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Introduction

Mathematicians adopted the notion of fullerenes and defined the fullerene graphs as the plane cubic 3-connected graphs with only pentagonal and hexagonal faces. Nanotubes are members of the fullerene structural family. They are cylindrical in shape with the ends typically capped with a hemisphere of the fullerene structure. Nanotubes with the ends left open (open-ended nanotubes) are also interesting objects, see e.g. [START_REF] Zhang | k-resonance of open-ended carbon nanotubes[END_REF].

Došlić proved that fullerene graphs are cyclically 4-edge connected [START_REF] Došlić | On some structural properties of fullerene graphs[END_REF] and cyclically 5-edge connected [START_REF] Došlić | Cyclical edge-connectivity of fullerene graphs and (k, 6)-cages[END_REF]. The cyclic edge-connectivity of a fullerene graph cannot exceed 5, since it contains twelve pentagons, thus, there are at least twelve cyclic 5-edge-cuts -formed by the edges pointing outwards of each pentagonal face. There are also cyclic 6-edge-cuts formed by the edges pointing outwards of each hexagonal face. These cyclic 5-and 6-edge-cuts will be called trivial. Kardoš and Škrekovski [START_REF] Kardoš | Cyclic edge-cuts in fullerene graphs[END_REF] characterized 5and 6-edge-cuts, and independently the 5-edge-cuts were characterized by Kutnar and Marušič [START_REF] Kutnar | On cyclic edge-connectivity of fullerenes[END_REF].

An edge-cut of a graph G is a set of edges C ⊂ E(G) such that G -C is disconnected. A graph G is k-edge-connected if G cannot be separated into two components by removing less than k edges. An edge-cut C of a graph G is cyclic if each component of G -C contains a cycle. A graph G is cyclically k-edge-connected if G cannot be separated into two components, each containing a cycle, by removing less than k edges.

A cyclic edge-cut C of a fullerene graph G is non-degenerated, if both components of G -C contain precisely six pentagons. Otherwise, C is degenerated. Obviously, the trivial cyclic edge-cuts are degenerated.

There is a family of fullerene graphs, which have many non-degenerated cyclic edgecuts -the nanotubes. A fullerene graph is a nanotube, if it can be divided into a cylindrical part containing only hexagons, and two caps, each containing six pentagons and some hexagons. The cylindrical part should have the following structure: It contains a ring of hexagons h 1 , h 2 , . . . , h p such that after unfolding it back into the hexagonal grid, there are two unit vectors a 1 and a 2 forming a 60 • angle such that each h i -h i-1 is either a 1 or a 2 for i = 1, . . . p, h 0 = h p . (Here the hexagons are identified with their centers.) In this case, the cylindrical part is an open-ended nanotube of type (p 1 , p 2 ), where p j denotes the number of occurences of a j , j = 1, 2. The pair (p 1 , p 2 ) of coefficients in the equation r = p 1 a 1 + p 2 a 2 fully determines the type of the nanotube. It is easy to see that the vectors a 1 and a 2 can always be chosen in such a way that p 1 ≥ p 2 . The nanotubes of types (n, 0) are called zigzag, those of types (n, n) are called armchair (both types have mirror symmetry), the others are chiral (without mirror symmetry). In the light of this definition, also the buckyball C 60 can be viewed as the first in the series of nanotubes of type [START_REF] Klein | Theorems for carbon cages[END_REF][START_REF] Klein | Theorems for carbon cages[END_REF] with a single layer of hexagons in the cylindrical part.
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The nanotubes that are interesting in material science usually have the length-todiameter ratio very large. But in many other fullerenes the nanotube-like structure can be found. We say that two non-degenerated cyclic edge-cuts are parallel if both of them induce the two partitions containing the same six pentagons in each, and the corresponding rings of hexagons do not share a face. Such a ring of hexagons is denoted a layer, and the maximal number of parallel layers is the lenght of a nanotube.

It is easy to see that the ring of hexagons induces a non-degenerated cyclic edge-cut in a nanotube. In [START_REF] Kardoš | Cyclic edge-cuts in fullerene graphs[END_REF] it was proven that nanotubes are the only graphs having nondegenerated cyclic 5 and 6-edge-cuts, however, there exist graphs that are not nanotubes and have non-degenerated cyclic k-edge-cut, for some k ≥ 7. In the paper we consider non-degenerated cyclic 7-edge-cuts and prove that there exist precisely two fullerenes with non-degenerated cyclic 7-edge-cut, which are not nanotubes.

