
HAL Id: hal-00966784
https://hal.science/hal-00966784

Submitted on 27 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed Value Functions for Multi-Robot
Exploration: a Position Paper

Laëtitia Matignon, Laurent Jeanpierre, Abdel-Illah Mouaddib

To cite this version:
Laëtitia Matignon, Laurent Jeanpierre, Abdel-Illah Mouaddib. Distributed Value Functions for Multi-
Robot Exploration: a Position Paper. Multi-Agent Sequential Decision Making in Uncertain Multi-
Agent Domain (MSDM) (workshop of AAMAS), 2012, France. �hal-00966784�

https://hal.science/hal-00966784
https://hal.archives-ouvertes.fr


Distributed Value Functions for Multi-Robot Exploration

Laëtitia Matignon and Laurent Jeanpierre and Abdel-Illah Mouaddib

Abstract— This paper addresses the problem of exploring
an unknown area with a team of autonomous robots using
decentralized decision making techniques. The localization
aspect is not considered and it is assumed the robots share
their positions and have access to a map updated with all
explored areas. A key problem is then the coordination of decen-
tralized decision processes: each individual robot must choose
appropriate exploration goals so that the team simultaneously
explores different locations of the environment. We formalize
this problem as a Decentralized Markov Decision Process (Dec-
MDP) solved as a set of individual MDPs, where interactions
between MDPs are considered in a distributed value function.
Thus each robot computes locally a strategy that minimizes
the interactions between the robots and maximises the space
coverage of the team. Our technique has been implemented and
evaluated in real-world and simulated experiments.

I. INTRODUCTION

The exploration consists of making decisions about where

to go to gather knowledge about the environment. Explo-

ration of unknown environments has been attracting con-

siderable attention in autonomous mobile robotics given its

wide range of applications including surveillance, search-

and-rescue and planetary missions. In this context, multi-

robot systems are often suggested to have obvious advan-

tages over single-robot systems : faster, robust, fault-tolerant,

compensation of sensors uncertainty, ... To minimize the

overall time to complete the exploration task in the context

of multi-robot exploration, efficient exploration techniques

should consider strategies to distribute the robots over the

environment to reduce the overlap between explored areas of

each robot. This is the global coordination issue defined as

allocating appropriately exploration goals for the individual

robots so that they simultaneously explore different zones of

the area. Favouring a well balanced spatial distribution of the

robots in the environment has also the advantage to minimize

the other main issue in multi-robot exploration, that is the

interference between the members of the team. When robots

are close to each other, local coordination such as collision

avoidance is necessary. This can slow down the exploration

because robots may spend time in these manoeuvres.

In this paper, we are interested in multi-robot exploration

strategies that maximise the coverage and reduce the overlap

between explored areas of each robot to efficiently explore

by minimising local interactions. The context of this work is

the CAROTTE challenge1, where one or more robots have to

map some unknown indoor area, to return within 30 minutes,

to recognize and localize objects from a list of items that may

The authors are with GREYC CNRS (UMR6072) - Université de Caen
Basse-Normandie, France firstname.lastname@unicaen.fr

1http://www.defi-carotte.fr

be in the exploration area, and to do some opportunistic

tasks like pushing a ball which position is unknown. We

have at our disposal mobile robots able to communicate

each others with their positions (when possible) and to

construct local maps updated with the areas explored by the

others. Throughout this paper, the localization aspect is not

considered and we consider that robots are homogeneous,

can share their positions and have access to such local maps.

Under these assumptions, our objective is a distributed multi-

robot exploration algorithm so that each robot constructs its

exploration strategy locally by taking into account the others,

their possible intended exploration target and other tasks

that may be opportunistic at the same time. Additionally,

strategies must be computed locally on-board by each robot

with limited resources. Our approach must also be robust

to temporary network errors as communication may not be

permanently available during the challenge.

