemma 10.2 can be related to some spectral analyses of Schrödinger operators in Rn under long

range magnetic perturbations. Such perturbations do not pertain to the usual Kato theory. When

the spectrum has a band structure, the question of the stability of, e.g., its lower bound with respect

to the strength of the perturbation has been addressed by many authors, see for example [3, 4] for

the continuity, then [43, 14] for Hölder properties, and [15] for Lipschitz continuity in the case of

constant magnetic fields.

As a consequence of the local uniform estimate (10.1), we obtain the following local uniform

version of Lemma 7.10 for situation (G2).

Lemma 10.5. Let B0 be a nonzero constant magnetic field and Π a cone in P3. Assume that

E(B0,Π) < E
∗(B0,Π) and that k = 2. With ε1 given in Lemma 10.2 (b), for any B ∈ B(B0, ε1)

let ΨB be an AGE for (B,Π). Let δ0 <
1
2

be a positive number. Let ΨB
h be the rescaled function

given by (7.5) and let χh be the cut-off function defined by (7.7)–(7.8) involving parametersR > 0
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and δ ∈ [0, δ0]. Let R0 > 0. Then there exist constants h0 > 0, C1 > 0 depending only on R0, δ0
and on the constants ce, Ce in (10.1) such that

ρh =
‖ |∇χh|ΨB

h‖2
‖χhΨB

h‖2
≤ C1 h

−2δ ∀R ≥ R0, ∀h ≤ h0, ∀δ ∈ [0, δ0] .

Proof. We obtain an upper bound of ‖ |∇χh|ΨB
h‖2 as in the proof of Lemma 7.10. Let us now

deal with the lower-bound of ‖χhΨB
h‖2. With T = Rhδ and k = 2, we have

‖χhΨB
h‖2 ≥ CT 3−khk/2

∫

Υ∩
{
2|z|≤Th−1

2

}
∣∣ΦB(z)

∣∣2 dz

≥ CT 3−khk/2
(
1− Cee

−ceRhδ−1/2
)
‖ΦB‖2L2(Υ).(10.2)

Since 0 ≤ δ ≤ δ0 <
1
2
, there holds Cee

−ceRhδ−1/2
< 1

2
for h small enough orR large enough. Thus

we deduce the lemma. �

11. IMPROVEMENT OF UPPER BOUNDS FOR MORE REGULAR MAGNETIC FIELDS

For our improvement of remainders, in comparison with Theorem 9.1 our sole additional assump-

tion is a supplementary regularity on the magnetic potential (or equivalently on the magnetic field).

Our result is also general, in the sense that it addresses general corner domains.

Theorem 11.1. Let Ω ∈ D(R3) be a general corner domain, A ∈ W 3,∞(Ω) be a magnetic

potential such that the associated magnetic field does not vanish.

(i) Then there exist C(Ω) > 0 and h0 > 0 such that

(11.1) ∀h ∈ (0, h0), λh(B,Ω) ≤ hE (B,Ω) + C(Ω)
(
1 + ‖A‖2W 3,∞(Ω)

)
h9/8 .

(ii) If Ω is a polyhedral domain, this upper bound is improved:

(11.2) ∀h ∈ (0, h0), λh(B,Ω) ≤ hE (B,Ω) + C(Ω)
(
1 + ‖A‖2W 3,∞(Ω)

)
h4/3 .

The strategy is to optimize the construction of adapted sitting or sliding quasimodes by taking

actually advantage of the decaying properties of AGE’s ΨX associated with the minimal energy

E (B,Ω). In fact, our proof of the h11/10 or h5/4 upper bounds as done in Section 9 weakly uses

the exponential decay of generalized eigenfunctions in some directions. It would also work with

purely oscillating generalized eigenfunctions. Now the proof of the h9/8 or h4/3 upper bound

makes a more extensive use of fine properties of the model problems: First, the decay properties

of admissible generalized eigenvectors, and second, the Lipschitz regularity of the ground state

energy depending on the magnetic field, cf. Lemma 10.2.

The method depends on the number k of directions in which ΨX has exponential decay, namely

whether we are in situation (G1), (G2) or (G3). Indeed, situation (G3) is already handled in The-

orem 9.1 (d) and we have already obtained a better estimate in this case. So it remains situations

(G1) and (G2) which are considered in Section 11.1 and 11.2, respectively.

Like for Theorem 9.1 we start from suitable AGE’s ΨX and construct sitting or sliding quasimodes

adapted to the geometry. In comparison with the proof of Theorem 9.1, the strategy is to improve
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step [c] that consists in the linearization of the magnetic potential, see Section 9.1 and Figure 2:

We take more precisely advantage of the decaying property of the AGE ΨX, choosing coordinates

in which ΨX takes the form of reference, as listed in Table 1. Then we adopt different strategies

depending on whether we are in situation (G1) or (G2): The improvement relies on a Feynman-

Hellmann formula for (G1), and a refined Taylor expansion of the potential for (G2)

We recall that x0 ∈ Ω is a point such that E(Bx0 ,Πx0) = E (B,Ω). Theorem 7.3 and Remark 7.4

provide the existence of a singular chain X that satisfies

E (B,Ω) = E(Bx0 ,Πx0) = E(BX,ΠX) < E
∗(BX,ΠX).

We now split our analysis according to the two geometric configurations (G1) and (G2):

(G1) ΠX is a half-space and Bx0 is tangent to the boundary, cf. Row 1 of Table 1.

(G2) We are in one of the following situations:

– ΠX = R3, cf. Row 2 of Table 1,

– ΠX is a half-space, Bx0 is neither tangent nor normal to ∂ΠX, cf. Row 3 of Table 1,

– ΠX is a wedge, cf. Row 4 of Table 1.

In each configuration, the estimates concerning the constructed quasimodes depend on the length

ν of the chain X and on whether x0 is a conical point or not. The relevant categories of quasimodes

are qualified as sitting (ν = 1), hard sliding (ν = 2, x0 conical point), soft sliding (ν = 2, x0 not a

conical point), and doubly sliding (ν = 3), see Section 9.1.

11.1. (G1) One direction of exponential decay. In situation (G1) the generalized eigenfunction

has exponential decay in one variable z. The upper bounds (9.16) and (9.28) are obtained by a

Cauchy-Schwarz inequality. We are going to improve them, going back to the identity (A.6) and

using a Feynman-Hellmann formula to simplify the cross term in (A.6).

In situation (G1) ΠX is a half-space and BX is tangent to its boundary. Denote by (y, z) =
(y1, y2, z) ∈ R2 × R+ a system of coordinates of ΠX such that BX is tangent to the y2-axis.

In these coordinates, the magnetic field BX writes (0, b, 0).

In the rest of this proof, we will assume without restriction that b = 1. Indeed, once quasimodes

are constructed for b = 1, Lemmas A.4 and A.7 allow to convert them into quasimodes for any b.
Thus we have ΛX = Θ0, cf. Row 1 of Table 1.

The principle of the quasimode construction is to replace the last relation (9.10) ϕ
[ν]
h = χhΨ

X

h with

the new relation

(11.3) ϕ
[ν]
h = U∗ ◦ ZFh (χ�

h Ψh)

where U is the rotation x 7→ x♮ := (y, z) that maps ΠX onto the reference half-space R2 ×R+, the

function χ�

h is the cut-off in tensor product form (here for simplicity we denote χ
R

by χ) defined

as

(11.4) χ�

h (y, z) = χ
( |y|
hδ

)
χ
( z

hδ

)

ZFh is a change of gauge and Ψh a canonical generalized eigenvector defined as follows.
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The canonical reference potential (see Row 1 of Table 1)

(11.5) A(y, z) = (z, 0, 0),

is such that curlA = (0, 1, 0). We know (see Section 10.1) that the function

(11.6) Ψh(y, z) := e−i
√
Θ0 y1/

√
hΦ

( z√
h

)

is a generalized eigenvector of Hh(A,R
2 × R+) for the value hΘ0. Here Φ is a normalized

eigenvector associated with the first eigenvalue of the de Gennes operator −∂2z + (z−
√
Θ0)

2. By

identity (7.9) and Lemma 7.10 we obtain the cut-off estimate

(11.7) Qh[A,R
2 × R+](χ

�

h Ψh) = hΘ0 +O(h2−2δ) = hΛX +O(h2−2δ).

Let J be the matrix associated with U. In variables x♮, the tangent potential AX is transformed into

the potential A
♮
0

(11.8) A
♮
0
(x♮) = J⊤(AX(x)),

that satisfies

curlA♮
0
= curlA .

Since A and A
♮
0

are both linear, there exists a homogenous polynomial function of degree two F ♮

such that

(11.9) A
♮
0
−∇♮F

♮ = A.

Therefore, e−iF
♮/hΨh is an admissible generalized eigenvector for Hh(A

♮
0
,R2 × R+) associated

with the value hΛX.

11.1.1. Sitting quasimodes. This is the case when ν = 1 and X = (x0). Thus Πx0 coincides with

ΠX. We keep relation (9.12) linking ϕ
[0]
h to ϕ

[1]
h and ϕ

[1]
h is now defined by the formula

(11.10) ϕ
[1]
h (x) = e−iF

♮(x♮)/hχ�

h (y, z)Ψh(y, z) = e−iF
♮(x♮)/hψh(y, z), ∀x ∈ ΠX ,

Here we set for shortness

ψh := χ�

h Ψh and V �

h := supp(χ�

h ).

