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Abstract 15 

  16 

The pelagic cover of the Owen Ridge in the Arabian Sea recorded the evolution of the Indian 17 

monsoon since the Middle Miocene. The uplift of the Owen Ridge resulted from tectonic 18 

processes along the previously unidentified Miocene India-Arabia plate boundary. Based on 19 

seismic reflection data tied with deep-sea drilling to track the Miocene India-Arabia plate 20 

boundary, we propose a new timing for the uplift of the Owen Ridge and highlight its impact on 21 

the record of climate changes in pelagic sediments. The new dataset reveals a fracture zone east 22 

of the Owen Ridge corresponding to the fossil plate boundary, and documents that the main 23 

uplift of the Owen Ridge occurred close to ~8.5 Ma, and is coeval with a major uplift of the east 24 

Oman margin. Late Miocene deformation at the India-Arabia plate boundary is also coeval with 25 

the onset of intra-plate deformation in the Central Indian Ocean, suggesting a kinematic change 26 

of India and surrounding plates in the Late Miocene. The uplift of the Owen Ridge above the 27 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lysocline at ~8.5 Ma accounts for a better preservation of Globigerina bulloides in the pelagic 28 

cover, previously misinterpreted as the result of a monsoon intensification event.  29 

 30 

1. Introduction 31 

The pelagic sedimentary cover of the Owen Ridge contains the past records of the Asian summer 32 

monsoon since the Middle Miocene (Shipboard Scientific Party, 1974, 1989). The ridge itself consists 33 

of a series of bathymetric highs sub-dividing the Arabian Sea into an abyssal plain to the east and a 34 

shallower Owen basin to the west (Fig. 1). The Arabian Sea is located on the migration path of the 35 

Inter Tropical Convergence Zone, which controls the seasonality of the Asian monsoon. The apparent 36 

increase in the abundance of the foraminifera Globigerina bulloides within the Owen Ridge's pelagic 37 

cover, commonly interpreted as a proxy for monsoon-driven upwelling (Kroon et al., 1991), suggests 38 

that the evolution of astronomical parameters alone cannot be responsible for the observed monsoon 39 

intensification in the upper Miocene (Molnar et al., 1993; Molnar, 2005; Sun and Wang, 2005; Huang 40 

et al., 2007; Clift et al., 2008; Steinke et al., 2010). A Late Miocene uplift of the Himalayan-Tibetan 41 

Plateau (Harrison et al., 1992) was proposed as a forcing mechanism over the climatic system, high 42 

elevation inducing a reorganisation of the atmospheric circulation and hence, monsoon intensification 43 

(Molnar and England, 1990; Molnar et al., 1993; Ann et al., 2001). However, a growing set of 44 

observations showed that the Himalaya mountain belt reached its present-day elevation at least ~15 45 

Myrs ago, and probably earlier (Spicer et al., 2003; Molnar, 2005; Harris, 2006; Rowley and Currie, 46 

2006; Dupont-Nivet et al., 2008; Wang et al., 2012; Yuan et al., 2013).  47 

A re-analysis of marine sediments drilled at the Owen Ridge questioned the record of an apparent 48 

monsoon intensification at ~8.5 Ma (Huang et al., 2007). Selecting foraminifera of large size to 49 

remove the effect of variations in carbonate dissolution in the abundance records, Huang et al. (2007) 50 

document only a minor change in the fraction of G. bulloides near 10 Ma. The latter is consistent with 51 

a constant decrease in weathering of India during the Late Miocene (Clift et al., 2001; 2003; 2008). 52 

Steinke et al. (2010) even suggested that the Late Miocene was a period of summer monsoon 53 

weakening over India, rather than intensification. 54 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The timing of seafloor uplift in the Indian Ocean is critical to the understanding of the sedimentary 55 

record of climate during the Cenozoic. The commonly accepted tectonic framework of the Arabian 56 

Sea is that the uplift of the Owen Ridge was coeval with the beginning of accretion at the Sheba Ridge 57 

in the Gulf of Aden 20 Ma ago (Fig. 1) (Whitmarsh, 1979) and with the shift of the India-Arabia plate-58 

boundary from the Oman continental margin to its present-day location (Mountain and Prell, 1990). 59 

However, structural and kinematic studies show that the Owen Fracture Zone (the current plate 60 

boundary) is no older than 3 to 6 Ma (Fournier et al., 2008a; 2011; Rodriguez et al., 2011; 2013b). As 61 

a result, the location of the India-Arabia plate boundary during the Miocene, as well as its relationship 62 

with the uplift of the Owen Ridge, remain unknown. 63 

Here we present a new set of seismic reflection data that documents a Late Miocene tectonic uplift at 64 

the edges of the Owen Basin, including the Owen Ridge. We identify the Miocene India-Arabia plate 65 

boundary and highlight the tectonic processes at the origin of the Owen Ridge uplift. We finally 66 

discuss how the latter impacted the record of climate evolution in the pelagic sediments of the Arabian 67 

Sea.  68 

 69 

2. Materials and methods 70 

The dataset presented in this study was acquired onboard the French Navy oceanographic vessel 71 

Beautemps-Beaupré during the OWEN and OWEN-2 surveys run in 2009 and 2012 respectively. 72 

