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Let G = (V, E, F ) be a 3-connected simple graph imbedded into a surface S with vertex set V , edge set E and face set F . A face α is an a 1 , a 2 , . . . , a k -face if α is a k-gon and the degrees of the vertices incident with α in the cyclic order are a 1 , a 2 , . . . , a k . The lexicographic minimum b 1 , b 2 , . . . , b k such that α is a b 1 , b 2 , . . . , b k -face is called the type of α.

Let z be an integer. We consider z-oblique graphs, i.e. such graphs that the number of faces of each type is at most z. We show an upper bound for the maximum vertex degree of any z-oblique graph imbedded into a given surface. Moreover, an upper bound for the maximum face degree is presented. We also show that there are only finitely many oblique graphs imbedded into non-orientable surfaces.

Introduction

The concept of the graphs with restricted number of types of graph elements was introduced by Jendrol' and Tkáč in [START_REF] Jendrol | On the simplicial 3 polytopes with only two types of edges[END_REF], [START_REF] Jendrol | Convex 3 polytopes with exactly two types of edges[END_REF]. The concept of obliqueness was defined in the paper [START_REF] Walther | Polyhedral graphs with extreme numbers of types of faces[END_REF] by Walther. Later, in the paper [START_REF] Voigt | Polyhedral graphs with restricted number of faces of the same type[END_REF] the z-obliqueness was defined. Obliqueness of graphs was next studied by Walther [START_REF] Walther | Polyhedral graphs with extreme numbers of types of faces[END_REF], Schreyer [START_REF] Schreyer | Oblique Graphs[END_REF] and others.

All graphs considered in this paper are simple (without multiple edges or loops), and we use the standard notation due to Diestel [START_REF] Diestel | Graph theory[END_REF].

A graph is a pair G = (V, E), where V = V (G) is the set of vertices of the graph G and E = E(G) is the set of edges of graph G. We shall not distinguish strictly between the graph and its vertex or edge set. For example, we may speak of a vertex v ∈ G rather than v ∈ V (G), and so on.

An embedding of a graph G on a surface S is a drawing of G on S without edges crossing (vertices are represented by points, edges are represented by arcs between their endvertices). If all components of S -G are homeomorphic to open discs, then the embedding is cellular. In this case the components of S -G are called faces of G. We deal only with cellular embeddings.

The degree deg(v) of a vertex v ∈ V (G) is the number of vertices adjacent to v. The maximum degree in a graph G is denoted by ∆(G).

The size (or degree) deg(α) of a face α is defined to be the length of the shortest closed walk containing all edges from the boundary of α, where the boundary of a face α is a set of all edges incident with α.

Let us remind the definition of the oblique graph. A face α is an a 1 , a 2 , . . ., a k -face if deg(α) = k and the degrees of the vertices incident with α along its boundary in the cyclic order are a 1 , . . . , a k . The lexicographic minimum b 1 , b 2 , . . . , b k such that α is a b 1 , b 2 , . . . , b k -face is called the type of α. Let z be an integer. A graph is said to be z-oblique if the number of faces of each type is at most z. If z = 1 (all faces are of different types), the graph is said to be oblique.

Voigt and Walther [START_REF] Voigt | Polyhedral graphs with restricted number of faces of the same type[END_REF] proved that the set of all z-oblique graphs imbedded into the sphere is finite. Schreyer [START_REF] Schreyer | Oblique Graphs[END_REF] proved that the set of all z-oblique graphs imbedded into any given orientable surface is finite as well. There is also found the upper bound for the number of all z-oblique graphs imbedded into an orientable surface with genus g. Recently Kardoš and Miškuf [START_REF] Kardoš | The maximal vertex degree of oblique triangulations[END_REF] showed that the maximum degree of an oblique triangulation imbedded into the sphere is less than 50.

Vertex degrees

Using the method of charging and discharging we show an upper bound for the maximum degree of a z-oblique graph imbedded into the surface with Euler's characteristic e. According to the definition of the type of a face α we are only interested in the boundary walk of this face, hence, we do not have to distinguish the orientable and the non-orientable surface.

