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Abstract

A fullerene graph is a planar cubic graph whose all faces are pentagonal and
hexagonal. The structure of cyclic edge-cuts of fullerene graphs of sizes up to 6 is
known. In the paper we study cyclic 7-edge connectivity of fullerene graphs, distin-
guishing between degenerated and non-degenerated cyclic edge-cuts, regarding the
arrangement of the 12 pentagons. We prove that if there exists a non-degenerated
cyclic 7-edge-cut in a fullerene graph, then the graph is a nanotube, unless it is
one of the two exceptions presented. We also list the configurations of degenerated
cyclic 7-edge-cuts.

keywords: fullerene, fullerene graph, cyclic edge-connectivity, cyclic edge-cut

1 Introduction

Mathematicians adopted the notion of fullerenes and defined the fullerene graphs as the
plane cubic 3-connected graphs with only pentagonal and hexagonal faces. Nanotubes
are members of the fullerene structural family. They are cylindrical in shape with the
ends typically capped with a hemisphere of the fullerene structure. Nanotubes with the
ends left open (open-ended nanotubes) are also interesting objects, see e.g. [8].

Došlić proved that fullerene graphs are cyclically 4-edge connected [2] and cyclically
5-edge connected [3]. The cyclic edge-connectivity of a fullerene graph cannot exceed
5, since it contains twelve pentagons, thus, there are at least twelve cyclic 5-edge-cuts
– formed by the edges pointing outwards of each pentagonal face. There are also cyclic
6-edge-cuts formed by the edges pointing outwards of each hexagonal face. These cyclic
5- and 6-edge-cuts will be called trivial. Kardoš and Škrekovski [4] characterized 5-
and 6-edge-cuts, and independently the 5-edge-cuts were characterized by Kutnar and
Marušič [6].

An edge-cut of a graph G is a set of edges C ⊂ E(G) such that G − C is discon-
nected. A graph G is k-edge-connected if G cannot be separated into two components
by removing less than k edges. An edge-cut C of a graph G is cyclic if each component
of G − C contains a cycle. A graph G is cyclically k-edge-connected if G cannot be
separated into two components, each containing a cycle, by removing less than k edges.
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A cyclic edge-cut C of a fullerene graph G is non-degenerated, if both components
of G − C contain precisely six pentagons. Otherwise, C is degenerated. Obviously, the
trivial cyclic edge-cuts are degenerated.

There is a family of fullerene graphs, which have many non-degenerated cyclic edge-
cuts – the nanotubes. A fullerene graph is a nanotube, if it can be divided into a
cylindrical part containing only hexagons, and two caps, each containing six pentagons
and some hexagons. The cylindrical part should have the following structure: It contains
a ring of hexagons h1, h2, . . . , hp such that after unfolding it back into the hexagonal grid,
there are two unit vectors a1 and a2 forming a 60◦ angle such that each hi−hi−1 is either
a1 or a2 for i = 1, . . . p, h0 = hp. (Here the hexagons are identified with their centers.)
In this case, the cylindrical part is an open-ended nanotube of type (p1, p2), where pj

denotes the number of occurences of aj, j = 1, 2. The pair (p1, p2) of coefficients in the
equation r = p1a1 + p2a2 fully determines the type of the nanotube. It is easy to see
that the vectors a1 and a2 can always be chosen in such a way that p1 ≥ p2.

a1

a2

p1a1 + p2a2

h1

h2

h3 h4

C

e1

e2

e3

Figure 1: An example of a nanotube of type (6, 2).

The nanotubes of types (n, 0) are called zigzag, those of types (n, n) are called arm-
chair (both types have mirror symmetry), the others are chiral (without mirror sym-
metry). In the light of this definition, also the buckyball C60 can be viewed as the first
in the series of nanotubes of type (5, 5) with a single layer of hexagons in the cylindrical
part.

The nanotubes that are interesting in material science usually have the length-to-
diameter ratio very large. But in many other fullerenes the nanotube-like structure
can be found. We say that two non-degenerated cyclic edge-cuts are parallel if both
of them induce the two partitions containing the same six pentagons in each, and the
corresponding rings of hexagons do not share a face. Such a ring of hexagons is denoted
a layer, and the maximal number of parallel layers is the lenght of a nanotube.

It is easy to see that the ring of hexagons induces a non-degenerated cyclic edge-cut
in a nanotube. In [4] it was proven that nanotubes are the only graphs having non-
degenerated cyclic 5 and 6-edge-cuts, however, there exist graphs that are not nanotubes
and have non-degenerated cyclic k-edge-cut, for some k ≥ 7. In the paper we consider
non-degenerated cyclic 7-edge-cuts and prove that there exist precisely two fullerenes
with non-degenerated cyclic 7-edge-cut, which are not nanotubes.
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Figure 2: The buckyball is the first nanotube of type (5, 5).