Let J be the matrix associated with U. Let A♮ be the magnetic potential associated with Ax0 in

variables x♮:

(11.11) A♮(x♮) = J⊤
(
Ax0(x)

)
∀x ∈ Vx0 .

Then A
♮
0

(11.8) is its linear part at 0.

We have

Qh[A
x0 ,Πx0 ](ϕ

[1]
h ) = Qh[A

♮,R2 × R+](e
−iF ♮/hψh)(11.12)

= Qh[A
♮ −∇F ♮,R2 × R+](ψh).
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Now we apply (A.6) with A = A♮ −∇F ♮ and A′ = A. Using (11.9) we find A− A′ = A♮ − A
♮
0
,

and write, instead of (9.16)

qh[A
♮ −∇F ♮,R2 × R+](ψh) = qh[A,R

2 × R+](ψh)(11.13)

+ 2Re

∫

R2×R+

(−ih∇ + A)ψh(x
♮) · (A♮ − A

♮
0
)(x♮)ψh(x♮) dx

♮(11.14)

+ ‖(A♮ − A
♮
0
)ψh‖2.(11.15)

As in Section 9.2 [e1], we bound from above the term (11.15) using Lemma 4.6

(11.16) ‖(A♮ − A
♮
0
)ψh‖2 ≤ C(Ω)‖A♮‖2

W 2,∞(V �
h )
h4δ ‖ψh‖2.

Let us now deal with the term (11.14). We calculate (−ih∇ + A)ψh using (11.6):

(−ih∇ + A)ψh(x
♮) = e−i

√
Θ0 y1/

√
h×




χ
( |y|
hδ

)
χ
(
z
hδ

)



(z −
√
hΘ0) Φ

(
z√
h

)

0

−i
√
hΦ′( z√

h

)


− ih1−δ




y1
|y|χ

′( |y|
hδ
) χ( z

hδ
)

y2
|y|χ

′( |y|
hδ
) χ( z

hδ
)

χ( |y|
hδ
) χ′( z

hδ
)


Φ

(
z√
h

)



.

Since Φ and χ are real valued functions, the term (11.14) reduces to a single term:

Re

∫

R2×R+

(−ih∇ + A)ψh(x
♮) · (A♮ −A

♮
0
)(x♮)ψh(x♮) dx

♮

(11.17)

=

∫

R2×R+

(z −
√
hΘ0) |ψh(x♮)|2A(rem,2)

1 (x♮) dx♮

=

∫

R2×R+

(z −
√
hΘ0)

∣∣∣Φ
(
z√
h

)∣∣∣
2 ∣∣∣χ

( |y|
hδ

)∣∣∣
2 ∣∣χ

(
z
hδ

)∣∣2A(rem,2)
1 (x♮) dx♮,

where A
(rem,2)
1 denotes the first component of A♮ − A

♮
0
. We write

(11.18) A
(rem,2)
1 (x♮) = P

(2)
1 (y) +R

(2)
1 (x♮) + A

(rem,3)
1 (x♮),

where A
(rem,3)
1 is the Taylor remainder of degree 3 of the first component of A♮ at 0, whereas

P
(2)
1 (y) +R

(2)
1 (x♮) is a representation of its quadratic part in the form

P
(2)
1 (y) = a1y

2
1 + a2y

2
2 + a3y1y2 and R

(2)
1 (x♮) = b1z

2 + b2zy1 + b3zy2.

As in (A.2) there holds

‖A(rem,3)
1 ‖L∞(V �

h ) ≤ C‖A♮‖W 3,∞(V �
h ) h

3δ,

leading to, with the help of the variable change Z = z/
√
h and the exponential decay of Φ:

(11.19)

∣∣∣∣
∫

R2×R+

(z −
√
hΘ0) |ψh(x♮)|2A(rem,3)

1 (x♮) dx♮
∣∣∣∣ ≤ C‖A♮‖W 3,∞(V �

h )h
1
2
+3δ‖ψh‖2 .



66 VIRGINIE BONNAILLIE-NOËL, MONIQUE DAUGE, AND NICOLAS POPOFF

Likewise, combining the exponential decay of Φ, the change of variable Z = z/
√
h and the

localization of the support in balls of size Chδ, we deduce

(11.20)

∣∣∣∣
∫

R2×R+

(z −
√
hΘ0) |ψh(x♮)|2R(2)

1 (x♮) dx♮
∣∣∣∣ ≤ C‖A♮‖W 2,∞(V �

h )h
min( 3

2
,1+δ)‖ψh‖2 .

Let us now deal with the term involving y 7→ P
(2)
1 (y). Due to a Feynman-Hellmann formula

applied to the de Gennes operator H(τ) at τ = −
√
Θ0 (cf. [29, Lemma A.1]) we find by the

scaling z 7→ z/
√
h the identity∫

R+

(z −
√
hΘ0)

∣∣∣Φ
(
z√
h

)∣∣∣
2

dz = 0 .

Thus we can write∫

R2×R+

(z−
√
hΘ0 ) |ψh(x♮)|2 P (2)

1 (y) dx♮

=

∫

R2

P
(2)
1 (y)

∣∣∣χ
( |y|
hδ

)∣∣∣
2

dy

∫

z∈R+

(z −
√
hΘ0 )

∣∣∣Φ
(
z√
h

)∣∣∣
2

χ
(
z
hδ

)2
dz

=

∫

R2

P
(2)
1 (y)

∣∣∣χ
( |y|
hδ

)∣∣∣
2

dy

∫

z∈R+

(z −
√
hΘ0 )

∣∣∣Φ
(
z√
h

)∣∣∣
2 (
χ
(
z
hδ

)2 − 1
)
dz.

The support of the integral in z is contained in z ≥ Rhδ with δ < 1
2
. Therefore, using once more

the changes of variables Y = y/hδ and Z = z/
√
h, we find:

∣∣∣∣
∫

R2×R+

(z −
√
hΘ0) |ψh(x♮)|2P (2)

1 (y) dx♮
∣∣∣∣ ≤ C‖A♮‖W 2,∞(V �

h )h
1
2
+4δe−ch

δ−1/2

.

Since ‖ψh‖2 ≥ Ch
1
2
+2δ (see (10.2)), this leads to:

(11.21)

∣∣∣∣
∫

R2×R+

(z −
√
hΘ0) |ψh(x♮)|2P (2)

1 (y) dx♮
∣∣∣∣ ≤ C‖A♮‖W 2,∞(V �

h )e
−chδ−1/2 ‖ψh‖2 .

Collecting (11.19), (11.20), and (11.21) in (11.14), we find the upper bound

(11.22)

∣∣∣∣Re
∫

R2×R+

(−ih∇ + A
♮
0
)ψh(x

♮) · (A♮ − A
♮
0
)ψh(x♮) dx

♮

∣∣∣∣

≤ C
(
‖A♮‖W 3,∞(V �

h ) h
1
2
+3δ + ‖A♮‖W 2,∞(V �

h ) h
1+δ

)
‖ψh‖2 .

Returning to (11.12) via (11.13) and combining (11.22) with (11.16), we deduce

Qh[A
x0 ,Πx0 ](ϕ

[1]
h ) ≤ Qh[A,R

2 × R+](ψh)

+ C
(
‖A♮‖W 3,∞(V �

h ) h
1
2
+3δ + ‖A♮‖W 2,∞(V �

h ) h
1+δ + ‖A♮‖2

W 2,∞(V �
h )
h4δ

)
.

Inserting the cut-off error (11.7) for qh[A,R
2 × R+](ψh) we obtain

(11.23) Qh[A
x0,Πx0 ](ϕ

[1]
h ) ≤ hΛX + C h2−2δ

+ C
(
‖A♮‖W 3,∞(V �

h ) h
1
2
+3δ + ‖A♮‖W 2,∞(V �

h ) h
1+δ + ‖A♮‖2

W 2,∞(V �
h )
h4δ

)
.



GROUND STATE ENERGY OF THE MAGNETIC LAPLACIAN ON CORNER DOMAINS 67

Using Lemma 4.7 for case (i) we deduce the uniform bound for the derivatives of the potential

‖A♮‖W 3,∞(V �
h ) ≤ C‖Ax0‖W 3,∞(Vx0)

≤ C ′‖A‖W 3,∞(Ω).

Thus, we deduce from (11.23)

Qh[A
x0,Πx0 ](ϕ

[1]
h ) ≤ hΛX + C(Ω)(1 + ‖A‖2W 3,∞(Ω))(h

2−2δ + h1+δ + h
1
2
+3δ + h4δ).

The quasimode ϕ
[0]
h on Ω being still defined by (9.12), we deduce from (9.15) with r

[1]
h = O(hδ)

the final estimate

(11.24) Qh[A,Ω](ϕ
[0]
h ) ≤ hΛX + C(Ω)(1 + ‖A‖2W 3,∞(Ω))(h

2−2δ + h1+δ + h
1
2
+3δ + h4δ) .

Choosing δ = 1
3

we optimize remainders and deduce the upper bound (11.2) in situation (G1)–

sitting.

