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Chapter 1

Symmetry of Fulleroids

One of the important features of the structure of molecules is the presence of symmetry

elements. Symmetry arguments can e.g. tell us whether the molecule is chiral and so it

could be optically active. Structure of the symmetry group of a molecule affects several

spectroscopic aspects and vice-versa. Thus, it is clearly important to know the possible

symmetries of fullerenes and similar structures.

In this chapter, we study symmetry groups of fulleroids. In the most general manner, a

fulleroid can be viewed as a cubic (i.e. 3-valent) convex polytope with all faces of size at

least five. This definition is a natural generalization of the notion of fullerenes.

Fulleroids can also be represented by planar graphs. In the first section, we recall the basic

definitions and properties of convex polyhedra and planar graphs. In the second section, we

mention connections between symmetries of convex polyhedra and automorphisms of planar

graphs, which allow us not to distinguish between a polyhedron with its symmetry group

and a graph with its automorphism group.

In the third section, all groups that can act as symmetry groups of convex polyhedra

are listed and described. For each such group, its symmetry elements are listed in a table,

and a few more information is then mentioned in the text. We also provide examples and

constructions of polyhedra and/or their graphs with particular symmetry groups.

The fourth section gives basic relations between rotational symmetries and faces sizes of

fulleroids, which imply some easy to see necessary conditions on face sizes for the existence

of fulleroids with particular symmetry groups.

The fifth section brings a brief overview of results concerning symmetries of fullerenes.

One can find a list of all possible fullerene symmetry groups and counts of vertices of the

smallest representatives of them.

In the next two sections, we study fulleroids with icosahedral symmetry and fulleroids

with the symmetry group being a subgroup of an icosahedral group. We provide construc-
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tions of fulleroids with icosahedral symmetry group with pentagonal and n-gonal faces only

for each n ≥ 7. We also mention constructions, which assure that there are infinitely many

such structures for each n ≥ 7. It turns out that for subgroups of the icosahedral group Ih,

one can find examples of fulleroids with any faces sizes.

In the next section, we study symmetry of fulleroids with multi-pentagonal faces. We

use tools from both algebra and geometry to prove nonexistence of fulleroids for the seven

groups. Therefore, for the remaining seven groups without local constrains, there are values

of integer n such that the corresponding fulleroids with pentagonal and n-gonal faces do not

exist.

In the ninth section, we complete the characterization of symmetry of fulleroids by listing

the results concerning fulleroids with octahedral, prismatic, or pyramidal symmetry.

In the last section of this chapter, we focus on fulleroids with pentagonal and heptagonal

faces and their symmetry. We list all possible symmetry groups and for each of them, we

provide examples with minimal number of vertices.

1.1 Convex polyhedra and planar graphs

Fullerene-like molecules are often represented by convex polyhedra, where the atoms are

placed in the vertices of a polyhedron, whereas the bonds among atoms are realized along

the edges of the polyhedron. Combinatorial structure of convex polyhedra can be represented

by planar graphs. A graph is a pair G = (V,E) of finite sets such that the elements of E are

2-element subsets of V . The elements of V are the vertices of the graph G, the elements of

E are its edges.

A graph G is planar, if it can be represented in the 2-dimensional plane R
2 in such a

way that vertices of G are distinct points in R
2, edges of G are arcs between the vertices,

such that different edges have different sets of endpoints and the interior of an edge contains

no vertex and no point of any other edge. Such representation is called drawing or planar

embedding of G. For every drawing of a graph G, the regions of R
2 \ G are the faces of G.

One of the faces is always unbounded – the outer face; the other faces are its inner faces.

Given a convex polyhedron P , the vertices and the edges of P form a graph, called the

graph of P and denoted by G(P ). One can find a planar drawing of G(P ) by projecting P

into a face f of P . Such drawing of the graph G(P ) of a convex polyhedron P is also called

the Schlegel diagram of P . Any face of P can be chosen to be the outer face in the diagram.

A graph G is polyhedral if it is (isomorphic to) a graph of some convex polyhedron. For

every convex polyhedron P , the graph G(P ) is planar and 3-connected. On the other hand,

these conditions are also sufficient for the graph to be polyhedral, by Steinitz’ theorem.
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Theorem 1.1 (Steinitz) (Cromwell 1997) A graph G is polyhedral if and only if G is

planar and 3-connected.

Convex polyhedra P1 and P2 are equivalent, if the corresponding graphs G(P1) and G(P2)

are isomorphic. In this case, we say P1 and P2 are of the same type.

An arbitrary planar graph can have several different drawings, with the faces of differ-

ent size. Another important property of 3-connected planar graphs is given by Whitney’s

theorem.

