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Abstract

Let G = (V, E, F ) be a 3-connected simple graph imbedded into a surface S with ver-
tex set V , edge set E and face set F . A face α is an 〈a1, a2, . . . , ak〉-face if α is a k-gon
and the degrees of the vertices incident with α in the cyclic order are a1, a2, . . . , ak.
The lexicographic minimum 〈b1, b2, . . . , bk〉 such that α is a 〈b1, b2, . . . , bk〉-face is
called the type of α.

Let z be an integer. We consider z-oblique graphs, i.e. such graphs that the number
of faces of each type is at most z. We show an upper bound for the maximum vertex
degree of any z-oblique graph imbedded into a given surface. Moreover, an upper
bound for the maximum face degree is presented. We also show that there are only
finitely many oblique graphs imbedded into non-orientable surfaces.
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1 Introduction

The concept of the graphs with restricted number of types of graph elements
was introduced by Jendrol’ and Tkáč in [2], [3]. The concept of obliqueness was
defined in the paper [7] by Walther. Later, in the paper [6] the z-obliqueness
was defined. Obliqueness of graphs was next studied by Walther [7], Schreyer
[5] and others.

All graphs considered in this paper are simple (without multiple edges or
loops), and we use the standard notation due to Diestel [1].

A graph is a pair G = (V,E), where V = V (G) is the set of vertices of the
graph G and E = E(G) is the set of edges of graph G. We shall not distinguish
strictly between the graph and its vertex or edge set. For example, we may
speak of a vertex v ∈ G rather than v ∈ V (G), and so on.

An embedding of a graph G on a surface S is a drawing of G on S without
edges crossing (vertices are represented by points, edges are represented by
arcs between their endvertices). If all components of S−G are homeomorphic
to open discs, then the embedding is cellular. In this case the components of
S − G are called faces of G. We deal only with cellular embeddings.

The degree deg(v) of a vertex v ∈ V (G) is the number of vertices adjacent to
v. The maximum degree in a graph G is denoted by ∆(G).

The size (or degree) deg(α) of a face α is defined to be the length of the
shortest closed walk containing all edges from the boundary of α, where the
boundary of a face α is a set of all edges incident with α.

Let us remind the definition of the oblique graph. A face α is an 〈a1, a2, . . .,
ak〉-face if deg(α) = k and the degrees of the vertices incident with α along
its boundary in the cyclic order are a1, . . . , ak. The lexicographic minimum
〈b1, b2, . . . , bk〉 such that α is a 〈b1, b2, . . . , bk〉-face is called the type of α. Let
z be an integer. A graph is said to be z-oblique if the number of faces of each
type is at most z. If z = 1 (all faces are of different types), the graph is said
to be oblique.

Voigt and Walther [6] proved that the set of all z-oblique graphs imbedded
into the sphere is finite. Schreyer [5] proved that the set of all z-oblique graphs
imbedded into any given orientable surface is finite as well. There is also found
the upper bound for the number of all z-oblique graphs imbedded into an
orientable surface with genus g. Recently Kardoš and Mǐskuf [4] showed that
the maximum degree of an oblique triangulation imbedded into the sphere is
less than 50.
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2 Vertex degrees

Using the method of charging and discharging we show an upper bound for the
maximum degree of a z-oblique graph imbedded into the surface with Euler’s
characteristic e. According to the definition of the type of a face α we are
only interested in the boundary walk of this face, hence, we do not have to
distinguish the orientable and the non-orientable surface.

Theorem 1 Let G be a z-oblique graph with maximum degree ∆ imbedded

into the surface with Euler’s characteristic e. Then

∆ ≤ 35.7z2 + 56.9z + 42 ln(41 + 21z)z − 6e + 6.

Especially for every oblique graph G imbedded on the sphere we have ∆ ≤ 235.

PROOF. Let the vertex with the maximum degree be denoted by v∆; if there
are more vertices with maximum degree we choose any one of them. At first let
us define the initial charges of the vertices x and the faces α in the following
way:

w(x) =















0 if deg(x) < 42 + 21z,

△− 6 if x = v∆,

3z otherwise.

w(α) = 2(deg(α) − 3) +
∑

x∈α
x 6=v∆

deg∗(x) − 6

deg(x)
,

where deg∗(x) is defined as

deg∗(x) =















deg(x) if deg(x) < 42 + 21z,

deg(x) if x = v∆,

deg(x) − 3z otherwise.