Decentralized Markov Decision Process (Dec-MDP) pro-

vides an expressive means of modelling decentralized de-

cision making problems but it is very hard to solve. Our

approach is based on distributed value function (DVF) tech-

niques. It decouples the multi-agent problem into a set of

individual agent problems and considers possible interactions

among team as a separate layer, which currently seems one

of the main tracks to tackle scalability in Dec-(PO)MDPs [1],

[2]. This could be seen as representing a Dec-MDP as a set

of MDPs, one per robot, where interactions between MDPs

are considered in the DVF. Our technique has been applied

successfully in real-world scenarios during the CAROTTE

challenge where our consortium was vice-champion.

This paper is organized as follows. Section II reviews the

existing literature on the multi-robot exploration problem.

Section III presents motivations and our approach based

on DVF techniques. In section IV, the decision model of

our framework is detailed. Finally, we show experiments in

simulation and with real robots before concluding.

II. RELATED WORK

Several robot’s exploration strategies have been proposed

in the literature. If a priori information about the area to

explore is available as a first coarse map, exploration goals

can be a set of points of interest which must be visited

to increase the map definition [3]. Otherwise, exploration

goals must be found during the exploration at each time

step. This technique is classically named next best view.

It consists in selecting the next best exploration goal from

the current set of candidates by choosing the one with the

highest expected utility value; then computing and executing

the policy to reach this goal; lastly acquiring new data from



the environment to update its map. To define appropriate

exploration goals, a widely used approach is to extract

exploration frontiers from the map. Exploration frontiers are

defined as regions on the boundary between open space and

unexplored space [4]. Then, a utility function captures in a

value the interest of an exploration goal. In [4], [5], the utility

function is the inverse of the cost of reaching an exploration

frontier so the exploration strategy guides the robot to the

closest unexplored area.

In the context of multiple robots exploration, each robot

must be associated to its next best exploration goal. Most

approaches assume that robots share the information they

gathered so as to build a shared map and know their location

and the relative ones of the others in this map. So as to

allocate exploration frontiers to the individual robots, several

exploration strategies have been proposed that mainly differ

by the way global coordination is realised.

In [6], all the robots have the same exploration frontiers

from the shared map and each robot is assigned to its closest

frontier. This method does not require any central control

but there is no global coordination as multiple robots can

be assigned to the same frontier. In [7], [8], the utility

of each target is computed as a compromise between the

gain expected at this target (expected area discovered when

the target will be reached taking into account the possible

overlap in between robot sensors) and the cost for reaching

this target. Global coordination is accomplished by assigning

different targets to the robots, thus maximising the coverage

and reducing the overlap between explored areas of each

robot. In [9], the multi-robot exploration strategy uses a

segmentation of the environment instead of a frontier-based

approach to improve the space sweeping. In [7], [8], global

coordination is centralized by a central agent that collects

utilities from all the robots and assigns frontier-robot pairs,

or that executes a target point selection algorithm assigning

the robot-frontier pair with the best utility and recomputing

the utilities given the new and all previous assignments.

This process is repeated until all robots are assigned. Global

coordination can also be decentralized, as in [10] where

robots bid on targets thus negotiating their assignments.

In [11], the utility function is for each robot-frontier pair

the number of robots closer than it towards the considered

frontier (in path distance). Thus, each robot is allocated to

the frontier for which there is the less robots between the

frontier and the robot to be assigned.

To summarize, most of previous work adopts either central

agents or negotiation protocols with complicated process.

Besides existing work in multi-robot applications does not

address the local coordination issue as if a strategy that

distributes well the robots over the environment would avoid

all local interactions. In our CAROTTE challenge context,

all the robots must start and return in a specified zone where

close interactions will take place and then local coordination

is necessary. Another limitation of these works, except for

[8], is they do not address limited communication issues.

III. DISTRIBUTED VALUE FUNCTIONS

Multi-robot coordination can be formalized decentralized

decision making, i.e. each individual robot must find its

policy so that all robots simultaneously explore different

areas of the environment. In this section, we first motivate

the choice of the Dec-MDP framework. Then background

is summed up and our distributed value function method is

presented.