Theorem 1.2 (Whitney) (Diestel 1997) Any two drawings of a 3-connected graph are

equivalent.

It means that the faces (their boundaries and sizes) of a drawing of G are uniquely

determined by the graph itself. Therefore, we can speak about the faces of a 3-connected

planar graph without specifying its drawing. Whitney’s theorem also says that each 3-

connected planar graph corresponds to precisely one type of convex polyhedra. Hence, we

can identify a convex polyhedron P with its graph G(P ); we represent the fulleroids by

3-connected planar graphs with all faces of size at least five.

To find more information about convex polyhedra, we refer the reader to the books

(Cromwell 1997) and (Grünbaum 2003). The recommended introductory book for the graph

theory is the book of Chartrand and Lesniak (1972).

1.2 Polyhedral symmetries and graph automorphisms

An automorphism of a graph G is an isomorphism of G onto itself. The set of all auto-

morphisms of a graph G together with the composition operation forms the automorphism

group of G and is denoted by Aut(G). For every graph G the group Aut(G) is nonempty

and finite.

Symmetry is a property of a convex polyhedron which causes it to remain invariant under

certain classes of transformations (such as rotation, reflection, inversion, or more abstract

operations). Strictly speaking, a symmetry of a convex polyhedron P is an isometry of

the 3-dimensional space R
3, under which the polyhedron P remains invariant. The set of

all symmetries of a convex polyhedron P together with composition operation forms the

symmetry group of P and is denoted by Γ(P ). For every convex polyhedron P the group

Γ(P ) is nonempty and finite.

If φ is a symmetry of a convex polyhedron P , then φ restricted to the vertices and edges

of P is an automorphism of the graph G(P ). Moreover, the group Γ(P ) is (isomorphic
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to) a subgroup of the group Aut(G(P )). Stronger connection between automorphisms of

polyhedral graph and symmetries of corresponding polyhedra is given by the theorem of

Mani:

Theorem 1.3 (Mani) (Mani 1971) Let G be 3-connected planar graph. Then there is a

convex polyhedron P whose graph is isomorphic to G and Γ(P ) is isomorphic to Aut(G).

This theorem allows us not to distinguish between a polyhedron P with the group Γ(P ),

and its graph G with the group Aut(G). Therefore, to give examples of convex polyhedra

with the symmetry group Γ it is sufficient to find polyhedral graphs such that Aut(G) ∼= Γ.

1.3 Point symmetry groups

As mentioned above, the symmetry groups of convex polyhedra are nonempty and finite.

But not all finite groups can be symmetry groups of convex polyhedra. The characterization

of all the groups that act as a symmetry group of a convex polyhedron is known. The list of

all such groups, their structure and properties, can be found in Cromwell (1997). Another

source of general information on finite groups is the book of Coxeter and Moser (1972).

Every symmetry of a convex polyhedron P has at least one fixpoint (its centre of gravity),

and this point is common for all symmetries of P . The group Γ(P ) is thus called a point

group.

According to the number of rotational symmetry axes and their relative position all point

groups can be divided into icosahedral, octahedral, tetrahedral, dihedral, skewed, pyramidal

and others. The list of all groups that can act as symmetry groups of convex polyhedra is

in Table 1.1.

First seven point groups (Ih, I , Oh, O, Th, Td, and T ) can be interpreted as the

symmetry groups of platonic solids or their subgroups. They contain more than one axis of

at least 3-fold rotation.

i) The group Ih is the full symmetry group of a regular icosahedron (and a regular dodec-

ahedron). It is also the symmetry group of the most famous fullerene, the bucky-ball

C60. It is isomorphic to A5 × Z2, where A5 is the group of even permutations of 5

elements.

Ih
∼= 〈 x, y, z | x2 = y2 = z2 = (xy)2 = (xz)3 = (yz)5 = 1 〉.

ii) The group I is the group of rotations of a regular icosahedron. It is a subgroup of Ih

of index 2 and it is isomorphic to A5.

I ∼= 〈 a, b | a2 = b3 = (ab)5 = 1 〉.
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Group Order Rotations Reflections Inversion

Ih 120 6C5, 10C3, 15C2 15 yes
I 60 6C5, 10C3, 15C2 – –

Oh 48 3C4, 4C3, 6C2 9 yes
O 24 3C4, 4C3, 6C2 – –

Td 24 4C3, 3C2 6 –
Th 24 4C3, 3C2 3 yes
T 12 4C3, 3C2 – –

Dnh 4n Cn, nC2 n + 1 if n even
Dnd 4n Cn, nC2 n if n odd
Dn 2n Cn, nC2 – –

S2n 2n Cn – if n odd

Cnh 2n Cn 1 if n even
Cnv 2n Cn n –
Cn n Cn – –

Cs 2 – 1 –
Ci 2 – – yes
C1 1 – – –

Table 1.1: Point symmetry groups. Each row of the table lists one such group, its order, the number
and sort of rotational symmetry axes, the number of mirror symmetry planes and presence of point
inversion in the group.