Multibeam bathymetry was collected using a Kongsberg-Simrad EM 120 echo-sounder (Fig. 1, 2). 73 

Seismic reflection profiles were acquired at 10 knots using two GI air-guns (one 105/105 c.i. and one 74 

45/45 c.i., fired every 10 seconds at 160 bars in harmonic mode, resulting in frequencies ranging from 75 

15 to 120 Hz) and a 24-channel, 600 m-long streamer, implying a common mid-point spacing of 6.25 76 

m. A sub-surface penetration of about 2s two-way travel time (TWT) was achieved throughout the 77 

survey. The processing consisted of geometry setting, water-velocity normal move-out, stacking, 78 

water-velocity F-K domain post-stack time migration, bandpass filtering and automatic gain control. 79 

All profiles are displayed with a vertical exaggeration of 8 at the seafloor. The seismic dataset is tied 80 

with Deep Sea Drilling Project (DSDP) and Ocean Drilling Project (ODP) drillings available in the 81 

Arabian Sea (Shipboard Scientific Party, 1974; 1989) to provide the stratigraphic framework (Fig. 3, 82 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inset). Reflectors picked on seismic profiles have been selected based on seismic discontinuities that 83 

reflect lithological changes, stratigraphic hiatuses or tectonic deformation. 84 

 85 

3. Geological framework of the Arabian Sea and the Owen-Murray Ridge System 86 

3.1. Present-day morphology of the Arabian Sea 87 

The Owen Fracture Zone is an 800-km-long strike-slip fault system, which runs along the Owen Ridge 88 

(Fig. 1). The southern Owen Ridge is a 300 km-long, 50-km wide, and up to 2000 m-high relief that 89 

appears as a vast tilted slab (Fig. 2b). It contrasts with the uneven topography of the 220 km-long, 90 

50 km-wide, and up to 1700 m-high central ridge (Fig. 2a), and the guyot morphology of the Qalhat 91 

Seamount further to the north. The Owen Fracture Zone connects seafloor spreading at the Sheba mid-92 

oceanic ridge with the Makran subduction zone (Fig. 1). At its northern end, the Owen Fracture Zone 93 

forms a complex stepover basin known as the Dalrymple Trough (Edwards et al., 2000; Gaedicke et 94 

al., 2002), which is flanked to the east by the Murray Ridge. Seafloor spreading at the Sheba Ridge 95 

started around 20 Ma (Fournier et al., 2010), whereas subduction in the Makran area began in the Late 96 

Cretaceous (McCall, 1997). The modern accretionary wedge developed since the Tortonian (7.2-11.6 97 

Ma) (McCall, 1997; Burg et al., 2008; Smit et al., 2010). Seafloor morphology does not display any 98 

trace of the Miocene India-Arabia plate boundary (Rodriguez et al., 2011). 99 

  100 

3.2. Substratum of the Owen-Murray Ridge System 101 

Several seismic lines run as pre-site surveys for DSDP and ODP reached the basement of the southern 102 

and the central ridges. Their uneven substratum, drilled at DSDP Sites 223 and 224 (Fig. 2), is basaltic 103 

in composition and of Late Paleocene age (Shipboard Scientific Party, 1974; 1989). These 50-55 Ma-104 

old reliefs might either be tilted slivers of oceanic crust or volcanic highs (Fig. 3b), and are hereafter 105 

referred as the "pre-Owen Ridge". The history of the Murray Ridge basement is not clearly 106 

established, since it has never been drilled. Based upon seismic refraction data, the Murray Ridge has 107 

been interpreted as a small piece of continental crust inherited from the Gondwana break-up (Edwards 108 

et al., 2000; 2008).  109 

 110 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3.3. Uplift of the Owen Ridge  111 

In its present-day configuration, the southern Owen Ridge is formed at its top by Upper Oligocene-112 

Lower Miocene turbidites coming from the Indus deep-sea fan and the subsequent pelagic cover (Fig. 113 

3b) (Shipboard Scientific Party, 1974; 1989). Lower Miocene turbidites at the top of the Owen Ridge 114 

indicates an episode of uplift during the Miocene, rejuvenating the topography of the proto-Owen 115 

Ridge.  116 

So far, the uplift of the Owen Ridge has been dated at 20 Ma based on two sets of arguments. The first 117 

set of arguments deals with the progressive burial of the proto-Owen Ridge and its pelagic cover by 118 

Upper Oligocene-Lower Miocene Indus turbidites, which forms a diachronous angular unconformity 119 

(picked in light purple) (Fig. 3) biostratigraphically dated at 19.6 Ma and ~14 Ma at the southern (Fig. 120 

3b) and central (Fig. 3c) Owen Ridge, respectively (Shipboard Scientific Party, 1974). In fact, this 121 

angular unconformity is unrelated to any tectonic uplift of the Owen Ridge, in contrast with previous 122 

interpretation by Whitmarsh et al. (1974; 1979). Second, the transition from Indus turbidites to 123 

Miocene pelagic deposits drilled on the southern Owen Ridge at DSDP Site 224 and ODP Sites 721, 124 