Theorem 1 Let G be a z-oblique graph with maximum degree ∆ imbedded into the surface with Euler's characteristic e. Then ∆ ≤ 35.7z 2 + 56.9z + 42 ln(41 + 21z)z -6e + 6.

Especially for every oblique graph G imbedded on the sphere we have ∆ ≤ 235.

PROOF. Let the vertex with the maximum degree be denoted by v ∆ ; if there are more vertices with maximum degree we choose any one of them. At first let us define the initial charges of the vertices x and the faces α in the following way:

w(x) =        0 if deg(x) < 42 + 21z, △ -6 if x = v ∆ , 3z otherwise. w(α) = 2(deg(α) -3) + x∈α x =v ∆ deg * (x) -6 deg(x) ,
where deg * (x) is defined as In the next step we relocate some of the initial charges from vertices with big degree (distinct from v ∆ ) into the faces incident with them according to the following discharging rules:

deg * (x) =        deg(x) if deg(x) < 42 + 21z, deg(x) if x = v ∆ , deg(x) -3z otherwise. From Euler's formula we have α∈F 2(deg(α) -3) + x∈V (deg(x) -6) = -6e, so we get the sum of the initial charges α∈F w(α) + x∈V w(x) = = α∈F 2(deg(α) -3) + x∈α x =v ∆ deg * (x) -6 deg(x) + x =v ∆ deg(x)≥42+21z 3z + ∆ -6 = = α∈F 2(deg(α) -3) + α∈F x∈α x =v ∆ deg * (x) -6 deg(x) + x =v ∆ deg(x)≥42+21z 3z + ∆ -6 = = -6e - x∈V (deg(x) -6) + x =v ∆ (deg * (x) -6) + x =v ∆ deg(x)≥42+21z 3z + ∆ -6 = = -6e + x∈V (deg * (x) -deg(x)) + x =v ∆ deg(x)≥42+21z 3z = -6e,
(1) For x = v ∆ and deg(x) = d ≥ 42 + 21z we set w ′ (x) := w(x) and (a) if x ∈ α and α is a 3, 3, d -face, then w ′ (α) := w(α) + 8 7 and w ′ (x) := w ′ (x) -8 7 , (b) if x ∈ α and α is a 3, 4, d -face, then w ′ (α) := w(α) + 5 7 and w ′ (x) := w ′ (x) - 5 7 , (c) if x ∈ α and α is a 3, 5, d -face, then w ′ (α) := w(α) + 3 7 and w ′ (x) := w ′ (x) - 3 7 , (d) if x ∈ α and α is a 3, 6, d -face, then w ′ (α) := w(α) + 1 7 and w ′ (x) := w ′ (x) - 1 7 , (e) if x ∈ α and α is a 4, 4, d -face, then w ′ (α) := w(α) + 1 7 and w ′ (x) := w ′ (x) - 1 7 , (f) if x ∈ α and α is a 3, 3, 3, d -face, then w ′ (α) := w(α) + 1 7 and w ′ (x) := w ′ (x) - 1 7 .

(2) For all faces not mentioned above w ′ (α) := w(α) and w ′ (x) := w(x) for all vertices x such that deg(x)

< 42 + 21z or x = v ∆ .
For the new charge of vertices we have

w ′ (x)        = 0 if deg(x) < 42 + 21z, = △ -6 if x = v ∆ , ≥ 2 7 z if deg(x) ≥ 42 + 21z and x = v ∆ .
Observe that in the first and the third case the charge has not been changed. In the second case the vertex x would redistribute at most 19 7 z of his previous charge and so the new charge is at least 2 7 z. Hence, the new charge of all the vertices is non-negative.

It is easy to check that for the faces with degree at least 6 we have

w ′ (α) = w(α) ≥ 2(deg(α) -3) + x∈α (-1) = 2 deg(α) -6 -deg(α) ≥ 0,
thus only the faces with degree at most 5 can have a negative charge.