Figure 1.1: Examples of fullerenes with symmetry group Ih and I , respectively. Pentagonal faces
(except for the outer face) are grey.

iii) The group Oh is the full symmetry group of a regular octahedron (and of a cube). It is

isomorphic to S4 × Z2, where S4 is the group of all permutations of 4 elements.

Oh
∼= 〈 x, y, z | x2 = y2 = z2 = (xy)2 = (xz)3 = (yz)4 = 1 〉.
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Oh O

Th Td T

Figure 1.2: The groups Oh, O, Th, Td a T can be represented as groups of symmetries of a cube
respecting certain patterns drawn on it.

iv) The group O is the group of rotations of a regular octahedron. It is a subgroup of Oh

of index 2 and it is isomorphic to S4.

O ∼= 〈 a, b | a2 = b3 = (ab)4 = 1 〉.

Oh O

Figure 1.3: Examples of fulleroids with symmetry group Oh and O, respectively, with the same
number of vertices and the same number of faces of size 5, 6, and 8. Pentagonal faces are grey. To
obtain the graph of the fulleroid, it suffices to draw the corresponding graph segment onto all faces
of a cube.
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v) The group Th is the full symmetry group of a volleyball ball, or of a pyritohedron. It is

a subgroup of both Oh and Ih and is a supergroup of T . It is isomorphic to A4 × Z2,

where A4 is the group of even permutations of 4 elements.

Th
∼= 〈 a, b | a2 = b3 = (abab−1)2 = 1 〉.

vi) The group Td is the full symmetry group of a regular tetrahedron. It is a subgroup of

Oh and it is isomorphic to S4 (and O indeed).

Td
∼= 〈x, y, z | x2 = y2 = z2 = (xy)2 = (xz)3 = (yz)3 = 1 〉.

vii) The group T is the group of rotations of a regular tetrahedron. It is a subgroup of

index 2 of both Th and Td and it is isomorphic to A4.

T ∼= 〈a, b | a2 = b3 = (ab)3 = 1 〉.

Th Td T

Figure 1.4: Examples of fulleroids with symmetry group Th, Td, and T , respectively, with the
same number of vertices and the same number of faces of size 5, 6, and 7. Pentagonal faces are
grey. To obtain the graph of the fulleroid, it suffices to draw the corresponding graph segment onto
all faces of a cube.

Next seven infinite series of groups (Dnh, Dnd, Dn, S2n, Cnh, Cnv, and Cn) can be

interpreted as symmetry groups of regular prisms or antiprisms or their subgroups.

i) Dmh – full symmetry group of a regular m-sided prism. For m even it is isomorphic to
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Dm × Z2, for m odd it is isomorphic to D2m. (Here Dk denotes the dihedral group of

2k elements.)

ii) Dmd – full symmetry group of a regular m-sided antiprism. It is isomorphic to D2m.

iii) Dm – group of rotations of a regular m-sided prism. It is isomorphic to Dm and is a

subroup of index 2 of both Dmh and Dmd.

iv) S2m – cyclic group generated by improper rotation (glide) for 360
◦

2m
about vertical axis.

It is isomorphic to Z2m and is a subgroup of index 2 of Dmd.

v) Cmh – group generated by a rotation for 360
◦

m
about vertical axis and a reflexion about

Figure 1.5: Examples of polyhedra with symmetry groups D7h, D7d, D7, S14, C7h, C7v, and C7,
respectively.

Figure 1.6: Examples of fulleroids with symmetry groups D7h, D7d, D7, S14, C7h, C7v, and C7,
respectively.
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a vertical plane. It is isomorphic to Zm × Z2 and is a subgroup of index 2 of Dmh.

vi) Cmv – full group of symmetries of a regular m-sided pyramid. It is isomorphic to Dn

and is a subgroup of index 2 of both Dmh and Dmd.

vii) Cm – group of rotations of a regular m-sided pyramid. It is isomorphic to Zm and is a

subgroup of all groups listed above.

The remaining three groups are the groups of low symmetry.

i) The group Cs contains a mirror reflection and an identity.

ii) The group Ci contains a point inversion and an identity.

iii) The group C1 contains only an identity.

Figure 1.7: Examples of fulleroids with symmetry groups Cs, Ci, and C1, respectively.