722, 731 (top of Unit 4, Fig. 3) has been considered by Mountain and Prell (1990) as an indicator of 125 

uplift above the level of turbiditic deposition. The transition is marked by a mixed pelagic-turbiditic 126 

sequence biostratigraphically dated at 14-15 Ma, composed of thin detrital particles, interpreted as the 127 

uppermost part of the turbiditic plume being deposited during the first stages of ridge uplift (Mountain 128 

and Prell, 1990). The latter argument will be revised in the light of our new dataset. 129 

 130 

3.4. Past locations of the India-Arabia plate-boundary  131 

Past location of the India-Arabia plate boundary prior to the Owen Fracture Zone is currently 132 

unknown. Early paleogeographic reconstructions by Whitmarsh (1979) suggested that the India-133 

Arabia plate boundary was already at its present-day location when India started to move northwards 134 

at ~90 Ma. An alternative paleogeographic reconstruction (Mountain and Prell, 1990) postulates that 135 

the India-Arabia plate-boundary initially ran along the Oman continental margin, while the Mascarene 136 

Basin opened between Madagascar and Seychelles (between ~90-60 Ma) (Bernard and Munschy, 137 

2000) and the Carlsberg Ridge developed (since ~63 Ma; Dyment, 1998). The India-Arabia plate-138 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boundary would then have jumped to its present-day position in the Early Miocene (~20 Ma), 139 

triggering the uplift of the Owen Ridge (Mountain and Prell, 1990). A Paleogene location of the India-140 

Arabia plate-boundary in the Owen Basin is also supported by paleogeographic reconstructions based 141 

on the record of magnetic anomalies over the Arabian Sea (Royer et al., 2002).  142 

 143 

4. Results 144 

4.1. Late Miocene deformation and contourites on the East-Oman margin 145 

Seismic profiles crossing the edge of the continental platform reveal a large, ~20-km-wide anticline 146 

affecting Lower to Upper Miocene sediments composed of calcareous turbidites according to the 147 

nearby ODP Site 730 (units U2 and U3, Fig. 3a and 4) (Shipboard Scientific Party, 1989). A dense 148 

network of faults affects the anticline and is sealed by upper Miocene to Plio-Pleistocene deposits 149 

(unit U1, Fig. 3a and 4). The folded unit contains planktonic faunas typical of a deep-sea environment 150 

(Shipboard Scientific Party, 1989). An erosive surface sealing the top of the anticline (Fig. 3a and 4) 151 

indicates local uplift of the platform during the folding episode. At the location of the ODP Site 730, 152 

the fold then subsided down below the sea level in early Pleistocene times, as indicated by the age of 153 

the first overlying sediments (1.3 Ma). Thick chaotic bodies interpreted as Mass Transport Deposits 154 

(MTD hereafter) on Fig. 3a and 4 are observed down the eastern flank of the fold, indicating sudden 155 

slope over-steepening related to the formation of the fold. The youngest calcareous turbidites affected 156 

by the deformation are ~8.8 Ma-old according to correlations with ODP Site 730. The fold is overlaid 157 

by ~8.2 Ma-old sediments according to ODP Site 728 (Shipboard Scientific Party, 1989). This set of 158 

observations documents a major uplift episode along the Oman margin around 8.5 Ma. 159 

Bottom currents influenced the architecture of the sedimentary unit U1 sealing the fold (Fig. 3a). Unit 160 

1 displays a complicated set of imbricated, sigmoid to undulating geometries, all non-parallel to the 161 

accumulation surface that moved preferentially upslope through times. This description corresponds to 162 

a confined drift according to the classification of Faugères et al. (1999), and is very similar to drifts 163 

observed along the Algarve Margin (Portugal) (Marchès et al., 2010; Brackenridge et al., 2013). 164 

 165 

4. 2. Late Miocene deformation at the Southern Owen Ridge  166 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An E-W seismic line was acquired close to ODP Site 722 on the Southern Owen Ridge, where the 167 

most complete sequence has been drilled (Fig. 3b). A fanning configuration characterizes the lower 168 

Miocene turbidites on top of the Owen Ridge (Fig. 3b, 5a, 5b, 6a). The seismic profile crossing ODP 169 

Site 722 (Fig. 3b) shows that the 14-15 Ma-old turbiditic-pelagic facies has been drilled on the levee 170 

of a fossil turbiditic channel. The ~40-m-deep channel axis is identified by a typical lens-like 171 

architecture and discontinuous, high-amplitude reflections. The associated levees display a 172 

characteristic wedge shape with high-amplitude, transparent seismic facies (Fig. 3b). 173 

The sedimentary cover overlying the last turbiditic channel (units U3 to U1) is composed of pelagic 174 

deposits (Fig. 3, 5, 6). Pelagic Unit 3 displays slight lateral thicknesses variations (<0.1 s TWT), which 175 

results either from MTDs coming from the proto- Owen Ridge that still stood above the seafloor 176 

before the uplift, or from fanning related to a moderate tectonic activity (Fig. 5 a, b). 177 

 The transition between units 3 and 2 is marked by an increase of the sedimentation rates (from 15 to 178 

54 m.Ma-1) (Shipboard Scientific Party, 1989). Unit 2 is also marked by the appearance of submarine 179 

failures around ~8.5 Ma according to the nearby ODP Sites 721 and 731 (Fig. 2, 3, 5). The age of ~8.5 180 