Below we pose some known results regarding the non-trivial cyclic 5- and 6-edge-cuts.
Let Gk denote a fullerene graph comprised of two caps formed by six pentagons, and k

layers of hexagons, see Fig. 3.

Theorem 1 A fullerene graph has non-trivial cyclic 5-edge-cut if and only if it is iso-
morphic to the graph Gk for some integer k ≥ 1.

Figure 3: The graphs Gk are the only fullerene graphs with non-trivial cyclic 5-edge-cuts.

As an immediate corollary we obtain that all non-trivial cyclic 5-edge-cuts in fullerene
graphs are non-degenerated.

An important notion in this paper is a cut-vector. Let G be a fullerene graph and
C a k-edge cut in G, and let H be one of the components of graph G−C. We label the
vertices of degree one or two in H by v1, v2, . . . , vk. Let αi be the number of 3-vertices
between vi and vi+1 (notice that vk+1 = v1) on the segment on the outer face. Note that
each vertex x of degree one in H is treated as two 2-vertices y and w. We define that
between y and w there is −1 vertex of degree three.

We name the sequence [α1, α2, . . . , αk] a cut-vector v(C) regarding H. It is easy
to see that the components αi in fullerenes could only have values −1, 0, 1, 2 or 3,
since each face of G is of size 5 or 6, see Fig. 4 for examples. Observe, that each non-
degenerated cyclic edge-cut has two complementary cut-vectors associated with each of
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the components of G − C. Here complementary means that knowing one of them is
enough, since the sum of components of the same index is in fullerenes always equal to
two (only edges of hexagons are elements of non-degenerated cyclic edge-cut). The sum
of cut-vector’s components has a nice property, which is given in the following lemma:

Lemma 1 Let C be a non-degenerated k-cut in a fullerene graph G, and let α = [α1, α2,

. . . , αk] be one of its two cut-vectors. Then, α1 + α2 + · · ·+ αk = k.

To prove the lemma above, we use an extension of a result from [4, Lemma 1]:

Lemma 2 Let C be an edge-cut in a fullerene graph G and H a component of G−C. Let
n1 and n2 be the number of vertices of degree one and two, f5 the number of pentagons,
and l the size of the outer face of H. Then, 6− f5 = 4n1 + 2n2 − l.

Proof. Let m be the number of edges, n3 the number of 3-vertices, and f6 the number
of hexagons. Then

n1 + 2n2 + 3n3 = 2m = 5f5 + 6f6 + l.

Using Euler’s formula, we also have that

n1 + n2 + n3 + f5 + f6 + 1−m− 2 = 0.

Putting it all together we get

(2n1 + 4n2 + 6n3 − 4m) + (5f5 + 6f6 + l − 2m) + 4n1 + 2n2 + f5 − l − 6 = 0,

and hence
4n1 + 2n2 − l = 6− f5.

�

Proof of Lemma 1. Let H be the component of G−C that corresponds to α. By the
choice of C, H has n1 1-vertices, n2 2-vertices, where 2n1 +n2 = k, and six 5-faces. The
length of its outer face is

l = k +
k∑

i=1

αi = 2n1 + n2 +
k∑

i=1

αi.

On the other hand, by Lemma 2 we have

l = 4n1 + 2n2.

Hence
k∑

i=1

αi = 2n1 + n2 = k,

which proves the lemma. �
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The type of a cut-vector α is the vector obtained from α after omitting the compo-
nents with value 1. For example, the type of the cut-vector [2, 1, 1, 0, 1, 2, 0] is [2, 0, 2, 0].
If no two consecutive components of the cut-vector’s type have the same value, we say
that the cut is nanotubical. The notion nanotubical derives from the fact, that the two
same consecutive components imply that there are all three direction vectors contained
in the cut, and we know that the fullerene is a nanotube if and only if there exists a cut
containing only two direction vectors.

The notion of cut-vector defined, we can now proceed with cyclic 6-edge-cuts. Unlike
cyclic 5-edge-cuts, there exist degenerated cyclic 6-edge-cuts, which are not trivial.

Theorem 2 There are precisely seven non-isomorphic graphs that can be obtained as
components of degenerated cyclic 6-edge-cuts with less than six pentagons. Moreover,
the graphs with i pentagons are unique for i = 0, 1, 2, 3, 4.

6D01 6D02 6D03 6D04

6D05 6D06 6D07

Figure 4: Degenerated cyclic 6-edge-cuts.