2 = + + Figure 2:
The buckyball is the first nanotube of type [START_REF] Klein | Theorems for carbon cages[END_REF][START_REF] Klein | Theorems for carbon cages[END_REF].

Below we pose some known results regarding the non-trivial cyclic 5-and 6-edge-cuts. Let G k denote a fullerene graph comprised of two caps formed by six pentagons, and k layers of hexagons, see Fig. 3.

Theorem 1 A fullerene graph has non-trivial cyclic 5-edge-cut if and only if it is isomorphic to the graph G k for some integer k ≥ 1.

Figure 3: The graphs G k are the only fullerene graphs with non-trivial cyclic 5-edge-cuts.

As an immediate corollary we obtain that all non-trivial cyclic 5-edge-cuts in fullerene graphs are non-degenerated.

An important notion in this paper is a cut-vector. Let G be a fullerene graph and C a k-edge cut in G, and let H be one of the components of graph G -C. We label the vertices of degree one or two in H by v 1 , v 2 , . . . , v k . Let α i be the number of 3-vertices between v i and v i+1 (notice that v k+1 = v 1 ) on the segment on the outer face. Note that each vertex x of degree one in H is treated as two 2-vertices y and w. We define that between y and w there is -1 vertex of degree three.

We name the sequence [α 1 , α 2 , . . . , α k ] a cut-vector v(C) regarding H. It is easy to see that the components α i in fullerenes could only have values -1, 0, 1, 2 or 3, since each face of G is of size 5 or 6, see Fig. 4 for examples. Observe, that each nondegenerated cyclic edge-cut has two complementary cut-vectors associated with each of the components of G -C. Here complementary means that knowing one of them is enough, since the sum of components of the same index is in fullerenes always equal to two (only edges of hexagons are elements of non-degenerated cyclic edge-cut). The sum of cut-vector's components has a nice property, which is given in the following lemma: Lemma 1 Let C be a non-degenerated k-cut in a fullerene graph G, and let α = [α 1 , α 2 , . . . , α k ] be one of its two cut-vectors. Then,

α 1 + α 2 + • • • + α k = k.
To prove the lemma above, we use an extension of a result from [4, Lemma 1]: Lemma 2 Let C be an edge-cut in a fullerene graph G and H a component of G-C. Let n 1 and n 2 be the number of vertices of degree one and two, f 5 the number of pentagons, and l the size of the outer face of H. Then, 6 -

f 5 = 4n 1 + 2n 2 -l.
Proof. Let m be the number of edges, n 3 the number of 3-vertices, and f 6 the number of hexagons. Then

n 1 + 2n 2 + 3n 3 = 2m = 5f 5 + 6f 6 + l.
Using Euler's formula, we also have that

n 1 + n 2 + n 3 + f 5 + f 6 + 1 -m -2 = 0.
Putting it all together we get

(2n 1 + 4n 2 + 6n 3 -4m) + (5f 5 + 6f 6 + l -2m) + 4n 1 + 2n 2 + f 5 -l -6 = 0,
and hence 4n 1 + 2n 2l = 6f 5 .

Proof of Lemma 1. Let H be the component of G -C that corresponds to α. By the choice of C, H has n 1 1-vertices, n 2 2-vertices, where 2n 1 + n 2 = k, and six 5-faces. The length of its outer face is

l = k + k i=1 α i = 2n 1 + n 2 + k i=1 α i .
On the other hand, by Lemma 2 we have

l = 4n 1 + 2n 2 .
Hence

k i=1 α i = 2n 1 + n 2 = k,
which proves the lemma.

The type of a cut-vector α is the vector obtained from α after omitting the components with value 1. For example, the type of the cut-vector [2, 1, 1, 0, 1, 2, 0] is [2, 0, 2, 0]. If no two consecutive components of the cut-vector's type have the same value, we say that the cut is nanotubical. The notion nanotubical derives from the fact, that the two same consecutive components imply that there are all three direction vectors contained in the cut, and we know that the fullerene is a nanotube if and only if there exists a cut containing only two direction vectors.

