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The Nash problem and its solution

by Camille Plénat and Mark Spivakovsky

January 9, 2013

Abstract

The goal of this paper is to give a historical overview of the Nash Problem of arcs in arbitrary

dimension, as well as its affirmative solution in dimension two by J. Fernandez de Bobadilla and

M. Pe Pereira and a negative solution in higher dimensions by T. de Fernex, S. Ishii and J. Kollár.

This problem was stated by J. Nash around 1963 and has been an important subject of research in

singularity theory.

1 Introduction

In this paper, k is an algebraically closed field of characteristic 0 (see Remark 1.8 below for the case of
positive characteristic).

1.1 Resolution of singularities

Let X be a singular algebraic variety over k and π : X̃ −→ X a divisorial resolution of singularities of
X (this means that π is bijective away from the closed set π−1(Sing X) — such morphisms are called
birational — X̃ is a smooth variety and the exceptional set E =: π−1(Sing X) is a divisor, that is,
is of pure codimension one). Let

E =
⋃

i∈∆

Ei (1)

be the decomposition of E into its irreducible components. The set E has two kinds of irreducible
components: essential and inessential. Intuitively, an irreducible divisor is essential if it appears, as an
irreducible divisor, on every divisorial resolution of X.

In general (that is, when dim X > 3) it is quite difficult to show that a given component is essential
(see [31] for a discussion of this question as well as some sufficient conditions for essentiality and [3] and
[16] for new criteria of essentiality). In dimension two there exists a unique minimal resolution X̃ of X

(in the sense that any other resolution of X maps to X̃) and each irreducible exceptional divisor of X̃ is
essential.

Example 1.1 • The first example is the following (see Ishii-Kollar [15]): Let X be defined by xy −
uv = 0 in C4. The variety X is of dimension 3, with isolated singularity at 0. One can resolve
it either by blowing up up the point 0 (the map P2 on the figure) or by blowing up the surface on
X defined by x = u = 0 (the map P1). In the first case, one obtains a divisorial resolution with
one divisor, in the second case, the exceptional set E is a curve, hence of codimension 2, and so is
not a divisor. Thus in dimension higher than 2, not all the resolutions are divisorial. The second
resolution is an example of a small resolution, that is a resolution in which every irreducible
component of the exceptional set has codimension strictly greater than 1.

• The second example is the variety defined in C4 by

x2 + y2 + z2 + w4 = 0.

This variety can be resolved by two blowing ups at 0, this resolution being divisorial. But there also
exists a small resolution, given by only one blowing up the subvariety defined by x−y = 0 = z−w2,
which gives only one component for E. Thus one of the two divisors found in the first resolution is
not essential.



0
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Figure 1 : Two resolutions of xy-uv=0

1.2 The space of arcs of X

In order to study resolutions X̃ of X, J. Nash (around 1963, published in 1995 [25]) introduced the space
Xsing

∞ of arcs meeting the singular locus Sing X.
To give an idea of what the space Xsing

∞ and its elements look like, let us first take k = C and
consider the space of all the germs of parametrized analytic curves, contained in the algebraic variety X

over C and meeting the singular locus Sing X. For example, suppose X is an affine variety, defined in
CN by polynomial equations f1, . . . , fs in N variables. By definition, a parametrized analytic arc in X,
meeting Sing X, is given by N convergent power series



















x1(t) = a10 + a11t + a12t
2 + . . .

x2(t) = a20 + a21t + a22t
2 + . . .

...
xN (t) = aN0 + aN1t + aN2t

2 + . . .

(2)

having the following properties:
(a) for all j ∈ {1, . . . , s}, the convergent power series fj(x1(t), . . . , xN (t)) is identically zero as a

power series in t

(b) the point (a10, . . . , aN0), which we refer to as the origin of the arc (2), belongs to Sing X.

A specific example of this situation when X is the hypersurface in C3 defined by the equation
xy − zn+1 = 0 is discussed in Example 1.3 below.