A. Motivations

In single robot exploration, the exploration model is

fully subsumed by the Partially Observable MDP (POMDP)

framework. However, exploring using POMDPs meets the

curse of dimensionality and limits its application to explo-

ration domains because it considers uncertainty on obser-

vations, on outcomes of actions and on its own state. In

our work, the localization aspect is not treated. We assume

that the location of the robot is known at decision time.

Therefore, we can simplify the POMDP model to an MDP as

the explored environment is perfectly known and the robot

has a known position, like we did in previous work on single-

robot exploration [12]. Besides, MDP framework has many

advantages: it allows for several goals at the same time and

it accounts for uncertainty in the result of actions. MDPs can

also be solved very efficiently through dynamic programming

[13]. Finally, compared with most of published exploration

algorithms using a two-steps planner [4], [7], [14], MDP

planner is able to plan for its path at the same time as it

chooses a location to explore or an opportunity task to do.

To consider the multi-agent issue, MDPs have been ex-

tended to Decentralized MDPs (Dec-MDPs). Dec-MDPs is

an expressive framework for cooperative teams of decision

makers but computing a solution to Dec-MDPs has a high

complexity [15]. This typically limits the scalability in terms

of number of agents and of the size of the area to explore.

However, new coordination mechanisms for several robots

have been developed recently that take advantage of local

interactions and coordination to solve Dec-(PO)MDPs [16],

[1], [2]. These methods represent a Dec-(PO)MDP as a

set of interactive individual decision making problems and

thus reduce its complexity. These interaction-based models

for solving Dec-(PO)MDPs are based on the idea that an

agent interacts only sometimes with some others. Thus the

Dynamic Local Interaction Model (DyLIM) [2] splits the

Dec-POMDP into two parts: the individual one “ignoring”

the others and the coordination aspect describing how the

agent influences the ones which it is in interaction with.

These approaches are very interesting as they can com-

pute solutions for larger problems while keeping the Dec-

(PO)MDP formalism.

To address the multi-robot exploration problem, we use the

Dec-MDP formalism solved as a set of individual MDPs,

one per robot. To consider the interactions, we define a

distributed value function computed locally by each robot

that minimizes the interactions while maximizing the explo-

ration. We will show that our model overcomes the limits

of others since it can deal with a large number of robots; it



handles both the local and global coordinations; it is robust

to communication failure.

B. Background on Markov Decision Processes

Dec-MDP [15] is an extension of MDP for decentral-

ized control domains. A Dec-MDP is defined with a tuple

< I, S,A, T,R,Ω, O > and we have:

• I the number of robots, S the set of joint states and A
the set of joint actions2;

• T : S×A×S → [0, 1] a transition function; T (s, a, s′)
is the probability for the I robots of transitioning from

state s to s′ after doing joint action a;

• R : S × A → ℜ a reward function mapping S × A
to a real number that represents the robots’ immediate

reward for making joint action a while being in state s;

• Ω a set of observations and O an observation function

can be left out if the states of agents are fully observable

locally.

The goal of planning is to find a sequence of joint actions

maximizing the long-term expected reward. Such a plan is

called a policy π that is a mapping from S to A. An optimal

policy π∗ specifies for each state s the optimal joint action to

execute at the current step assuming the agents will also act

optimally at future time steps. The value of an optimal policy

is defined by the optimal value function V ∗ that satisfies the

Bellman optimality equation:

V ∗(s) = max
a∈A

(R(s, a) + γ
∑

s′∈S

T (s, a, s′)V ∗(s′)) (1)

where γ is the discount factor.

We can see an MDP [17] as a Dec-MDP where I = 1.