The notion of cut-vector defined, we can now proceed with cyclic 6-edge-cuts. Unlike cyclic 5-edge-cuts, there exist degenerated cyclic 6-edge-cuts, which are not trivial.

Theorem 2 There are precisely seven non-isomorphic graphs that can be obtained as components of degenerated cyclic 6-edge-cuts with less than six pentagons. Moreover, the graphs with i pentagons are unique for i = 0, 1, 2, 3, 4. Non-degenerated cyclic 6-edge-cuts are, similarly as cyclic 5-edge-cuts, nanotubical. In [START_REF] Kardoš | Cyclic edge-cuts in fullerene graphs[END_REF] the following characterization is given: Theorem 3 A fullerene graph has non-degenerated cyclic 6-edge-cut if and only if it is a nanotube of type (p 1 , p 2 ), where (a) p 1 + p 2 = 6; or (b) p 1 = 5, p 2 = 0, with at least 2 layers of hexagons.
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Degenerated cyclic 7-edge-cuts

In this section we list the degenerated cyclic 7-edge-cuts. There are 57 non-isomorphic graphs that can be obtained as components of degenerate cyclic 7-edge-cuts with less then 6 pentagons. To obtain the configurations we used the reverses of operations O 1 , O 2 and O 3 presented in [START_REF] Kardoš | Cyclic edge-cuts in fullerene graphs[END_REF]. Each of the three operations modifies the cyclic k-edge-cut C into another cyclic edge-cut C i . Below a brief description of the operations is given (see also Fig. 5).

(O 1 ) If a component H contains a vertex of degree one, then using (O 1 ) one can modify the k-edge-cut C into a (k -1)-edge-cut C 1 .

(O 2 ) If a component H contains two adjacent vertices of degree two, then using (O 2 ) one can modify the k-edge-cut C into a k-edge-cut C 2 .

(O 3 ) If the vertices of the outer faces of H are consecutively of degree 2 and 3, then using Using the three operations, all cyclic edge-cuts in a fullerene could be constructed, see [START_REF] Kardoš | Cyclic edge-cuts in fullerene graphs[END_REF]Theorem 1]. Note that the operation O 3 can be applied only if there are six pentagons in the configuration H, therefore when reconstructing degenerated cyclic edge-cuts from the trivial ones, it is never used. On Fig. 6 an example of constructing a degenerate cyclic 7-edge-cut is presented, and on Fig. 7 we listed the degenerated cyclic 7-edge-cuts.

(O 3 ) one can modify the k-edge-cut C into a k-edge-cut C 3 . H C H C H C ↓ (O 1 ) ↓ (O 2 ) ↓ (O 3 ) H 1 C 1 H 2 C 2 H 3 C 3
(O 1 ) ←- (O 2 ) ←- (O 2 ) ←- ↑ (O 2 ) (O 2 ) -→ (O 2 ) -→ (O 2 ) -→ Figure 6: An example of construction.
On Table 1 for each configuration depicted on Fig. 7 we list the number of pentagonal and hexagonal faces (denoted by f 5 and f 6 ), the number of vertices (denoted by v), the cut-vector, and the configurations that arise when applying operations O 1 , O 2 and an inverse O - cut Regarding nanotube types, where the sum p 1 + p 2 < 7, it was already proven in [START_REF] Kardoš | Cyclic edge-cuts in fullerene graphs[END_REF] that only graphs G k contain non-trivial cyclic 5-edge-cuts, in other words, for p 1 +p 2 = 5, only nanotubes of type (5, 0) exist. On the other hand, there are more possible types for p 1 + p 2 = 6. For type (6, 0) there exist five different caps, while for types (5, 1), (4, 2), and (3, 3) caps are unique. On Fig. 8 the caps retrieved from nanotubes of specified types are presented. Note that nanotubes with p 1 + p 2 < 5 do not exist, due to cyclic 5-edge-connectivity of fullerenes.

