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Fulleroids are cubic convex polyhedra with faces of size 5 or greater. They are suitable as models of hypothetical all-carbon molecules. In this paper sufficient and necessary conditions for existence of fulleroids of dihedral symmetry types and with pentagonal and n-gonal faces only depending on number n are presented. Either infinite series of examples are found to prove existence, or nonexistence is proved using symmetry invariants.

Introduction

Fullerenes have been objects of interest and study in the past two decades. A fullerene is a 3-valent carbon molecule, where atoms are arranged in pentagons and hexagons. It can be seen as a convex polyhedron, where vertices represent atoms and edges represent bonds between atoms. Fullerenes can also be represented by graphs. In fact, a fullerene graph is a planar, cubic (i.e. 3-regular) and 3-connected graph, twelve of whose faces are pentagons and the remaining faces are hexagons.

The concept of fullerenes can be generalized in several ways. Fowler [START_REF] Fowler | An Atlas of Fullerenes[END_REF] asked whether a fullerene-like structure consisting of pentagons and heptagons only and exhibiting an icosahedral symmetry exists. The answer was given by Dress and Brinkmann [START_REF] Brinkmann | Phantasmagorical Fulleroids[END_REF]. Motivated by these examples Delgado Friedrichs and Deza [START_REF] Delgado Friedrichs | More Icosahedral Fulleroids[END_REF] introduced the following definition: Definition 1 A fulleroid is a convex polyhedron such that all its vertices have degree 3 while all its faces have degree 5 or larger. A Γ-fulleroid is a fulleroid on which the group Γ acts as a group of symmetries. A given Γ-fulleroid is of type (a, b) or a Γ(a, b)-fulleroid if all its faces are either a-gonal or b-gonal.

The set of all Γ(a, b)-fulleroids will be denoted simply by Γ(a, b).

There is a list of groups, that can act as a symmetry group of a convex polyhedron [START_REF] Cromwell | Polyhedra[END_REF]. According to the system of rotational symmetry axes they can be divided into icosahedral, octahedral, tetrahedral, dihedral, cyclic and others.

Symmetry of fullerenes has been studied deeply. The possible symmetry groups Γ for fullerenes were shown to be limited to a total of 28 point groups [START_REF] Fowler | Possible Symmetries of Fullerene Structures[END_REF]. Babić, Klein and Sah [START_REF] Babić | Symmetry of fullerenes[END_REF] divided all fullerenes with up to 70 vertices according to the symmetry group. Fowler and Manolopoulos [START_REF] Fowler | An Atlas of Fullerenes[END_REF] found symmetry groups of all fullerenes with up to 100 vertices. For each symmetry group Γ they found the smallest Γ-fullerene and the smallest Γ-fullerene obeying IPR (isolated pentagon rule). They described how to create a new fullerene with the same symmetry group having more hexagonal faces and obeying IPR once a fullerene is given. Graver [START_REF] Graver | Catalog of All Fullerenes with Ten or More Symmetries[END_REF] published a catalogue of all fullerenes with ten or more symmetries.

Symmetry of fulleroids has also been an object of research in recent years. Among all possible symmetry types, icosahedral symmetry groups were studied first. Let the full symmetry group of a regular icosahedron be denoted by I h ; its subgroup of rotational symmetries by I . Delgado Friedrichs and Deza [START_REF] Delgado Friedrichs | More Icosahedral Fulleroids[END_REF] found I h (5, n)-fulleroids for n = 8, 9, 10, 12, 14 and 15 and asked several questions concerning I (5, n)-fulleroids. Most of their questions were answered by Jendrol' and Trenkler [START_REF] Jendrol | More icosahedral fulleroids[END_REF], who found infinite series of examples of I (5, n)-fulleroids for all n ≥ 8.

Jendrol' and Kardoš [START_REF] Jendrol | On octahedral fulleroids[END_REF] found a necessary and sufficient condition for the existence of O h (5, n)-fulleroids, where O h denotes the full symmetry group of a regular octahedron. Kardoš [START_REF] Kardoš | Tetrahedral Fulleroids[END_REF] characterized Γ(5, n)fulleroids, where Γ is the group of all symmetries of a regular tetrahedron T d , or the group of rotational symmetries of a regular tetrahedron T , or the group T h , which is a subgroup of the group O h with four 3-fold rotational symmetry axes, three 2-fold rotational symmetry axes, and a point of inversion.