We compute the amount of the negative charge in the whole graph. Due to previous remarks we deal only with the faces with degree at most 5. According to our discharging rules we can list the types of the faces with the negative charge. They can be divided into small faces incident with many vertices with small degree (see Tables 1 and2) and small faces incident with the vertex v ∆ (see Table 3). Now we clarify why in the first column of Table 3 it is sufficient to have the interval 3, 41 + 21z instead of 3, ∆ . Every vertex x with degree at least 42 + 21z has charge at least 2 7 z. The face of type 3, x, ∆ can occur at most z times. We redistribute the charge of x into these at most z faces. The vertex donates 1 7 of its charge to each of those faces. Obviously, the charge of the 1 The list of all the faces of types a 1 , a 2 , a 3 with a negative charge, not incident with the vertex v ∆ . 2 The list of all the faces of types a 1 , a 2 , a 3 , a 4 or a 1 , a 2 , a 3 , a 4 , a 5 with a negative charge, not incident with the vertex v ∆ . 3 The list of all the faces incident with the vertex v ∆ having a negative charge.

a 1 = 3 3 3 3 3 3 3 3 3 
a 2 =
a 3 = ∆ ∆ ∆ ∆ 3 a 4 < - - - 6 6 Table
vertex is still non-negative after the second discharging. The charge of the face α = 3, x, ∆ will be non-negative too, since deg(x) ≥ 42 + 21z:

w ′ (α) = -1 + deg * (x) -6 deg(x) + 1 7 = deg(x) -3z -6 deg(x) - 6 7 = 1 7 - 3z + 6 deg(x) ≥ 0.
The whole negative charge in the faces not incident with the vertex v ∆ is at least the sum of the charges of faces in the Tables 1 and2, each of the face types counted z times. We show the computation only for the first column of Table 1, the others go in the same lines and for brevity we omit them. The amount of the negative charge of the faces in the Table 1 in the first column can be bounded by

41+21z d=3 -2 + d -6 d = -(39 + 21z) -6 41+21z d=3 1 d > > -39 -21z -6 41+21z 2 1 x dx = -39 -21z -6 ln(41 + 21z) + 6 ln 2.
Hence, the amount of the negative charge of faces in the first column of Table 1, since they can occur z times, is at least (-39 -21z -6 ln(41 + 21z) + 6 ln 2)z.

With similar computing, i.e. estimating of finite harmonic sums with logarithmic integrals, we obtain that the whole amount of the negative charge of the faces in the Tables 1 and2 is at least (-54.8 -35.7z -36 ln(41 + 21z))z.

But there are also faces with negative charge incident with v ∆ -the faces listed in the Table 3. The sum of their charges can be bounded by

41+21z d=3 -1 + d -6 d -6.2 = -6 41+21z d=3 1 d -6.2 > -6 41+21z 2 1 x -6.2 = = -6 ln(41 + 21z) + 6 ln 2 -6.2 > -6 ln(41 + 21z) -2.1 .
These faces can also occur z-times, thus the amount of the negative charge of them is at least (-6 ln(41 + 21z) -2.1)z. Since the sum of the charges for whole graph is -6e, the (positive) charge of the vertex v ∆ can not exceed the amount of the negative charge in the whole graph increased by -6e: For every oblique graph imbedded on the sphere we have ∆ 1 + ∆ 2 ≤ 268.

w ′ (v ∆ ) ≤ (
PROOF. We use the technique of charging and discharging again. The initial charges of the vertices and the faces are assigned in the following way:

w(x) =        0 if deg(x) < 42 + 21z, deg(x) -6 if x ∈ {v 1 , v 2 }, 3z otherwise. w(α) = 2(deg(α) -3) + x∈α x ∈{v 1 ,v 2 } deg * (x) -6 deg(x) , where deg * (v) is defined as deg * (v) =        deg(x) if deg(x) < 42 + 21z, deg(x) if x ∈ {v 1 , v 2 }, deg(x) -3z otherwise. a 1 = 3 4 5 3 3 
a 2 = 3, 41 + 21z 4, 12 5, 7 3 ∆ 1 a 3 = ∆ 1 ∆ 1 ∆ 1 ∆ 1 3 a 4 ≤ - - - 5 
5 Table 4 The list of all the faces of types a 1 , a 2 , a 3 and a 1 , a 2 , a 3 , a 4 with a negative charge incident with the vertex v 1 .