From Euler’s formula we have

∑

α∈F

2(deg(α) − 3) +
∑

x∈V

(deg(x) − 6) = −6e,
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so we get the sum of the initial charges

∑

α∈F

w(α) +
∑

x∈V

w(x) =

=
∑

α∈F

(

2(deg(α) − 3) +
∑

x∈α
x 6=v∆

deg∗(x) − 6

deg(x)

)

+
∑

x 6=v∆

deg(x)≥42+21z

3z + ∆ − 6 =

=
∑

α∈F

2(deg(α) − 3) +
∑

α∈F

∑

x∈α
x 6=v∆

deg∗(x) − 6

deg(x)
+

∑

x 6=v∆

deg(x)≥42+21z

3z + ∆ − 6 =

= −6e −
∑

x∈V

(deg(x) − 6) +
∑

x 6=v∆

(deg∗(x) − 6) +
∑

x 6=v∆

deg(x)≥42+21z

3z + ∆ − 6 =

= −6e +
∑

x∈V

(deg∗(x) − deg(x)) +
∑

x 6=v∆

deg(x)≥42+21z

3z = −6e,

and hence,
∑

α∈F

w(α) +
∑

x∈V

w(x) = −6e.

In the next step we relocate some of the initial charges from vertices with big
degree (distinct from v∆) into the faces incident with them according to the
following discharging rules:

(1) For x 6= v∆ and deg(x) = d ≥ 42 + 21z we set w′(x) := w(x) and
(a) if x ∈ α and α is a 〈3, 3, d〉-face, then w′(α) := w(α)+ 8

7
and w′(x) :=

w′(x) − 8
7
,

(b) if x ∈ α and α is a 〈3, 4, d〉-face, then w′(α) := w(α)+ 5
7

and w′(x) :=
w′(x) − 5

7
,

(c) if x ∈ α and α is a 〈3, 5, d〉-face, then w′(α) := w(α)+ 3
7

and w′(x) :=
w′(x) − 3

7
,

(d) if x ∈ α and α is a 〈3, 6, d〉-face, then w′(α) := w(α)+ 1
7

and w′(x) :=
w′(x) − 1

7
,

(e) if x ∈ α and α is a 〈4, 4, d〉-face, then w′(α) := w(α)+ 1
7

and w′(x) :=
w′(x) − 1

7
,

(f) if x ∈ α and α is a 〈3, 3, 3, d〉-face, then w′(α) := w(α) + 1
7

and
w′(x) := w′(x) − 1

7
.

(2) For all faces not mentioned above w′(α) := w(α) and w′(x) := w(x) for
all vertices x such that deg(x) < 42 + 21z or x = v∆.

For the new charge of vertices we have

w′(x)















= 0 if deg(x) < 42 + 21z,

= △− 6 if x = v∆,

≥ 2
7
z if deg(x) ≥ 42 + 21z and x 6= v∆.
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Observe that in the first and the third case the charge has not been changed.
In the second case the vertex x would redistribute at most 19

7
z of his previous

charge and so the new charge is at least 2
7
z. Hence, the new charge of all the

vertices is non-negative.

It is easy to check that for the faces with degree at least 6 we have

w′(α) = w(α) ≥ 2(deg(α) − 3) +
∑

x∈α

(−1) = 2 deg(α) − 6 − deg(α) ≥ 0,

thus only the faces with degree at most 5 can have a negative charge.

We compute the amount of the negative charge in the whole graph. Due to
previous remarks we deal only with the faces with degree at most 5. According
to our discharging rules we can list the types of the faces with the negative
charge. They can be divided into small faces incident with many vertices with
small degree (see Tables 1 and 2) and small faces incident with the vertex v∆

(see Table 3).

Now we clarify why in the first column of Table 3 it is sufficient to have the
interval 〈3, 41 + 21z〉 instead of 〈3, ∆〉. Every vertex x with degree at least
42+21z has charge at least 2

7
z. The face of type 〈3, x, ∆〉 can occur at most z

times. We redistribute the charge of x into these at most z faces. The vertex
donates 1

7
of its charge to each of those faces. Obviously, the charge of the

a1 = 3 3 3 3 3 3 3 3 3

a2 = 3 4 5 6 7 8 9 10 11

a3 < 42 + 21z 42 + 21z 42 + 21z 42 + 21z 42 24 18 15 14

a1 = 4 4 4 4 5 5

a2 = 4 5 6 7 5 6

a3 < 42 + 21z 20 12 10 10 8

Table 1
The list of all the faces of types 〈a1, a2, a3〉 with a negative charge, not incident with
the vertex v∆.

