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Fulleroids with Dihedral Symmetry

Frantǐsek Kardoš
⋆

Institute of Mathematics, P. J. Šafárik University, Jesenná 5, 041 54 Košice, Slovakia

Abstract

Fulleroids are cubic convex polyhedra with faces of size 5 or greater. They are suitable as models of hypothetical

all-carbon molecules. In this paper sufficient and necessary conditions for existence of fulleroids of dihedral symmetry

types and with pentagonal and n-gonal faces only depending on number n are presented. Either infinite series of

examples are found to prove existence, or nonexistence is proved using symmetry invariants.
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1. Introduction

Fullerenes have been objects of interest and study in the past two decades. A fullerene is a 3-valent carbon
molecule, where atoms are arranged in pentagons and hexagons. It can be seen as a convex polyhedron, where
vertices represent atoms and edges represent bonds between atoms. Fullerenes can also be represented by
graphs. In fact, a fullerene graph is a planar, cubic (i.e. 3-regular) and 3-connected graph, twelve of whose
faces are pentagons and the remaining faces are hexagons.

The concept of fullerenes can be generalized in several ways. Fowler [6] asked whether a fullerene-like
structure consisting of pentagons and heptagons only and exhibiting an icosahedral symmetry exists. The
answer was given by Dress and Brinkmann [2]. Motivated by these examples Delgado Friedrichs and Deza
[4] introduced the following definition:
Definition 1 A fulleroid is a convex polyhedron such that all its vertices have degree 3 while all its faces

have degree 5 or larger. A Γ-fulleroid is a fulleroid on which the group Γ acts as a group of symmetries. A

given Γ-fulleroid is of type (a, b) or a Γ(a, b)-fulleroid if all its faces are either a-gonal or b-gonal.

The set of all Γ(a, b)-fulleroids will be denoted simply by Γ(a, b).
There is a list of groups, that can act as a symmetry group of a convex polyhedron [3]. According to the

system of rotational symmetry axes they can be divided into icosahedral, octahedral, tetrahedral, dihedral,
cyclic and others.

Symmetry of fullerenes has been studied deeply. The possible symmetry groups Γ for fullerenes were shown
to be limited to a total of 28 point groups [5]. Babić, Klein and Sah [1] divided all fullerenes with up to
70 vertices according to the symmetry group. Fowler and Manolopoulos [6] found symmetry groups of all
fullerenes with up to 100 vertices. For each symmetry group Γ they found the smallest Γ-fullerene and the
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smallest Γ-fullerene obeying IPR (isolated pentagon rule). They described how to create a new fullerene
with the same symmetry group having more hexagonal faces and obeying IPR once a fullerene is given.
Graver [7] published a catalogue of all fullerenes with ten or more symmetries.

Symmetry of fulleroids has also been an object of research in recent years. Among all possible symmetry
types, icosahedral symmetry groups were studied first. Let the full symmetry group of a regular icosahedron
be denoted by Ih; its subgroup of rotational symmetries by I . Delgado Friedrichs and Deza [4] found
Ih(5, n)-fulleroids for n = 8, 9, 10, 12, 14 and 15 and asked several questions concerning I (5, n)-fulleroids.
Most of their questions were answered by Jendrol’ and Trenkler [9], who found infinite series of examples of
I (5, n)-fulleroids for all n ≥ 8.

Jendrol’ and Kardoš [8] found a necessary and sufficient condition for the existence of Oh(5, n)-fulleroids,
where Oh denotes the full symmetry group of a regular octahedron. Kardoš [10] characterized Γ(5, n)-
fulleroids, where Γ is the group of all symmetries of a regular tetrahedron Td, or the group of rotational
symmetries of a regular tetrahedron T , or the group Th, which is a subgroup of the group Oh with four
3-fold rotational symmetry axes, three 2-fold rotational symmetry axes, and a point of inversion.

In this paper we solve the question of the existence of fulleroids with a symmetry group of dihedral type.
In particular, we investigate fulleroids with the symmetry group Dm, Dmd, and Dmh, where m ≥ 2.

The symmetry groups Dm, Dmd and Dmh have one specific property among all possible symmetry groups
of convex polyhedra: all rotational symmetry axes with the exception of one axis lie in one plane (called
main, horizontal plane) and the only other axis (called main, vertical axis) is perpendicular to this plane.