C. Distributed Value Functions for Multi-Robot Exploration

In our approach, we considered homogeneous robots, each

of them having the same set of states and actions, and we

solve the Dec-MDP as a set of individual MDPs: each robot

constructs its exploration strategy locally while considering

the others. A robot has access to a map updated with all

explored areas and to the positions of the others. With these

information, the robot can consider which areas could be

explored by the other robots and thus reducing its interest in

these areas. Formally, each robot computes its value function

as the standard Bellman equation (eq. 1) augmented with this

information.

Distributed value function (DVF) has been introduced in

[18] as a way to distribute reinforcement learning knowledge

through different agents. In [19], the distributed approach

enables robots to learn multiple behaviours concurrently in

a mobile robots navigation approach. Assuming that agent i
knows at each step the state sj ∈ S of each other agent j,

this leads to the following DVF applied to the exploration

2A state of the problem can be written with a tuple s = (s1, ..., sI) such
that sj is the state of robot j. Ai defines the set of actions ai of robot i.

issue and from the viewpoint of agent i:

∀si ∈ S Vi(si) = Rexplo(si) + γmax
ai∈A

∑

s′∈S

T (si, ai, s
′)



Vi(s
′)−

∑

j 6=i

fijPr(s
′|sj)Vj(s

′)



 (2)

This specifies that the expected gain of the robot i being

in state si and going to s′ is reduced by what the other

robots can expect to gain by visiting the same state s′.
The expected gain of another robot j is valued with the

exploration expected gain at s′, noted Vj(s
′), weighted by the

probability that robot j explores state s′ from its current state

sj , noted Pr(s
′|sj). Thus if a robot j has a high expected

value for a state and if the probability for this robot to attain

this state from its current one is great, then this robot may

intend to go and explore the surroundings of this state. DVF

tries to choose the action with a high expected gain for i so

the one for which the interest of the others may be low.

In other words, by locally computing DVFs et following

resulting policies, the robots choose actions that minimize

the interactions and that move the robots away from each

other.

We now detail the different parts to calculate DVF. It

requires to compute first data structures < S,A, T,Rexplo >
of the model (§IV). The exploration reward function Rexplo

is computed with the reward propagation mechanism (§ IV-

B.2). Then, the exploration expected gain of each other

robots Vj is estimated. Given our communication restric-

tions, the robots cannot exchange information about their

value functions. However each robot i can compute Vj by

empathy. Additionally, since the robots we considered are

homogeneous, this function is the same for each robot so this

must be computed only once. This empathic value function

is computed for each state s ∈ S with the standard value iter-

ation algorithm and the exploration reward function Rexplo.

To evaluate the probability Pr(s
′|sj), an MDPj for each

other robot j is used. MDPj has classical S,A, T structures

of the model. But its reward function Rj is calculated for

each MDPj with rewards rj located at the current position

sj of robot j. Using standard value iteration, the resulting

value function V can be consistent with probability values:

V (s) = Pr(s|sj). fij is a weighting factor that determines

how strongly the expected gain of agent j reduces the one

of agent i. It allows for balancing the value function with

respect to the rewards, and is chosen as maxR/maxVj .

Thus each robot computes strategies with DVF so as to

minimize interactions. However it does not handle situations

when the robots are close to each other that can happen

for instance in the starting zone or in some narrow corridor.

These situations with close interactions can be easily detected

by computing the distance between the robots and its partners

but require local coordination. Local coordination can be

solved with a Multi-agent MDP (MMDP) [20] as the robots

concerned by the interaction are close to each other. So joint

policies are computed off-line for these specific joint states

and followed when local coordination is detected.



real world layer

<laser-data>

<robot-pose>

States

Actions

Transitions

Clearance

Rewards
Opportunistic tasks

Distributed Value function

Policy

End of exploration 

detection

Optimal trajectory

Smoothed trajectory

Robot pose 

Other robots poses 

pixels layer

Voronoi layer

hexagons layer

Fig. 1. The global software architecture of our decision framework for one robot.