a1 = 3 3 3 3 3 3 3 3

a2 = 3 3 4 3 5 4 4 3

a3 = 3 4 3 5 3 4 5 3

a4 < 42 + 21z 12 12 8 8 6 5 4

a5 < - - - - - - - 6

Table 2
The list of all the faces of types 〈a1, a2, a3, a4〉 or 〈a1, a2, a3, a4, a5〉 with a negative
charge, not incident with the vertex v∆.
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a1 = 3 4 5 3 3

a2 = 〈3, 41 + 21z〉 〈4, 12〉 〈5, 7〉 3 ∆

a3 = ∆ ∆ ∆ ∆ 3

a4 < - - - 6 6

Table 3
The list of all the faces incident with the vertex v∆ having a negative charge.

vertex is still non-negative after the second discharging. The charge of the
face α = 〈3, x, ∆〉 will be non-negative too, since deg(x) ≥ 42 + 21z:

w′(α) = −1 +
deg∗(x) − 6

deg(x)
+

1

7
=

deg(x) − 3z − 6

deg(x)
−

6

7
=

1

7
−

3z + 6

deg(x)
≥ 0.

The whole negative charge in the faces not incident with the vertex v∆ is at
least the sum of the charges of faces in the Tables 1 and 2, each of the face
types counted z times. We show the computation only for the first column of
Table 1, the others go in the same lines and for brevity we omit them. The
amount of the negative charge of the faces in the Table 1 in the first column
can be bounded by

41+21z
∑

d=3

(

−2 +
d − 6

d

)

= −(39 + 21z) − 6
41+21z
∑

d=3

1

d
>

> −39 − 21z − 6

41+21z
∫

2

1

x
dx = −39 − 21z − 6 ln(41 + 21z) + 6 ln 2.

Hence, the amount of the negative charge of faces in the first column of Table
1, since they can occur z times, is at least

(−39 − 21z − 6 ln(41 + 21z) + 6 ln 2)z.

With similar computing, i.e. estimating of finite harmonic sums with logarith-
mic integrals, we obtain that the whole amount of the negative charge of the
faces in the Tables 1 and 2 is at least

(−54.8 − 35.7z − 36 ln(41 + 21z))z.

But there are also faces with negative charge incident with v∆ – the faces
listed in the Table 3. The sum of their charges can be bounded by

41+21z
∑

d=3

(

−1 +
d − 6

d

)

− 6.2 = −6
41+21z
∑

d=3

1

d
− 6.2 > −6

41+21z
∫

2

1

x
− 6.2 =

= −6 ln(41 + 21z) + 6 ln 2 − 6.2 > −6 ln(41 + 21z) − 2.1 .

These faces can also occur z-times, thus the amount of the negative charge
of them is at least (−6 ln(41 + 21z) − 2.1)z. Since the sum of the charges for
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whole graph is −6e, the (positive) charge of the vertex v∆ can not exceed the
amount of the negative charge in the whole graph increased by −6e:

w′(v∆) ≤ (42 ln(41 + 21z) + 35.7z + 56.9)z − 6e

deg(v∆) − 6 ≤ (42 ln(41 + 21z) + 35.7z + 56.9)z − 6e

∆ ≤ 35.7z2 + 56.9z + 42 ln(41 + 21z)z − 6e + 6

If z = 1, we obtain ∆ ≤ 271−6e. If we sum the charge of all faces with negative
charge without using logarithmic estimates, we can improve this bound to

∆ ≤ 247 − 6e.

�

Let V (G) = {v1, v2, . . . , vn} be the set of vertices of a graph G such that
deg(vi) ≥ deg(vi+1), i = 1, . . . , n − 1. We show an upper bound for the sum
deg(v1) + deg(v2).

Theorem 2 Let G be a z-oblique graph imbedded into the surface with Euler’s

characteristic e. Let v1 and v2 be the vertices with the highest degree among

all vertices of the graph G and let ∆i = deg(vi), i = 1, 2. Then

∆1 + ∆2 ≤ 35.7z2 + 60.7z + 48z ln(41 + 21z) − 6e + 12.

For every oblique graph imbedded on the sphere we have ∆1 + ∆2 ≤ 268.

PROOF. We use the technique of charging and discharging again. The initial
charges of the vertices and the faces are assigned in the following way:

w(x) =















0 if deg(x) < 42 + 21z,

deg(x) − 6 if x ∈ {v1, v2},

3z otherwise.

w(α) = 2(deg(α) − 3) +
∑

x∈α
x 6∈{v1,v2}

deg∗(x) − 6

deg(x)
,

where deg∗(v) is defined as

deg∗(v) =















deg(x) if deg(x) < 42 + 21z,

deg(x) if x ∈ {v1, v2},

deg(x) − 3z otherwise.
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From Euler’s formula we get the sum of initial charges

∑

α∈F

w(α) +
∑

x∈V

w(x) = −6e.