For the purposes of the Nash problem, it is natural to consider formal parametrized curves instead
of analytic ones, that is, to drop the convergence assumption on the power series x1(t), . . . , xN (t) above.
In the algebraic language, we say that the power series (2) define a morphism from Spec C[[t]] to X such
that the image of the closed point of Spec C[[t]] belongs to Sing X. Once the definition is expressed in
the algebraic language, it is natural to extend it to arbitrary algebraically closed fields k and to varieties
X which are not necessarily affine:
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Definition 1.2 An arc is a k-morphism from Spec k[[t]] to X.
Let Xsing

∞ be the set of arcs whose origin (that is, the image of the closed point) belongs to the singular
locus of X.

The analogue of an arc in complex analysis is a test map from a small disc around the origin on
the complex plane to X. We will also need to consider more general arcs, which are morphisms from
Spec K[[t]] to X, where K is a field extension of k; they are called K-arcs.

Example 1.3 Let us have a look at the singularity An given in C3 by the equation

zn+1 = x.y

It is the first example studied by J.Nash. It has an isolated singularity at 0.

An arc living on An and passing through 0 is given by three formal power series







x(t) = a1t + a2t
2 + . . .

y(t) = b1t + b2t
2 + . . .

z(t) = c1t + c2t
2 + . . .

whose coefficients are elements of C and such that z(t)n+1 ≡ x(t).y(t). That last equation gives an infinity
of equations on the coefficients of the arcs:







































a1b1 = 0
a1b2 + a2b1 = 0

...
a1bn−1 + a2bn−2 + . . . + an−1b1

cn+1
1 = a1.bn + . . . + b1an

...

Let us denote the closed point (the origin) of Spec k[[t]] by 0 and the generic point by η.
An arc can be lifted to any resolution:

Lemma 1.4 Let f : X̃ → X be a resolution of singularities. Every arc α : Spec K[[t]] → X such that
αx(η) 6∈ Sing(X) can be lifted uniquely to an arc α̃ : Spec k[[t]] → X̃.

The proof comes from the fact that the resolution map π is proper. In other words, as the resolution of
singularities is an isomorphism away from E, one can lift the arc without the origin, and then take the
closure.

Remark: the closure of each lifted arc intersects at least one of the irreducible exceptional divisors;
moreover if an arc is general enough, its lifting intersects transversely one and only one irreducible
exceptional divisor.

Let us fix a divisorial resolution of singularities X̃ → X and let E = π−1(Sing X). Consider the
decomposition (1) of E into irreducible components, as above. Let ∆′ ⊂ ∆ denote the set which indexes
the essential divisors.

M. Lejeune-Jalabert [19], inspired by Nash’s original paper [25], proposed the following decompo-
sition of the space Xsing

∞ : for i ∈ ∆′, let Ci be the set of arcs whose lifting in X̃ intersects the essential
divisor Ei transversally but does not intersect any other exceptional divisor Ej . M. Lejeune-Jalabert
shows that

Xsing
∞ =

⋃

i∈∆′

Ci (3)

and the set Ci is an irreducible algebraic subvariety of the space of arcs.
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1.3 The statement of the problem

Nash used the decomposition (3) to show that Xsing
∞ has finitely many irreducible components, F1, . . . , Fr,

called families of arcs, and defined the following map:

Definition 1.5 (Nash [25]) Let

N : {F1, . . . , Fr} → { essential divisors }

be the map sending the family Fi to the exceptional divisor Ei such that the generic arc of Fi has lifting
to the resolution passing through a general point of the component Ei.

He showed that this map, now called the Nash map, is injective. The celebrated Nash problem,
posed in [25], is the question whether the Nash map is surjective.

Since the Ci are irreducible, the families of arcs are among the Ci’s. Moreover there are as many
Ci as essential divisors Ei. Then the Nash problem reduces to showing that the Ci, i ∈ ∆′, are precisely
the irreducible components of Xsing

∞ , that is, to proving card(∆′)(card(∆′) − 1) non-inclusions:

Problem 1.6 Is it true that Ci 6⊂ Cj for all i 6= j?