Non-degenerated cyclic 6-edge-cuts are, similarly as cyclic 5-edge-cuts, nanotubical.
In [4] the following characterization is given:

Theorem 3 A fullerene graph has non-degenerated cyclic 6-edge-cut if and only if it is
a nanotube of type (p1, p2), where

(a) p1 + p2 = 6; or

(b) p1 = 5, p2 = 0, with at least 2 layers of hexagons.

2 Degenerated cyclic 7-edge-cuts

In this section we list the degenerated cyclic 7-edge-cuts. There are 57 non-isomorphic
graphs that can be obtained as components of degenerate cyclic 7-edge-cuts with less
then 6 pentagons. To obtain the configurations we used the reverses of operations O1,
O2 and O3 presented in [4]. Each of the three operations modifies the cyclic k-edge-cut
C into another cyclic edge-cut Ci. Below a brief description of the operations is given
(see also Fig.5).
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(O1) If a component H contains a vertex of degree one, then using (O1) one can modify
the k-edge-cut C into a (k − 1)-edge-cut C1.

(O2) If a component H contains two adjacent vertices of degree two, then using (O2)
one can modify the k-edge-cut C into a k-edge-cut C2.

(O3) If the vertices of the outer faces of H are consecutively of degree 2 and 3, then
using (O3) one can modify the k-edge-cut C into a k-edge-cut C3.

H
C HC

H

C

↓ (O1) ↓ (O2) ↓ (O3)

H1

C1 H2C2

H3

C3

Figure 5: The operations O1, O2 and O3.

Using the three operations, all cyclic edge-cuts in a fullerene could be constructed, see
[4, Theorem 1]. Note that the operation O3 can be applied only if there are six pentagons
in the configuration H, therefore when reconstructing degenerated cyclic edge-cuts from
the trivial ones, it is never used. On Fig. 6 an example of constructing a degenerate
cyclic 7-edge-cut is presented, and on Fig. 7 we listed the degenerated cyclic 7-edge-cuts.

(O1)
←−

(O2)
←−

(O2)
←−

↑ (O2)

(O2)
−→

(O2)
−→

(O2)
−→

Figure 6: An example of construction.

On Table 1 for each configuration depicted on Fig. 7 we list the number of pentagonal
and hexagonal faces (denoted by f5 and f6), the number of vertices (denoted by v), the
cut-vector, and the configurations that arise when applying operations O1, O2 and an
inverse O−1

2 .

3 Non-degenerated cyclic 7-edge-cuts

In this section, we consider the non-degenerated cyclic 7-edge-cuts. We prove that all
non-degenerated cyclic 7-edge-cuts are contained in fullerene graphs which are nan-
otubes, with two exceptions. There exist precisely two fullerene graphs, which have
non-degenerated cyclic 7-edge-cuts and that are not nanotubical. We also characterize
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D01 D02 D03 D04 D05 D06 D07 D08 D09 D10

D11 D12 D13 D14 D15 D16 D17 D18 D19 D20

D21 D22 D23 D24 D25 D26 D27 D28

D29 D30 D31 D32 D33 D34 D35 D36

D37 D38 D39 D40 D41 D42 D43

D44 D45 D46 D47 D48 D49 D50

D51 D52 D53 D54 D55 D56 D57

Figure 7: Degenerated cyclic 7-edge-cuts.
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cut f5 f6 v cut-vector O1 O2 O−1

2

D01 0 1 7 [−1, 1, 0, 0, 0, 0, 1] 6D01 – D05
D02 1 0 7 [−1, 0, 1, 0, 0, 0, 2] 6D02 – D05, D06
D03 1 0 7 [−1, 1, 0, 0, 1,−1, 2] 6D02 – D05, D06
D04 1 0 7 [−1, 1, 0, 1,−1, 1, 1] 6D02 – D06, D07

D05 1 1 9 [0, 0, 0, 1, 0, 0, 1] – D02, D03 D08
D06 2 0 9 [−1, 1, 0, 1, 0, 0, 2] 6D03 D02, D03, D04 D08, D09, D10
D07 2 0 9 [−1, 1, 1, 0, 0, 1, 1] 6D03 D03 D09, D10

D08 2 1 11 [0, 0, 1, 0, 1, 0, 1] – D05, D06 D11, D12
D09 3 0 11 [0, 0, 1, 1, 0, 0, 2] – D06, D07 D11, D13
D10 3 0 11 [−1, 1, 1, 0, 1, 0, 2] 6D04 D06, D07 D12, D13, D14, D15

D11 3 1 13 [0, 1, 0, 1, 0, 1, 1] – D08, D09 D16, D17
D12 3 1 13 [0, 0, 1, 1, 0, 1, 1] – D08, D10 D17, D18
D13 4 0 13 [0, 0, 2, 0, 1, 0, 2] – D09, D10 D17, D19
D14 4 0 13 [−1, 2, 0, 1, 1, 0, 2] 6D05 D09 D18, D20
D15 4 0 13 [−1, 1, 1, 1, 0, 1, 2] 6D05 D09 D18, D19, D20, D21, D22