1.4 Local restrictions

In general, the presence of rotational symmetry axes in the symmetry group implies a local

rotational symmetry of the sites where the axes intersects the polyhedron:

Lemma 1.1 Let P be a fulleroid. If an axis of an m-fold rotation intersects a face of size

n, then m divides n. If an axis of an m-fold rotation intersects a vertex of P , then m = 3.

If an axis of an m-fold rotation intersects an edge of P , then m = 2.

These connections, together with the fact that every fulleroid has at least 12 faces of

degree 5, give us necessary conditions for the face sizes of fulleroids with given symmetry

group. If the symmetry group of a fulleroid P contains an m-fold rotational axis, where

m 6= 2, 3, 5, then P must have faces of size n, where m divides n.
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1.5 Symmetry of fullerenes

In the special case of fullerenes, there are only pentagonal and hexagonal faces. Therefore,

by Lemma 1.1 the fullerene symmetry group can contain axes of m-fold rotation only for

m = 2, 3, 5 and 6. This makes the list of possible symmetry groups be finite; it consist of 36

groups:

Ih,I ,Th,Td,T ,

D6h,D6d,D6,S12,C6h,C6v,C6,

D5h,D5d,D5,S10,C5h,C5v,C5,

D3h,D3d,D3,S6,C3h,C3v,C3,

D2h,D2d,D2,S4,C2h,C2v,C2,

Cs,Ci,C1.

Using more detailed consideration it was proved that whenever a 5-fold or 6-fold rotational

axis is present, the structure of the fullerene implies a perpendicular 2-fold rotational axis

(Fowler et al. 1993). This means that the groups S12,C6h,C6v, and C6 only occur as

subgroups of dihedral groups D6h,D6d, and D6; as the groups S10,C5h,C5v, and C5 only

occur as subgroups of isosahedral or dihedral groups Ih,I ,D5h,D5d, and D5. The final list

of 28 fullerene symmetry groups is therefore:

Ih,I ,Th,Td,T ,

D6h,D6d,D6,

D5h,D5d,D5,

D3h,D3d,D3,S6,C3h,C3v,C3,

D2h,D2d,D2,S4,C2h,C2v,C2,

Cs,Ci,C1.

As we will see in the next sections, this is the only case where realizability of a symmetry

group is not transferred onto its subgroups.

For each of the 28 fullerene symmetry groups, the smallest examples are known (Fowler

and Manolopoulos 1995). The number of vertices of them is listed in Table 1.2.

Ih I Th Td T D6h D6d D6 D5h D5d D5 D3h D3d D3

60 140 92 28 44 36 24 72 30 40 60 26 32 32
S6 C3h C3v C3 D2h D2d D2 S4 C2h C2v C2 Cs Ci C1

68 62 34 40 40 36 28 44 48 30 32 34 56 36

Table 1.2: The counts of vertices of the smallest representatives of 28 fullerene symmetry groups.
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1.6 Icosahedral fulleroids

It was Fowler who first asked whether there is fullerene-like structure consisting of pentagons

and heptagons only and exhibiting icosahedral symmetry. The answer came immediately,

when Brinkmann and Dress (1996) found two such structures with a minimal possible number

of vertices and proved that there are only two of them. They also defined Γ(a, b)-fulleroid

to be a fulleroid with only a-gonal and b-gonal faces, on which the group Γ acts as a group

of symmetries. Delgado Friedrichs and Deza (2000) found more icosahedral fulleroids with

pentagonal and n-gonal faces for n = 8, 9, 10, 12, 14, and 15. Jendrol’ and Trenkler (2001)

constructed I (5, n)-fulleroids for all n ≥ 8.

The properties and structure of two-faces maps (including fulleroids) are studied in the

book of Deza and Dutour Sikirić (2008).

The results (Brinkmann and Dress 1996; Delgado Friedrichs and Deza 2000; Jendrol’

and Trenkler 2001) are all concerned with the group I . But the largest fullerene symmetry

group is Ih, hence we focus now on Ih(5, n)-fulleroids.

Theorem 1.4 For any n ≥ 6 there are infinitely many Ih(5, n)-fulleroids.

Proof. For n = 6 we get the case of Ih-fullerenes, which are completely characterized in

the catalogue of Graver (2005). They can be divided into two infinite series.

To depict an Ih(5, n)-fulleroid, it is not necessary to draw whole its graph. If we cut

the regular dodecahedron D along all its mirror planes, it falls into 120 congruent triangular

pieces, called flags. The flags have the shape of a right triangle ABC with |BC| < |AB| <

|AC|, where A (B, resp. C) represents the point where the 5-fold (2-fold, resp. 3-fold)

rotational axis intersects the polyhedron – the face centre, the egde midpoint, and the vertex

of D.