Ma corresponds to the age of the Foraminifera (Discoaster hamatus) immediately overlying the 181 

sedimentary hiatus (formed by the submarine failure) drilled at ODP Site 721. The configuration of 182 

submarine failures observed in the uppermost part of the pelagic sequence shows that the sediment 183 

failed and were transported in the direction of the Owen Basin (Fig. 3, 5), which indicates that the 184 

Owen Ridge was already uplifted at ~8.5 Ma. The thickness of Unit 2 increases in the southernmost 185 

part of the Owen Ridge, where it displays a conspicuous fanning pattern (Fig. 6a), starting at ~10 Ma, 186 

and ending at 8.5 Ma (first pelagic layer over the MTD that seals the fanning). The sedimentary 187 

sequence at the top of the Owen Ridge is faulted throughout its entire thickness (Fig. 3b and 5a) by a 188 

dense network of faults very similar to what is observed on the Oman margin (Fig. 3a). These faults 189 

display very irregular offsets and do not root into the basement (Fig. 6a). We interpret these faults as 190 

the result of fluid circulation (i.e. polygonal faults as defined in Cartwight, 1994). The change of 191 

sedimentary setting induced by the uplift of the southern ridge and the margin sealed fluid circulation 192 

in most places. At the southern ridge, fluid circulation may have controlled the distribution of 193 

submarines failures (Rodriguez et al., 2012).  194 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Several folds are observed in the Indus abyssal plain at the eastern foot of the southern Owen Ridge, 195 

and south of the Beautemps-Beaupré Basin (Fig. 5c, 6). A sharp and vertical fault plane, interpreted as 196 

a fracture zone, crosscuts the eastern side of the Owen Ridge at depth (Fig. 6b, 6c; 7a). A system of 197 

fossil folds buried under Indus deposits and MTDs coming from the ridge is observed east of the 198 

southern ridge. The growth anticline displayed in Fig. 6c shows that compressive deformation is still 199 

active at the Owen Fracture Zone (Rodriguez et al., 2011). The series of folds observed south of the 200 

Beautemps-Beaupré Basin (Fig. 6d) display an isopach pattern at depth. The overlying deposits show 201 

angular unconformities indicating several discontinuities in episodes of folding. Unfortunately, the 202 

penetration of the nearby ODP Site 720 (location on Fig. 1) is too shallow to provide confident dating 203 

of the initiation of this compressive episode. These folds could correspond either to the Owen Ridge 204 

uplift at 8.5 Ma or to the emplacement of the Owen Fracture Zone between 3-6 Ma. 205 

 206 

4.3. Late Miocene deformation at the Central Owen Ridge and mass transport deposits 207 

Seismic profiles crossing the eastern side of the Central Owen Ridge document an angular 208 

unconformity within the Indus deep-sea fan (blue in Fig. 7). The angular unconformity becomes 209 

laterally concordant with the overlying sediments from the Indus fan. This key reflector is about 1 s 210 

TWT deep in the undeformed area, which roughly corresponds to a Late Miocene age according to the 211 

nearby DSDP Site 222. A sub-vertical fracture zone is identified at the eastern edge of the central 212 

ridge (Fig. 7a). 213 

DSDP Site 223 is located west of the central segment of the Owen Ridge, where the Early Miocene 214 

unconformity was first determined (Shipboard Scientific Party, 1974; Whitmarsh, 1979). A second, 215 

younger unconformity is observed both in the Owen Basin (Fig. 5d) and at the top of the central Owen 216 

Ridge (Fig. 7), where it is underlined by MTDs composed of upper Miocene sediments (Fig. 3c) 217 

overlying diatoms-rich sediments dated at 10 Ma (Shipboard Scientific Party, 1974). The reflector 218 

corresponding to the top of the MTDs is correlated with sediments at the top of the Central Owen 219 

Ridge. The overlying pelagic layer is 0.3 s (TWT) thick at the top of the central ridge, and devoid of 220 

MTDs. The thickness of 0.3 s (TWT) is the same as Unit 1 on the Southern Owen Ridge in areas 221 

undisturbed by submarine failures (Fig. 3). Assuming a pelagic sedimentation rate similar to the one 222 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estimated at the southern ridge (Bourget et al., 2013) implies a Late Miocene age of the unconformity 223 

(~8 Ma), consistent with the MTDs drilled downslope at DSDP Site 223. A similar unconformity 224 

sealed by 0.3s (TWT) of pelagic sediments is observed at the top of most of the bathymetric highs 225 

buried by the Indus fan and sediments from the Oman margin in the Owen Basin (Fig. 5 c). These 226 

observations suggest a regional tectonic deformation at the origin of the ~8 Ma-old unconformity and 227 

the uplift of the central Owen Ridge.  228 

 229 

5. Discussion 230 

5. 1. Age of uplift of the Owen Ridge and Late Miocene deformation in the Owen Basin 231 

The Late Miocene episode of deformation (~8-9 Ma) described above contrasts with the 15-20 Ma age 232 

previously assessed for the major uplift of the Owen Ridge (Whitmarsh, 1979; Mountain and Prell, 233 