D16 4 1 15 [0, 1, 1, 0, 1, 1, 1] – D11 D23, D24, D25
D17 4 1 15 [0, 1, 0, 1, 1, 0, 2] – D11, D12, D13 D24, D25, D26, D27
D18 4 1 15 [0, 0, 1, 1, 1, 0, 2] – D12, D14, D15 D27, D28, D29, D30
D19 5 0 15 [0, 0, 2, 1, 0, 1, 2] – D13, D15 D27
D20 5 0 15 [−1, 2, 0, 2, 0, 1, 2] 6D06 D14, D15 D29, D30, D31
D21 5 0 15 [−1, 1, 2, 0, 1, 1, 2] 6D06 D15 D30, D32
D22 5 0 15 [−1, 1, 1, 1, 1, 0, 3] 6D06 D15 –

D23 5 1 17 [0, 1, 1, 1, 1, 0, 2] – D16 D34
D24 5 1 17 [0, 1, 1, 1, 0, 1, 2] – D16, D17 D35
D25 5 1 17 [0, 1, 1, 0, 2, 0, 2] – D16, D17 D36
D26 4 2 17 [0, 1, 1, 0, 1, 1, 1] – D17 D35, D36, D37
D27 5 1 17 [0, 1, 0, 2, 0, 1, 2] – D17, D18, D19 D37, D38
D28 4 2 17 [0, 1, 0, 1, 1, 1, 1] – D18 D38, D39, D40
D29 5 1 17 [0, 0, 2, 0, 2, 0, 2] – D18, D20 D40, D41
D30 5 1 17 [0, 0, 1, 2, 0, 1, 2] – D18, D20, D21 D40, D42
D31 5 1 17 [−1, 2, 1, 0, 1, 1, 2] 6D07 D20 D41, D42
D32 5 1 17 [−1, 2, 0, 1, 1, 1, 2] 6D07 D21 D42, D43
D33 5 1 17 [−1, 1, 1, 1, 1, 1, 2] 6D07 – D43

D34 5 2 19 [0, 1, 1, 1, 1, 1, 1] – D23 –
D35 5 2 19 [0, 1, 1, 1, 1, 0, 2] – D24, D26 D44
D36 5 2 19 [0, 1, 1, 1, 0, 1, 2] – D26, D25 D45
D37 5 2 19 [0, 1, 1, 0, 2, 0, 2] – D26, D27 D46
D38 5 2 19 [0, 1, 1, 0, 1, 1, 2] – D27, D28 D46
D39 5 2 19 [0, 1, 1, 1, 1, 1, 1] – D28 –
D40 5 2 19 [0, 1, 0, 1, 2, 0, 2] – D28, D29, D30 D47, D48
D41 5 2 19 [0, 0, 2, 1, 0, 1, 2] – D29, D31 D48
D42 5 2 19 [0, 0, 2, 0, 1, 1, 2] – D30, D31, D32 D48, D49
D43 5 2 19 [0, 0, 1, 1, 1, 1, 2] – D32, D33 D49
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cut f5 f6 v vector O1 O2 O−1

2

D44 5 3 21 [0, 1, 1, 1, 1, 1, 1] – D35 –
D45 5 3 21 [0, 1, 1, 1, 1, 0, 2] – D36 D50
D46 5 3 21 [0, 1, 1, 1, 0, 1, 2] – D37, D38 D51
D47 5 3 21 [0, 1, 1, 0, 1, 2, 1] – D40 D52
D48 5 3 21 [0, 1, 0, 2, 0, 1, 2] – D40, D41, D42 D52, D53
D49 5 3 21 [0, 1, 0, 1, 1, 1, 2] – D42, D43 D53

D50 5 4 23 [0, 1, 1, 1, 1, 1, 1] – D45 –
D51 5 4 23 [0, 1, 1, 1, 1, 0, 2] – D46 D54
D52 5 4 23 [0, 1, 1, 0, 2, 0, 2] – D47, D48 D55
D53 5 4 23 [0, 1, 1, 0, 1, 1, 2] – D48, D49 D55

D54 5 5 25 [0, 1, 1, 1, 1, 1, 1] – D51 –
D55 5 5 25 [0, 1, 1, 1, 0, 1, 2] – D52, D53 D56

D56 5 6 27 [0, 1, 1, 1, 1, 0, 2] – D55 D57

D57 5 7 29 [0, 1, 1, 1, 1, 1, 1] – D56 –

Table 1: Degenerated cyclic 7-edge cuts.

the types of nanotubes in which non-degenerate cyclic 7-edge-cuts exist. It is obvious
that nanotubes of type (p1, p2), where p1 + p2 ≥ 8, cannot contain such a cut, due to
the width of the cylindrical part (of course, degenerate cyclic edge-cuts are not limited
by the type).