If a graph is drawn onto one flag and it is copied onto all other flags, altogether we get

a graph with the automorphism group isomorphic to Ih. If this graph is cubic, planar, and

3-connected, with all faces of size at least 5, we get an example of a graph of an Ih-fulleroid.

For n = 7, examples of Ih(5, 7)-fulleroids are obtained, if the graphs from Figure 1.8 are

used this way.

To prove there are infinitely many Ih(5, 7)-fulleroids, one can search for a configuration of

four pentagons (see Figure 1.9, left) and change them into two heptagons and six pentagons

(in every flag). Since there is such a configuration again, the operation can be carried out

arbitrarily many times.

Examples of Ih(5, n)-fulleroids for n = 8, 9 . . . 17 are obtained, if the graphs from Figure

1.10 and Figure 1.11 are drawn into all the flags of a regular dodecahedron.
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Figure 1.8: The segments of the graph of the smallest Ih(5, 7)-fulleroid and another Ih(5, 7)-
fulleroid.

−→

Figure 1.9: The step to create two new heptagons.

Figure 1.10: The segments of the graphs of Ih(5, n)-fulleroids for n = 8 + 10k, 9 + 10k, 10 + 10k,
11 + 10k, 12 + 10k, and 13 + 10k.

To prove that for some number n the set of all Ih(5, n)-fulleroids is infinite it is sufficient

to find an infinite series of corresponding graphs. We start with an example of fulleroid with

pentagonal and m-gonal faces, where m ∈ {8, 9, . . . 17} such that 10 divides n−m, e.g. some

of those in Figures 1.10 and 1.11. We first change all the m-gonal faces to n-gons and then
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Figure 1.11: The segments of the graphs of Ih(5, n)-fulleroids for n = 14+10k, 15+10k, 16+10k,
and 17 + 10k.

increase the number of them.

If the size m of some faces should be increased, two operations can be used. If two m-gons

are connected by an edge, by inserting 10 pentagons they are changed to (m + 5)-gons (see

Figure 1.12 for illustration). This step can be carried out arbitrarily many times, so the size

of those two faces can be increased by any multiple of 5. In the Figures 1.10 and 1.11, the

application of this operation is indicated by thickening the edges.

m

m

−→

m + 5

m + 5

Figure 1.12: The step to increase the size of two m-gons by 5.

If two m-gons are separated by two faces in the position like in Figure 1.13, left, the size

of those faces can be increased arbitrarily (see Figure 1.13, right).

m

m

−→

m + k

m + k

Figure 1.13: The step to increase the size of two m-gons arbitrarily.

As a special case of the second operation we get the following: If original two faces are

pentagons, we can change them into two n-gons and 2n − 8 new pentagons, so the number
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of n-gonal faces can be increased by two. For n ≥ 8 this step can be repeated as many

times as required, because two pentagons in an apropriate position can be found among the

new pentagons again. The two pentagons, that can be used this way to create infinitely

many examples, are in Figures 1.10 and 1.11 shaded grey and the edges connecting them are

doubled. �

It is worth to note that given integers 5 < n1 < n2 < · · · < nk, we can make an Ih-

fulleroid with faces of sizes 5, n1, n2, . . . , nk if we start with graph segments from Figures

1.8, 1.10, and 1.11 and use the operations from Figures 1.9, 1.12, and 1.13.

1.7 Subgroups of Ih

In the previous section we proved that there are infinitely many Ih(5, n)-fulleroids for any

n ≥ 7. It is natural to ask for which groups Γ there are infinitely many Γ(5, n)-fulleroids for

any n ≥ 7.

It is clear that such groups can only contain m-fold rotational axis for m = 2, 3, and 5.

Therefore, the list of candidates is finite and it is possible to check them one by one. In

particular, we get the following 29 groups:

Ih,I ,Th,Td,T ,

D5h,D5d,D5,S10,C5h,C5v,C5,

D3h,D3d,D3,S6,C3h,C3v,C3,

D2h,D2d,D2,S4,C2h,C2v,C2,

Cs,Ci,C1.

Proposition 1.5 Let Γ be a symmetry group that is a subgroup of the group Ih. Then there

are infinitely many Γ(5, n)-fulleroids for any n ≥ 7.