1990). The main argument in favour of a 15-20 Ma-old uplift of the Owen Ridge was the 14-15 Ma-234 

old mixed turbiditic-pelagic facies drilled at ODP Sites (Mountain and Prell, 1990). Because of its 235 

location on a turbiditic levee (Fig. 3), the mixed facies cannot be interpreted by itself as the first stage 236 

of the southern ridge uplift. During their deposition along turbiditic channels, turbiditic plumes 237 

frequently undergo flow-stripping or overspilling processes (Piper and Normark, 1983; Hiscott et al., 238 

1997). These processes imply that the uppermost part of the turbiditic plume, composed of the thinner 239 

detritic particles, overflows throughout the channel axis, leading to the deposition of mixed turbiditic-240 

pelagic sequence on turbiditic levees similar to the one described at ODP Site 722. The overlying 241 

pelagic deposits (Units 2-3) simply reflect a shift in the locus of turbidites deposition. Thick pelagic 242 

layers (>100 m-thick) are common features of the Indus deep-sea fan (DSDP Site 222, Shipboard 243 

Scientific Party, 1974; ODP Site 720, Shipboard Scientific Party, 1989), where the alternation of 244 

turbidites within pelagic sequences is controlled by avulsion processes, and not by seafloor uplift.  245 

The lysocline is currently at a depth of ~4000 m in the area (Kolla et al., 1976) and its Miocene depth 246 

is unknown, making it difficult to discriminate whether fluctuations in the conditions of microfossils 247 

preservation throughout Unit 3 reflect the first stage of uplift of the Owen Ridge or oscillations in the 248 

lysocline depth. Slight lateral thickness variations (~ 0.1 s (TWT)) of Unit 3 (10.4 to 14-15 Ma) may 249 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indicate nearby tectonic activity (Fig. 3; 5a,b), but with no major topographic building during the 250 

deposition of Unit 3. 251 

The ~8.5-9 Ma onset of major submarine failures is a striking feature of both the southern and the 252 

central Owen Ridges (Rodriguez et al., 2012; 2013a). The large expansion of the failure-related 253 

erosive surface over both ridge segments, together with the erosive surface observed at the top of 254 

buried reliefs in the Owen Basin and the synchronicity with the formation of anticlines along the 255 

Oman margin strongly suggest that they all relate to a common regional tectonic event.   256 

The 8-9 Ma age of deformation in the Owen Basin fits with the estimated Tortonian age (7.2-11.6 Ma) 257 

of the post-rift uplift episode observed along the Dhofar margin in the Gulf of Aden (Platel and Roger, 258 

1989; Lepvrier et al., 2002; Fournier et al., 2004; Petit et al., 2007; Gunnel et al., 2007; Bache et al., 259 

2010). Several local processes have been invoked for the uplift episode in the Dhofar (Bache et al., 260 

2010; Leroy et al., 2010), but the Late Miocene episode of deformation identified in the Owen Basin 261 

could better account for this uplift as rifted areas are prone to be reactivated by intra-plate deformation 262 

(e.g. Cloetingh et al., 2008). On the other hand, the reassessed age of deformation in the Owen Basin 263 

contrasts with the age of uplift of the Murray Ridge estimated at ~20 Ma (Clift et al., 2001; Gaedicke 264 

et al., 2002). This discrepancy may reflect either the lack of good stratigraphic control of the 265 

deformation in the vicinity of the Murray Ridge, or a different tectonic episode. Recent ties with 266 

industrial drillings (Calvès, 2008) shows that the youngest turbidites tilted by the uplift of the Murray 267 

Ridge are actually 8-10 Myr-old. 268 

 269 

5. 2. Uplift of the Owen Ridge and the Early-Middle Miocene India-Arabia boundary 270 

The fracture zone segments observed at the eastern edge of the Owen Ridge (Fig. 6b, 6c) likely 271 

correspond to the fossil India-Arabia plate-boundary in Early-Middle Miocene times, prior to the onset 272 

of the Owen Fracture Zone. The system of buried fold observed on Fig. 5c probably marks the 273 

deformation related to the Owen Ridge uplift. The fossil plate boundary must have been very weak to 274 

allow the >2000 m uplift of the Owen Ridge. Based on free-air gravimetry and seismic profiles 275 

analysis, Weissel et al. (1992) showed that the uplift of the Owen Ridge may have occurred as a 276 

flexural response to either an extensional or a compressive event, making the tectonic interpretation of 277 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the ridge ambiguous. Vertical deformation within the oceanic lithosphere is mainly controlled by the 278 

lithospheric strength, which is a direct function of the thermal state - and therefore the age - of the 279 

lithosphere (Weissel et al., 1992). Consequently, even a slight change in the stress field can generate 280 

prominent seafloor uplift (>1000 m) of flexural origin in areas of strong rheological contrasts (i.e. the 281 

India-Arabia plate-boundary and the Oman margin).  282 

The uplift of the Owen Ridge may be responsible for the transition from the Miocene plate boundary 283 

to the Owen Fracture Zone. The vertical offset along the fracture zone might have changed the stress 284 

field around it, leading to the formation of a nearby new transform segment while the initial one 285 

became extinct, in a way similar to what inferred for normal faults dynamics (Buck et al., 1993; 286 