IV. DESCRIPTION OF OUR MDP FRAMEWORK

The decision framework of our multi-robot exploration

process is based on a set of MDPs, one per robot. Fig. 1

shows the global software architecture of our decision frame-

work from the viewpoint of one robot. It is composed of a

four layers grid from which are derived the data structures

of one MDP model. A decision step consists in building

the model, computing the policy from the distributed value

function, and producing a smoothed trajectory. Classically,

the planner stops after this and waits for the robot to arrive at

the chosen location before starting again. Instead, we decide

to allow the robot to plan continuously, updating its model

and policy as it perceives changes in its environment. Indeed,

continuous planning allows us to update quickly action plan

if a target of opportunity is discovered or if the environment

is dynamic. It also considers that information is gained en

route: map is often explored before the robot reached its

target. Another advantage is to react as soon as possible

to the decisions of the others. However, this requires the

decision step to be quick enough for online use. Given that

the model will be updated at each decision step, we use the

greedy approach that plans only for the immediate action.

Following is the motivated description of the components of

our architecture.

A. Four Layers Occupancy Grid

The first layer is the real world layer where the robots

move. The second one is the pixels layer where raw sensor

data are projected on the occupancy grid [21] using Bre-

senham’s algorithm based on the current robot position and

angle [12]. The occupancy grid represents the environment

as a regular grid laid over the environment where each cell is

initialized as unknown and updated as free (no obstacle) or

occupied (something there) by the data acquisition process.

The two last layers are computed from the occupancy grid

and used to generate the data structures of the model.

States and rewards are based on the hexagonal grid. This

grid clarifies the pixel layer by merging nearby data. Each

hexagon is composed of a set of cells and is considered

as unknown, free or occupied according to the value of its

cells. This grid has nice geometrical properties: it allows

for 6 neighbours with the same distance from any cells that

simplifies the reward propagation algorithm (§ IV-B.2) and

increases the movement capabilities of the robot as compared

to a square grid. For the actions and transitions, a Voronoi

diagram [22] is generated.

B. MDP Model

1) State Space: The state space contains all possible

locations of the robot and its orientation in the hexagonal

grid (one location is an hexagon and it allows 6 orientations

per location). An oriented location is referred as a pose in

this paper. For a given exploration time, states are based

on the current state of the hexagonal grid, including all the

free hexagons.

2) The Reward Function: Since the objective is to ex-

plore unknown parts of the environment, the main reward

component is based on the expected information gain in each

pose. Various approaches for setting these rewards have been

published [4], [7]. Similarly to [14], we compute a reward

value for each hexagon. However, instead of characterizing

the entropy of the cell itself, we estimate the information

the robot would gain if it was at this location with some

heading. To compute this value, we simply propagate rewards

in some radius around frontier hexagons, respecting line-of-

sight constraints [12]. Our actual system currently uses a

grid with 15 centimetres hexagons, and propagates frontier

rewards up to 2 meters. Targets of opportunity are simply

added to the reward function as they happen, so that they

are shared as well as exploration tasks.

3) Action Space: The robot actions model the movement

of the robot: go forward, turn left or right, and wait.



However, using only these actions and the hexagonal

grid implies some troubles in cluttered space like a

narrow corridor not oriented along one of the 6 hexagonal

directions. In such a case the robot will have to zig-zag

since it only goes from one hexagon to another. And if the

corridor is narrow enough, this may prevent any traversal.

To overcome this situation, another robot action is added:

follow the Voronoi edge to next hexagon. Please note that

the Voronoi diagram is not sufficient for planning the whole

trajectory as many tasks have to be done far from the

Voronoi edges (starting positions, ball-to-push position).

Additionally, trajectories following the Voronoi diagram

frequently are suboptimal. Besides synchronizing several

robots is easier when actions take the same amount of time:

in a Voronoi diagram, some node can be connected to very

close neighbours and to very distant ones at the same time.

4) The Transition Function: The transition function de-

scribes the expected outcomes of any action in any state.

If the intended movement is allowed by the local safety

clearance computed by the Voronoi diagram, the expected

state will be reached with high probability. Otherwise, the

state is not modified and a high penalty is added to the reward

function for this state and this action. Allowed movements

are not always deterministic because tight clearance may

slow the robot down, or even make the expected move fail.