The group Dm is the group of all rotational symmetries of a regular m-sided prism. It is isomorphic to
the triangle group T (2,m) = 〈x, y : x2 = ym = (xy)2 = 1〉. The group Dmd is the full symmetry group of
a regular m-sided antiprism. It is isomorphic to the triangle group T (2, 2m), where the generator of order
2m is the rotation-reflection. The group Dmh is the full symmetry group of a regular m-sided prism. It is
isomorphic to the full triangle group 〈x, y, z : x2 = y2 = x2 = 1, (xy)m = (xz)2 = (yz)2 = 1〉.

The group Dm is a subgroup of index 2 of both Dmd and Dmh. There is another subgroup of index 2 in the
group Dmd. It is denoted by S2m and it is generated by the rotation-reflection. The relations among these
four symmetry types can be easily observed in Figure 1, where examples of polyhedra with the symmetry
groups D7h, D7d, D7, and S14 are depicted.

Fig. 1. Examples of polyhedra with D7h, D7d, D7, and S14 symmetry, respectively.

The well-known Steinitz Theorem states that a connected graph G is the graph of a convex polyhedron if
and only if it is planar and 3-connected. Thus, in some cases it is useful to study 3-connected planar graphs
instead of convex polyhedra and not to distinguish between a convex polyhedron and the corresponding
graph. Furthermore, by the theorem of Mani [11] (see also [12]), for each such graph G there is a convex
polyhedron P such that the graph of P is isomorphic to G and the symmetry group of P is isomorphic to
the automorphism group of G. Therefore, to give an example of a Γ(5, n)-fulleroid (Γ is either Dm, Dmd,
or Dmh), it is sufficient to find a 3-connected cubic planar graph with pentagonal and n-gonal faces whose
automorphism group is isomorphic to Γ. Usually, we draw the graph on the surface of regular prism or
bipyramid.
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2. Operations used to generate examples

To prove that for some number n and for some group Γ (Dm, Dmd, or Dmh) the set of all Γ(5, n)-fulleroids
is infinite, it is sufficient to find an infinite series of corresponding graphs. This can be done by finding one
example and a method of creating a new example from the old.

If the size n of some faces should be increased, two operations are used. If two n-gons are connected by
an edge, by inserting 10 pentagons they are changed to (n+5)-gons (see Figure 2). This step can be carried
out arbitrarily many times, so the size of these two faces can be increased by any multiple of 5. When this
operation is used later in the paper, it is represented by a rectangle with a number inscribed which denotes
the number of edges added to the two adjacent n-gons (see e.g. Figure 8), or alternatively its application is
indicated only by thickening the edges (see e.g. Figure 11).

n

n

−→

n + 5

n + 5

Fig. 2. The step to increase the size of two n-gons by 5.

If two m-gons (pentagons or n-gons) are separated by two faces in a position as in the left-hand side
picture in Figure 3, the sizes of those faces can be increased equally and arbitrarily (see the right-hand side
picture in Figure 3).

m

m

−→

m + k

m + k

Fig. 3. The step to increase the size of two m-gons arbitrarily.

As a special case of the second operation we get the following: If the two original (m-gonal) faces are
pentagons, we can change them into two n-gons and 2n − 8 new pentagons, so the number of n-gonal faces
can be increased by two. For n ≥ 8 this step can be repeated as many times as required, because two
pentagons in an appropriate position can be found among the new pentagons again. The new configuration
can always be chosen in such a way that possible local symmetry (rotation through 180◦) is not destroyed.
In the figures used in this paper, the two pentagons that can be used this way to create infinitely many
examples, are shaded and the path of three edges connecting them is doubled. If the operation from Figure
3 has already been used, the pair of pentagons is not emphasized.

For n = 7 we need two additional pentagons if the operation is to be carried out again, see Figure 4. If
this operation is used, the configuration of four starting pentagons is shaded.

−→

Fig. 4. The step to create two new heptagons.
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3. Dm(5, n)-fulleroids

For this type of symmetry there are no obstructions that could make the existence of particular structures
impossible.
Theorem 1 For any n ≥ 6 the sets D2(5, n), D3(5, n), and D5(5, n) contain infinitely many elements.