Bonatti et al., 2005). In this framework, the 3-6 Ma-old Owen Fracture Zone (Fournier et al., 2008a, 287 

2008b; 2011) is a new transform segment located only 5-10 km from the previous segment (Fig. 6). 288 

Considering that the uplift started around 10.5 Ma, the early-middle Miocene boundary accommodated 289 

vertical motion during several million years prior to the onset of the Owen Fracture Zone. This 290 

structural reorganization of the India-Arabia plate-boundary did not involve any significant change in 291 

the direction of the India-Arabia relative motion, according to the kinematics reconstructions of 292 

Chamot-Rooke et al. (2009). 293 

 294 

5. 3. Origin of the Late Miocene deformation in the Owen Basin 295 

The 15-20 Ma uplift of the Owen Ridge used to be related with the onset of seafloor spreading at the 296 

Sheba Ridge (Cochran, 1981; Mountain and Prell, 1990). The Late Miocene age of uplift of the Owen 297 

Ridge requires another tectonic trigger.  298 

 In the Arabian Sea, the magnetic anomalies observed over the Carlsberg (Somalia-India motion) and 299 

the Sheba ridges (Somalia-Arabia motion) documents a slow deceleration of seafloor spreading rates 300 

between 20 and 10 Ma, then followed by nearly constant spreading rates after 8-10 Ma (DeMets et al., 301 

2005; Merkouriev and DeMets, 2006; Fournier at al., 2010). A two-phases growth of compressive 302 

folds is recognized in the Central Indian Ocean, the first and minor one being dated at ~14-15 Ma 303 

(Krishna et al., 2009), and the second, major one, at 8-9 Ma (Weissel et al., 1980; Wiens et al., 1985; 304 

Cochran et al., 1989; Bull and Scrutton, 1990, 1992; Chamot-Rooke et al., 1993; Delescluse et al., 305 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2008a; Bull et al., 2010). Age of the intraplate extension, counterpart of the intraplate compression, is 306 

also compatible with a beginning of widespread deformation within the Indo-Australian plate around 307 

10 Ma (Henstock et al., 2004). It suggests that the entire plate was subjected to a kinematic change 308 

around 8-10 Ma, affecting both the plate interior and its boundaries. 309 

The origin of the kinematic change responsible for the Indo-Australian intraplate deformation is a 310 

matter of debate. Clark (2012) proposed a convergence of India with respect to Eurasia smoothly 311 

decreasing through time since the very beginning of the collision, as a result of the viscous resistance 312 

exerted by the lithospheric mantle in the collision zone.  The latter does not explain the origin of the 8-313 

10 Ma kinematic change. Molnar and Stock (2009) proposed that the growth of the Himalayas 314 

increased the gradient of gravitational potential energy, resulting in an increase in stress applied on the 315 

Indian plate and its boundaries. However, the Himalaya-Tibet reached its present-day altitude some 15 316 

Ma, and probably earlier (Yuan et al., 2013). Late Miocene deformation at India's plate boundaries 317 

may have occurred once the stress induced by gravitational potential energy exceeded some threshold 318 

value. Onset of widespread deformation in the Indian Ocean may relate to strength loss of the oceanic 319 

lithosphere in relation with fault selective abandonment (Delescluse et al., 2008a) and further 320 

serpentinization (Delescluse and Chamot-Rooke, 2008b). Delescluse and Chamot-Rooke (2007) and 321 

Copley et al. (2010) alternatively proposed that the driving forces resulted from changes in the slab-322 

pull forces at Sunda subduction. Whatever the driver, the 8-9 Ma episode of deformation within Indo-323 

Australian plate modified the kinematics at all surrounding plate’s boundaries. 324 

 325 

5. 4. Implications for the Indian monsoon and environmental changes  326 

The seafloor of the Owen Ridge was significantly uplifted at ~8.5 Ma above the lysocline, inducing 327 

the apparent dominance of G. bulloides since 8.5 Ma (Shipboard Scientific Party, 1989; Kroon et al., 328 

1991) unrelated to monsoon intensification (Huang et al., 2007). The Late Miocene change in 329 

Foraminifera abundances therefore reflects a change in their conditions of preservation rather than a 330 

climatic change.  331 

In absence of any monsoon intensification at 8.5 Ma, the origin of the coeval environmental change in 332 

the Siwalik sequence in Pakistan is enigmatic. This environmental change is characterized by a shift 333 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from the dominance of C3 to C4 plants in the vegetation (C3 and C4 plants using a different 334 

photosynthesis pathway) (Quade et al., 1989; Cerling et al., 1997; Molnar, 2005). The estimated 335 

decrease in annual precipitation (~120 mm), the increase in annual temperature (+3°C), as well as the 336 

decrease in atmospheric CO2 (Cerling et al., 1997) at ~8-9 Ma cannot account for the ecological 337 

transition alone (Nelson, 2006; Huang et al., 2007). Huang et al. (2007) propose that the ecological 338 

transition resulted from a large-scale hydrological change over Pakistan and he Himalayan foreland, 339 

but the origin of this hydrological change is unknown. 340 

Tectonic processes involved in surface uplift act at a different time-scale and are less precisely dated 341 

than ecological and climatic changes, making any relationship based on synchronicity difficult to 342 

assess. However, the environmental change is coeval with several indicators of surface uplift in 343 