In this paper we solve the question of the existence of fulleroids with a symmetry group of dihedral type. In particular, we investigate fulleroids with the symmetry group D m , D md , and D mh , where m ≥ 2.

The symmetry groups D m , D md and D mh have one specific property among all possible symmetry groups of convex polyhedra: all rotational symmetry axes with the exception of one axis lie in one plane (called main, horizontal plane) and the only other axis (called main, vertical axis) is perpendicular to this plane.

The group D m is the group of all rotational symmetries of a regular m-sided prism. It is isomorphic to the triangle group T (2, m) = x, y : x 2 = y m = (xy) 2 = 1 . The group D md is the full symmetry group of a regular m-sided antiprism. It is isomorphic to the triangle group T (2, 2m), where the generator of order 2m is the rotation-reflection. The group D mh is the full symmetry group of a regular m-sided prism. It is isomorphic to the full triangle group x, y, z :

x 2 = y 2 = x 2 = 1, (xy) m = (xz) 2 = (yz) 2 = 1 .
The group D m is a subgroup of index 2 of both D md and D mh . There is another subgroup of index 2 in the group D md . It is denoted by S 2m and it is generated by the rotation-reflection. The relations among these four symmetry types can be easily observed in Figure 1, where examples of polyhedra with the symmetry groups D 7h , D 7d , D 7 , and S 14 are depicted. The well-known Steinitz Theorem states that a connected graph G is the graph of a convex polyhedron if and only if it is planar and 3-connected. Thus, in some cases it is useful to study 3-connected planar graphs instead of convex polyhedra and not to distinguish between a convex polyhedron and the corresponding graph. Furthermore, by the theorem of Mani [START_REF] Mani | Automorphismen von polyedrischen Graphen[END_REF] (see also [START_REF] Ziegler | Lectures on Polytopes[END_REF]), for each such graph G there is a convex polyhedron P such that the graph of P is isomorphic to G and the symmetry group of P is isomorphic to the automorphism group of G. Therefore, to give an example of a Γ(5, n)-fulleroid (Γ is either D m , D md , or D mh ), it is sufficient to find a 3-connected cubic planar graph with pentagonal and n-gonal faces whose automorphism group is isomorphic to Γ. Usually, we draw the graph on the surface of regular prism or bipyramid.

Operations used to generate examples

To prove that for some number n and for some group Γ (D m , D md , or D mh ) the set of all Γ(5, n)-fulleroids is infinite, it is sufficient to find an infinite series of corresponding graphs. This can be done by finding one example and a method of creating a new example from the old.

If the size n of some faces should be increased, two operations are used. If two n-gons are connected by an edge, by inserting 10 pentagons they are changed to (n + 5)-gons (see Figure 2). This step can be carried out arbitrarily many times, so the size of these two faces can be increased by any multiple of 5. When this operation is used later in the paper, it is represented by a rectangle with a number inscribed which denotes the number of edges added to the two adjacent n-gons (see e.g. Figure 8), or alternatively its application is indicated only by thickening the edges (see e.g. Figure 11). If two m-gons (pentagons or n-gons) are separated by two faces in a position as in the left-hand side picture in Figure 3, the sizes of those faces can be increased equally and arbitrarily (see the right-hand side picture in Figure 3). As a special case of the second operation we get the following: If the two original (m-gonal) faces are pentagons, we can change them into two n-gons and 2n -8 new pentagons, so the number of n-gonal faces can be increased by two. For n ≥ 8 this step can be repeated as many times as required, because two pentagons in an appropriate position can be found among the new pentagons again. The new configuration can always be chosen in such a way that possible local symmetry (rotation through 180 • ) is not destroyed. In the figures used in this paper, the two pentagons that can be used this way to create infinitely many examples, are shaded and the path of three edges connecting them is doubled. If the operation from Figure 3 has already been used, the pair of pentagons is not emphasized.

For n = 7 we need two additional pentagons if the operation is to be carried out again, see Figure 4. If this operation is used, the configuration of four starting pentagons is shaded.