Proof. In Figure 5 the graph of a fulleroid with symmetry group D2 is shown. It has four n-gonal faces and
4(n − 3) pentagonal faces. Two edges marked with an asterisk should be identified to make an embedding
of the graph into the sphere.

n − 3
n − 3

n − 3
n − 3

∗ ∗

Fig. 5. The graph of a D2(5, n)-fulleroid.

n − 4

n − 4

Fig. 6. A segment of the graph of a D3(5, n)-fulleroid for n = 6 and n ≥ 7.

If the graph in the left-hand side picture in Figure 6 is inscribed in all three side faces of a regular 3-sided
prism and arrowed semiedges are elongated to the vertices in the center of the bases of the prism, the graph
of a D3(5, 6)-fulleroid is obtained. Analogously, if we use the graph in the right-hand side picture in Figure
6, we get examples of D3(5, n)-fulleroids for all numbers n ≥ 7 with six n-gonal and 6(n − 4) pentagonal
faces.

Fig. 7. A segment of the graph of a D5(5, n)-fulleroid for n = 7 and n ≥ 8.
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If the graph in the left-hand side picture in Figure 7 is inscribed in all five side faces of a regular 5-sided
prism, the graph of a D5(5, 7)-fulleroid with 42 pentagonal and 30 heptagonal faces is obtained. Similarly,
if we use the graph in the right-hand side picture in Figure 7, we get examples of D5(5, n)-fulleroids for all
numbers n ≥ 8 with 10 n-gonal and 10(n− 5) pentagonal faces. For n = 6, all D5(5, 6)-fulleroids are in fact
fullerenes with D5 symmetry. They are classified in [7]. �

Theorem 2 Let m = 4 or m ≥ 6 and n ≥ 6 be integers. If n is not a multiple of m, then the set Dm(5, n)
is empty. If n is a multiple of m, then the set Dm(5, n) has infinitely many elements.

Proof. Let P be a convex cubic polyhedron with pentagonal and n-gonal faces only exhibiting Dm symmetry.
Then the main axis of m-fold rotational symmetry intersects P in two points that obviously can be neither
vertices nor internal points of edges, since m > 3. So the axis intersects P in two faces. Since it is the axis
of m-fold rotational symmetry, the faces must have local m-fold rotational symmetry, too. Since m 6= 5,
the faces cannot be pentagons. Faces that are n-gonal can have m-fold rotational symmetry only if n is a
multiple of m.

It is sufficient now to find examples of Dm(5, km)-fulleroids where k ≥ 1 is an arbitrary integer. For k = 1
and m = 6 we get the case of D6(5, 6)-fullerenes which are classified in [7]. For k = 1 and m ≥ 7 we can
use the graphs shown in Figure 7 and inscribe them in the side faces of a regular m-sided prism. For k > 1,
appropriate graphs are in Figure 8. �

5c

5c

5c

5c

5c

5c

5c

5c

5 + 5c

5 + 5c

Fig. 8. Examples of graph segments of Dm(5, n)-fulleroids for n = (2 + 5c)m, n = (3 + 5c)m, n = (4 + 5c)m, n = (5 + 5c)m
and n = (6 + 5c)m, respectively.

4. Dmd(5, n)-fulleroids

Theorem 3 Let n ≥ 6 be an integer. If n ≡ 5 (mod 10), then the set D2d(5, n) is empty. If n 6≡ 5
(mod 10), then the set D2d(5, n) has infinitely many elements.
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To prove the first claim of this theorem we use the following lemma [8].
Lemma 1 Let n ≡ 0 (mod 5) and P be a convex polyhedron with pentagonal and n-gonal faces only and

all vertices of degree 3. Then there exists the homomorphism Ψ : P → D, where D denotes the dodecahedron.

By homomorphism Ψ : P → D we mean the mapping of vertices of the polyhedron P onto those of
the polyhedron D, respecting the adjacency structure. Since both P and D are cubic convex polyhedra, it
immediately follows that if two edges (faces) of P are adjacent, then also their images are adjacent in D.

Proof of Theorem 3. We prove the first part by contradiction. Let n = 5 + 10k and let P be a D2d(5, n)-
fulleroid. Since all faces of P are of odd size and all vertices of P are trivalent, the main symmetry axis
(rotation by 180◦) intersects P in two midpoints of edges. The points will be denoted as x and x′, the edges e

and e′, respectively. There are two vertical symmetry planes, perpendicular to each other; their intersection
is the main axis. The edge e must lie in a vertical symmetry plane. Let this plane be ρ. Since the symmetry
is D2d and not D2h, the edge e′ lies in the other plane, ρ′.