Pakistan that might have helped the environmental transition through Indus River avulsion (Fig. 8), 344 

which provides a likely origin for the hydrological change pointed out by Huang et al. (2007). Indeed, 345 

the Makran underwent a structural reorganization in Late Miocene while the frontal thrust migrated 346 

southward. Folds reaching altitudes of 1000-2000 m according to field works (McCall, 1997; Ellouz 347 

Zimmerman et al., 2007) triggered a huge submarine olistostrome (~42 000 km3) (Burg et al., 2008). 348 

The Kirthar, Sulaiman and Salt ranges also underwent complex structural reorganizations during the 349 

Late Miocene. These structural reorganizations favoured a complex episode of avulsion of the Indus 350 

River over more than 400 km (Waheed and Wells, 1990; 1992), which is at its present-day location 351 

since only 5 Ma (Clift and Blusztajn, 2005). Surface uplift in Pakistan reduced monsoon precipitation 352 

coming from the ocean and increased aridity, without affecting the seasonality (consistently with 353 

environment reconstructions of Nelson, 2006). Surface uplift also explains the greater fraction of 354 

precipitation coming from continental sources in the Siwalik area, revealed by geochemical studies of 355 

Huang et al. (2007). The complex interplay between precipitation source changes (Huang et al., 2007) 356 

and Indus avulsion (Waheed and Wells, 1990, 1992) triggered by surface uplift over Pakistan induced 357 

successive fragmentations of habitats and the related ecological stresses that lead to the environmental 358 

change (Barry et al., 2002). 359 

 360 

6. Conclusions  361 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The Owen margin, basin and ridge have undergone a significant episode of deformation in the Late 362 

Miocene, leading to the uplift of the east Oman margin and the Owen Ridge. The best-dated 363 

deformation is the anticline structure on the Oman margin, bracketed between 8.2 and 8.8 Ma. This 364 

episode of deformation corresponds to the transition from the Early-Middle Miocene India-Arabia 365 

plate boundary to the Owen Fracture Zone. The Late Miocene episode of deformation at the India-366 

Arabia plate boundary is coeval with intraplate deformation in the Central Indian Ocean, suggesting a 367 

possible common cause. 368 

 The uplift of the Owen Ridge induced changes in the condition of preservation of Foraminifera, 369 

which confirms the previous assumption of Huang et al. (2007) that the apparent increase in G. 370 

Bulloides at 8.5 Ma is not related to a climatic change. The monsoon might have already been strong 371 

at 10 Ma, then decreasing over the Arabian Sea until ~5 Ma (Clift et al., 2008; Prasanta and Sinha, 372 

2010; Sakai et al., 2010). Proxies recording changes in summer monsoon intensity east of India, i.e. 373 

Chinese loess, abundances of N. dutertrei in South China Sea, windblown record in northeast Pacific 374 

(Molnar et al., 2010; Steinke et al., 2010), may reflect a shift in the trajectory of atmospheric eddies 375 

involved in the Indian monsoon that did not affect the western Indian Ocean. Contouritic drifts lay on 376 

the Late Miocene highs (Fig. 7), leading to the hypothesis that the uplift of the Owen Basin edges may 377 

also have changed the conditions of record of deep-sea current activity. The arising working 378 

hypothesis is that the general increase in carbonate preservation recorded in the Indian Ocean 379 

(Peterson et al., 1992) may be the result of the 8-9 Ma-old episode of seafloor uplift rather than the 380 

expression of a major climatic or deep-sea circulation change.  381 

The questioning of the 8.5 Myrs monsoon intensification suggests that surface uplift in the Pakistan 382 

may be responsible for the coeval environmental change recorded in the Siwalik sequence. This 383 

environmental change influenced the evolution of mammals in the Late Miocene (Barry et al., 2002; 384 

Elton, 2008), including Sivapithecus, a likely ancestor of Pongo pygmae (Andrews and Cronin, 1982), 385 

who disappeared in Pakistan following the ~8.5Ma ecological change (Begun, 2004).  386 

 387 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 397 

Figure captions 398 

Figure 1 : Bathymetric map of the Arabian Sea, with location of ODP and DSDP drilling sites. The 399 

multibeam bathymetric coverage is draped over SRTM-PLUS topography (Becker et al., 2009). Inset 400 

shows the regional tectonic setting of the India-Arabia plate boundary, and the position of the summer 401 

Inter-Tropical Convergence Zone (ITCZ). AOC : Aden-Owen-Carlsberg triple junction. 402 

 403 

Figure 2 : Bathymetric maps of the central (a) and southern (b) portions of the Owen Basin, and 404 

location of the seismic lines. See Fig. 1 for location. The bathymetry shows the offset of the Owen 405 

Ridge by the Owen Fracture Zone (OFZ). DSDP and ODP Sites are shown by red stars.  406 

Figure 3 : Seismic profiles crossing a) the Oman continental margin, b) the Southern Owen Ridge, c) 407 

the Central Owen Ridge (see Fig. 2 for location). Insets show close-views of the seismic profiles in the 408 

area of deep-sea drilling (ODP and DSDP) locations. The stratigraphic framework is summarized on 409 

the lower left hand corner. Profile a) displays a major anticline structure affecting chalk-rich turbiditic 410 

deposits that is overlapped by a 8 Ma-old contouritic drift, composed of pelagic ooze with inserted 411 