Example 1.7 Let us keep our attention on the singularity An given in C3 by the equation

zn+1 = x.y

It has an isolated singularity at 0. The exceptional divisor of the minimal resolution of An consists of n

irreducible curves Ei, arranged in a chain, such that Ei intersects Ei+1 transversely for i ∈ {1, . . . , n−1}.

One can show that the first n equations of Example 1.3 completely describe the n irreducible compo-
nents of Asing

n,∞ and that the irreducible component Fi is given by the a1 = ... = ai−1 = b1 = ... = bn−i = 0.
A general element of Fk has the form :







x(t) = aktk + ak+1t
k+1 + . . .

y(t) = bn+1−ktn+1−k + bn+2−ktn+2−k + . . .

z(t) = c1t + c2t
2 + . . .

with ak, bn+1−k and c1 different from zero.

Remark 1.8 All of the above definitions make sense also when car k > 0, with the following modification.
An arc family is said to be good if its general element is not entirely contained in Sing X. When
char k = 0 it is easy to show that all the arc families are good. Over fields of positive characteristic
there may exist some bad families, and the Nash map is only defined on the set of good families. With
this in mind, the Nash problem remains the same: is the Nash map, defined on the set of good families,
surjective? See [36] for some recent work on the Nash problem in positive characteristic.

1.4 Some partial answers in dimension 2

Before the work of Fernandez de Bobadilla — Pe Pereira, the Nash problem for surfaces has been answered
affirmatively in the following special cases: for An singularities by Nash, for minimal surface singularities
by A. Reguera [33] (with other proofs by J. Fernandez-Sanchez [6] and C. Plénat [28]), for sandwiched
singularities by M. Lejeune-Jalabert and A. Reguera (cf. [20] and [34]), for toric vareties in all dimensions
by S. Ishii and J. Kollar [15] (using earlier work of C. Bouvier and G. Gonzalez-Sprinberg [1] and [2]),
for a family of non-rational surface singularities by P. Popescu-Pampu and C. Plénat ([30]), for quotients
of C2 by an action of finite group [26] by M. Pe Pereira in 2010 based on the work [4] of J. Fernandez de
Bobadilla (other proofs for Dn in 2004 by Plénat [29], for E6 in 2010 by C. Plénat and M. Spivakovsky
[32], with a method that works for some normal hypersurface singularities), and by M. Leyton-Alvarez
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(2011) for E6 and E7, by applying the method for the following classes of normal hypersurfaces in C3:
hypersurfaces S(p, hq) given by the equation zp + hq(x, y) = 0, where hq is a homogeneous polynomial
of degree q without multiple factors, and p > 2, q > 2 are two relatively prime integers [22]. A. Reguera
[36] gave an affirmative answer to the Nash problem for rational surface singularities simultaneously and
independently from the work [5].
See the bibliography for a (hopefully) complete list of references on the subject.

In 2011, J. Fernandez de Bobadilla and M. Pe Pereira [5] showed that the answer is positive for
any surface singularity. The main aim of this paper is to give an idea of their proof. Before going further
into the details, we need to recall some earlier results that lead to the final proof.

The rest of the paper is organized as follow: §2 is dedicated to the work preceding the paper [5];
in §3 an outline of the proof is given. §4 contains a brief discussion of the Nash problem in dimension
three and higher.

2 The wedge problem.

2.1 The Wedge problem [17] ...

In 1980, M.Lejeune-Jalabert proposed to look at the Nash problem from a new point of view. She for-
mulated in [17] what is now called “the wedge problem”, which is related to a “Curve Selection Lemma”
in the space of arcs.

Let X be a singular algebraic variety over k.
Let us first define wedge:

Definition 2.1 Let K be a field extension of k. A K-wedge on X is a k-morphism

ω : Spec(K[[t, s]]) → X

which maps the set {t = 0} to Sing X.

The wedge ω induces two arcs on X as follows: a K-arc obtained by restricting ω to the set {s =
0} (this arc is called the special arc of ω), and a K((s))-arc, obtained by restricting ω to the set
Spec(K[[t, s]]) \ {s = 0} (this arc is called the general arc of ω). We regard ω as a deformation of its
special arc to its general arc or, alternatively, as an arc in the space of arcs Xsing

∞ .