f 5 f 6 v cut-vector O 1 O 2 O -1 2 D01 0 1 7 [-1, 1, 0, 0, 0, 0, 1] 6D01 - D05 D02 1 0 7 [-1, 0, 1, 0, 0, 0, 2] 6D02 - D05, D06 D03 1 0 7 [-1, 1, 0, 0, 1, -1, 2] 6D02 - D05, D06 D04 1 0 7 [-1, 1, 0, 1, -1, 1, 1] 6D02 - D06, D07 D05 1 1 9 [0, 0, 0, 1, 0, 0, 1] - D02, D03 D08 D06 2 0 9 [-1, 1, 0, 1, 0, 0, 2] 6D03 D02, D03, D04 D08, D09, D10 D07 2 0 9 [-1, 1, 1, 0, 0, 1, 1] 6D03 D03 D09, D10 D08 2 1 11 [0, 0, 1, 0, 1, 0, 1] - D05, D06 D11, D12 D09 3 0 11 [0, 0, 1, 1, 0, 0, 2] - D06, D07 D11, D13 D10 3 0 11 [-1, 1, 1, 0, 1, 0, 2] 6D04 D06, D07 D12, D13, D14, D15 D11 3 1 13 [0, 1, 0, 1, 0, 1, 1] - D08, D09 D16, D17 D12 3 1 13 [0, 0, 1, 1, 0, 1, 1] - D08, D10 D17, D18 D13 4 0 13 [0, 0, 2, 0, 1, 0, 2] - D09, D10 D17, D19 D14 4 0 13 [-1, 2, 0, 1, 1, 0, 2] 6D05 D09 D18, D20 D15 4 0 13 [-1, 1, 1, 1, 0, 1, 2] 6D05 D09 D18, D19, D20, D21, D22 D16 4 1 15 [0, 1, 1, 0, 1, 1, 1] - D11 D23, D24, D25 D17 4 1 15 [0, 1, 0, 1, 1, 0, 2] - D11, D12, D13 D24, D25, D26, D27 D18 4 1 15 [0, 0, 1, 1, 1, 0, 2] - D12, D14, D15 D27, D28, D29, D30 D19 5 0 15 [0, 0, 2, 1, 0, 1, 2] - D13, D15 D27 D20 5 0 15 [-1, 2, 0, 2, 0, 1, 2] 6D06 D14, D15 D29, D30, D31 D21 5 0 15 [-1, 1, 2, 0, 1, 1, 2] 6D06 D15 D30, D32 D22 5 0 15 [-1, 1, 1, 1, 1, 0, 3] 6D06 D15 - D23 5 1 17 [0, 1, 1, 1, 1, 0, 2] - D16 D34 D24 5 1 17 [0, 1, 1, 1, 0, 1, 2] - D16, D17 D35 
-1, 2, 1, 0, 1, 1, 2] 6D07 D20 D41, D42 D32 5 1 17 [-1, 2, 0, 1, 1, 1, 2] 6D07 D21 D42, D43 D33 5 1 17 [-1, 1, 1, 1, 1, 1, 2] 6D07 - D43 D34 5 2 19 [0, 1, 1, 1, 1, 1, 1] - D23 - D35 5 2 19 [0, 1, 1, 1, 1, 0, 2] - D24, D26 D44 D36 5 2 19 [0, 1, 1, 1, 0, 1, 2] - D26, D25 D45 D37 5 2 19 [0, 1, 1, 0, 2, 0, 2] - D26, D27 D46 D38 5 2 19 [0, 1, 1, 0, 1, 1, 2] - D27, D28 D46 D39 5 2 19 [0, 1, 1, 1, 1, 1, 1] - D28 - D40 5 2 19 [0, 1, 0, 1, 2, 0, 2] - D28, D29, D30 D47, D48 D41 5 2 19 [0, 0, 2, 1, 0, 1, 2] - D29, D31 D48 D42 5 2 19 [0, 0, 2, 0, 1, 1, 2] - D30, D31, D32 D48, D49 D43 5 2 19 [0, 0, 1, 1, 1, 1, 2] - D32, D33 D49 cut f 5 f 6 v vector O 1 O 2 O -1 2 D44 5 3 21 [0, 1, 1, 1, 1, 1, 1] - D35 - D45 5 3 21 [0, 1, 1, 1, 1, 0, 2] - D36 D50 D46 5 3 21 [0, 1, 1, 1, 0, 1, 2] - D37, D38 D51 D47 5 3 21 [0, 1, 1, 0, 1, 2, 1] - D40 D52 D48 5 3 21 [0, 1, 0, 2, 0, 1, 2] - D40, D41, D42 D52, D53 D49 5 3 21 [0, 1, 0, 1, 1, 1, 2] - D42, D43 D53 D50 5 4 23 [0, 1, 1, 1, 1, 1, 1] - D45 - D51 5 4 23 [0, 1, 1, 1, 1, 0, 2] - D46 D54 D52 5 4 23 [0, 1, 1, 0, 2, 0, 2] - D47, D48 D55 D53 5 4 23 [0, 1, 1, 0, 1, 1, 2] - D48, D49 D55 D54 5 5 25 [0, 1, 1, 1, 1, 1, 1] - D51 - D55 5 5 25 [0, 1, 1, 1, 0, 1, 2] - D52, D53 D56 D56 5 6 27 [0, 1, 1, 1, 1, 0, 2] - D55 D57 D57 5 7 29 [0, 1, 1, 1, 1, 1, 1] - D56 -
(6, 0) (6, 0) (6, 0) (6, 0) (6, 0) ( unless it is isomorphic to one of the two graphs depicted in Fig. 9. Proof. Let G be a fullerene graph and C a non-degenerated cyclic 7-edge-cut in G. Let H be one of the components of graph G -C. If C is nanotubical, it is obvious that G is a nanotube. Let us firstly consider such cuts.