Proof. Since Γ is a subgroup of Ih, it has an action on the set of flags of regular dodecahedron

D. Under this action, all 120 flags of D split into 120/|Γ| orbits, each containing |Γ| flags.

(Here |Γ| denotes the order, i.e. the number of elements of the group Γ.) If we start with

an Ih-fulleroid and change the graph in the flags forming one orbit under Γ in such a way

that no new symmetries arise, we obtain a Γ-fulleroid. We can use the examples of Ih(5, n)-

fulleroids described in the proof of Theorem 1.4 to obtain infinite series of Γ(5, n)-fulleroids

for all n ≥ 7 and all subgroups Γ of Ih. �

This answers the question of existence of Γ(5, n)-fulleroids for arbitrary n ≥ 7 for 22
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subgroups of Ih:

Ih,I ,Th,T ,

D5d,D5,S10,C5v,C5,

D3d,D3,S6,C3v,C3,

D2h,D2,C2h,C2v,C2,

Cs,Ci,C1.

As we will conclude later, the condition of being subgroup of Ih is not only sufficient for

the existence of Γ(5, n)-fulleroid for arbitrary n ≥ 7, but it is also a necessary condition.

Different constructions of tetrahedral fulleroids can be also found in Kardoš 2007b.

For the remaining 7 groups, Td,D5h,C5h,D3h,C3h,D2d, and S4, there are values of integer

n such that corresponding fulleroids do not exist. All those cases of nonexistence fall within

fulleroids with multi-pentagonal faces.

1.8 Fulleroids with multi-pentagonal faces

A face is multi-pentagonal, if its size is a multiple of 5. Fulleroids with multi-pentagonal faces

play a special role among others, because they can be mapped onto (a graph of) a regular

dodecahedron:

Lemma 1.2 (Jendrol’ and Kardoš 2007) Let P be a cubic convex polyhedron such that all

faces are multi-pentagons, i.e. the size of each face is a multiple of five. Then there exists an

orientation-preserving homomorphism Ψ : P → D, where D denotes a regular dodecahedron.

By orientation-preserving homomorphism Ψ : P → D we mean a map from the set V (P )

of vertices of the polyhedron P into the set V (D), respecting the adjacency structure, which

also preserves the order of the vertices incident with any vertex (up to a cyclic permutation)

once an orientation has been assigned to both P and D before.

Lemma 1.3 (Kardoš 2007a) Let P be a cubic convex polyhedron such that all its faces are

multi-pentagons and let Ψ : P → D be an orientation-preserving homomorphism, where

D denotes a regular dodecahedron. If ϕ ∈ Γ(P ) is a symmetry of P , then Ψ ◦ ϕ : P → D

is also an orientation-preserving homomorphism, moreover, the symmetry ϕ of P uniquely

determines a symmetry Ψ(ϕ) of D once Ψ is fixed.

Theorem 1.6 (Kardoš 2007a) Let P be a cubic convex polyhedron such that all its faces

are multi-pentagons. Then there exists a homomorphism Ψ : Γ(P ) → Ih, where Γ(P ) is the

symmetry group of P and Ih denotes the symmetry group of a regular dodecahedron D.
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This theorem is a special case of a result of Malnič et al. (2002) concerning map homo-

morphisms into regular maps:

Theorem 1.7 (Malnič, Nedela, and Škoviera 2002) If Ψ : N → M is a map homomorphism

with M regular, then Aut(N) projects.

The homomorphism Ψ : Γ(P ) → Ih is a strong tool for proving nonexistence of fulleroids

with multi-pentagonal faces and with symmetry groups which are not subgroups of Ih.

Proposition 1.8 Let P be a cubic convex polyhedron such that the sizes of all its faces are

odd multiples of five. Then the symmetry group Γ(P ) does not contain the group S4 as a

subgroup.

Proof. Let P be a convex polyhedron satisfying the premise of the claim and let ϕ be the

rotation-reflection that generates S4 in Γ(P ). Since all the face sizes are odd, the rotation

axis of ϕ intersects P in the midpoints of two edges, let one of these two edges be denoted

by e. Let e = uv. Then ϕ2(u) = v and ϕ2(v) = u. It means ϕ2 maps two adjacent vertices

u and v onto each other.

Let Ψ : P → D be the homomorphism given by Lemma 1.2 and Ψ : Γ(P ) → Ih be the

corresponding homomorphism given by Theorem 1.6. The rotation-reflection ϕ is an element

of order 4 in Γ(P ). There are no elements of order 4 in Ih, so Ψ(ϕ) can be only of order 2

or 1, what implies Ψ(ϕ2) = Ψ(ϕ)2 = id. The vertices u and v are adjacent, hence so are the

vertices Ψ(u) and Ψ(v). On the other hand,

Ψ(v) = Ψ(ϕ2(u)) = Ψ(ϕ2)(Ψ(u)) = id(Ψ(u)) = Ψ(u),

what is a contradiction. �

Corollary 1.9 There is no fulleroid P such that the sizes of all its faces are odd multiples

of five with the symmetry group S4, D2d, or Td.