In the next step we relocate some of the initial charge from vertices with big
degree (distinct from v1 and v2) into the faces incident with them according
to the following discharging rules:

(1) if x 6∈ {v1, v2} and deg(x) = d ≥ 42 + 21z we set w′(x) := w(x) and
(a) if x ∈ α and α is a 〈3, 3, d〉-face, then w′(α) := w(α)+ 8

7
and w′(x) :=

w′(x) − 8
7
,

(b) if x ∈ α and α is a 〈3, 4, d〉-face, then w′(α) := w(α)+ 5
7

and w′(x) :=
w′(x) − 5

7
,

(c) if x ∈ α and α is a 〈3, 5, d〉-face, then w′(α) := w(α)+ 3
7

and w′(x) :=
w′(x) − 3

7
,

(d) if x ∈ α and α is a 〈3, 6, d〉-face, then w′(α) := w(α)+ 1
7

and w′(x) :=
w′(x) − 1

7
,

(e) if x ∈ α and α is a 〈4, 4, d〉-face, then w′(α) := w(α)+ 1
7

and w′(x) :=
w′(x) − 1

7
,

(f) if x ∈ α and α is a 〈3, 3, 3, d〉-face, then w′(α) := w(α) + 1
7

and
w′(x) := w′(x) − 1

7
.

(2) For all faces not mentioned above w′(α) := w(α) and w′(x) := w(x) for
all vertices x such that deg(x) < 42 + 21z or x ∈ {v1, v2}.

The new charges of all vertices are non-negative and we have

w′(x)



























= 0 if deg(x) < 42 + 21z,

= ∆1 − 6 if x = v1,

= ∆2 − 6 if x = v2.

≥ 2
7
z if deg(x) ≥ 42 + 21z and x 6∈ {v1, v2},

Faces with degree greater than 5 can not have negative charge. Faces with
negative charge can be listed like in the previous proof. There are the faces
listed in Tables 1 and 2 and the faces listed in Tables 4, 5, and 6.

In the first column of the Tables 4 and 5 it is sufficient to have interval
〈3, 41 + 21z〉, using the same arguments as in the proof of Theorem 1.

The whole negative charge of the faces not incident with the vertex v1 or v2

is at least (−54.8 − 35.7z − 36 ln(41 + 21z))z.

But there are also faces with negative charge which are incident with vertex
v1 and/or v2 – the faces listed in the Tables 4, 5, and 6. The sum of negative
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a1 = 3 4 5 3 3

a2 = 〈3, 41 + 21z〉 〈4, 12〉 〈5, 7〉 3 ∆1

a3 = ∆1 ∆1 ∆1 ∆1 3

a4 ≤ - - - 5 5

Table 4
The list of all the faces of types 〈a1, a2, a3〉 and 〈a1, a2, a3, a4〉 with a negative charge
incident with the vertex v1.

a1 = 3 4 5 3 3

a2 = 〈3, 41 + 21z〉 〈4, 12〉 〈5, 7〉 3 ∆2

a3 = ∆2 ∆2 ∆2 ∆2 3

a4 ≤ - - - 5 5

Table 5
The list of all the faces of types 〈a1, a2, a3〉 and 〈a1, a2, a3, a4〉 with a negative charge
incident with the vertex v2.

a1 = 3 4 5

a2 = ∆2 ∆2 ∆2

a3 = ∆1 ∆1 ∆1

Table 6
The list of all the faces of types 〈a1, a2, a3〉 with a negative charge incident with the
vertices v1 and v2.

charges of these faces can be bounded by the estimating of finite harmonic
sums with logarithmic integrals as follows

(−12 ln(41 + 21z) − 5.9)z.

Hence, the whole amount of the negative charge of faces of the graph is at
least

(−60.7 − 35.7z − 48 ln(41 + 21z))z.

The positive charge of the vertices v1 and v2 can not exceed the amount of
negative charge of the faces in whole graph increased by −6e, therefore,

w′(v1) + w′(v2) ≤ (60.7 + 35.7z + 48 ln(41 + 21z))z − 6e,

∆1 + ∆2 ≤ (60.7 + 35.7z + 48 ln(41 + 21z))z − 6e + 12.

If z = 1, we obtain ∆1 + ∆2 ≤ 306 − 6e. If we sum the charges of all faces
with negative charge without using logarithmic estimates, we can improve this
bound to

∆1 + ∆2 ≤ 280 − 6e.