-→ Fig. 4. The step to create two new heptagons.

D m (5, n)-fulleroids

For this type of symmetry there are no obstructions that could make the existence of particular structures impossible. Theorem 1 For any n ≥ 6 the sets D 2 (5, n), D 3 (5, n), and D 5 (5, n) contain infinitely many elements. Proof. In Figure 5 the graph of a fulleroid with symmetry group D 2 is shown. It has four n-gonal faces and 4(n -3) pentagonal faces. Two edges marked with an asterisk should be identified to make an embedding of the graph into the sphere. If the graph in the left-hand side picture in Figure 6 is inscribed in all three side faces of a regular 3-sided prism and arrowed semiedges are elongated to the vertices in the center of the bases of the prism, the graph of a D 3 (5, 6)-fulleroid is obtained. Analogously, if we use the graph in the right-hand side picture in Figure 6, we get examples of D 3 (5, n)-fulleroids for all numbers n ≥ 7 with six n-gonal and 6(n -4) pentagonal faces. If the graph in the left-hand side picture in Figure 7 is inscribed in all five side faces of a regular 5-sided prism, the graph of a D 5 (5, 7)-fulleroid with 42 pentagonal and 30 heptagonal faces is obtained. Similarly, if we use the graph in the right-hand side picture in Figure 7, we get examples of D 5 (5, n)-fulleroids for all numbers n ≥ 8 with 10 n-gonal and 10(n -5) pentagonal faces. For n = 6, all D 5 (5, 6)-fulleroids are in fact fullerenes with D 5 symmetry. They are classified in [START_REF] Graver | Catalog of All Fullerenes with Ten or More Symmetries[END_REF]. Theorem 2 Let m = 4 or m ≥ 6 and n ≥ 6 be integers. If n is not a multiple of m, then the set D m (5, n) is empty. If n is a multiple of m, then the set D m (5, n) has infinitely many elements. Proof. Let P be a convex cubic polyhedron with pentagonal and n-gonal faces only exhibiting D m symmetry. Then the main axis of m-fold rotational symmetry intersects P in two points that obviously can be neither vertices nor internal points of edges, since m > 3. So the axis intersects P in two faces. Since it is the axis of m-fold rotational symmetry, the faces must have local m-fold rotational symmetry, too. Since m = 5, the faces cannot be pentagons. Faces that are n-gonal can have m-fold rotational symmetry only if n is a multiple of m.

n -3 n -3 n -3 n -3 * *
It is sufficient now to find examples of D m (5, km)-fulleroids where k ≥ 1 is an arbitrary integer. For k = 1 and m = 6 we get the case of D 6 (5, 6)-fullerenes which are classified in [START_REF] Graver | Catalog of All Fullerenes with Ten or More Symmetries[END_REF]. For k = 1 and m ≥ 7 we can use the graphs shown in Figure 7 and inscribe them in the side faces of a regular m-sided prism. For k > 1, appropriate graphs are in Figure 8. To prove the first claim of this theorem we use the following lemma [START_REF] Jendrol | On octahedral fulleroids[END_REF]. Lemma 1 Let n ≡ 0 (mod 5) and P be a convex polyhedron with pentagonal and n-gonal faces only and all vertices of degree 3. Then there exists the homomorphism Ψ : P → D, where D denotes the dodecahedron.

By homomorphism Ψ : P → D we mean the mapping of vertices of the polyhedron P onto those of the polyhedron D, respecting the adjacency structure. Since both P and D are cubic convex polyhedra, it immediately follows that if two edges (faces) of P are adjacent, then also their images are adjacent in D.

Proof of Theorem 3. We prove the first part by contradiction. Let n = 5 + 10k and let P be a D 2d (5, n)fulleroid. Since all faces of P are of odd size and all vertices of P are trivalent, the main symmetry axis (rotation by 180 • ) intersects P in two midpoints of edges. The points will be denoted as x and x ′ , the edges e and e ′ , respectively. There are two vertical symmetry planes, perpendicular to each other; their intersection is the main axis. The edge e must lie in a vertical symmetry plane. Let this plane be ρ. Since the symmetry is D 2d and not D 2h , the edge e ′ lies in the other plane, ρ ′ .