Regarding nanotube types, where the sum p1 + p2 < 7, it was already proven in [4]
that only graphs Gk contain non-trivial cyclic 5-edge-cuts, in other words, for p1+p2 = 5,
only nanotubes of type (5, 0) exist. On the other hand, there are more possible types for
p1 + p2 = 6. For type (6, 0) there exist five different caps, while for types (5, 1), (4, 2),
and (3, 3) caps are unique. On Fig. 8 the caps retrieved from nanotubes of specified
types are presented. Note that nanotubes with p1 + p2 < 5 do not exist, due to cyclic
5-edge-connectivity of fullerenes.

(6, 0) (6, 0) (6, 0) (6, 0)

(6, 0) (5, 1) (4, 2) (3, 3)

Figure 8: The caps of (p1, p2)-nanotubes, where p1 + p2 = 6.
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Now, let us state the main theorem of this article.

Theorem 4 A fullerene graph has a non-degenerated cyclic 7-edge-cut if and only if it
is a nanotube of type (p1, p2), where

(a) p1 + p2 = 7; or

(b) p1 + p2 = 6, and the nanotube is not the smallest nanotube of types (3, 3), and
(4, 2), or it is not of type (6, 0) with one layer of hexagons and with both caps
isomorphic to the first configuration on Fig. 8; or

(c) p1 + p2 = 5, with at least 2 layers of hexagons;

unless it is isomorphic to one of the two graphs depicted in Fig. 9.

Figure 9: The only two non-nanotubical fullerenes with a 7-edge-cut.

Proof. Let G be a fullerene graph and C a non-degenerated cyclic 7-edge-cut in G. Let
H be one of the components of graph G− C. If C is nanotubical, it is obvious that G

is a nanotube. Let us firstly consider such cuts.
We prove that all nanotubes, which contain cyclic 7-edge-cuts, are of type (p1, p2),

where p1 + p2 = k, k ∈ {5, 6, 7}. Consider cases regarding k. Let k = 5 and let the
cylindrical part of the nanotube have only one layer of hexagons. Then, the only edges
not adjacent to pentagons are the edges between hexagonal faces. There are only five
such edges, thus a cyclic 7-edge-cut could not be obtained. On the other hand, having
two or more layers, the edges between layers could be used to obtain the cut of greater
length.

Now, let k = 6 and consider nanotubes of types (5, 1), (4, 2), (3, 3), and (6, 0)
separately. The nanotubes of type (5, 1) have uniquely defined caps, which contain a
hexagon, so all such nanotubes have a configuration on Fig. 10, where exists a non-
degenerated cyclic 7-edge-cut.

Figure 10: The cap of a nanotube of type (5, 1) with a non-degenerate cyclic 7-edge-cut.
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On the other hand, the unique caps of nanotubes of types (4, 2) and (3, 3) do not
contain any hexagonal faces. So there exist nanotubes of such types that do not have
non-degenerate cyclic 7-edge-cut. In fact for each type only the smallest nanotube is
such, while all others have it. On Fig. 11 the smallest two nanotubes of each type are
presented.

Figure 11: The two smallest nanotubes of types (4, 2) (on the top), and (3, 3) (at the
bottom).

It remains to consider the nanotubes of type (6, 0). There are five possible caps
for this type, see Fig. 8. Only the first cap does not contain a hexagonal face, so the
nanotubes with both such caps need at least two layers of hexagons to obtain a non-
degenerate cyclic 7-edge-cut. In all other configurations there are at least two edges in
the cap that are not adjacent to a pentagonal face (the edges of cap’s hexagon), and
can be elements of the cut. In case, when k = 7, simply the edges in cyclindrical part
are used to obtain a cyclic 7-edge-cut.

Now, let C be non-nanotubical non-degenerated 7-edge cut. Consider the cut-vector
of C. If it contains any 3, the complement must contain −1, since the cut is non-
degenerated. If there is a −1, it corresponds to a vertex of degree 1 in one of the
components; anytime the cut vector looks like [. . . , a,−1, b, . . . ], if we remove the vertex
from the component, we get a non-degenerate cyclic 6-edge cut, with the cut vector
[. . . , (a − 1), (b − 1), . . . ], see Fig. 12 for illustration. By Theorem 3, it is contained in
a nanotube, moreover, if we insert the removed vertex back, we get a non-degenerated
7-edge-cut in the nanotube.

→

Figure 12: If the cut-vector of a k-cut contains −1, we can change it into a (k− 1)-cut.