The wedge is said to be centered at an arc γ0 if its special arc is γ0.
Let (X, 0) be a germ of a normal surface singularity, and let π : (X̃, E) → (X, 0) be its minimal

(and so divisorial) resolution, with E =
⋃

Ej = π−1(0). Let Ei, Ej be irreducible components of E (they
are essential as X is a surface). Let Ci and Cj be as above. Then if Cj ⊂ Ci, Ej is not in the image of
Nash map. If one had Curve Selection lemma in the space of arcs Xsing

∞ , the inclusion above would just
mean that one has a k-wedge with special arc in Cj and generic arc in Ci. Then the morphism ω would

not lift to the resolution X̃ as it has an indeterminacy at 0.

M. Lejeune-Jalabert proposed the following problem:

Problem 2.2 For all irreducible essential divisors of the minimal resolution, any k-wedge centered at
γi ∈ Ci can be lifted to X̃.

It is not trivial to generalize the classical Curve Selection Lemma to the case of infinite-dimensional
varieties such as Xsing

∞ . A. Reguera proved a Curve Selection Lemma for Xsing
∞ thus establishing the

equivalence between the the Nash and the wedge problems. The wedges appearing in A. Reguera’s
theorem are K-wedges rather than k-wedges, where K is an extension of k of infinite transcendence
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degree. In the following section we discuss this work of A. Reguera and its generalizations due to J.
Fernandez de Bobadilla and A. Reguera – M. Lejeune-Jalabert, which reduce the Nash problem to the
problem of lifting of k-wedges to the minimal resolution.

2.2 ...is equivalent to Nash problem of arcs

In the paper [35], A. Reguera has shown that a positive answer to the wedge problem is equivalent to the
surjectivity of the Nash map. She has also extended the wedge problem to all dimensions. Note that she
does not assume the singular varieties to be normal. More precisely, she proves the following:

Theorem 2.3 Let X be a singular variety.
Let Ei be an essential divisor over X. Let γi be the generic point of Ci (the closure of the set of arcs
lifting transversally to Ei), ki its residue field. The following are equivalent:

1. Ei belongs to the image of the Nash map.

2. For any resolution of singularities p : X̃ → X and for any field extension K of ki, any K-wedge
whose special arc maps to γi, and whose generic arc maps to Xsing

∞ , lifts to X̃.

3. There exists a resolution of singularities p : X̃ → X satisfying the conclusion of (2).

To prove this she needed a Curve Selection lemma for Xsing
∞ for curves defined over K. This field

is of infinite transcendence degree over k, so it is quite difficult to work with. J. Fernandez de Bobadilla
[4] and M. Lejeune-Jalabert with A. Reguera [21] have shown, independently, that one may replace K by
k in A. Reguera’s theorem, provided that k is uncountable.

Let us cite some results from Fernandez de Bobadilla’s paper. First, he gives the definition of
wedges that realize an adjacency between two essential divisors:

Definition 2.4 Let Eu and Ev be two essential divisors, and Cu and Cv the irreducible subvarieties of
Xsing

∞ associated to these divisors.
A K-wedge realizes an adjacency from Eu to Ev if its generic arc belongs to Cu and its special arc belongs
to Ċv (i.e. it is transverse to Ev in a general point of Ev).

Note that if such a wedge exists, then Cv is not in the image of Nash map. This statement can
be interpreted as the easy part of the previous Theorem of A.Reguera (1 =⇒ 2): a wedge realizing the
adjacency cannot be lifted to any resolution.

J. Fernandez de Bobadilla proves the following theorem:

Theorem 2.5 Let (X, 0) be a normal surface singularity defined over an uncountable algebraically closed
field k of characteristic 0. Let Ev be an essential irreducible component of the exceptional divisor of a
resolution. Then the following are equivalent:

1. The set Cv is in the Zariski closure of Cu, where Eu is another irreducible component of the
exceptional divisor.

2. Given any proper closed subset Z ⊂ Cu, there exists an algebraic k-wedge realizing an adjacency
from Eu to Ev and avoiding Z.