Let Ψ : P → D be the mapping given by Lemma 1. Since the size of all faces of P is a multiple of 5, if a point moves from x to x ′ and back to x along intersection of P and ρ, its image can move only on certain circular lines on D, two of them visible in Figure 9. These lines will be denoted as perimeters of D. Let the perimeter containing Ψ(P ∩ ρ) be denoted by p and the perimeter containing Ψ(P ∩ ρ ′ ) be denoted by p ′ . Then Ψ(x) ∈ p ∩ p ′ , moreover, p and p ′ are perpendicular to each other and Ψ(e) ⊂ p. The only possible relative position of p and p ′ is the position of two perimeters in Figure 9. On the other hand, Ψ(e ′ ) ⊂ p ′ and Ψ(x ′ ) ∈ p ∩ p ′ . This implies that p intersects p ′ in the midpoint Ψ(x ′ ) of the edge Ψ(e ′ ), which is impossible. To prove the second part it is sufficient to find examples of D 2d (5, n)-fulleroids for all other values of the number n. Unlike the case of D 2 (5, n)-fulleroids, because of the nonexistence of D 2d (5, 5 + 10k)-fulleroids it is impossible to find a universal example where increasing the size of n-gonal faces by any number would be possible.

In Figure 10 we show examples of D 2d (5, n)-fulleroids for n = 6 and n = 7. In Figure 11 we show graph segments of D 2d (5, n)-fulleroids for n = 7, 8 + 5k, 9 + 5k, 11 + 5k, and 12 + 5k. To obtain a fulleroid, the graph should be inscribed in all four side faces of a regular 4-sided prism (alternating the graph itself and its mirror image), and the topmost and bottommost pairs of edges should be identified. To make this process clear, note that the first graph in Figure 11 is a representation of the fulleroid in the right-hand side picture in Figure 10.

If the left (right) graph shown in Figure 12 is inscribed in all four sides of a regular 4-sided prism (again alternating the graph and its mirror image), the graph of a D 2d (5, n)-fulleroid is obtained, where n = 10+20k (n = 20 + 20k). Theorem 4 For any n ≥ 6 the sets D 3d (5, n), and D 5d (5, n) contain infinitely many elements. Proof. If the graphs shown in Figure 13 are inscribed in all three side faces of a regular 3-sided prism and arrowed semiedges are elongated to the vertices in the center of both bases of the prism, graphs of D 3d (5, n)fulleroid for n = 7, n = 8 and n ≥ 9 are obtained. D 3d (5, 6)-fulleroids are in Graver's catalogue [START_REF] Graver | Catalog of All Fullerenes with Ten or More Symmetries[END_REF] divided into 18 infinite series.

If the graphs shown in Figure 14 are inscribed in all five side faces of a regular 5-sided prism, graphs of D 5d (5, n)-fulleroid for n = 7, 8, 9, 10 and n ≥ 11 are obtained. D 5d (5, 6)-fulleroids are in Graver's catalogue [START_REF] Graver | Catalog of All Fullerenes with Ten or More Symmetries[END_REF] divided into 5 infinite series. 

D mh (5, n)-fulleroids

Although the groups D md and D mh are of the same order, they behave in a different manner. Even if the number m is odd and the groups are both isomorphic to T (2, 2m), there are some values of numbers n and m such that D md (5, n)-fulleroids exist and D mh (5, n)-fulleroids do not.