Therefore, we deal only with 0s, 1s and 2s. Then, due to the definition, we have at
least two consecutive 0’s or 2’s. So, the type of the cut-vector is one of the following
three: [2, 2, 2, 0, 0, 0], [2, 2, 0, 2, 0, 0] or [2, 2, 0, 0]. Table 2 lists all possible cut-vectors
(up to symmetry) which could arise from these types.

Now, we will consider each of the cut-vectors separetly and prove that any cut with
such a cut-vector is either a part of a nanotube, part of the graphs depicted in Fig. 9,

11



[2, 2, 2, 0, 0, 0] [2, 2, 0, 2, 0, 0] [2, 2, 0, 0]
[2, 2, 2, 1, 0, 0, 0] [2, 1, 2, 0, 2, 0, 0] [2, 2, 1, 1, 1, 0, 0], [2, 2, 1, 1, 0, 0, 1]
[2, 1, 2, 2, 0, 0, 0] [2, 2, 1, 0, 2, 0, 0] [2, 1, 2, 1, 1, 0, 0], [2, 1, 2, 1, 0, 0, 1]

[2, 2, 0, 1, 2, 0, 0] [2, 1, 1, 2, 1, 0, 0], [2, 1, 2, 1, 0, 1, 0]
[2, 2, 0, 2, 0, 0, 1] [2, 1, 1, 1, 2, 0, 0], [2, 1, 1, 2, 0, 1, 0]

Table 2: All possible cut-vectors that arise from non-nanotubical cut types.

or a part of a configuration, which is non-realizable. Notice that the cuts are depicted
with the dotted lines on figures.

[2,2,2,1,0,0,0] : Consider the configuration of Fig. 13, left. Notice that the face A

cannot be pentagonal, otherwise there would be a cyclic 3-edge-cut, which is im-
possible [3]. Thus, it is of length 6, and we obtain a non-degenerated 5-edge-cut
with a cut-vector [2, 2, 0, 0, 1]. But by Theorem 1 it follows that such a configu-
ration is non-realizable, since the only cut-vector of non-degenerated 5-edge-cut is
[1, 1, 1, 1, 1].

A

[2, 2, 2, 1, 0, 0, 0]-cut

=⇒

[2, 2, 0, 0, 1]-cut

Figure 13: The component associated with the cut-vector [2, 2, 2, 1, 0, 0, 0].

[2,1,2,2,0,0,0] : Consider the configuration of Fig. 14, left. Similarly as in the case
above, we may see that face A is of length 6. We obtain a non-degenerated 5-edge-
cut with a cut-vector [2, 1, 0, 1, 1]. Theorem 1 implies that such a configuration is
non-realizable.

A

[2, 1, 2, 2, 0, 0, 0]-cut

=⇒

[2, 1, 0, 1, 1]-cut

Figure 14: The component associated with the cut-vector [2, 1, 2, 2, 0, 0, 0].

[2,1,2,0,2,0,0] : Consider the size of the face A from Fig. 15. If A is pentagonal,
we obtain a degenerated 6-edge-cut with the cut-vector [2, 0, 1, 0, 1, 1]. Such a
configuration is non-realizable by Theorem 2, since the cut-vectors of degenerated
6-edge-cuts with a component containing five pentagons are [2, 0, 1, 1, 1, 0] and
[0, 1, 1, 1, 1, 1]. On the other hand, if A is hexagonal, we obtain a nanotubical cut
with the cut vector [1, 1, 1, 2, 0, 1].
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A

[2, 1, 2, 0, 2, 0, 0]-cut

=⇒

[2, 0, 1, 0, 1, 1]-cut

or

(5, 1)-nanotube

Figure 15: The component associated with the cut-vector [2, 1, 2, 0, 2, 0, 0].

[2,2,1,0,2,0,0] : In this case the size of the face A from Fig. 16, left, is considered again.
If it is of size five, the configuration is non-realizable, since a degenerated 6-edge-
cut with the cut-vector [2, 1, 0, 1, 0, 1] is obtained. There is no such a degenerated
cut according to Theorem 2. If A is hexagonal, we obtain a cut with the cut-vector
[2, 1, 0, 1, 1, 1], which is nanotubical.

A

[2, 2, 1, 0, 2, 0, 0]-cut

=⇒

[2, 1, 0, 1, 0, 1]-cut

or

(4, 2)-nanotube

Figure 16: The component associated with the cut-vector [2, 2, 1, 0, 2, 0, 0].

[2,2,0,1,2,0,0] : Similarly as in the two cases above the size of the face A from Fig. 17,
left, is taken in consideration. For A pentagonal we once again obtain a non-
realizable configuration, due to a cut with the cut-vector [2, 0, 1, 1, 0, 1]. For A

hexagonal the nanotubical cut with the cut-vector [2, 0, 1, 1, 1, 1] is obtained.