Let Ψ : P → D be the mapping given by Lemma 1. Since the size of all faces of P is a multiple of 5, if a
point moves from x to x′ and back to x along intersection of P and ρ, its image can move only on certain
circular lines on D, two of them visible in Figure 9. These lines will be denoted as perimeters of D. Let the
perimeter containing Ψ(P ∩ ρ) be denoted by p and the perimeter containing Ψ(P ∩ ρ′) be denoted by p′.
Then Ψ(x) ∈ p ∩ p′, moreover, p and p′ are perpendicular to each other and Ψ(e) ⊂ p. The only possible
relative position of p and p′ is the position of two perimeters in Figure 9. On the other hand, Ψ(e′) ⊂ p′ and
Ψ(x′) ∈ p∩ p′. This implies that p intersects p′ in the midpoint Ψ(x′) of the edge Ψ(e′), which is impossible.

Fig. 9. Two perimeters of the dodecahedron.

To prove the second part it is sufficient to find examples of D2d(5, n)-fulleroids for all other values of the
number n. Unlike the case of D2(5, n)-fulleroids, because of the nonexistence of D2d(5, 5 + 10k)-fulleroids it
is impossible to find a universal example where increasing the size of n-gonal faces by any number would be
possible.

In Figure 10 we show examples of D2d(5, n)-fulleroids for n = 6 and n = 7. In Figure 11 we show graph
segments of D2d(5, n)-fulleroids for n = 7, 8 + 5k, 9 + 5k, 11 + 5k, and 12 + 5k. To obtain a fulleroid, the
graph should be inscribed in all four side faces of a regular 4-sided prism (alternating the graph itself and its
mirror image), and the topmost and bottommost pairs of edges should be identified. To make this process
clear, note that the first graph in Figure 11 is a representation of the fulleroid in the right-hand side picture
in Figure 10.

If the left (right) graph shown in Figure 12 is inscribed in all four sides of a regular 4-sided prism (again
alternating the graph and its mirror image), the graph of a D2d(5, n)-fulleroid is obtained, where n = 10+20k
(n = 20 + 20k). �

Theorem 4 For any n ≥ 6 the sets D3d(5, n), and D5d(5, n) contain infinitely many elements.

Proof. If the graphs shown in Figure 13 are inscribed in all three side faces of a regular 3-sided prism and
arrowed semiedges are elongated to the vertices in the center of both bases of the prism, graphs of D3d(5, n)-
fulleroid for n = 7, n = 8 and n ≥ 9 are obtained. D3d(5, 6)-fulleroids are in Graver’s catalogue [7] divided
into 18 infinite series.

If the graphs shown in Figure 14 are inscribed in all five side faces of a regular 5-sided prism, graphs of
D5d(5, n)-fulleroid for n = 7, 8, 9, 10 and n ≥ 11 are obtained. D5d(5, 6)-fulleroids are in Graver’s catalogue
[7] divided into 5 infinite series. �
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Fig. 10. Examples of D2d(5, n)-fulleroids for n = 6 and n = 7.

Fig. 11. Graph segments of D2d(5, n)-fulleroids for n = 7, 8 + 5k, 9 + 5k, 11 + 5k, and 12 + 5k.

Theorem 5 Let m = 4 or m ≥ 6 and n ≥ 6 be integers. If n is not a multiple of m, then the set Dmd(5, n)
is empty. If n is a multiple of m, then the set Dmd(5, n) has infinitely many elements.

Proof. The first claim is an easy corollary of Theorem 2. If n = m = 6, we get the case of D6d-fullerenes,
which are in [7] divided into 7 infinite series. For n = m ≥ 7, one can inscribe the graphs shown in Figure 14
in all the side faces of a regular m-sided prism to obtain examples of Dmd(5,m)-fulleroids. If n = km and
k > 1, we show only two examples, see Figure 15. For all other cases the constructions are similar. �

5. Dmh(5, n)-fulleroids

Although the groups Dmd and Dmh are of the same order, they behave in a different manner. Even if the
number m is odd and the groups are both isomorphic to T (2, 2m), there are some values of numbers n and
m such that Dmd(5, n)-fulleroids exist and Dmh(5, n)-fulleroids do not.