11.1.2. Hard sliding. This is the case when ν = 2 and x0 ∈ V◦ (i.e., x0 is a conical point). So

X = (x0, x1) and Πx0,x1 coincides with ΠX. We keep relations (9.12) and (9.25) linking ϕ
[0]
h to ϕ

[1]
h

and ϕ
[1]
h to ϕ

[2]
h , respectively, and ϕ

[2]
h is now defined by the formula

(11.25) ϕ
[2]
h (x) = e−iF

♮(x♮)/hχ�

h (y, z)Ψh(y, z) = e−iF
♮(x♮)/hψh(y, z), ∀x ∈ ΠX ,

and A♮ is the magnetic potential associated with Av1 (step [a2]) in variables x♮,

(11.26) A♮(x♮) = J⊤
(
Av1(x)

)
∀x ∈ Vv1 .

We recall that Πv1 = ΠX. We have, instead of (11.12):

(11.27) Qh[A
v1 ,Πv1 ](ϕ

[2]
h ) = Qh[A

♮ −∇F ♮,R2 × R+](ψh),

and (9.28) is replaced by the analysis of (11.13)–(11.15) which goes along the same lines as

before, ending up at, instead of (11.23)

(11.28) Qh[A
v1,Πv1 ](ϕ

[2]
h ) ≤ hΛX + C h2−2δ

+ C
(
‖A♮‖W 3,∞(V �

h ) h
1
2
+3δ + ‖A♮‖W 2,∞(V �

h ) h
1+δ + ‖A♮‖2

W 2,∞(V �
h )
h4δ

)
.

But now we have to use Lemma 4.7 for case (ii) after specifying the different scales: As in Section

9.3 step [e2] (b) we take |v1| = d
[1]
h = O(hδ0) and δ = δ0 + δ1, so the support of ψh is contained

in a ball of radius r
[2]
h = O(hδ0+δ1). The radius r

[1]
h is a O(hδ0). By using Remark 3.15, we can

see that (4.16) generalizes to higher derivative of Av1 , and thus we may estimate the derivatives of

the potential after change of variables:

(11.29) ‖A♮‖W ℓ,∞(V �
h ) ≤ C‖Av1‖

W ℓ,∞(B(0,r[2]h ))
≤ C ′h−(ℓ−1)δ0‖A‖W ℓ,∞(Ω), ℓ = 2, 3,

and (11.28) provides

Qh[A
v1 ,Πv1 ](ϕ

[2]
h ) ≤ hΛX

+ C(1 + ‖A‖2W 3,∞(Ω))
(
h2−2δ0−2δ1 + h−2δ0h

1
2
+3δ0+3δ1 + h−δ0h1+δ0+δ1 + h−2δ0h4δ0+4δ1

)
.
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Combining the above inequality with (9.20) that bounds Qh[A,Ω](ϕ
[0]
h )−Qh[A

x0
0
,Πx0 ](ϕ

[1]
h ) and

(9.27) that bounds Qh[A
x0
0
,Πx0 ](ϕ

[1]
h )− Qh[A

v1,Πx0,x1 ](ϕ
[2]
h ) we find

(11.30) Qh[A,Ω](ϕ
[0]
h ) ≤ hΛX + C(1 + ‖A‖2W 2,∞(Ω))

(
h1+δ0 + h

1
2
+2δ0 + h4δ0 + h1+δ1

)

+ C(1 + ‖A‖2W 3,∞(Ω))
(
h2−2δ0−2δ1 + h

1
2
+δ0+3δ1 + h1+δ1 + h2δ0+4δ1

)
.

Choosing δ0 =
5
16

and δ1 =
1
8
, we deduce the upper bound (11.1) in situation (G1)–hard sliding.

11.1.3. Soft sliding. This is the case when ν = 2 and x0 is not a conical point. We keep relations

(9.12) and (9.25) linking ϕ
[0]
h to ϕ

[1]
h and ϕ

[1]
h to ϕ

[2]
h , respectively, and ϕ

[2]
h is defined by formula

(11.25) as in the hard sliding case. But now the analysis is different because we can take advantage

of the fact that the change of variables Uv1 is the translation x 7→ x− v1. Concatenating formulas

(9.25) and (11.25), we obtain (recall that U is the rotation x 7→ x♮)

(11.31) ϕ
[1]
h = Zv1

h ◦ Uv1
∗ ◦ U∗

(
e−iF

♮/hψh

)
.

Our aim is a direct evaluation of Qh[A
x0,Πx0](ϕ

[1]
h ), based on the above representation. Here we

take the potential A♮ in the canonical half-space R
2 × R+ as (11.11). Let us set v

♮
1 := Uv1. Then

there holds the following sequence of identities, cf. (11.12) for the last one,

Qh[A
x0 ,Πx0 ](ϕ

[1]
h ) = Qh[A

x0 − Ax0
0
(v1),ΠX]

(
Uv1

∗ ◦U∗
(
e−iF

♮/hψh
))

= Qh[A
x0(·+ v1)− Ax0

0
(v1),ΠX]

(
U∗

(
e−iF

♮/hψh
))

= Qh[A
♮(·+ v

♮
1)−A

♮
0
(v♮1),R

2 × R+]
(
e−iF

♮/hψh
)

= Qh[A
♮(·+ v

♮
1)−A

♮
0
(v♮1)−∇F ♮,R2 × R+](ψh).

For the calculation of the potential, we check that

A♮(·+ v
♮
1)− A

♮
0
(v♮1)−∇F ♮ = A♮(·+ v

♮
1)−A

♮
0
(·+ v

♮
1) + A

♮
0
(·+ v

♮
1)− A

♮
0
(v♮1)−∇F ♮

= A♮(·+ v
♮
1)−A

♮
0
(·+ v

♮
1) + A

♮
0
−∇F ♮

= A♮(·+ v
♮
1)−A

♮
0
(·+ v

♮
1) + A .

Then, instead of (11.13)-(11.15) we obtain that qh[A
♮(·+ v

♮
1)− A

♮
0
(v♮1)−∇F ♮,R2 × R+](ψh) is

now the sum of the three following terms:

qh[A,R
2 × R+](ψh)

+ 2Re

∫

R2×R+

(−ih∇ + A)ψh(x
♮) ·

(
A♮(x♮ + v

♮
1)−A

♮
0
(x♮ + v

♮
1)
)
ψh(x♮) dx

♮

+ ‖
(
A♮(·+ v

♮
1)− A

♮
0
(·+ v

♮
1)
)
ψh‖2.

Since |v1| = hδ , the estimate (11.16) obviously becomes

‖(A♮(·+ v
♮
1)−A

♮
0
(·+ v

♮
1))ψh‖2 ≤ C(Ω)‖A♮‖2

W 2,∞(v♮1+V �
h )
h4δ ‖ψh‖2.
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As for estimates (11.17)-(11.22) of the crossed term, we may use the fact that the vector x̂1 in-

troduced in (9.24) belongs to a face of Πx0 (see the prologue of Section 9.3). It is the same for

v1 = hδx̂1. Therefore v
♮
1 is tangent to the boundary of R2 × R+, it has no component in the z

direction and can be written v
♮
1 = hδx̂♮1 = (hδp, 0) in coordinates x♮. We use the same splitting

(11.18) of the potential, at the point x♮ + v
♮
1

A
(rem,2)
1 (x♮ + v

♮
1) = P1(y + hδp) +R1(x

♮ + hδx̂♮1) + A
(rem,3)
1 (x♮ + hδx̂♮1).

Then all estimates (11.17)-(11.22) of the crossed term are still valid now, replacing the norm in

W ℓ,∞(supp(ψh)) by the norm in W ℓ,∞(v♮1 + supp(ψh)) (for ℓ = 2, 3). As before we arrive to

the upper bound (11.24) for the Rayleigh quotient of our quasimode and conclude as in the sitting

case.

11.1.4. Double sliding. This is the case when ν = 3. So x0 is a conical point. We keep relations

(9.12) and (9.25) linking ϕ
[0]
h to ϕ

[1]
h and ϕ

[1]
h to ϕ

[2]
h , respectively, and ϕ

[2]
h is now defined by the

formula

(11.32) ϕ
[2]
h (x) = Zv2

h ◦ Uv2
∗ ◦ U∗

(
e−iF

♮/hψh

)
.

and A♮ is the magnetic potential (11.26) associated with Av1 (step [a2]) in variables x♮. A rea-

soning similar to the soft sliding case yields the same conclusion (11.30) like in the hard sliding

case.

The proof of Theorem 11.1 is over in situation (G1).

11.2. (G2) Two directions of exponential decay. In situation (G2) the generalized eigenfunction

ΨX has two directions of decay, z1 and z2, leaving one direction y with a purely oscillating char-

acter. In this case, we are going to improve the linearization error, namely estimates (9.18) and

(9.30): Until now we have used that Ax0(x)− Ax0
0
(x) is a O(|x|2). Here, by a suitable phase shift

(which corresponds to a change of gauge), we can eliminate from this error the term inO(|y|2), re-

placing it by aO(|y|3). The other terms containing at least one power of |z|, we can take advantage

of the decay of ΨX. This phase shift is done by a change of gauge on the last level of construction,

that is on the function ϕ
[ν]
h , as in the (G1)-case. The sitting modes will be constructed following

exactly this strategy, whereas concerning sliding modes, we have to linearize the potential at a

moving point v := hδx̂, instead of 0 as previously. Let us develop details now. The quasimode

ϕ
[0]
h is still defined on Ω by formula (9.12) ϕ

[0]
h = Zx0

h ◦ Ux0
∗ (ϕ

[1]
h ), and relations (9.13)–(9.15) are

still valid.