�
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3 Face degrees

We bound the face degree of z-oblique graphs imbedded into any given surface
S.

Theorem 3 Let G be a z-oblique graph with maximum face degree ∆f imbed-

ded into the surface with Euler’s characteristic e. Then

∆f ≤ 35.7z2 + 54.8z + 36z ln(41 + 21z) − 6e + 6.

For every oblique graph G imbedded on the sphere we have ∆f ≤ 210.

PROOF. The proof uses the charging and discharging method. Let ∆f de-
note the maximum face degree of the graph G. The initial charges of the
vertices and the faces is set similarly to the charge in previous proofs:

w(x) =







0 if deg(x) < 42 + 21z,

3z otherwise.

w(α) = 2(deg(α) − 3) +
∑

x∈α

deg∗(x) − 6

deg(x)
,

where deg∗(v) is

deg∗(v) =







deg(x) if deg(x) < 42 + 21z,

deg(x) − 3z otherwise.

From Euler’s formula we get the sum of the initial charges

∑

α∈F

w(α) +
∑

x∈V

w(x) = −6e.

Discharging rules:

(1) If deg(x) = d ≥ 42 + 21z we set w′(x) := w(x) and
(a) if x ∈ α and α is a 〈3, 3, d〉-face, then w′(α) := w(α)+ 8

7
and w′(x) :=

w′(x) − 8
7
,

(b) if x ∈ α and α is a 〈3, 4, d〉-face, then w′(α) := w(α)+ 5
7

and w′(x) :=
w′(x) − 5

7
,

(c) if x ∈ α and α is a 〈3, 5, d〉-face, then w′(α) := w(α)+ 3
7

and w′(x) :=
w′(x) − 3

7
,

(d) if x ∈ α and α is a 〈3, 6, d〉-face, then w′(α) := w(α)+ 1
7

and w′(x) :=
w′(x) − 1

7
,

(e) if x ∈ α and α is a 〈4, 4, d〉-face, then w′(α) := w(α)+ 1
7

and w′(x) :=
w′(x) − 1

7
,

10



(f) if x ∈ α and α is a 〈3, 3, 3, d〉-face, then w′(α) := w(α) + 1
7

and
w′(x) := w′(x) − 1

7
.

(2) For all faces not mentioned above w′(α) := w(α) and w′(x) := w(x) for
all vertices x such that deg(x) < 42 + 21z.

The new charge of the vertices is non-negative, moreover, we have

w′(x) =







0 if deg(x) < 42 + 21z,

≥ 2
7
z if deg(x) ≥ 42 + 21z.

For the new charge of faces it holds w′(α) ≥ deg(α) − 6. The whole negative
charge in the faces is at least (−54.8− 35.7z− 36 ln(41+21z))z (see the proof
of Theorem 1).

The charge of the face with the maximum degree can not be greater than the
amount of negative charge in whole graph increased by −6e:

w′(α) ≤ (54.8 + 35.7z + 36 ln(41 + 21z))z − 6e.

On the other hand

w′(α) ≥ 2∆f − 6 − ∆f = ∆f − 6,

thus
∆f ≤ 54.8z + 35.7z2 + 36z ln(41 + 21z) − 6e + 6.

If z = 1, we obtain ∆f ≤ 245 − 6e. But if we sum the charges of all faces
with negative charge without using logarithmic estimates, we can improve
this bound to

∆f ≤ 222 − 6e.

�

Theorem 4 Let G be a z-oblique graph imbedded into the surface with the

Euler’s characteristic e. Let the α1 and α2 be the faces with the highest degree

among all the faces of the graph G. Then

deg(α1) + deg(α2) ≤ 35.7z2 + 54.8z + 36z ln(41 + 21z) − 6e + 12.

Especially for every oblique graph G imbedded on the sphere we have deg(α1)+
deg(α2) ≤ 228.

This theorem can be proved using the same technique like in the proofs of the
previous ones.

Corollary 5 For any non-orientable surface N the number of all z-oblique

graphs imbedded into N is finite.
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We have to mention that this result can be proven also by the technique showed
by J. Schreyer in [5]. It is sufficient to observe that deciding if the graph is
oblique we only need to trace the boundary walks of its faces, therefore, the
proof is the same for the non-orientable surface as for the orientable surface.

PROOF. Consider all z-oblique graphs imbedded into N . From Theorem 1
and Theorem 3 we know that the vertex and the face degree of the z-oblique
graphs in the surface N is bounded. Hence, also the number of face types is
bounded, thus the number of faces and vertices is bounded, too. Therefore,
there are only finitely many such graphs. �
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