We prove that all nanotubes, which contain cyclic 7-edge-cuts, are of type (p 1 , p 2 ), where p 1 + p 2 = k, k ∈ {5, 6, 7}. Consider cases regarding k. Let k = 5 and let the cylindrical part of the nanotube have only one layer of hexagons. Then, the only edges not adjacent to pentagons are the edges between hexagonal faces. There are only five such edges, thus a cyclic 7-edge-cut could not be obtained. On the other hand, having two or more layers, the edges between layers could be used to obtain the cut of greater length. Now, let k = 6 and consider nanotubes of types (5, 1), (4, 2), (3, 3), and (6, 0) separately. The nanotubes of type (5, 1) have uniquely defined caps, which contain a hexagon, so all such nanotubes have a configuration on Fig. 10, where exists a nondegenerated cyclic 7-edge-cut.

Figure 10: The cap of a nanotube of type (5, 1) with a non-degenerate cyclic 7-edge-cut.

On the other hand, the unique caps of nanotubes of types (4, 2) and [START_REF] Došlić | Cyclical edge-connectivity of fullerene graphs and (k, 6)-cages[END_REF][START_REF] Došlić | Cyclical edge-connectivity of fullerene graphs and (k, 6)-cages[END_REF] do not contain any hexagonal faces. So there exist nanotubes of such types that do not have non-degenerate cyclic 7-edge-cut. In fact for each type only the smallest nanotube is such, while all others have it. On Fig. 11 the smallest two nanotubes of each type are presented.

Figure 11: The two smallest nanotubes of types (4, 2) (on the top), and (3, 3) (at the bottom).

It remains to consider the nanotubes of type (6, 0). There are five possible caps for this type, see Fig. 8. Only the first cap does not contain a hexagonal face, so the nanotubes with both such caps need at least two layers of hexagons to obtain a nondegenerate cyclic 7-edge-cut. In all other configurations there are at least two edges in the cap that are not adjacent to a pentagonal face (the edges of cap's hexagon), and can be elements of the cut. In case, when k = 7, simply the edges in cyclindrical part are used to obtain a cyclic 7-edge-cut. Now, let C be non-nanotubical non-degenerated 7-edge cut. Consider the cut-vector of C. If it contains any 3, the complement must contain -1, since the cut is nondegenerated. If there is a -1, it corresponds to a vertex of degree 1 in one of the components; anytime the cut vector looks like [. . . , a, -1, b, . . . ], if we remove the vertex from the component, we get a non-degenerate cyclic 6-edge cut, with the cut vector [. . . , (a -1), (b -1), . . . ], see Fig. 12 for illustration. By Theorem 3, it is contained in a nanotube, moreover, if we insert the removed vertex back, we get a non-degenerated 7-edge-cut in the nanotube. Therefore, we deal only with 0s, 1s and 2s. Then, due to the definition, we have at least two consecutive 0's or 2's. So, the type of the cut-vector is one of the following three: [2, 2, 2, 0, 0, 0], [2, 2, 0, 2, 0, 0] or [2, 2, 0, 0]. Table 2 lists all possible cut-vectors (up to symmetry) which could arise from these types. Now, we will consider each of the cut-vectors separetly and prove that any cut with such a cut-vector is either a part of a nanotube, part of the graphs depicted in Fig. 9,