MTDs. Older events, including an upper-Eocene unconformity, and the obduction of Masirah 412 

Ophiolites, are not discussed in this study. Profile b) shows a W-E seismic profile crossing the 413 

Southern Owen Ridge at the location of ODP Site 722. The basement, drilled at DSDP Site 224, 414 

consists of 50-55 Ma-old basaltic lamprophyres. A major unconformity is observed on the western 415 

side of the ridge, where early miocene turbiditic deposits (Unit 4) onlap oligocene deposits drilled at 416 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DSDP site 224. Unit 3 corresponds to a pelagic layer and ends at 10.4 Ma. The overlying Unit 2 is 417 

composed of radiolarian rich pelagic chalk and ends at 8.2 Ma. Unit 1 is composed of pelagic ooze and 418 

chalk, and dissected by landslide failures. c) shows an W-E seismic profile crossing the Central Owen 419 

Ridge. A major unconformity, corresponding to a hiatus of 6 Myr, has been drilled at DSDP Site 223, 420 

together with Late Miocene mass transport deposits. The overlying cover is mainly composed of 421 

pelagic chalk and ooze, with a detrital component in the Owen Basin. Late Miocene breccias, 422 

correlated with an unconformity on the central ridge, have been drilled at DSDP Site 223.  423 

 424 

Figure 4 : Seismic profile crossing the Oman margin, showing a major anticline affecting Miocene 425 

sediments. See Fig. 2b (top left hand corner) for location, and Fig. 3 for stratigraphic legend. 426 

 427 

Figure 5 : a) and b) Seismic profiles crossing the top of the Owen Ridge, highlighting the fanning 428 

pattern of early Miocene turbidites. c) Seismic profile crossing the eastern foot of the Southern Owen 429 

Ridge, showing a buried system of folds corresponding to the syn-uplift deformation. d) Seismic 430 

profile crossing partly buried reliefs in the middle of the Owen Basin. It displays an unconformity 431 

draped by 0.3s TWT of pelagic sediments, similar to the Late Miocene unconformity observed on the 432 

Central Owen Ridge. See Fig. 2 for profiles location. 433 

 434 

Figure 6 : Seismic profiles crossing the Southern Owen Ridge. Profile a) shows a N-S section that 435 

displays the Late Miocene fanning marking the uplift of the Owen Ridge. A dense network of faults, 436 

with irregular offsets, affects Unit 1 to 4, and may result from fluid escapes. Profile b) shows a 437 

transverse section of the southernmost extremity of the southern ridge. It shows that the ridge is 438 

formed by folded Indus sediments, crosscut to the east by an fossil vertical fault, interpreted as a 439 

fracture zone corresponding to the India-Arabia plate boundary. The present-day Owen Fracture Zone 440 

is observed on the western side of the ridge, where it is associated with the Beautemps-Beaupré basin. 441 

Profile c) shows a fracture zone at the eastern foot of the southern ridge, and compressive deformation 442 

in the overlying sediments. Profile d) shows a series of folds located south of the Beautemps-Beaupré 443 

Basin. 444 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See Fig. 2 for location and Fig. 3 for stratigraphic legend. 445 

 446 

Figure 7 : Seismic profiles crossing the eastern side of the Central Owen Ridge. Profile a) shows an 447 

angular unconformity sealed by Late Miocene turbidites according to the nearby DSDP Site 222. 448 

fracture zone is observed at the eastern foot of the ridge, the present-day active boundary being 449 

localized at the mid-slope of the ridge. Profile b) shows the Late Miocene angular unconformity 450 

formed during the uplift of the Owen Ridge. See fig.2b for location and fig. 3 for stratigraphic legend. 451 

 452 

Figure 8 : Sketches of the geological history of the India-Arabia plate boundary, and the Owen Basin 453 

since the Middle Miocene. At ~10 Ma, the India-Arabia plate boundary was located close to the Owen 454 

Ridge, which was mostly buried under Indus turbiditic system, excepted a few highs standing above 455 

the seafloor. Pakistan was flooded by the Indus delta (Ellouz-Zimmerman et al., 2007). Around 8.5 456 

Ma, the Owen Ridge and the Oman margin uplifted, inducing a better preservation of pelagic 457 

foraminifera on their top. This event is coeval with general plate reorganization recognized overall the 458 

Indian Ocean. The Makran Subduction Zone underwent a major structural reorganization during 459 

Tortonian (McCall, 1997), marked by olistostromes (Burg et al., 2008) and a geographic isolation of 460 

paleontological species with regards to the area east of the Kirthar Ranges (Ellouz-Zimmerman et al., 461 

2007). The precise location of the frontal thrust in Tortonian is currently unknown. Since 3-6 Ma, the 462 

Miocene India-Arabia plate boundary jumped to the Owen Fracture Zone emplaced with large 463 

stepover basins along strike. The Oman margin subsided down below the sea level. The Indus river is 464 

at its present-day location since ~5-6 Ma (Clift and Blusztajn, 2005).  465 

 466 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