C. Smoothing the Trajectory

The hexagonal optimal trajectory is smoothed, aggregating

series of actions into way-points that do not violate safety

clearances computed by the Voronoi Diagram.

D. End of Exploration

End of exploration is detected simply by testing the

expected value of the current best action for each robot.

When it reaches zero, no more reward can be gained and we

add a return reward to make the robot exit the area through

its entry point.

V. EXPERIMENTAL PLATFORMS

Experimental results shown in this paper are from two

main sources: experiments with two real robots and computer

simulations with Player/Stage simulator.

A. Real Robots

The robot we use for exploration is a Wifibot3 µ-trooper

M. This 6-wheels mobile robot embeds an Intel Core 2 Duo

processor, 2GB RAM and 4GB flash. It is also equipped with

an Hokuyo URG-30LX4 Laser range scanner. The software

running on-board this robot is based on a Data Distribu-

tion System (DDS) implementation from OpenSplice5. This

middle-ware allows for several programs to run concurrently,

even on different computers. In our architecture, that implies

3www.wifibot.com
4www.hokuyo-aut.jp
5http://www.opensplice.com

that various modules can run asynchronously: Laser acqui-

sition, SLAM, Decision, Mobility and Object recognition.

The architecture allows the robots to exchange their laser

scans and their poses. Thus each robot knows the areas

explored by the others and updates its local map with local

and distant scans. In particular, the SLAM module receives

laser readings and provides the other modules and other robot

with the robot pose (location and heading). It is based on

[23]. The mobility module implements an advanced point and

shoot algorithm, along with a backtrack feature that prevents

the robot from being stuck, reverting back on its own

trajectory. The point and shoot algorithm consists of turning

to the desired heading and then going forward the specified

distance. Here, the algorithm accepts a small initial angular

error, and keeps correcting the heading drift as the robot

goes forward. The decision module runs asynchronously,

computing a new policy every second in average.

B. Simulated Robots

We use the Player/Stage6 [24] simulator with an archi-

tecture that mimics the real robots. DDS is replaced by an

IPC (Inter Process Communication) shared memory segment.

Laser acquisition is simulated by a “laser” virtual sensor

tuned with the URG-30 properties. A “position” virtual

device simulates both the SLAM module by providing odo-

metric data and the mobility module by executing the point

and shoot algorithm. Finally the decision module used on real

robots can be used with the simulator without modification.

VI. EXPERIMENTAL RESULTS

A. Simulated Robots

(a) autolab. (b) hospital.

Fig. 2. Simulation environments from Player/Stage with starting poses.

We varied the number of robots from one to five and used

two different simulated environments from Player/Stage (Fig.

2). Robots are initially in a line formation in the starting

zone and to reduce the situations of local coordination at the

beginning, each robot starts with 15 seconds of delay from

its precedent. We plot how the coverage of the environment

to explore evolves over time, while varying the number of

robots. Fig. 3 and 4 report the time it takes to cover 50, 70,

90, 95 and 100% of the environment. The EndM coverage

6http://playerstage.sourceforge.net/



Fig. 3. Results from autolab environment (averaged over 5 simulations).

Fig. 4. Results from hospital environment (averaged over 5 simulations).

corresponds to the end of the mission, i.e. when all the robots

have returned to their starting poses after they detected the

end of exploration.

It is of interest to notice two stages in the coverage

evolution: the beginning stage until 95% and the end stage

consisting of 100% and the end of the mission. During the

beginning stage, robots spread out to different areas and

covered the space efficiently, as illustrated by paths followed

by 2 and 3 robots in Fig. 5. However, there is a number of

robots beyond which there is not much gain in the coverage

and that depends on the structure of the environment [7].