11.2.1. Sitting quasimodes. Here we make an improvement of step [c1], see Figure 2. Let U
be the rotation x 7→ x♮ := (y, z) that maps Πx0 onto the model domain R × Υ which equals

R × Sα, R2 × R+ or R3. Let A♮ be the magnetic potential associated with Ax0 in variables x♮

given by (11.11) and A
♮
0
, Ax0

0
(= AX) be their linear parts at 0. Applying Lemma A.2 in variables

(u1, u2, u3) = (y, z1, z2) with ℓ = 1 gives us a function F such that ∂2y(A
♮ −∇F )(0) = 0 leading

to the estimates

(11.33)
∣∣(A♮−A

♮
0
−∇F

)
(x♮)

∣∣ ≤ C(Vx0)
(
‖Ax0‖W 2,∞(Vx0 )

(
|y||z|+ |z|2

)
+ ‖Ax0‖W 3,∞(Vx0 )

|y|3
)
.
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We define our new quasimode by

(11.34) ϕ
[1]
h = U(e−iF/hψh), in Πx0 ,

with ψh a given function in R×Υ. Using (A.3) and (A.6), we have

(11.35) Qh[A
x0 ,ΠX](ϕ

[1]
h ) = Qh[A

♮ −∇F,R×Υ](ψh) ≤ µ
[1]
h + 2â

[1]
h

√
µ
[1]
h + (â

[1]
h )2,

where we have set, by analogy with (9.17),

(11.36) µ
[1]
h = Qh[A

♮
0
,R×Υ](ψh) and â

[1]
h =

‖(A♮ − A
♮
0
−∇F )ψh‖

‖ψh‖
.

We set ψh = χhΨh where Ψ is the admissible generalized eigenvector ofH(A♮
0
,R×Υ) in natural

variables as introduced in (7.1) and Ψh its scaled version.

The following Lemma provides an improvement when compared to Lemmas 4.6–4.7, due to esti-

mates (11.33) which replace (4.14).

Lemma 11.2. With the previous notation, there exist constants C(Ω) > 0 and h0 > 0 such that

for all h ∈ (0, h0)

(11.37) â
[1]
h =

‖(A♮ −A
♮
0
−∇F )ψh‖

‖ψh‖
≤ C(Ω)(‖A♮‖W 2,∞(V �

h )(h+h
1
2
+δ0)+‖A♮‖W 3,∞(V �

h )h
3δ0).

Proof. Using the form of the admissible generalized eigenvector Ψ:

Ψ(x♮) = eiϑ(x
♮)Φ(z) with x♮ = (y, z) ,

we obtain by definition of ψh

|ψh(x♮)| = χ
R

( |x♮|
hδ0

) ∣∣∣Φ
( z

h1/2

) ∣∣∣ .

Using the changes of variables Z = zh−1/2 and Y = yh−δ0 , we find the bounds

∥∥∥|y|3 χ
R

( |x♮|
hδ0

)
Φ
( z

h1/2

)∥∥∥ ≤ h3δ0 ‖ψh‖
∥∥∥|y| |z| χ

R

( |x♮|
hδ0

)
Φ
( z

h1/2

)∥∥∥ ≤ hδ0+
1
2 ‖ψh‖

∥∥∥|z|2 χ
R

( |x♮|
hδ0

)
Φ
( z

h1/2

)∥∥∥ ≤ h ‖ψh‖.

Summing up the latter three estimates and using (11.33) lead to the lemma. �

Now, since Remark 3.15 allows to generalize Lemma 4.7 to higher derivatives of the potential as

in (11.29), we use (9.8) and Lemmas 11.2, 4.6 and 4.7 for case (i) in (11.35) and combine this

with (9.15) to deduce

(11.38) Qh[A,Ω](ϕ
[0]
h ) ≤ hΛX+C(Ω)(1+ ‖A‖2W 3,∞(Ω))(h

2−2δ0 +h
3
2 +h1+δ0 +h

1
2
+3δ0 +h6δ0) .
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We optimize this upper bound by taking δ0 = 1
3
. The min-max principle provides Theorem 11.1

with a remainder in O(h4/3) in the case (G2) with X = (x0).

11.2.2. Sliding quasimodes. We assume now ν ≥ 2, so X = (x0, x1) or (x0, x1, x2). We use the

notation of Section 9.3. The main difference with Section 9.3 is that we deal with the linear part

of Ax0 at v1 instead of 0, that is:

Ax0
v1
(x) := ∇Ax0(v1) · x, x ∈ Πx0 .

By the change of variable Uv1 , the potential Ax0
v1

becomes Â
v1

(cf. (4.1))

Â
v1

= (Jv1)⊤
((

Ax0
v1
− Ax0

v1
(v1)

)
◦ (Uv1)−1

)
with Jv1 = d(Uv1)−1.

Let ζ̂v1h (x) = ei〈A
x0
v1
(v1), x/h〉, for x ∈ Πx0 and Ẑv1

h be the operator of multiplication by ζ̂v1h . By

analogy with (9.25), we introduce the relation

(11.39) ϕ
[1]
h = Ẑv1

h ◦ Uv1
∗ (ϕ

[2]
h ).

Let us assume for the end of this section that ν = 2. Let Â
v1

0
be the linear part of Â

v1
at 0 ∈ Πx0,x1 .

We have curl Â
v1

0
= Bx0

v1
where the constant Bx0

v1
is the magnetic field Bx0 frozen at v1.

We have E(Bx0 ,ΠX) < E ∗(Bx0 ,ΠX). Due to Lemma 10.2, we have

(11.40) ∃ε > 0, ∀v1 ∈ B(0, ε) ∩Πx0 , E(Bx0
v1
,ΠX) < E

∗(Bx0
v1
,ΠX) ,

and (Bx0
v1
,ΠX) is still in situation (G2). Let Uv1 (J the associated matrix) be the rotation x 7→

x♮ := (y, z) that maps ΠX onto the model domain R × Υ. Let A♮,v1 be the magnetic potential

associated with Â
v1

in variables x♮ and A
♮,v1
0

be its linear part at 0. Due to (11.40), we are still

in case (i) of the Dichotomy Theorem 7.3. We use now the admissible generalized eigenvector

Ψv1 of H(A♮,v1
0
,R×Υ) in natural variables as introduced in (7.1) and its scaled version Ψv1

h . The

associated ground state energy is denoted by

(11.41) Λv1 = E(Bx0
v1
,ΠX).

An important point is that, choosing ε > 0 small enough, we may assume that, in virtue of Lemma

10.2 (b), the functions Ψv1 are uniformly exponentially decreasing

(11.42) ∃c > 0, C > 0, ∀v1 ∈ B(0, ε), ‖Ψv1ec|z|‖L2(Υ) ≤ C‖Ψv1‖L2(Υ) .

We are arrived at point where the situation is similar as in the sitting case, with the new feature that

the generalized eigenvectors Ψv1
h depend (in some smooth way) on the parameter v1. We define

the new function on ΠX by

(11.43) ϕ
[2]
h = Uv1(e−iF

v1/hψv1
h ),

where ψv1
h = χhΨ

v1
h has a support of size r

[2]
h = O(hδ0+δ1) and the phase shift F v1 will be chosen

later. As always we denote by µ
[2]
h = Qh[A

♮,v1
0
,ΠX](ψ

v1
h ).

The function v 7→ Λv is Lipschitz-continuous by Lemma 10.2 (a) and thus |Λv1 − Λ0| ≤ C|v1|.
Combining this with Lemma 10.5, we have

µ
[2]
h ≤ hΛv1 + Ch2−2δ0 ≤ hΛX + C(h1+δ0 + h2−2δ0).
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Now we distinguish whether our quasimode is soft or hard sliding (x0 is not, or is, a conical point).

• Soft sliding. If x0 is not a conical point, we recall as mentioned in Section 9.3 that Uv1 is a

translation. As in Section 11.1.3 we have

Qh[A
x0 ,Πx0 ](ϕ

[1]
h ) = Qh[A

♮(·+ v
♮
1)− A

♮

v
♮
1

(v♮1)−∇F v1 ,R×Υ](ψv1
h )

≤ µ
[2]
h + 2

√
µ
[2]
h ‖

(
A♮(·+ v

♮
1)−A

♮

v
♮
1

(·+ v
♮
1)−∇F v1

)
ψv1
h ‖

+ ‖
(
A♮(·+ v

♮
1)− A

♮

v
♮
1

(·+ v
♮
1)−∇F v1

)
ψv1
h ‖2,

where we have used the relation A♮(· + v
♮
1) − A

♮

v
♮
1

(v♮1) − A
♮,v1
0

= A♮(· + v
♮
1) − A

♮

v
♮
1

(· + v
♮
1). We

now use Lemma A.2 to choose F v1 such that A♮(·+ v
♮
1)− A

♮

v
♮
1

(·+ v
♮
1)−∇F v1 is still controlled

by the r.h.s. of (11.33). The proof of Lemma 11.2 is still valid due to the uniform control (11.42),

and provides:

‖
(
A♮(·+ v

♮
1)−A

♮

v
♮
1

(·+ v
♮
1)−∇F v1

)
ψv1
h ‖

≤ C(Ω)(‖A♮‖W 2,∞(V �
h )(h+ h

1
2
+δ0) + ‖A♮‖W 3,∞(V �

h )h
3δ0) ‖ψv1

h ‖.
The proof goes along as in the sitting case and we deduce the same estimate (11.38) with a re-

mainder in O(h4/3).