a 1 = 3 4 5 3 3 
a 2 = 3, 41 + 21z 4, 12 5, 7 3 ∆ 2 a 3 = ∆ 2 ∆ 2 ∆ 2 ∆ 2 3 a 4 ≤ - - - 5 
5 Table 5 The list of all the faces of types a 1 , a 2 , a 3 and a 1 a 2 , a 3 , a 4 with a negative charge incident with the vertex v 2 .

a 1 = 3 4 5 a 2 = ∆ 2 ∆ 2 ∆ 2 a 3 = ∆ 1 ∆ 1 ∆ 1 Table 6
The list of all the faces of types a 1 , a 2 , a 3 with a negative charge incident with the vertices v 1 and v 2 .

charges of these faces can be bounded by the estimating of finite harmonic sums with logarithmic integrals as follows (-12 ln(41 + 21z) -5.9)z.

Hence, the whole amount of the negative charge of faces of the graph is at least (-60.7 -35.7z -48 ln(41 + 21z))z.

The positive charge of the vertices v 1 and v 2 can not exceed the amount of negative charge of the faces in whole graph increased by -6e, therefore, 

w ′ (v 1 ) + w ′ (v

  and hence, α∈F w(α) + x∈V w(x) = -6e.

  (G) = {v 1 , v 2 , . . . , v n } be the set of vertices of a graph G such that deg(v i ) ≥ deg(v i+1 ), i = 1, . . . , n -1.We show an upper bound for the sum deg(v 1 ) + deg(v 2 ). Let G be a z-oblique graph imbedded into the surface with Euler's characteristic e. Let v 1 and v 2 be the vertices with the highest degree among all vertices of the graph G and let∆ i = deg(v i ), i = 1, 2. Then ∆ 1 + ∆ 2 ≤ 35.7z 2 + 60.7z + 48z ln(41 + 21z) -6e + 12.

	42 ln(41 + 21z) + 35.7z + 56.9)z -6e
	deg(v ∆ ) -6 ≤ (42 ln(41 + 21z) + 35.7z + 56.9)z -6e
	∆ ≤ 35.7z 2 + 56.9z + 42 ln(41 + 21z)z -6e + 6
	If z = 1, we obtain ∆ ≤ 271-6e. If we sum the charge of all faces with negative
	charge without using logarithmic estimates, we can improve this bound to
	∆ ≤ 247 -6e.
	Let V Theorem 2

  2 ) ≤ (60.7 + 35.7z + 48 ln(41 + 21z))z -6e, ∆ 1 + ∆ 2 ≤ (60.7 + 35.7z + 48 ln(41 + 21z))z -6e + 12.If z = 1, we obtain ∆ 1 + ∆ 2 ≤ 306 -6e. If we sum the charges of all faces with negative charge without using logarithmic estimates, we can improve this bound to ∆ 1 + ∆ 2 ≤ 280 -6e.

We have to mention that this result can be proven also by the technique showed by J. Schreyer in [5]. It is sufficient to observe that deciding if the graph is oblique we only need to trace the boundary walks of its faces, therefore, the proof is the same for the non-orientable surface as for the orientable surface.

PROOF. Consider all z-oblique graphs imbedded into N . From Theorem 1 and Theorem 3 we know that the vertex and the face degree of the z-oblique graphs in the surface N is bounded. Hence, also the number of face types is bounded, thus the number of faces and vertices is bounded, too. Therefore, there are only finitely many such graphs.
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From Euler's formula we get the sum of initial charges α∈F w(α) + x∈V w(x) = -6e.