Proof. It immediately follows from Proposition 1.8, since S4 is a subgroup of both D2d and

Td. �

Proposition 1.10 Let P be a cubic convex polyhedron such that all its faces are multi-

pentagons and none of the face sizes is divisible by three. Then the symmetry group Γ(P )

does not contain the group C3h as a subgroup.
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Proof. Let P be a convex polyhedron satisfying the premise of the claim and let ρ and

θ be the rotation and the reflection that generate C3h in Γ(P ). Since no face of P has the

size divisible by three, the rotation axis of ρ intersects P in two vertices, let one of those

vertices be denoted by v. Let the neighbours of v be denoted by v1, v2, v3 in such a way that

ρ(v1) = v2, ρ(v2) = v3, and ρ(v3) = v1.

Let Ψ : P → D be the homomorphism given by Lemma 1.2 and Ψ : Γ(P ) → Ih be the

corresponding homomorphism given by Theorem 1.6. The rotation ρ is an element of order

3 in Γ(P ).

If Ψ(ρ) = id, then Ψ(v2) = Ψ(ρ(v1)) = Ψ(ρ)(Ψ(v1)) = Ψ(v1). But Ψ : P → D maps

distinct neighbours of v onto distinct ones, a contradiction. Hence ord(Ψ(ρ)) = 3, what

implies Ψ(ρ) is a rotation by ±120◦.

We know that θ is orientation-reversing symmetry of P and ord(θ) = 2, so Ψ(θ) must

be an orientation-reversing element of Ih such that ord(Ψ(θ)) ≤ 2. The reflection θ has at

least one fixpoint on the surface of P (midpoints of edges intersected by the mirror plane),

thus also Ψ(θ) must have at least one fixpoint on the surface of D, indeed it can not be a

point inversion. So Ψ(θ) it is a reflection.

In P , the mirror plane corresponding to θ is perpendicular to the rotational axis of ρ.

Moreover, ρ ◦ θ = θ ◦ ρ and the subgroup C3h of Γ(P ) generated by ρ and θ is commutative.

What is the relative position of Ψ(ρ) and Ψ(θ)? There is no mirror plane of D perpedicular

to any of its 3-fold rotational symmetry axis. Moreover, if a 3-fold rotational axis Ψ(ρ) is

chosen, a mirror plane of D together with Ψ(ρ) generate either a non-commutative subgroup

of Ih with 6 elements (the group C3v, if the mirror plane contains the axis), or the whole

group Ih (otherwise), what is a contradiction. �

Corollary 1.11 There is no fulleroid P such that all its faces are multi-pentagons, none of

the face sizes is divisible by three, and the symmetry group of P is C3h or D3h.

Proof. It immediately follows from Proposition 1.10, since C3h is a subgroup of D3h. �

Proposition 1.12 Let P be a cubic convex polyhedron such that all its faces are multi-

pentagons and none of the face sizes is divisible by 25. Then the symmetry group Γ(P ) does

not contain the group C5h as a subgroup.

Proof. Let P be a convex polyhedron satisfying the premise of the claim and let ρ and θ

be the rotation and the reflection that generate C5h in Γ(P ). The rotation axis of ρ intersects

P in two faces, let one of those faces be denoted by f . Let v be a vertex incident with f .

Let Ψ : P → D be the homomorphism given by Lemma 1.2 and Ψ : Γ(P ) → Ih be

the corresponding homomorphism given by Theorem 1.6. The rotation ρ is an element
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of order 5 in Γ(P ). Since no face of P has the size that is a multiple of 25, Ψ(v) and

Ψ(ρ(v)) = Ψ(ρ)(Ψ(v)) are two distinct vertices of the face Ψ(f). Thus, Ψ(ρ) is not an

identity, so Ψ(ρ) is an element of order 5 in Ih, hence Ψ(ρ) is a rotation by ±72◦.

Using the same arguments like in the proof of Proposition 1.10 we get that Ψ(θ) it is a

reflection.

In P , the mirror plane corresponding to θ is perpendicular to the rotational axis of ρ.

Moreover, ρ ◦ θ = θ ◦ ρ and the subgroup C5h of Γ(P ) generated by ρ and θ is commutative.

What is the relative position of Ψ(ρ) and Ψ(θ)? There is no mirror plane of D perpedicular

to any of its 5-fold rotational symmetry axis. Moreover, if a 5-fold rotational axis Ψ(ρ) is

chosen, a mirror plane of D together with Ψ(ρ) generate either a non-commutative subgroup

of Ih with 10 elements (the group C5v, if the mirror plane contains the axis), or the whole

group Ih (otherwise), what is a contradiction. �

Corollary 1.13 There is no fulleroid P such that all its faces are multi-pentagons, none of

the face sizes is divisible by 25, and the symmetry group of P is C5h or D5h.