• Hard sliding. If x0 is a conical point, using formulas (A.3) and (A.6), we have

(11.44) Qh[Â
v1
,ΠX](ϕ

[1]
h ) = Qh[A

♮,v1 −∇F v1 ,R×Υ](ψv1
h ) ≤ µ

[2]
h + 2â

[2]
h

√
µ
[2]
h + (â

[2]
h )2,

where we have set

(11.45) â
[2]
h =

‖(A♮,v1 − A
♮,v1
0

−∇F v1)ψv1
h ‖

‖ψv1
h ‖

.

Like previously, Lemma A.2 gives a function F v1 satisfying

(11.46)
∣∣(A♮,v1 −A

♮,v1
0

−∇F v1
)
(x♮)

∣∣ ≤ C(Vx0)
(
‖A♮,v1‖W 2,∞(|y||z|+ |z|2)+ ‖A♮,v1‖W 3,∞|y|3

)
.

Due to the uniform estimate (11.42), the proof of Lemma 11.2 still applied. Combine this with

(11.29) gives

â
[2]
h ≤ C(‖A♮,v1‖W 2,∞(supp(ψ

v1
h )) (h+ h

1
2
+δ0+δ1) + ‖A♮,v1‖W 3,∞(supp(ψ

v1
h )) h

3δ0+3δ1)

≤ C(‖A‖W 2,∞(Ω) (h
1−δ0 + h

1
2
+δ1) + ‖A‖W 3,∞(Ω) h

δ0+3δ1).

Then Relation (9.32) becomes

(11.47) Qh[A,Ω](ϕ
[0]
h ) ≤ hΛX + C (h2−2δ0 + h1+δ0) + C(h2−2δ0−2δ1 + h1+δ0 + h1+δ1)

+ C
(
h

3
2
−δ0 + h1+δ1 + h

1
2
+δ0+3δ1 + h2δ0+6δ1

)
.

Choosing δ0 = 5
16

and δ1 = 1
8

gives the upper-bound (11.1) in situation (G2) for hard sliding

quasimodes.
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11.2.3. Doubly sliding quasimode. In that case, as mentioned in Section 9.4, ν = 3, X =
(x0, x1, x2), x0 is a conical point and Uv2 is a translation. We define

(11.48) ϕ
[2]
h = Ẑv2

h ◦ Uv2
∗ (ϕ

[3]
h ),

where Ẑv2
h is the operator of multiplication by ζ̂v2 with ζ̂v2h (x) = ei〈Â

v1
v2
(v2), x/h〉 and

Â
v2

=
(
Â

v1

v2
− Â

v1

v2
(v2)

)
◦ (Uv2)−1,

with coincides with its linear part Â
v2

0
. Since Gv2 = I3, we have

(11.49) Qh[Â
v1

0
,Πx0,x1 ](ϕ

[2]
h ) = Qh[Â

v2

0
,ΠX](ϕ

[3]
h ).

We set in the same spirit as above, ϕ
[3]
h = Uv2(e−iF

v2/hχhΨ
v2
h ). The constant magnetic field

B
v1,v2
0

= curl Â
v2

0
is the magnetic field Bx0 frozen at v1, transformed by Uv1 and then frozen at v2.

Once again, (Bv1,v2
0

,ΠX) is still in situation (G2) for h small enough and we may use Lipschitz

estimates for the associated ground state energy and uniform decay estimates for the associated

AGE. As in the soft sliding case described above, we take advantage of the translation Uv2 and get

a better estimate for the last linearization (that is step [c2], see Figure 2) by a suitable choice of

F v2 . We can conclude as the conical case at level 2 and obtain again (11.47). We deduce

λh(B,Ω) ≤ hE (B,Ω) + C(Ω)
(
1 + ‖A‖2W 3,∞(Ω)

)
h9/8 .

The proof of Theorem 11.1 is now complete in case (G2).

12. CONCLUSION: IMPROVEMENTS AND EXTENSIONS

In this work we have shown how a recursive structure of corner domains allows to analyze the

Neumann magnetic Laplacian and its ground state energy λh(B,Ω). To conclude, we discuss

some standard consequences in the situation of corner concentration. We also address the issues

of generalizing our results to any dimension. We finally mention the adaptation of our methods

to different boundary value problems, namely the Dirichlet magnetic Laplacian and the Robin

Laplacian in the attractive limit.

12.1. Corner concentration and standard consequences. Let Ω be a 3D corner domain and B

be a magnetic field. For each corner v ∈ V of Ω, let us denote by Kv the number of eigenvalues

of the tangent model operator H(Av ,Πv) less than the minimal local energy outside the corners

infx∈Ω\V E(Bx ,Πx) . If no such eigenvalue exists, we set Kv = 0. If they do exist, we denote

them by λ(k)(Bv ,Πv), k = 1, . . . , Kv, so that

∀v ∈ V, ∀1 ≤ k ≤ Kv, λ(k)(Bv ,Πv) < inf
x∈Ω\V

E(Bx ,Πx).

Setting K(B,Ω) =
∑

v∈VKv, we assume that we are in the case of corner concentration, i.e.,

K(B,Ω) > 0 .

Then several standard consequences hold for the eigenvalue asymptotics of the first K(B,Ω)

eigenvalues λ
(k)
h (B,Ω) of the magnetic Laplacian Hh(A,Ω). Indeed, for 1 ≤ k ≤ K(B,Ω), we
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denote by E (k)(B,Ω) the k-th element (repeated with multiplicity) of the collection of eigenvalues

λ(j)(Av ,Πv) of the model operators, for v ∈ V and 1 ≤ j ≤ Kv. Then we have

(12.1)
∣∣λ(k)h (B,Ω)− hE (k)(B,Ω)

∣∣ ≤ Ch3/2, ∀1 ≤ k ≤ K(B,Ω).

In fact, we can prove like in [7, Section 7] a complete asymptotics expansion in power of h1/2

for the eigenvalues λ
(k)
h (B,Ω), 1 ≤ k ≤ K(B,Ω) and (12.1) is a consequence. Furthermore, we

have corner localization of the eigenvectors. Another consequence of the complete expansion of

the low-lying eigenvalues is the monotonicity of the ground state energy B 7→ λ(B̆,Ω) (1.13) in

the point of view of large magnetic field. This can be seen as a strong diamagnetic inequality and

relies on the same arguments as in [11, Section 2.1].

12.2. The necessity of a taxonomy. Let us emphasize the role of the taxonomy of model prob-

lems played in the analysis. The proof of upper bounds with remainder for λh strongly relies on

the existence of generalized eigenfunctions for model operators associated with the minimum of

local energies. Our Dichotomy Theorem provides a positive answer and is based on an exhaustive

description of the ground states of model operators depending on the dimension d ∈ {0, . . . , 3} of

reduced cones, i.e., on spaces, half-spaces, wedges and 3D cones, respectively. In cases d ≤ 2, the

analysis is made through a fibration (i.e., a partial Fourier transform), leading to a new operator

that is not a standard magnetic Laplacian. As consequence, the analysis of the key quantity E ∗

seems to be specific to each dimension.

Besides, in higher dimensions, a magnetic field B can be identified in each point x ∈ Ω with

a n × n antisymmetric matrix, thus determines n
2

or n−1
2

two-dimensional invariant subspaces

P j
x when n is even or odd, respectively (for instance, in dimension n = 3, the space P 1

x is the

orthogonal space to the vector Bx). Given a cone Rν × Γ with ν > 0, its interaction with the

planes P j
x can be highly non-trivial and there is no reason that there exists a magnetic potential

which depends on less variables than n. Thus the fibration process we have used does not seem

available in general in the n dimensional case. At this stage, a recursive analysis of the ground

state of the magnetic Laplacian does not seem possible without a deeper analysis of tangent model

operators, namely a complete taxonomy valid for all dimension.

12.3. Continuity of local energies. A standard procedure to investigate the stability of the ground

state energy of a self-adjoint operator consists in constructing quasimodes issued from the spec-

trum of the unperturbed problem, using them for the perturbed operator, and concluding with the

min-max principle. This procedure applied to the ground state energy of model problems associ-

ated with H(A,Ω) would provide upper semicontinuity under perturbation and, therefore, upper

semicontinuity for the local energy x 7→ E(Bx,Πx) on each stratum t of Ω.

In the case of Neumann boundary conditions, we have proved the continuity on each stratum by

using once more the taxonomy of model problems. In particular Lemma 6.5 uses intensively

the structure of the magnetic Laplacian on wedges and is linked to our Dichotomy Theorem, see

[49]. The lower semicontinuity of the local energy between strata is a consequence of Theorem

3.25, and relies on the continuity on each stratum. In contrast with Dirichlet conditions, Neumann

boundary conditions imply a decrease of the local ground energy on strata of higher codimensions,

including possible discontinuities between strata.
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In the general n dimensional case, the sole known result is the continuity of the local energy on the

interior stratum, i.e., Ω itself. Indeed, for any x ∈ Ω, we have E(Bx,Πx) = b(x) with b(x) defined

in (2.1). The generic regularity is in fact Hölder of exponent 1
2n

as mentioned in [32, Lemma 5.4]).