→

[2, 2, 2, 0, 0, 0] [2, 2, 0, 2, 0, 0] [2, 2, 0, 0] [2, 2, 2, 1, 0, 0, 0] [2, 1, 2, 0, 2, 0, 0] [2, 2, 1, 1, 1, 0, 0], [2, 2, 1, 1, 0, 0, 1] [2, 1, 2, 2, 0, 0, 0] [2, 2, 1, 0, 2, 0, 0] [2, 1, 2, 1, 1, 0, 0], [2, 1, 2, 1, 0, 0, 1] [2, 2, 0, 1, 2, 0, 0] [2, 1, 1, 2, 1, 0, 0], [2, 1, 2, 1, 0, 1, 0] [2, 2, 0, 2, 0, 0, 1] [2, 1, 1, 1, 2, 0, 0], [2, 1, 1, 2, 0, 1, 0]
Table 2: All possible cut-vectors that arise from non-nanotubical cut types.

or a part of a configuration, which is non-realizable. Notice that the cuts are depicted with the dotted lines on figures.

[2,2,2,1,0,0,0]: Consider the configuration of Fig. 13, left. Notice that the face A cannot be pentagonal, otherwise there would be a cyclic 3-edge-cut, which is impossible [START_REF] Došlić | Cyclical edge-connectivity of fullerene graphs and (k, 6)-cages[END_REF]. Thus, it is of length 6, and we obtain a non-degenerated 5-edge-cut with a cut-vector [2, 2, 0, 0, 1]. But by Theorem 1 it follows that such a configuration is non-realizable, since the only cut-vector of non-degenerated 5-edge-cut is [ 

[2,1,2,2,0,0,0]: Consider the configuration of Fig. 14, left. Similarly as in the case above, we may see that face A is of length 6. We obtain a non-degenerated 5-edgecut with a cut-vector [2, 1, 0, 1, 1]. Theorem 1 implies that such a configuration is non-realizable. [2,2,1,0,2,0,0]: In this case the size of the face A from Fig. 16, left, is considered again.

A [2, 1, 2, 2, 0, 0, 0]-cut =⇒ [2, 1, 0, 1, 1]-cut
If it is of size five, the configuration is non-realizable, since a degenerated 6-edgecut with the cut-vector [2, 1, 0, 1, 0, 1] is obtained. There is no such a degenerated cut according to Theorem 2. If A is hexagonal, we obtain a cut with the cut-vector [2, 1, 0, 1, 1, 1], which is nanotubical. 

A [2, 2, 1, 0, 2, 0, 0]-cut =⇒ [2, 1, 0, 1, 0, 1]-cut or (4, 2)-nanotube
: Similarly as in the two cases above the size of the face A from Fig. 17, left, is taken in consideration. For A pentagonal we once again obtain a nonrealizable configuration, due to a cut with the cut-vector [2, 0,

. For A hexagonal the nanotubical cut with the cut-vector [2, 0, [2,2,0,2,0,0,1]: Analogously, if the face A from Fig. 18, left, is pentagonal, we once again obtain a non-realizable cut-vector [2, 2, 0, 1, 0, 0]. If A is hexagonal, a nondegenerate cyclic 6-edge-cut with the cut-vector [2, 2, 0, 1, 1, 0] is obtained. By Theorem 3 it must be nanotubical. [2,2,1,1,1,0,0]: If the face A from Fig. 19, left, is pentagonal, we obtain a degenerated cyclic 6-edge-cut with a cut-vector [2, 1, 1, 0, 0, 1] which is non-realizable. If A is hexagonal, we obtain a nanotubical cut-vector [1, 2, 1, 1, 0, 1]. [2,2,1,1,0,0,1]: Consider the face A from Fig. 20, left. If A is pentagonal, we obtain a degenerated 6-edge-cut with the cut-vector [2, 2, 1, 0, 0, 0], which is non-realizable.

If A is hexagonal, we obtain a non-degenerated 6-edge-cut, which is by Theorem 3 nanotubic. (However, it can be easily checked that it is non-realizable, too, since it leads to a nanotube of type (4, 1), which does not exist [START_REF] Kardoš | Cyclic edge-cuts in fullerene graphs[END_REF].) [2,1,2,1,0,0,1]: Consider the face A from Fig. 22, left. If A is pentagonal, we obtain a degenerated 6-edge-cut with the cut-vector [2, 1, 2, 0, 0, 0], which is non-realizable.