3. There exists a formal k-wedge realizing an adjacency from Eu to Ev.

4. Given any proper closed subset Z ⊂ Cu, there exists a finite morphism realizing an adjacency from
Eu to Ev and avoiding Z.

See [4] for the definition of finite morphism realizing an adjacency from Eu to γ.

J. Fernandez de Bobadilla also proved in [4] that the Nash problem for surfaces is a topological
problem, in other words, if the answer is affirmative for a certain normal surface singularity (X, 0), it is
also positive for any normal surface singularity, diffeomorphic to X:
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Theorem 2.6 The set of adjacencies between exceptional divisors of a normal surface singularity is a
combinatorial property of the singularity: it only depends on the dual weighted graph of the minimal
good resolution. In the complex analytic case this means that the set of adjacencies only depends on the
topological type of the singularity and not on the complex structure.

A sketch of the proof for normal dimension two singularities is the subject of the following section.
We will need to first define what a geometric Milnor representative of an arc and a wedge are.

3 Solution of the Nash problem for surfaces

Theorem 3.1 Let k be an algebraically closed field of characteristic 0 and (X, 0) a normal singular
surface over k.
The Nash map associated to (X, 0) is bijective.

In [4] (7.2 p. 163), J. Fernandez de Bobadilla shows that the families of arcs are stable under base
change and so is the bijectivity of Nash map. This allows to reduce the problem to the case of normal
surface singularities over C.

Let (X, 0) be a normal surface singularity over C. (The non-normal case can be reduced to the
normal one).

The proof proceeds by contradiction.

Let E =
n
⋃

i=0

Ei be the decomposition of E into irreducible components. Suppose there are two ir-

reducible subvarieties of Xsing
∞ C0 and Ci associated with two essential divisors E0 and Ei of the minimal

resolution such that C0 ⊂ Ci.

From now on, replace X by its underlying complex-analytic space. By abuse of notation, we will
continue to denote this space by X. Let π : X̃ → X be the minimal resolution of X.

For an analytic wedge α : (C2, 0) → X we denote the generic arc by α(t, s) = αs(t) and the special
arc α(t, 0) by γ(t). Aiming for contradiction, we now consider an analytic wedge α : (C2, 0) → X realizing
the adjacency from Ei to E0, that is, a wedge such that the generic arc belongs to Ci and the special arc
belongs to C0.

J. Fernandez de Bobadilla and M. Pe Pereira define the notion of Milnor representative of arcs and
wedges.

Let us call Xε0
= X ∩ Bε0

the Milnor representative of X. This means, by definition, that for all
0 < ε 6 ε0 the sphere Sε is transverse to X and X ∩ Sε is a closed subset of Sε.

Consider the special arc γ : (C, 0) → Xε0
. It is proved in [26] and [5] that there exists ε 6 ε0 such

that, restricted to Xε, γ becomes a Milnor arc:

Definition 3.2 Milnor arc
A Milnor representative of γ is a map of the form

γ|U : U → Xε

such that γ|U is a proper morphism, U is diffeomorphic to a closed disc, γ−1(∂Xε) = ∂U and the mapping
γ|U is transverse to any sphere Sε′ for ε′ 6 ε. The radius ε is called a Milnor radius for γ.

Let γ |U : U → Xε be a Milnor Representative of γ.
For the disc Dδ of radius δ around the origin in the complex plane we will use the notation

Ḋδ = Dδ \ {0}.
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We replace α by its restriction to U×Dδ, where δ is a small positive number, specified immediately
below.

Milnor wedge.
There exist δ > 0 small enough, an open set U ⊂ U × Dδ and a map

β : U × Dδ → Xε × Dδ

(t, s) → (αs(t), s)

such that the set Us = U∩C×{s} is diffeomorphic to a disc for all s and satisfying some other transversality
and finiteness conditions, which we omit in order not to overburden the exposition with technical details.