For instance in the autolab environment (Fig. 3), even if two

robots perform significantly better than one robot, there is not

much gain in having three or four robots. Indeed, two robots

can share separate zones (Fig. 5b) but the gain of having

more robots is low compared to the overlap in trajectories

and the risk of local interactions ((Fig. 5c and d). In the

hospital environment (Fig. 4), four robots seems to be the

optimal number. Besides, beyond this number of robots, the

end stage takes longer as robots end up interfering with one

another to cover few last spots or to return to start. Thus

during the end stage, local coordination cannot be avoided

and the more robots are used, the longer the end stage may

take as local interactions require bypasses, backtracks and

stops to let pass.

(a) 1 robot. (b) 2 robots.

(c) 3 robots. (d) 4 robots.

Fig. 5. Paths taken by the robots in the autolab environment.

Fig. 6. Resulting pixel map of the area explored. Pixels colour ranges from
black (obstacle) to white (free). Gray shades represent the uncertainty.

B. Real Robots

We also performed experiments with our two µ-troopers.

The video accompanying this paper7 shows the exploration

of the robots and some situations of local coordination

successfully resolved. Resulting map of the area obtained

at the end of the mission is in Fig 6.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we address the problem of multi-robot

exploration with a fully decentralized approach based on

distributed value functions. Our approach considers a De-

centralized MDP as a set of individual MDPs where in-

teractions between MDPs are considered in the distributed

value function. Thus each robot computes locally a strat-

egy that minimizes the interactions between the robots and

maximises the coverage of the team. Local coordination

is also considered so as to resolve situations with close

interactions. Experimental results show that this method

7Also available at http://lmatigno.perso.info.unicaen.fr/research



is able to effectively coordinate a team of robots during

exploration.

One interesting research direction and a planned restriction

of the challenge is to consider communication loss con-

straints during the exploration. Our decentralized approach

does not rely on perfect communication, but at reduced

efficiency. In case the robots do not know at each time step

their relative poses, our DVF approach can still consider

the intentions of others from their last known poses. If in

addition local maps are not updated, each robot will explore

all targets. We want to investigate temporary network errors

in more detail and to test our DVF approach extended

to situations where communication between robots drops

out, as introduced in our previous work [25]. Besides, our

system currently takes “randomly” pictures for the object

recognition, i.e. it takes pictures at a specified rate along the

trajectory planned for the exploration. Another perspective

is to plan to perceive. Indeed robots can act to improve

object detections at the same time they explore. We would

like our robots to modify their strategies to both maximise

the exploration and minimize false detections.

VIII. ACKNOWLEDGEMENTS

This work has been supported by the CAROTTE (Car-

tography by a robot of a territory) project that is a French

national challenge funded by the NRA (French National

Research Agency) and the DGA (Defense Procurement

Agency) (ANR-09-CORD-103). The authors are members

of the Robots Malins consortium which takes part in this

challenge and would like to thank all their partners: GREYC,

University of Caen Basse-Normandie; THALES Optronique

S.A; INRIA Sophia, evolution team.

REFERENCES

[1] A.-I. Mouaddib, M. Boussard, and M. Bouzid, “Towards a formal
framework for multi-objective multiagent planning,” in Proc. of AA-

MAS, 2007.

[2] A. Canu and A.-I. Mouaddib, “Collective decision-theoretic planning
for planet exploration,” in Proc. of ICTAI, 2011.

[3] G. Lozenguez, L. Adouane, A. Beynier, P. Martinet, and A.-I. Mouad-
dib, “Map partitioning to approximate an exploration strategy in
mobile robotics,” in Proc. of Int. Conf. on Practical Applications of

Agents and Multi-Agent Systems (PAAMS), 2011, pp. 63–72.

[4] B. Yamauchi, “A frontier-based approach for autonomous exploration,”
in In Proceedings of the IEEE International Symposium on Computa-

tional Intelligence, Robotics and Automation, 1997, pp. 146–151.

[5] S. Koenig, C. Tovey, and W. Halliburton, “Greedy mapping of terrain,”
in Proceedings of ICRA, 2001, pp. 3594–3599.