A [2, 2, 1, 1, 0, 0, 1]-cut =⇒ [2, 2, 1, 0, 0, 0]-cut or [2, 2, 1, 0, 1, 0]-cut
If A is hexagonal, we obtain a non-degenerated 6-edge-cut with the cut vector [2, 1, 2, 0, 1, 0], which can only appear in a nanotube. [2,1,2,1,0,1,0]: Consider the face A from Fig. 24, left. If A is pentagonal, we obtain a degenerated 7-edge-cut with a component of five pentagons and some hexagons, with the cut-vector [2, 1, 2, 0, 1, 0, 0], which is non-realizable, since no degenerated 7-edge-cut in Table 1 has such cut-vector. If A is hexagonal, we obtain a nondegenerated 7-edge-cut with the cut vector [2, 1, 2, 0, 2, 0, 0], which has already been considered and leads to nanotubic cuts only. [2,1,1,1,2,0,0]: In this case we consider two sub cases again, starting with the case with A being hexagonal. In that case we obtain a 6-edge-cut with the cut-vector [1, 1, 1, 1, 1, 1] (see Fig. 25), which is nanotubical. In the latter case A is pentagonal. We obtain a degenerated 6-edge-cut with the cut-vector [0, 1, 1, 1, 1, 1]. By Theorem 2, we know that there exists precisely one configuration with such a cut. It is composed by five pentagons and one hexagon, which is by the component with 0 value in the cut. We obtain the left configuration on Fig. 26. Obviously, it is realizable and does not have to be nanotubical, so we have to consider the other part of the graph, the complement of the original cutvector -[0, If the face A is pentagonal, we obtain a 6-cut with cut-vector [0, 1, 1, 1, 1, 1], which is realizable uniquely. We get the middle graph drawn in Fig 26, which is isomorphic to the left graph of Fig. 9. There is no nanotubical cut in it, so this fullerene is not a nanotube.

A [2, 1, 1, 1, 2, 0, 0]-cut =⇒ (6, 0)-nanotube or [0, 1, 1, 1, 1, 1]-cut
If the face B is pentagonal, we again obtain a 6-cut with cut-vector [0, 1, In the latter case precisely two of the faces A, B, C and D are pentagonal. We obtain a degenerated cut with four 5-faces in the interior. The only such configuration has the cut-vector [1, 1, 0, 1, 1, 0]. Notice that between the 0 components are two 1's. That infers the pentagonal faces are A and D, since there must be exactly two hexagons between the pentagons. The configuration is again realizable. We obtain the graph depicted in Fig. 27, which is isomorphic to the right graph of Fig. 9. It is not a nanotube, since there is no nanotubical cut in it.

[2,1,1,2,0,1,0]: Consider the faces A and B on Fig. 28, left. If both of them are hexagonal, we obtain a cut with the cut-vector [1, 1, 1, 1, 1, 1], therefore it is nanotubical. If at least one of them is pentagonal, we obtain a degenerated cut with the cut-vector having three consecutive 1's. The only degenerated cut with the cut-vector having three consecutive 1's has five pentagons in the interior, so exactly one of the faces A and B is pentagonal. In that case, we can always find a cut with the cut-vector [2, 1, 1, 1, 2, 0, 0], see Fig. 28. Therefore, we deal only with configurations already mentioned above. This proves the theorem.

Figure 1 :

 1 Figure 1: An example of a nanotube of type (6, 2).

Figure 4 :

 4 Figure 4: Degenerated cyclic 6-edge-cuts.

Figure 5 :

 5 Figure 5: The operations O 1 , O 2 and O 3 .

Figure 7 :

 7 Figure 7: Degenerated cyclic 7-edge-cuts.

Figure 9 :

 9 Figure 9: The only two non-nanotubical fullerenes with a 7-edge-cut.

Figure 12 :

 12 Figure 12: If the cut-vector of a k-cut contains -1, we can change it into a (k -1)-cut.

Figure 13 :

 13 Figure 13: The component associated with the cut-vector [2, 2, 2, 1, 0, 0, 0].

Figure 14 :Figure 15 :