In the next step we relocate some of the initial charge from vertices with big degree (distinct from v 1 and v 2 ) into the faces incident with them according to the following discharging rules:

(1) if x ∈ {v 1 , v 2 } and deg(x) = d ≥ 42 + 21z we set w ′ (x) := w(x) and (a) if x ∈ α and α is a 3, 3, d -face, then w ′ (α) := w(α) + 8 7 and w ′ (x) := w ′ (x) -8 7 , (b) if x ∈ α and α is a 3, 4, d -face, then w ′ (α) := w(α) + 5 7 and w ′ (x) := w ′ (x) - 5 7 , (c) if x ∈ α and α is a 3, 5, d -face, then w ′ (α) := w(α) + 3 7 and w ′ (x) := w ′ (x) - 3 7 , (d) if x ∈ α and α is a 3, 6, d -face, then w ′ (α) := w(α) + 1 7 and w ′ (x) := w ′ (x) - 1 7 , (e) if x ∈ α and α is a 4, 4, d -face, then w ′ (α) := w(α) + 1 7 and w ′ (x) := w ′ (x) - 1 7 , (f) if x ∈ α and α is a 3, 3, 3, d -face, then w ′ (α) := w(α) + 1 7 and w ′ (x) := w ′ (x) - 1 7 .

(2) For all faces not mentioned above w ′ (α) := w(α) and w ′ (x) := w(x) for all vertices x such that deg(x)

The new charges of all vertices are non-negative and we have

Faces with degree greater than 5 can not have negative charge. Faces with negative charge can be listed like in the previous proof. There are the faces listed in Tables 1 and2 and the faces listed in Tables 4,5, and 6.

In the first column of the Tables 4 and5 it is sufficient to have interval 3, 41 + 21z , using the same arguments as in the proof of Theorem 1.

The whole negative charge of the faces not incident with the vertex v 1 or v 2 is at least (-54.8 -35.7z -36 ln(41 + 21z))z.

But there are also faces with negative charge which are incident with vertex v 1 and/or v 2 -the faces listed in the Tables 4, 5, and 6. The sum of negative

Face degrees

We bound the face degree of z-oblique graphs imbedded into any given surface S.

Theorem 3 Let G be a z-oblique graph with maximum face degree ∆ f imbedded into the surface with Euler's characteristic e. Then ∆ f ≤ 35.7z 2 + 54.8z + 36z ln(41 + 21z) -6e + 6.

For every oblique graph G imbedded on the sphere we have ∆ f ≤ 210.

PROOF. The proof uses the charging and discharging method. Let ∆ f denote the maximum face degree of the graph G. The initial charges of the vertices and the faces is set similarly to the charge in previous proofs: 7 and w ′ (x) := w ′ (x) - 5 7 , (c) if x ∈ α and α is a 3, 5, d -face, then w ′ (α) := w(α) + 3 7 and w ′ (x) := w ′ (x) - 3 7 , (d) if x ∈ α and α is a 3, 6, d -face, then w ′ (α) := w(α) + 1 7 and w ′ (x) := w ′ (x) - 1 7 , (e) if x ∈ α and α is a 4, 4, d -face, then w ′ (α) := w(α) + 1 7 and w ′ (x) := w ′ (x) - 1 7 , 10 (f) if x ∈ α and α is a 3, 3, 3, d -face, then w ′ (α) := w(α) + 1 7 and w ′ (x) := w ′ (x) - 1 7 .

(2) For all faces not mentioned above w ′ (α) := w(α) and w ′ (x) := w(x) for all vertices x such that deg(x) < 42 + 21z.

The new charge of the vertices is non-negative, moreover, we have

For the new charge of faces it holds w ′ (α) ≥ deg(α) -6. The whole negative charge in the faces is at least (-54.8 -35.7z -36 ln(41 + 21z))z (see the proof of Theorem 1).

The charge of the face with the maximum degree can not be greater than the amount of negative charge in whole graph increased by -6e:

w ′ (α) ≤ (54.8 + 35.7z + 36 ln(41 + 21z))z -6e.

On the other hand This theorem can be proved using the same technique like in the proofs of the previous ones.

Corollary 5 For any non-orientable surface N the number of all z-oblique graphs imbedded into N is finite.