[6] B. Yamauchi, “Frontier-based exploration using multiple robots,” in
Proceedings of the second international conference on Autonomous

agents, ser. AGENTS ’98, 1998, pp. 47–53.

[7] R. Simmons, D. Apfelbaum, W. Burgard, D. an Moors M. Fox,
S. Thrun, and H. Younes, “Coordination for multi-robot exploration
and mapping,” in Proc. of the AAAI National Conference on Artificial

Intelligence, 2000.

[8] W. Burgard, M. Moors, C. Stachniss, and F. Schneider, “Coordinated
multi-robot exploration,” IEEE Transactions on Robotics, vol. 21, pp.
376–386, 2005.

[9] K. M. Wurm, C. Stachniss, and W. Burgard, “Coordinated multi-robot
exploration using a segmentation of the environment,” in Proceedings

of IROS, 2008, pp. 1160–1165.

[10] R. Zlot, A. Stentz, M. Dias, and S. Thayer, “Multi-robot exploration
controlled by a market economy,” in Proceedings of ICRA, vol. 3, May
2002, pp. 3016–3023.

[11] A. Bautin, O. Simonin, and F. Charpillet, “Towards a communication
free coordination for multi-robot exploration,” in 6th National Con-

ference on Control Architectures of Robots, 2011.
[12] S. L. Gloannec, L. Jeanpierre, and A.-I. Mouaddib, “Unknown area ex-

ploration with an autonomous robot using markov decision processes,”
in Proc. of Towards Autonomous RObotic Systems, 2010, pp. 119–125.

[13] R. Bellman, Dynamic programming: Markov decision process, 1957.
[14] C. Stachniss and W. Burgard, “Exploring unknown environments with

mobile robots using coverage maps,” in Proc. of the Int. Conf. on

Artificial Intelligence (IJCAI), 2003, pp. 1127–1132.
[15] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein, “The

complexity of decentralized control of markov decision processes,”
Math. Oper. Res., vol. 27, pp. 819–840, 2002.

[16] R. Nair, P. Varakantham, M. Tambe, and M. Yokoo, “Networked
distributed pomdps: A synthesis of distributed constraint optimization
and pomdps,” in AAAI, 2005, pp. 133–139.

[17] M. L. Puterman, Markov decision processes. John Wiley and Sons,
1994.

[18] J. Schneider, W.-K. Wong, A. Moore, and M. Riedmiller, “Distributed
value functions,” in In Proceedings of the Sixteenth International

Conference on Machine Learning, 1999, pp. 371–378.
[19] S. Babvey, O. Momtahan, and M. R. Meybodi, “Multi mobile robot

navigation using distributed value function reinforcement learning,” in
Proceedings of ICRA, 2003, pp. 957–962.

[20] C. Boutilier, “Planning, learning and coordination in multiagent deci-
sion processes.” in TARK, 1996.

[21] A. Elfes, “Using occupancy grids for mobile robot perception and
navigation,” Computer, vol. 22, pp. 46–57, 1989.

[22] F. Aurenhammer, “Voronoi diagrams – a survey of a fundamental
geometric data structure,” ACM Computing Surveys, vol. 23, no. 3,
pp. 345–405, 1991.

[23] J. Xie, F. Nashashibi, N. M. Parent, and O. Garcia-Favrot, “A real-
time robust slam for large-scale outdoor environments,” in 17th ITS

World Congress, Oct. 2010.
[24] B. P. Gerkey, R. T. Vaughan, and A. Howard, “The player/stage

project: Tools for multi-robot and distributed sensor systems,” in In

Proc. of the Int. Conf. on Advanced Robotics, 2003, pp. 317–323.
[25] L. Matignon, L. Jeanpierre, and A.-I. Mouaddib, “Distributed value

functions for multi-robot exploration: a position paper,” in AAMAS

Workshop19: Multiagent Sequential Decision Making in Uncertain

Domains (MDSM), 2011.