A

[2, 2, 0, 1, 2, 0, 0]-cut

=⇒

[2, 0, 1, 1, 0, 1]-cut

or

(5, 1)-nanotube

Figure 17: The component associated with the cut-vector [2, 2, 0, 1, 2, 0, 0].

[2,2,0,2,0,0,1] : Analogously, if the face A from Fig. 18, left, is pentagonal, we once
again obtain a non-realizable cut-vector [2, 2, 0, 1, 0, 0]. If A is hexagonal, a non-
degenerate cyclic 6-edge-cut with the cut-vector [2, 2, 0, 1, 1, 0] is obtained. By
Theorem 3 it must be nanotubical.

A

[2, 2, 0, 2, 0, 0, 1]-cut

=⇒

[2, 2, 0, 1, 0, 0]-cut

or

(5, 0)-nanotube

Figure 18: The component associated with the cut-vector [2, 2, 0, 2, 0, 0, 1].
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[2,2,1,1,1,0,0] : If the face A from Fig. 19, left, is pentagonal, we obtain a degenerated
cyclic 6-edge-cut with a cut-vector [2, 1, 1, 0, 0, 1] which is non-realizable. If A is
hexagonal, we obtain a nanotubical cut-vector [1, 2, 1, 1, 0, 1].

A

[2, 2, 1, 1, 1, 0, 0]-cut

=⇒

[2, 1, 1, 0, 0, 1]-cut

or

(3, 3)-nanotube

Figure 19: The component associated with the cut-vector [2, 2, 1, 1, 1, 0, 0].

[2,2,1,1,0,0,1] : Consider the face A from Fig. 20, left. If A is pentagonal, we obtain a
degenerated 6-edge-cut with the cut-vector [2, 2, 1, 0, 0, 0], which is non-realizable.
If A is hexagonal, we obtain a non-degenerated 6-edge-cut, which is by Theorem 3
nanotubic. (However, it can be easily checked that it is non-realizable, too, since
it leads to a nanotube of type (4, 1), which does not exist [4].)

A

[2, 2, 1, 1, 0, 0, 1]-cut

=⇒

[2, 2, 1, 0, 0, 0]-cut

or

[2, 2, 1, 0, 1, 0]-cut

Figure 20: The component associated with the cut-vector [2, 2, 1, 1, 0, 0, 1].

[2,1,2,1,1,0,0] : Consider the face A from Fig. 21, left. If it is pentagonal, we obtain a
cut with the cut-vector [2, 1, 0, 0, 1, 1], which is non-realizable by Theorem 2. If the
face A is hexagonal, we obtain a cut with a nanotubical cut-vector [2, 1, 0, 1, 1, 1].

A

[2, 1, 2, 1, 1, 0, 0]-cut

=⇒

[2, 1, 0, 0, 1, 1]-cut

or

(4, 2)-nanotube

Figure 21: The components associated with the cut-vector [2, 1, 2, 1, 1, 0, 0].

[2,1,2,1,0,0,1] : Consider the face A from Fig. 22, left. If A is pentagonal, we obtain a
degenerated 6-edge-cut with the cut-vector [2, 1, 2, 0, 0, 0], which is non-realizable.
If A is hexagonal, we obtain a non-degenerated 6-edge-cut with the cut vector
[2, 1, 2, 0, 1, 0], which can only appear in a nanotube.

[2,1,1,2,1,0,0] : Consider the face A from Fig. 23, left. If it is pentagonal, we obtain a
cut with the cut-vector [2, 0, 0, 1, 1, 1], which is non-realizable by Theorem 2. If the
face A is hexagonal, we obtain a cut with a nanotubical cut-vector [2, 0, 1, 1, 1, 1].
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A

[2, 1, 2, 1, 0, 0, 1]-cut

=⇒

[2, 1, 2, 0, 0, 0]-cut

or

(5, 0)-nanotube

Figure 22: The component associated with the cut-vector [2, 1, 2, 1, 0, 0, 1].

A

[2, 1, 1, 2, 1, 0, 0]-cut

=⇒

[2, 0, 0, 1, 1, 1]-cut

or

(5, 1)-nanotube

Figure 23: The components associated with the cut-vector [2, 1, 1, 2, 1, 0, 0].

[2,1,2,1,0,1,0] : Consider the face A from Fig. 24, left. If A is pentagonal, we obtain
a degenerated 7-edge-cut with a component of five pentagons and some hexagons,
with the cut-vector [2, 1, 2, 0, 1, 0, 0], which is non-realizable, since no degenerated
7-edge-cut in Table 1 has such cut-vector. If A is hexagonal, we obtain a non-
degenerated 7-edge-cut with the cut vector [2, 1, 2, 0, 2, 0, 0], which has already
been considered and leads to nanotubic cuts only.