12.4. Dirichlet boundary conditions. If one considers now the magnetic Laplacian with Dirich-

let boundary conditions, the situation of the local energies denoted now ED(Bx,Πx) is far simpler

than in the Neumann case. For any interior point x ∈ Ω, ED(Bx,Πx) = E(Bx,R
n) is equal to the

intensity bx of Bx (with bx = b(x) defined in (2.1)). If x lies in the boundary of Ω, by Dirichlet

monotonicity,ED(Bx,Πx) ≥ E(Bx,R
n), and the converse inequality is the consequence of a stan-

dard argument of type Persson Lemma, cf. Theorem 6.6. Thus, like in the case without boundary,

the sole ingredient in local energies is the intensity of the magnetic field in each point x ∈ ∂Ω. At

this point, we could generalize the estimates of [28]

−C−h5/4 ≤ λh(B,Ω)− hE (B,Ω) ≤ C+h4/3

to any domain Ω with Lipschitz boundary and W 3,∞(Ω) magnetic potential with nonvanishing

magnetic field B, including the case when the minimum is attained on the boundary. The key

arguments are the following:

LOWER BOUND: One uses a IMS partition technique in order to linearize the potential on

each piece of the partition, but without local maps. Then, when a local support crosses

the boundary of Ω, one simply uses the lower bound λh(Bx0 ,Ω) ≥ λh(Bx0 ,R
n) for the

“central point” x0 of this local support.

UPPER BOUND: For x0 ∈ ∂Ω, one constructs interior sliding quasimodes with support in a

cone interior to Ω and with vertex x0. In order to obtain the refined convergence rate h4/3

instead of h5/4, one has to use a gauge transform similar to that in [28, p. 54-55].

12.5. Robin boundary conditions with a large parameter for the Laplacian. The spectral be-

havior of the Neumann magnetic Laplacian has some analogy with the following Robin boundary

eigenvalue problem that consists in solving

(12.2)

{
−∆ψ = λψ in Ω,

∇ψ · n− βψ = 0 on ∂Ω,

where β ∈ R is a parameter. We denote by HR
β (Ω) the associated operator. This problem also

arises from a linearization of the Ginzburg-Landau equation, in the zero field regime ([25]). The

asymptotics of the ground state energy λRβ (Ω) in the attractive limit β → +∞ has been studied

in [36, 45, 21] and presents several similarities with the semiclassical Neumann magnetic Lapla-

cian. It is still relevant to define the local energies E(Πx) as the ground state energies of tangent

operators (with β = 1) and E (Ω) := infx∈ΩE(Πx). It is proved in [36] that

λRβ (Ω) ∼
β→+∞

E (Ω)β2.

If Ω is a general n-dimensional corner domain belonging to the class D(Rn), we expect that the

method presented in our paper can yield an improved estimate for the Robin ground state energy

λRβ (Ω) when β → +∞. We may already notice that we have a convenient separation of variables

on a tangent cone Rν × Γ and that the tangent operator is unitarily equivalent to −∆|Rν ×HR
1 (Γ).



76 VIRGINIE BONNAILLIE-NOËL, MONIQUE DAUGE, AND NICOLAS POPOFF

Therefore the problematics linked to the taxonomy mentioned above are elementary in this case,

and one should be able first to prove global lower semicontinuity of the local energies, then to

construct quasimodes based on a n-scale procedure, combined with a chain of atlantes (cf. Section

3.4.4). We may conjecture an estimate of the kind |λRβ (Ω) − E (Ω)β2| ≤ Cβκ(n) with κ(n) < 2,

valid for large β.

APPENDIX A. MAGNETIC IDENTITIES

A.1. Gauge transform.

Lemma A.1. Let O ⊂ Rn be a domain and let ϑ be a regular function on O. Let A be a regular

potential. Then

∀ψ ∈ Dom(qh[A,O]), qh[A+∇ϑ,O](e−iϑ/hψ) = qh[A,O](ψ).

This well-known result is a consequence of the commutation formula

(−ih∇ + A+∇ϑ)
(
e−iϑ/hψ

)
= e−iϑ/h(−ih∇ + A)ψ .

Lemma A.2. Let O be a bounded domain such that 0 ∈ O. Let u = (u1, u2, u3) denote Cartesian

coordinates in O. Let A ∈ W 3,∞(O) be a magnetic potential such that A(0) = 0. Let A0 denote

the linear part of A at 0. Let ℓ be an index in {1, 2, 3}.

(a) There exists a change of gauge ∇F where F is a polynomial function of degree 3, so that

(1) The linear part of A−∇F at 0 is still A0,

(2) The second derivative of A−∇F with respect to uℓ cancels at 0:

∂2uℓ(A−∇F )(0) = 0.

(3) The coefficients of F are bounded by ‖A‖W 2,∞(O).

(b) Let us choose ℓ = 1 for instance. We have the estimate

(A.1) |A(u)−A0(u)−∇F (u)|
≤ C(O)

(
‖A‖W 2,∞(O)

(
|u1u2|+ |u1u3|+ |u2|2 + |u3|2

)
+ ‖A‖W 3,∞(O)|u1|3

)
,

where the constant C(O) depends only on the outer diameter of O.

Proof. The Taylor expansion of A at 0 takes the form

A = A0 + A(2) + A(rem,3),

where A(2) is a homogeneous polynomial of degree 2 with 3 components and A(rem,3) is a remain-

der:

(A.2) |A(rem,3)(u)| ≤ ‖A‖W 3,∞(O)|u|3 for u ∈ O.
Let us write the m-th component A

(2)
m of A(2) as

A(2)
m (u) =

∑

|α|=2

am,αu
α1
1 u

α2
2 u

α3
3 for u = (u1, u2, u3) ∈ O.
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(a) Now, the polynomial F can be explicitly determined. It suffices to take

F (u) = u2ℓ
(
a1,α∗u1 + a2,α∗u2 + a3,α∗u3 − 2

3
aℓ,α∗uℓ

)
,

where α∗ is such that α∗
ℓ = 2 (and the other components are 0). Then

∇F (u) = u2ℓ



a1,α∗

a2,α∗

a3,α∗




and point (a) of the lemma is proved.

(b) Choosing ℓ = 1, we see that the m-th components of A(2) −∇F is

A(2)
m (u)− (∇F )m(u)

= am,(1,1,0)u1u2 + am,(1,0,1)u1u3 + am,(0,1,1)u2u3 + am,(0,2,0)u
2
2 + am,(0,0,2)u

2
3 .

Hence A(2) −∇F satisfies the estimate

|(A(2)(u)−∇F (u)| ≤ ‖A‖W 2,∞(O)

(
|u1u2|+ |u1u3|+ |u2|2 + |u3|2

)
.

But

A− A0 −∇F = A(2) −∇F + A(rem,3).

Therefore, with (A.2)

|A(u)− A0(u)−∇F (u)| ≤ ‖A‖W 2,∞(O)

(
|u1u2|+ |u1u3|+ |u2|2 + |u3|2

)
+ ‖A‖W 3,∞(O)|u|3.

Using finally that |u|3 ≤ 12(|u1|3+ |u2|3+ |u3|3) ≤ C(O)(|u1|3+ |u2|2+ |u3|2), we conclude the

proof of estimate (A.1). �

A.2. Change of variables. Let G be a metric of R3, that is a 3 × 3 positive symmetric matrix

with regular coefficients. For a smooth magnetic potential, the quadratic form of the associated

magnetic Laplacian with the metric G is denoted by qh[A,O,G] and is defined in (1.21). The

following lemma describes how this quadratic form is involved when using a change of variables:

Lemma A.3. Let U : O → O′, u 7→ v be a diffeomorphism with O, O′ domains in R3. We

denote by J := d(U−1) the jacobian matrix of the inverse of U. Let A be a magnetic potential and

B = curlA the associated magnetic field. Let f be a function of Dom(qh[A,O]) and ψ := f ◦U−1

defined in O′. For any h > 0 we have

(A.3) qh[A,O](f) = qh[Ã,O′,G](ψ) and ‖f‖L2(O) = ‖ψ‖L2
G(O′)

where the new magnetic potential and the metric are respectively given by

(A.4) Ã := J⊤
(
A ◦ U−1

)
and G := J−1(J−1)⊤ .

The magnetic field B̃ = curl Ã in the new variables is given by

(A.5) B̃ := | det J| J−1
(
B ◦U−1

)
.

Let ρ > 0, using the previous lemma with the scaling Uρ := x 7→ √
ρ x we get
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Lemma A.4. Let O be a domain in Rn and set rO := {x ∈ Rn, x = rx′ with x′ ∈ O} for a

chosen positive r. Let B be a constant magnetic field and A be an associated linear potential. For

any ψ ∈ Dom(q[A,O]) unitary in L2(O), we define for any positive ρ

ψρ(x) := ρ−n/4ψ
( x√

ρ

)
, ∀x ∈ O.