The group D2h is not a typical dihedral group, because all three symmetry axes and all three reflection
planes are equivalent. It can be seen as a subgroup of the group Oh, the full symmetry group of the regular
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5k

5k

10
k

10
k

5k

5k

5 + 10k

5 + 10k

5
+
5
k

5
+
5
k

Fig. 12. Graph segments of D2d(5, n)-fulleroids for n = 10 + 20k and 20 + 20k.

Fig. 13. Graph segments of D3d(5, n)-fulleroids for n = 7, n = 8, and n ≥ 9.

octahedron, in which 3-fold rotation symmetries were destroyed. To depict a D2h-fulleroid we draw a certain
graph onto all eight faces of regular octahedron in such a way that the reflection symmetries are retained.
Theorem 6 For any n ≥ 6 the set D2h(5, n) contains infinitely many elements.

Proof. For n = 6 we get the case of fullerenes with D2h symmetry. All D2h-fullerenes can be divided into 21
infinite series, according to the relative positions of the twelve pentagons. For n ≥ 7 examples of D2h(5, n)-
fulleroids can be obtained if the graphs shown in Figure 16 are inscribed in all eight faces of a regular
octahedron respecting the reflection symmetries. �

Theorem 7 Let n ≥ 6 be an integer. If n ≡ 5 or 10 (mod 15), then the set D3h(5, n) is empty. If n 6≡ 5, 10
(mod 15), then the set D3h(5, n) contains infinitely many elements.

Proof. Let n ≡ 5 or 10 (mod 15) and P be an D3h(5, n)-fulleroid. Let the vertical symmetry planes of P

be denoted by ρ1, ρ2, ρ3 and the horizontal symmetry plane by ρ0. Lemma 1 gives us the homomorphism
Ψ : P → D. If a point moves along the intersection of any of the symmetry planes with P , its image can
move only along some perimeter of D. Let p0, p1, p2 and p3 be perimeters of D such that Ψ(ρi ∩ P ) ⊆ pi;
i = 0, 1, 2, 3. Since the main vertical 3-fold rotational symmetry axis intersects P in two vertices, p1, p2 and
p3 are in relative position like in Figure 17. The point where some ρi (i = 1, 2, 3) intersects ρ0 and P can
be either an internal point of a face (only if n is even) or a midpoint of an edge. In the first case pi = p0

and in the second case pi and p0 intersect each other in two midpoints of edges of D. If p1 = p0, then p0

intersects p2 and p3 in vertices of D, which is a contradiction. If p0 intersects p1 in two midpoints of edges,
it intersects p2 and p3 in centers of faces of D (one of two possible relative positions of p0 is in Figure 17),
which is again a contradiction. Thus, for n ≡ 5 or 10 (mod 15) the set D3h(5, n) is empty.

The remaining part of the proof is to show examples of D3h(5, n)-fulleroids for n 6≡ 5 or 10 (mod 15).
For n = 6 the fullerenes with D3h symmetry are in Graver’s catalogue [7] divided into 18 infinite series. For
n ≥ 7, n 6≡ 0 (mod 5) examples of D3h(5, n)-fulleroids can be obtained if the graph segments shown in
Figure 18 are inscribed in all the faces of a regular bipyramid with a hexagonal base respecting the reflection
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Fig. 14. Graph segments of D5d(5, n)-fulleroids for n = 7, 8, 9, 10 and n ≥ 11.

5c

5c 5c

5c

5c

5c 5c

5c 5c

5c 5c

5c

5c 5c

Fig. 15. Graph segments of Dmd(5, n)-fulleroids for n = (2 + 10c)m and n = (3 + 10c)m.

symmetry in the planes containing the vertices of the bipyramid. For n = 15+30k and n = 30+30k, one can
use the graphs segments shown in Figure 19 in a similar way, where p = 10k, q = 5+10k, and r = 20+30k.
�

Theorem 8 Let n ≥ 6 be an integer. If n ≡ 0 (mod 5) and n 6≡ 0 (mod 25), then the set D5h(5, n) is

empty. If n 6≡ 0 (mod 5) or n ≡ 0 (mod 25), then the set D5h(5, n) contains infinitely many elements.