 1415 Figure 14: The component associated with the cut-vector [2, 1, 2, 2, 0, 0, 0].

Figure 16 :

 16 Figure 16: The component associated with the cut-vector [2, 2, 1, 0, 2, 0, 0].

Figure 17 :

 17 Figure 17: The component associated with the cut-vector [2, 2, 0, 1, 2, 0, 0].

Figure 18 :

 18 Figure 18: The component associated with the cut-vector [2, 2, 0, 2, 0, 0, 1].

Figure 19 :

 19 Figure 19: The component associated with the cut-vector [2, 2, 1, 1, 1, 0, 0].

Figure 20 :Figure 21 :

 2021 Figure 20: The component associated with the cut-vector [2, 2, 1, 1, 0, 0, 1].

[ 2 ,Figure 22 :Figure 23 :

 22223 Figure 22: The component associated with the cut-vector [2, 1, 2, 1, 0, 0, 1].

Figure 24 :

 24 Figure 24: The component associated with the cut-vector [2, 1, 2, 1, 0, 1, 0].

Figure 25 :

 25 Figure 25: The component associated with the cut-vector [2, 1, 1, 1, 2, 0, 0].

Figure 26 :

 26 Figure26: The components associated with the cut-vector [0, 1, 1, 1, 0, 2, 2]: the general situation and the cases when only A or B is pentagonal.

Figure 27 :

 27 Figure 27: The graph obtained from the cut-vector [0, 1, 1, 1, 0, 2, 2] in the case two of the faces A, B, C, D are pentagonal.

Figure 28 :

 28 Figure 28: The components associated with the cut-vector [2, 1, 1, 2, 0, 1, 0].

Table 1 :

 1 Degenerated cyclic 7-edge cuts. the types of nanotubes in which non-degenerate cyclic 7-edge-cuts exist. It is obvious that nanotubes of type (p 1 , p 2 ), where p 1 + p 2 ≥ 8, cannot contain such a cut, due to the width of the cylindrical part (of course, degenerate cyclic edge-cuts are not limited by the type).

  Theorem 4 A fullerene graph has a non-degenerated cyclic 7-edge-cut if and only if it is a nanotube of type (p 1 , p 2 ), where (a) p 1 + p 2 = 7; or (b) p 1 + p 2 = 6, and the nanotube is not the smallest nanotube of types[START_REF] Došlić | Cyclical edge-connectivity of fullerene graphs and (k, 6)-cages[END_REF][START_REF] Došlić | Cyclical edge-connectivity of fullerene graphs and (k, 6)-cages[END_REF], and (4, 2), or it is not of type (6, 0) with one layer of hexagons and with both caps isomorphic to the first configuration on Fig.8; or (c) p 1 + p 2 = 5, with at least 2 layers of hexagons;

	, 1)	(4, 2)	(3, 3)

Figure 8: The caps of (p 1 , p 2 )-nanotubes, where p 1 + p 2 = 6. Now, let us state the main theorem of this article.

  Consider the faces A, B, C and D on Fig 26, left. We distinguish cases regarding their sizes. Notice that in all cases we obtain a cut with the cut-vector, which has two consecutive components with value 1. When all four faces are hexagonal, we obtain a nanotubical 6-edge-cut with the cut-vector [1, 1, 1, 1, 1, 1]. When at least one of them is pentagonal, a degenerated cut is obtained. By the Theorem 2 and the fact that there are two consecutive 1's in the cut-vector of the cut passing the faces A, B, C, D, and the two topmost hexagons drawn in Fig 26,it follows that either one or two faces are pentagonal. When only one of the faces is pentagonal, we consider two subcases, due to the symmetry, either A is pentagonal or B is pentagonal.

	C D	A B	
	[0, 1, 1, 1, 0, 2, 2]-cut	the first exception	(4, 3)-nanotube

1, 1, 1, 0, 2, 2].

Non-degenerated cyclic 7-edge-cutsIn this section, we consider the non-degenerated cyclic 7-edge-cuts. We prove that all non-degenerated cyclic 7-edge-cuts are contained in fullerene graphs which are nanotubes, with two exceptions. There exist precisely two fullerene graphs, which have non-degenerated cyclic 7-edge-cuts and that are not nanotubical. We also characterize
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