Then ψρ belongs to Dom(qρ[A,
√
ρO]), is unitary in L2(

√
ρO) and we have

(1) q[A,O](ψ) = ρ q[ρ−1A,
√
ρO](ψρ) = ρ−1qρ[A,

√
ρO](ψρ).

(2) E(B,O) = ρE
(
ρ−1B,

√
ρO

)
.

A.3. Comparison formula. Let O be a domain and let A and A′ be two magnetic potentials.

Then, for any function ψ of Dom(qh[A,O]) ∩ Dom(qh[A
′,O]), we have:

(A.6) qh[A,O](ψ) = qh[A
′,O](ψ) + 2Re

〈
(−ih∇ + A′)ψ, (A− A′)ψ

〉
O + ‖(A− A′)ψ‖2 .

A.4. Cut-off effect. In this section we recall standard IMS formulas. This kind of formulas

appear for Schrödinger operators in [17], but they can also be found in older works like [41]. In

this section A denotes a regular magnetic potential and notations are those introduced in § 1.5.

The first formula describes the effect of a partition of the unity on the energy of a function which

is in the form domain, see for example [57, Lemma 3.1]:

Lemma A.5 (IMS formula). Assume that χ1, . . . , χL ∈ C ∞(O) are such that
∑L

ℓ=1 χ
2
ℓ ≡ 1 on O.

Then, for any ψ ∈ Dom(qh[A,O])

qh[A,O](ψ) =
L∑

ℓ=1

qh[A,O](χℓψ)− h2
L∑

ℓ=1

‖ψ∇χℓ‖2L2(O)

The second formula describes the energy of a function satisfying locally the Neumann boundary

conditions when applying a cut-off function, see for example [29, (6.11)]:

Lemma A.6. Let χ ∈ C ∞
0 (O) a real smooth function. Then for any ψ ∈ Dom loc(Hh(A,O))

qh[A,O](χψ) = Re
〈
χ2Hh(A,O)ψ, ψ

〉
O + h2‖ |∇χ|ψ‖2L2(O) .

• Orientation of the magnetic field. Let B be a magnetic field. It is known that changing B into

−B does not affect the spectrum of the associated magnetic Laplacian. More precisely we have:

Lemma A.7. Let O ⊂ R3 be a domain, B be a magnetic field and A an associated potential.

Then Hh(−A,O) and Hh(A,O) are unitary equivalent. We have

∀ψ ∈ Dom(qh[A,O]), qh[−A,O](ψ) = qh[A,O](ψ)

and ψ is an eigenfunction of Hh(A,O) if and only if ψ is an eigenfunction of Hh(−A,O).
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APPENDIX B. PARTITION OF UNITY SUITABLE FOR IMS TYPE FORMULAS

Our partitions of unity on general corner domains have to be compatible with an admissible atlas

(Definition 3.11).

Lemma B.1. Let n ≥ 1 be the space dimension. M denotes Rn or Sn. Let Ω ∈ D(M) be a

corner domain with an admissible atlas (Ux,U
x)x∈Ω. Let K > 1 be a coefficient. Then there exist

a positive integer L and two positive constants ρmax and κ ≤ 1 (depending on Ω and K) such

that for all ρ ∈ (0, ρmax], there exists a (finite) set Z ⊂ Ω× [κρ, ρ] satisfying the following three

properties

(1) We have the inclusion Ω ⊂ ∪(x,r)∈Z B(x, r)
(2) For any (x, r) ∈ Z , the ball B(x, Kr) is contained in the map-neighborhood Ux,

(3) Each point x0 of Ω belongs to at most L different balls B(x, Kr).

Before performing the proof of this lemma, let us draw some easy consequence on the existence

of suitable IMS type partitions of unity in corner domains.

Lemma B.2. Let Ω ∈ D(Rn) and choose K = 2. Let (L, ρmax, κ) be the parameters provided by

Lemma B.1. For any ρ ∈ (0, ρmax] let Z ⊂ Ω × [κρ, ρ] be an associate set of pairs (center, ra-

dius). Then there exists a collection of smooth functions (χ(x,r))(x,r)∈Z with χ(x,r) ∈ C ∞
0 (B(x, 2r))

satisfying the identity (partition of unity)
∑

(x,r)∈Z

χ2
(x,r) = 1 on Ω

and the uniform estimate of gradients

∃C > 0, ∀(x, r) ∈ Z , ‖∇χ(x,r)‖L∞(Ω) ≤ Cρ−1 ,

where C only depends on Ω. By construction any ball B(x, 2r) is a map-neighborhood of x

included the maps of an admissible atlas.

Proof. Let ξ(x,r) ∈ C ∞
0 (B(x, 2r)), with the property that ξ(x,r) ≡ 1 in B(x, r), and satisfying the

gradient bound ‖∇ξ(x,r)‖L∞(R3) ≤ Cr−1 where C is a universal constant. Then we set for each

(x0, r0) ∈ Z

χ(x0,r0) =
ξ(x0,r0)

(
∑

(x,r)∈Z
ξ2(x,r))

1/2
.

Due to property (1) in Lemma B.1,
∑

(x,r)∈Z
ξ2(x,r) ≥ 1 and due to property (3),

‖
∑

(x,r)∈Z

∇ξ2(x,r)‖L∞(R3) ≤ CLΩ .

We deduce the lemma. �

Here are preparatory notations and lemmas for the proof of Lemma B.1.

Let Ω ∈ D(M) and K > 1. If the assertions of Lemma B.1 are true for this Ω and this K, we say

that Property P(Ω, K) holds. We may also specify that the assertion by the sentence

Property P(Ω, K) holds with parameters (L, ρmax, κ).
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Let U∗ ⊂⊂ U be two nested open sets. We say that the property P(Ω, K;U∗,U) holds8 if the

assertions of Lemma B.1 are true for this Ω and thisK, with discrete sets Z ⊂ (U∗∩Ω)× [κΩρ, ρ]
and with (1)-(3) replaced by

(1) We have the inclusion U∗ ∩ Ω ⊂ ∪(x,r)∈Z B(x, r)
(2) For any (x, r) ∈ Z , the ball B(x, Kr) is included in U and is a map-neighborhood of x

for Ω

(3) Each point x0 of U ∩ Ω belongs to at most L different balls B(x, Kr).
Like above the specification is

Property P(Ω, K;U∗,U) holds with parameters (L, ρmax, κ).

In the process of proof, we will construct coverings which are not exactly balls, but domains

uniformly comparable to balls. Let us introduce the local version of this new assertion. For

0 < a ≤ a′ we say that

Property P[a, a′](Ω, K;U∗,U) holds with parameters (L, ρmax, κ)

if for all ρ ∈ (0, ρmax], there exists a finite set Z ⊂ (U∗ ∩ Ω) × [κΩρ, ρ] and open sets D(x, r)
satisfying the following four properties

(1) We have the inclusion U∗ ∩ Ω ⊂ ∪(x,r)∈Z D(x, r)

(2) For any (x, r) ∈ Z , the set9 D(x, Kr) is included in U and is a map-neighborhood of x

for Ω

(3) Each point x0 of U ∩ Ω belongs to at most L different sets D(x, Kr)

(4) For any (x, r) ∈ Z , we have the inclusions B(x, ar) ⊂ D(x, r) ⊂ B(x, a′r).
Note that P[1, 1](Ω, K;U∗,U) = P(Ω, K;U∗,U).
Lemma B.3. If Property P[a, a′](Ω, K;U∗,U) holds with parameters (L, ρmax, κ), then

Property P(Ω, a
a′
K;U∗,U) holds with parameters (L, a′ρmax, κ).

Proof. Starting from the covering of U∗ ∩ Ω by the sets D(x, r) and using condition (4), we can

consider the covering of U∗ ∩ Ω by the balls B(x, a′r). Then r′ := a′r ∈ [κa′ρ, a′ρ] = [κρ′, ρ′]
with ρ′ < a′ρmax.

Concerning conditions (2) and (3), it suffices to note the inclusions

B(x, a
a′
Kr′) ⊂ D(x,

1

a′
r′K) = D(x, rK) .

The lemma is proved. �

Proof. of Lemma B.1. The principle of the proof is a recursion on the dimension n.

Step 1. Explicit construction when n = 1.

The domain Ω and the localizing open sets U∗ and U are then open intervals. Let us assume for

8This is the localized version of property P(Ω,K).
9Here D(x,Kr) is the set of y such that x+ (y − x)/K ∈ D(x, r).
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example that U∗ = (−ℓ, ℓ), U = (−ℓ− δ, ℓ+ δ) and Ω = (0, ℓ+ δ′) with ℓ, δ > 0 and δ′ > δ. Let

K ≥ 1. We can take

ρmax = min
{ ℓ

K
, δ
}

and for any ρ ≤ ρmax the following set of couples (xj, rj), j = 0, 1, . . . , J

x0 = 0, r0 = ρ and xj = ρ+
2j − 1

K
ρ, rj =

ρ

K
for j = 1, . . . , J

with J such that xJ < ℓ and ρ + 2J+1
K

ρ ≥ ℓ. If xJ < ℓ − ρ
K

, we add the point xJ+1 = ρ + 2J
K
ρ.

The covering condition (1) is obvious.