The group D 2h is not a typical dihedral group, because all three symmetry axes and all three reflection planes are equivalent. It can be seen as a subgroup of the group O h , the full symmetry group of the regular Proof. Let n ≡ 5 or 10 (mod 15) and P be an D 3h (5, n)-fulleroid. Let the vertical symmetry planes of P be denoted by ρ 1 , ρ 2 , ρ 3 and the horizontal symmetry plane by ρ 0 . Lemma 1 gives us the homomorphism Ψ : P → D. If a point moves along the intersection of any of the symmetry planes with P , its image can move only along some perimeter of D. Let p 0 , p 1 , p 2 and p 3 be perimeters of D such that Ψ(ρ i ∩ P ) ⊆ p i ; i = 0, 1, 2, 3. Since the main vertical 3-fold rotational symmetry axis intersects P in two vertices, p 1 , p 2 and p 3 are in relative position like in Figure 17. The point where some ρ i (i = 1, 2, 3) intersects ρ 0 and P can be either an internal point of a face (only if n is even) or a midpoint of an edge. In the first case p i = p 0 and in the second case p i and p 0 intersect each other in two midpoints of edges of D. If p 1 = p 0 , then p 0 intersects p 2 and p 3 in vertices of D, which is a contradiction. If p 0 intersects p 1 in two midpoints of edges, it intersects p 2 and p 3 in centers of faces of D (one of two possible relative positions of p 0 is in Figure 17), which is again a contradiction. Thus, for n ≡ 5 or 10 (mod 15) the set D 3h (5, n) is empty. The remaining part of the proof is to show examples of D 3h (5, n)-fulleroids for n ≡ 5 or 10 (mod 15). For n = 6 the fullerenes with D 3h symmetry are in Graver's catalogue [START_REF] Graver | Catalog of All Fullerenes with Ten or More Symmetries[END_REF] divided into 18 infinite series. For n ≥ 7, n ≡ 0 (mod 5) examples of D 3h (5, n)-fulleroids can be obtained if the graph segments shown in Figure 18 are inscribed in all the faces of a regular bipyramid with a hexagonal base respecting the reflection Proof. Let n ≡ 0 (mod 5), n ≡ 0 (mod 25), and P be an D 5h (5, n)-fulleroid. Let the vertical symmetry planes of P be denoted by ρ 1 , . . . , ρ 5 and the horizontal symmetry plane by ρ 0 . Lemma 1 gives us the homomorphism Ψ : P → D. If a point moves along intersection of any of symmetry planes with P , its image can move only along some perimeter of D. Let p 0 , p 1 , . . . , p 5 be perimeters of D such that Ψ(ρ i ∩ P ) ⊆ p i ; i = 0, 1, . . . , 5. The main symmetry axis intersects P in two faces. These faces can be either pentagons or n-gons. Since n ≡ 0 (mod 25), the perimeters ρ 1 , . . . , ρ 5 are pairwise different and intersect each other in a center of a pentagonal face of D.

The point where some ρ i (i = 1, . . . , 5) intersects ρ 0 and P can be either an internal point of a face (only if n is even) or a midpoint of an edge. In the first case p i = p 0 and in the second case p i and p 0 intersect each other in two midpoints of edges of D. If p i = p 0 for some i, then p 0 = p i cannot intersect any other p j in a midpoint of an edge, thus p 0 = p 1 = . . . = p 5 , which is a contradiction. But nor can p 0 intersect all p i in two midpoints of edges.