Proof. Let n ≡ 0 (mod 5), n 6≡ 0 (mod 25), and P be an D5h(5, n)-fulleroid. Let the vertical symmetry
planes of P be denoted by ρ1, . . . , ρ5 and the horizontal symmetry plane by ρ0. Lemma 1 gives us the
homomorphism Ψ : P → D. If a point moves along intersection of any of symmetry planes with P , its image
can move only along some perimeter of D. Let p0, p1, . . . , p5 be perimeters of D such that Ψ(ρi ∩ P ) ⊆ pi;
i = 0, 1, . . . , 5. The main symmetry axis intersects P in two faces. These faces can be either pentagons or
n-gons. Since n 6≡ 0 (mod 25), the perimeters ρ1, . . . , ρ5 are pairwise different and intersect each other in
a center of a pentagonal face of D.

The point where some ρi (i = 1, . . . , 5) intersects ρ0 and P can be either an internal point of a face (only
if n is even) or a midpoint of an edge. In the first case pi = p0 and in the second case pi and p0 intersect
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Fig. 16. Graph segments of D2h(5, n)-fulleroids for n = 7, 8, 9, 10 and n ≥ 11.

p2p3

p0
p1

Fig. 17. The perimeters of the dodecahedron.

Fig. 18. Graph segments of D3h(5, n)-fulleroids for n = 7, 8 + 10k, 9 + 10k, 11 + 10k, 12 + 10k, 13 + 10k, 14 + 10k, 16 + 10k,
and 17 + 10k.

each other in two midpoints of edges of D. If pi = p0 for some i, then p0 = pi cannot intersect any other pj

in a midpoint of an edge, thus p0 = p1 = . . . = p5, which is a contradiction. But nor can p0 intersect all pi

in two midpoints of edges.
To complete the proof it is sufficient to show examples of D5h(5, n)-fulleroids for n 6≡ 0 (mod 5) or n ≡ 0

10



5k

p

5k

q
r

Fig. 19. Graph segments that can be used for construction of examples of Dmh(5, n)-fulleroids for various m and n. See the

text for precise values of the parameters 5k, p, q, and r.

(mod 25). For n = 6 the fullerenes with D5h symmetry are in Graver’s catalogue [7], divided into 3 infinite
series. For n ≥ 7, n 6≡ 0 (mod 5) examples of D5h(5, n)-fulleroids can be obtained if the graph segments
shown in Figure 20 are inscribed in all the faces of regular bipyramid with decagonal base respecting reflection
symmetry in the planes containing the vertices of the bipyramid. For n = 25 + 50k and n = 50 + 50k, one
can use the graphs segments shown in Figure 19 in a similar way, where p = 5 + 20k, q = 15 + 20k, and
r = 40 + 50k. �

Fig. 20. Graph segments of D5h(5, n)-fulleroids for n = 7, 8 + 10k, 9 + 10k, 11 + 10k, 12 + 10k, 13 + 10k, 14 + 10k, 16 + 10k,
and 17 + 10k.

Theorem 9 Let m = 4 or m ≥ 6 and n ≥ 6 be integers and let m 6≡ 0 (mod 5). If n is not a multiple

of m, then the set Dmh(5, n) is empty. If n is a multiple of m, then the set Dmh(5, n) has infinitely many

elements.

The nonexistence in the first case is an easy corollary of Theorem 2. An example of Dmh(5, n)-fulleroid
for m = 6 + 5k and n = c(6 + 5k) can be obtained if the graph shown in Figure 21 is inscribed in all the
side faces of regular m-sided prism. For other values of m and n the constructions are similar.
Theorem 10 Let m ≥ 10 and n ≥ 6 be integers and let m ≡ 0 (mod 5). If n is not a multiple of 5m, then

the set Dmd(5, n) is empty. If n is a multiple of 5m, then the set Dmd(5, n) has infinitely many elements.

The first claim can be proved using the same technique as is the proof of Theorem 8. To prove the second
claim, it suffices to find examples of Dmh(5, n)-fulleroids, where m ≡ 0 (mod 5) and n is a multiple of
5m. If the graph segments shown in Figure 19 are inscribed in all the faces of a regular bipyramid with
the base of size 2m respecting reflection symmetry in the planes containing the vertices of the bipyramid,
examples of the graphs of Dmh(5, n)-fulleroids are obtained for n = (5+10k)m and n = (10+10k)m, where
2p = n − 15 − 10k, 2q = n − 20 − 10k, and r = n − 10. �
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5(c+ ck − 2)

Fig. 21. Graph segment of a Dmh(5, n)-fulleroid for m = 6 + 5k, k ≥ 0, and m = c(6 + 5k), c ≥ 2.
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