A

[2, 1, 2, 1, 0, 1, 0]-cut

=⇒

[2, 1, 2, 0, 1, 0, 0]-cut

or

[2, 1, 2, 0, 2, 0, 0]-cut

Figure 24: The component associated with the cut-vector [2, 1, 2, 1, 0, 1, 0].

[2,1,1,1,2,0,0] : In this case we consider two sub cases again, starting with the case
with A being hexagonal. In that case we obtain a 6-edge-cut with the cut-vector
[1, 1, 1, 1, 1, 1] (see Fig. 25), which is nanotubical.

A

[2, 1, 1, 1, 2, 0, 0]-cut

=⇒

(6, 0)-nanotube

or

[0, 1, 1, 1, 1, 1]-cut

Figure 25: The component associated with the cut-vector [2, 1, 1, 1, 2, 0, 0].

In the latter case A is pentagonal. We obtain a degenerated 6-edge-cut with the
cut-vector [0, 1, 1, 1, 1, 1]. By Theorem 2, we know that there exists precisely one
configuration with such a cut. It is composed by five pentagons and one hexagon,
which is by the component with 0 value in the cut. We obtain the left configuration
on Fig. 26. Obviously, it is realizable and does not have to be nanotubical, so we
have to consider the other part of the graph, the complement of the original cut-
vector – [0, 1, 1, 1, 0, 2, 2].
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Consider the faces A, B, C and D on Fig 26, left. We distinguish cases regarding
their sizes. Notice that in all cases we obtain a cut with the cut-vector, which has
two consecutive components with value 1. When all four faces are hexagonal, we
obtain a nanotubical 6-edge-cut with the cut-vector [1, 1, 1, 1, 1, 1]. When at least
one of them is pentagonal, a degenerated cut is obtained. By the Theorem 2 and
the fact that there are two consecutive 1’s in the cut-vector of the cut passing the
faces A, B, C, D, and the two topmost hexagons drawn in Fig 26, it follows that
either one or two faces are pentagonal. When only one of the faces is pentagonal,
we consider two subcases, due to the symmetry, either A is pentagonal or B is
pentagonal.

A BC D

[0, 1, 1, 1, 0, 2, 2]-cut the first exception (4, 3)-nanotube

Figure 26: The components associated with the cut-vector [0, 1, 1, 1, 0, 2, 2]: the general
situation and the cases when only A or B is pentagonal.

If the face A is pentagonal, we obtain a 6-cut with cut-vector [0, 1, 1, 1, 1, 1], which
is realizable uniquely. We get the middle graph drawn in Fig 26, which is isomor-
phic to the left graph of Fig. 9. There is no nanotubical cut in it, so this fullerene
is not a nanotube.

If the face B is pentagonal, we again obtain a 6-cut with cut-vector [0, 1, 1, 1, 1, 1],
which is realizable uniquely. We get the right graph draw in Fig 26. It is a
nanotube of type (4, 3).

the second exception

Figure 27: The graph obtained from the cut-vector [0, 1, 1, 1, 0, 2, 2] in the case two of
the faces A, B, C, D are pentagonal.

In the latter case precisely two of the faces A, B, C and D are pentagonal. We
obtain a degenerated cut with four 5-faces in the interior. The only such configu-
ration has the cut-vector [1, 1, 0, 1, 1, 0]. Notice that between the 0 components are
two 1’s. That infers the pentagonal faces are A and D, since there must be exactly
two hexagons between the pentagons. The configuration is again realizable. We
obtain the graph depicted in Fig. 27, which is isomorphic to the right graph of
Fig. 9. It is not a nanotube, since there is no nanotubical cut in it.
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[2,1,1,2,0,1,0] : Consider the faces A and B on Fig. 28, left. If both of them are
hexagonal, we obtain a cut with the cut-vector [1, 1, 1, 1, 1, 1], therefore it is nan-
otubical. If at least one of them is pentagonal, we obtain a degenerated cut with
the cut-vector having three consecutive 1’s. The only degenerated cut with the
cut-vector having three consecutive 1’s has five pentagons in the interior, so ex-
actly one of the faces A and B is pentagonal. In that case, we can always find a
cut with the cut-vector [2, 1, 1, 1, 2, 0, 0], see Fig. 28. Therefore, we deal only with
configurations already mentioned above.

A B

[2, 1, 1, 2, 0, 1, 0]-cut [2, 1, 1, 1, 2, 0, 0]-cut [2, 1, 1, 1, 2, 0, 0]-cut

Figure 28: The components associated with the cut-vector [2, 1, 1, 2, 0, 1, 0].

This proves the theorem. �
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