Proof. It immediately follows from Proposition 1.12, since C5h is a subgroup of D5h. �

Corollaries 1.9, 1.11, and 1.13 cover all the seven groups, which are not subgroups of Ih,

even though they do not force any local restrictions. For all seven of them, there are values

of n, for which there are no Γ(5, n)-fulleroids. On the other hand, for all other values of n

not covered by Corollaries 1.9, 1.11, and 1.13, examples of Γ(5, n)-fulleroids can be found in

Kardoš (2007a).

The results mentioned above combined with constructions in sections 1.6 and 1.7 complete

the proof of the following characterization:

Theorem 1.14 Let Γ be a point symmetry group. Then there are infinitely many Γ(5, n)-

fulleroids for any n ≥ 7 if and only if Γ is a subgroup of the group Ih.

1.9 Fulleroids with octahedral, prismatic, or pyramidal

symmetry

There are groups which contain an m-fold rotational symmetry for m = 4 or m ≥ 6. Local

conditions (see Lemma 1.1) do not allow existence of (5, n)-fulleroids for arbitrary n — in

this case n must be a multiple of m. However this necessary condition is not always also

sufficient.

Octahedral symmetry groups Oh and O both contain three 4-fold rotational symmetry

axes, therefore, the size of some faces must be a multiple of four.
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Theorem 1.15 (Jendrol’ and Kardoš 2007) Let n ≥ 6. There are infinitely many Oh(5, n)-

fulleroids and O(5, n)-fulleroids if and only if (i) n ≡ 0 (mod 60) or (ii) n ≡ 0 (mod 4) and

n 6≡ 0 (mod 5).

The groups Dmh,Dmd,Dm,S2m,Cmh,Cmv and Cm contain m-fold rotational symmetry,

therefore, the size of some faces must be a multiple of m.

Theorem 1.16 (Kardoš 2007a) Let m = 4 or m ≥ 6 and n ≥ 7 be integers and let Γ be

Dmd,Dm,S2m,Cmv or Cm. Then there are infinitely many Γ(5, n)-fulleroids if and only if n

is a multiple of m.

Theorem 1.17 (Kardoš 2007a) Let m = 4 or m ≥ 6 and n ≥ 7 be integers and let m 6≡ 0

(mod 5). Let Γ be Dmh or Cmh. Then there are infinitely many Γ(5, n)-fulleroids if and only

if n is a multiple of m.

Theorem 1.18 (Kardoš 2007a) Let m ≥ 10 and n ≥ 7 be integers and let m ≡ 0 (mod 5).

Let Γ be Dmh or Cmh. Then there are infinitely many Γ(5, n)-fulleroids if and only if n is a

multiple of 5m.

Examples and constructions can be found in Kardoš (2007a).

1.10 (5, 7)-fulleroids

Unlike the case of fullerenes, i.e. (5, 6)-fulleroids, for (5, 7)-fulleroids, all point symmetry

groups that satisfy local restrictions are realizable.

For the 36 groups Γ, which do not contain m-fold rotation unless m = 2, 3, 5, or 7,

the numbers of vertices of the smallest examples of Γ(5, 7)-fulleroids are listed in Table 1.3.

The examples with dihedral, skewed, pyramidal, and low symmetry are depicted in Figures

1.14–1.17.

Ih I Th Td T D7h D7d D7 S14 C7h C7v C7

500 260 116 116 68 84 28 140 196 112 112 140
D5h D5d D5 S10 C5h C5v C5 D3h D3d D3 S6 C3h

60 60 100 140 80 80 100 44 44 44 68 56
C3v C3 D2h D2d D2 S4 C2h C2v C2 Cs Ci C1

68 68 52 36 36 52 44 44 44 44 60 52

Table 1.3: The counts of vertices of the smallest Γ(5, 7)-fulleroid for all 36 possible symmetry groups
Γ.
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D7h D5h D3h D2h

D7d D5d D3d D2d

D7 D5 D3 D2

Figure 1.14: The smallest (5, 7)-fulleroids with dihedral symmetry groups.

S14 S10

S6 S4

Figure 1.15: The smallest (5, 7)-fulleroids with skewed symmetry groups.
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C7h C5h C3h C2h

C7v C5v C3v C2v

C7 C5 C3 C2

Figure 1.16: The smallest (5, 7)-fulleroids with pyramidal symmetry groups.

Ci Cs C1

Figure 1.17: The smallest (5, 7)-fulleroids with low symmetry.
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