Concerning condition (2), we note that the bound ρmax ≤ ℓ
K

implies that [0, Kr0) = [0, Kρ) is a

map-neighborhood for the boundary of Ω, and the bound ρmax ≤ δ implies that when j ≥ 1, the

“balls” (xj −Krj , xj +Krj) = (xj − ρ, xj + ρ) are map-neighborhoods for the interior of Ω.

Concerning condition (3), we can check that L = K + 2 is suitable.

Step 2. Localization.

Let Ω ∈ D(Rn) or Ω ∈ D(Sn). For any x ∈ Ω, there exists a ball B(x, rx) with positive radius

rx that is a map-neighborhood for Ω. We extract a finite covering of Ω by open sets B(x(ℓ), 1
2
r(ℓ)).

We set

U∗
ℓ = B(x(ℓ), 1

2
r(ℓ)) and Uℓ = B(x(ℓ), r(ℓ)).

The map Uℓ := Ux(ℓ) transforms U∗
ℓ and Uℓ into neighborhoods V∗

ℓ and Vℓ of 0 in the tangent cone

Πℓ := Πx(ℓ) . Thus we are reduced to prove the local property P(Πℓ, K;V∗
ℓ ,Vℓ) for any ℓ. Indeed

• The local diffeomorphism Uℓ allows to deduce Property P(Ω, K;U∗
ℓ ,Uℓ) from Property

P(Πℓ, K
′;V∗

ℓ ,Vℓ) for a ratio K ′/K that only depends on Uℓ (this relies on Lemma B.3).

• Properties P(Ω, K;U∗
ℓ ,Uℓ) imply Property P(Ω, K;∪ℓ U∗

ℓ ,∪ℓ Uℓ) = P(Ω, K) (it suf-

fices to merge the (finite) union of the sets Z corresponding to each Uℓ).
Step 3. Core recursive argument: If Ω0 is the section of the cone Π, Property P(Ω0, K) im-

plies Property P(Π, K ′;B(0, 1),B(0, 2)) for a suitable ratio K ′/K. We are going to prove this

separately in several lemmas (B.4 to B.6). Then the proof Lemma B.1 will be complete. �

Lemma B.4. Let Γ be a cone in Pn−1. For ℓ = 1, 2, let Bℓ and Iℓ be the ball B(0, ℓ) of Rn−1 and

the interval (−ℓ, ℓ), respectively. We assume that Property P(Γ, K;B1,B2) holds (with parame-

ters (L, ρmax, κ)). Then Property P[1,
√
2](Γ× R, K;B1 × I1,B2 × I2) holds.

Proof. Let us denote by y and z coordinates in Γ and R, respectively. For ρ ≤ ρmax, let ZΓ be

an associate set of couples (y, ry). For each y we consider the unique set of equidistant points

Zy = {zj ∈ [−1, 1], j = 1, . . . , Jy} such that

zj − zj−1 = 2ry and z1 + 1 = 1− zJy < ry .

Then we define

(B.1) Z
(ρ) =

{
(x, rx), for x = (y, z) with (y, ry) ∈ ZΓ, z ∈ Zy and rx = ry

}
.

The associate open set D(x, rx) is the product

D(x, rx) = B(y, ry)× (z − ry, z + ry) .
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We have the inclusions B(x, rx) ⊂ D(x, rx) ⊂ B(x,
√
2 rx) and it is easy to check that Property

P[1,
√
2](Γ × R, K;B(0, 1) × I1,B(0, 2) × I2) holds with parameters (L′, ρmax, κ) with L′ =

LK. �

Lemma B.5. Let Ω be a section in D(Sn−1), let Π be the corresponding cone, and let Iℓ be the

interval (2−ℓ, 2ℓ) for ℓ = 1, 2. We define the annuli

Aℓ =
{
x ∈ Π, |x| ∈ Iℓ and

x

|x| ∈ Ω
}
.

We assume that Property P(Ω, K) holds (with parameters (L, ρmax, κ)). Then, for suitable con-

stants a and a′ (independent of Ω and K), Property P[a, a′](Π, K;A1,A2) holds.

Proof. Let us consider the diffeomorphism

(B.2)
T : Ω× (−2, 2) −→ A2

x = (y, z) 7−→ x̆ = 2zy

in view of proving Property P[a, a′](Π, K;A1,A2), for a given ρ ≤ ρmax, we define a suitable

set Z̆ (ρ) using the set Z (ρ) introduced in (B.1)

(B.3) Z̆
(ρ) =

{
(x̆, rx), for x̆ = Tx with (x, rx) ∈ Z

(ρ)
}
,

and the associated open sets

D̆(x̆, rx) = T
(
D(x, rx)

)
.

We can check that

B(x̆, arx) ⊂ D̆(x̆, rx) ⊂ B(x̆, a′rx)
with a = 1

8
log 2 and a′ = 8

√
2 log 2 and that Property P[a, a′](Π, K;A1,A2) holds with param-

eters (L′, ρmax, κ) for L′ = NLK with an integer N independent of L and K. �

Lemma B.6. Let Ω be a section in D(Sn−1), let Π be the corresponding cone, and let Bℓ be

the balls B(0, ℓ) of Rn for ℓ = 1, 2. We assume that Property P(Ω, K) holds with parameters

(L, ρmax, κ) for a ρmax ≤ 1. Then Property P[a, a′](Π, K;B1,B2) holds for suitable constants a
and a′ (independent of Ω and K) and with parameters (L′, 1, κρmax).

Proof. Let ρ ≤ 1 and let M be the natural number such that

2−M−1 < ρ ≤ 2−M .

On the model of (B.2)-(B.3), we set

Z̆
m =

{
(2−mTx, 2−mrx), with (x, rx) ∈ Z

(2mρmaxρ)
}
, m = 0, . . . ,M,

and the associated open sets are

(B.4) 2−mT
(
D(x, rx)

)
with (x, rx) ∈ Z

(2mρmaxρ).

The set Z̆ associated with the cone Π in the ball B1 is

{(0, ρ)} ∪
M⋃

m=0

Z̆
m
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and the associated open sets are the reunion of the sets (B.4) for m = 0, . . . ,M and of the ball

B(0, ρ). As the radii rx belong to [κ2mρmaxρ, 2
mρmaxρ], we have 2−mrx ∈ [κρmaxρ, ρmaxρ]. Since

ρ itself belongs to the full collection of radii r, we finally find r ∈ [κρmaxρ, ρ]. The finite covering

holds with L′ = 3NLK + 1 for the same integer N appearing at the end of the proof of Lemma
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Phys. Théor. 41(3) (1984) 291–331.

[33] H. JADALLAH. The onset of superconductivity in a domain with a corner. J. Math. Phys. 42(9) (2001) 4101–

4121.

[34] T. KATO. Schrödinger operators with singular potentials. Israel J. Math. 13 (1972) 135–148 (1973).

[35] L. D. LANDAU, E. M. LIFSHITZ. Quantum mechanics: non-relativistic theory. Course of Theoretical Physics,

Vol. 3. Addison-Wesley Series in Advanced Physics. Pergamon Press Ltd., London-Paris 1958. Translated from

the Russian by J. B. Sykes and J. S. Bell.

[36] M. LEVITIN, L. PARNOVSKI. On the principal eigenvalue of a Robin problem with a large parameter. Mathe-

matische Nachrichten 281(2) (2008) 272–281.

[37] K. LU, X.-B. PAN. Eigenvalue problems of Ginzburg-Landau operator in bounded domains. J. Math. Phys.

40(6) (1999) 2647–2670.

[38] K. LU, X.-B. PAN. Surface nucleation of superconductivity in 3-dimensions. J. Differential Equations 168(2)

(2000) 386–452. Special issue in celebration of Jack K. Hale’s 70th birthday, Part 2 (Atlanta, GA/Lisbon, 1998).

[39] V. MAZ’YA. Sobolev spaces with applications to elliptic partial differential equations, volume 342 of

Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences].

Springer, Heidelberg, augmented edition 2011.

[40] V. G. MAZ’YA, B. A. PLAMENEVSKII. Elliptic boundary value problems on manifolds with singularities.

Probl. Mat. Anal. 6 (1977) 85–142.

[41] A. MELIN. Lower bounds for pseudo-differential operators. Arkiv för Matematik 9(1) (1971) 117–140.

[42] S. A. NAZAROV, B. A. PLAMENEVSKII. Elliptic Problems in Domains with Piecewise Smooth Boundaries.

Expositions in Mathematics 13. Walter de Gruyter, Berlin 1994.

[43] G. NENCIU. Stability of energy gaps under variations of the magnetic field. Lett. Math. Phys. 11(2) (1986)

127–132.



GROUND STATE ENERGY OF THE MAGNETIC LAPLACIAN ON CORNER DOMAINS 85

[44] X.-B. PAN. Upper critical field for superconductors with edges and corners. Calc. Var. Partial Differential

Equations 14(4) (2002) 447–482.

[45] K. PANKRASHKIN. On the asymptotics of the principal eigenvalue for a Robin problem with a large parameter

in planar domains. Nanosystems: Phys. Chem. Math. 4(4) (2013) 474–483.

[46] A. PERSSON. Bounds for the discrete part of the spectrum of a semi-bounded Schrödinger operator. Math.

Scand. 8 (1960) 143–153.
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