To complete the proof it is sufficient to show examples of D 5h (5, n)-fulleroids for n ≡ 0 (mod 5) or n ≡ 0 
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 1 Fig. 1. Examples of polyhedra with D 7h , D 7d , D 7 , and S 14 symmetry, respectively.
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 2 Fig. 2. The step to increase the size of two n-gons by 5.
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 3 Fig. 3. The step to increase the size of two m-gons arbitrarily.
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 5446 Fig. 5. The graph of a D 2 (5, n)-fulleroid.
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 7 Fig. 7. A segment of the graph of a D 5 (5, n)-fulleroid for n = 7 and n ≥ 8.
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 8 Fig. 8. Examples of graph segments of Dm(5, n)-fulleroids for n = (2 + 5c)m, n = (3 + 5c)m, n = (4 + 5c)m, n = (5 + 5c)m and n = (6 + 5c)m, respectively.
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 4 D md (5, n)-fulleroids Theorem 3 Let n ≥ 6 be an integer. If n ≡ 5 (mod 10), then the set D 2d (5, n) is empty. If n ≡ 5 (mod 10), then the set D 2d (5, n) has infinitely many elements.
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 9 Fig. 9. Two perimeters of the dodecahedron.
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 10115 Fig. 10. Examples of D 2d (5, n)-fulleroids for n = 6 and n = 7.
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 12 Fig. 12. Graph segments of D 2d (5, n)-fulleroids for n = 10 + 20k and 20 + 20k.
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 136 Fig. 13. Graph segments of D 3d (5, n)-fulleroids for n = 7, n = 8, and n ≥ 9.octahedron, in which 3-fold rotation symmetries were destroyed. To depict a D 2h -fulleroid we draw a certain graph onto all eight faces of regular octahedron in such a way that the reflection symmetries are retained. Theorem 6 For any n ≥ 6 the set D 2h (5, n) contains infinitely many elements. Proof. For n = 6 we get the case of fullerenes with D 2h symmetry. All D 2h -fullerenes can be divided into 21 infinite series, according to the relative positions of the twelve pentagons. For n ≥ 7 examples of D 2h (5, n)fulleroids can be obtained if the graphs shown in Figure16are inscribed in all eight faces of a regular octahedron respecting the reflection symmetries. Theorem 7 Let n ≥ 6 be an integer. If n ≡ 5 or 10 (mod 15), then the set D 3h (5, n) is empty. If n ≡ 5, 10 (mod 15), then the set D 3h (5, n) contains infinitely many elements. Proof. Let n ≡ 5 or 10 (mod 15) and P be an D 3h (5, n)-fulleroid. Let the vertical symmetry planes of P be denoted by ρ 1 , ρ 2 , ρ 3 and the horizontal symmetry plane by ρ 0 . Lemma 1 gives us the homomorphism Ψ : P → D. If a point moves along the intersection of any of the symmetry planes with P , its image can move only along some perimeter of D. Let p 0 , p 1 , p 2 and p 3 be perimeters of D such that Ψ(ρ i ∩ P ) ⊆ p i ; i = 0, 1, 2, 3. Since the main vertical 3-fold rotational symmetry axis intersects P in two vertices, p 1 , p 2 and p 3 are in relative position like in Figure17. The point where some ρ i (i = 1, 2, 3) intersects ρ 0 and P can be either an internal point of a face (only if n is even) or a midpoint of an edge. In the first case p i = p 0 and in the second case p i and p 0 intersect each other in two midpoints of edges of D. If p 1 = p 0 , then p 0 intersects p 2 and p 3 in vertices of D, which is a contradiction. If p 0 intersects p 1 in two midpoints of edges, it intersects p 2 and p 3 in centers of faces of D (one of two possible relative positions of p 0 is in Figure17), which is again a contradiction. Thus, for n ≡ 5 or 10 (mod 15) the set D 3h (5, n) is empty.The remaining part of the proof is to show examples of D 3h (5, n)-fulleroids for n ≡ 5 or 10 (mod 15). For n = 6 the fullerenes with D 3h symmetry are in Graver's catalogue[START_REF] Graver | Catalog of All Fullerenes with Ten or More Symmetries[END_REF] divided into 18 infinite series. For n ≥ 7, n ≡ 0 (mod 5) examples of D 3h (5, n)-fulleroids can be obtained if the graph segments shown in Figure18are inscribed in all the faces of a regular bipyramid with a hexagonal base respecting the reflection

Fig. 14 .Fig. 15 .Theorem 8

 14158 Fig. 14. Graph segments of D 5d (5, n)-fulleroids for n = 7, 8, 9, 10 and n ≥ 11.
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 16 Fig. 16. Graph segments of D 2h (5, n)-fulleroids for n = 7, 8, 9, 10 and n ≥ 11.
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 117 Fig. 17. The perimeters of the dodecahedron.

  Fig. 17. The perimeters of the dodecahedron.
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 18 Fig. 18. Graph segments of D 3h (5, n)-fulleroids for n = 7, 8 + 10k, 9 + 10k, 11 + 10k, 12 + 10k, 13 + 10k, 14 + 10k, 16 + 10k, and 17 + 10k.
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 19 Fig. 19. Graph segments that can be used for construction of examples of D mh (5, n)-fulleroids for various m and n. See the text for precise values of the parameters 5k, p, q, and r.
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 209 Fig. 20. Graph segments of D 5h (5, n)-fulleroids for n = 7, 8 + 10k, 9 + 10k, 11 + 10k, 12 + 10k, 13 + 10k, 14 + 10k, 16 + 10k, and 17 + 10k.
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 2 Fig. 21. Graph segment of a D mh (5, n)-fulleroid for m = 6 + 5k, k ≥ 0, and m = c(6 + 5k), c ≥ 2.
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