Definition 3.3 The map β restricted to U is a Milnor representative of the wedge α.

Remark 3.4 One has to prove that such a representative does exist, in particular that the set U can be
taken to be differomorphic to a bidisk. See [26] or [5].

These definitions of representatives are a key point in the proof of the theorem.

The main idea of the proof: Let αs : Us → Xε be a generic arc of the wedge. By construction, Us

is a disk and thus has Euler characteristic equal to one. The aim of the rest of the proof is to show
that the Euler characteristic of Us is bounded above by an expression less or equal to 0, and thus get a
contradiction.

3.1 Eliminating the indeterminacy of α̃

Let β̃ be the meromorphic map defined as the composition of σ−1 ◦ β with σ = (π, id |Dδ
):

X̃ε × Dδ

σ

��
U

β̃
;;

w

w

w

w

w β
// Xε × Dδ

The indeterminacy locus of σ−1 ◦ β is of codimension 2. Thus we may assume that, shrinking the radius
δ, if necessary, (0, 0) is the only indeterminacy point of β̃.

Moreover there exists a unique meromorphic lifting α̃ of α such that:

Y

��

�

�

// X̃ε

π

��
U

α̃

??
~

~

~

~
α // Xε

Let Y be the analytic Zariski closure of σ−1(β(U)\({0} × Dδ)) and let Ys = Y ∩ (X̃ε × {s}). The
surface Y is reduced and is a Cartier divisor in the smooth threefold X̃×Dδ. One can prove the following
([5]):

Ys = α̃s(Us) ∀s ∈ Ḋδ.

Remark 3.5 Ys can be thought as the topological image of the lifting of the arc αs on X̃ε.

Moreover, one has that:

Lemma 3.6 The mapping α̃s : Us → Ys is the morphism of normalization of Ys.

To prove this, we use the following lemma :

Lemma 3.7 The mapping αs : Us → Xε is one–to–one.
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$\beta$

0
s

s

UsUo

Eo

Eo

Ei

$\pi$

$\tilde{\beta}$

Figure 2 : Wedge representative

Definition 3.8 Returns
Elements of the set α−1

s (0) \ {0} are called returns. Their images by αs are 0 and by α̃s points of the
exceptional set E.

As explained before, to obtain a contradiction we want to show that Us has non-positive Euler charac-
teristic. To do this, Fernandez de Bobadilla and Pe Pereira give an upper bound on χ(Us) in terms of
χ(Ys), χ(Y0) and the possible returns.

3.1.1 End of the proof

The curve Y0 = Y ∩ (X̃ε × {0}) does not need to be reduced. It contains Z0 := α̃0(U0) and a sum of
the exceptional components Ei with suitable multiplicities. We express this situation by the equation
Y0 = Z0 +

∑

aiEi; the analytic space Y0 is reduced along Z0\E.
A crucial point in the proof of Fernandez de Bobadilla – Pe Pereira is the fact that Ys is a deformation of
Y0, and hence is numerically equivalent to it, that is, Ys and Y0 have the same intersection number with
any compact curve in X̃ε. We construct a tubular neighborhood of E in the following way.

Define Ėi = Ei\Sing(Y red
0 ). Let Sing(Y red

0 ) = {p0, p1, ..., pm}, where p0 = Z0 ∩ E. Let Bk be a
small ball in X̃ centered at pk. For j ∈ {0, . . . , n}, let Tj be a tubular neighborhood of Ej , small enough
so that its intersection with each Bk is transverse. Let Tn+1 be a tubular neighborhood of Z0, small

enough so that its intersection with B0 is transverse. Let Wj = Tj\

(

m
⋃

k=0

Bk

)

. All the neighborhoods

are chosen so that

χ(Us) =
n+1
∑

j=0

χ(α̃s
−1(Ys ∩ Wj)) +

m
∑

k=0

χ(α̃s
−1(Ys ∩ Bk)). (4)
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Zo

Ys

Eo

Ei

Case 1

Case 2

Case 3

Us

Case 4

Figure 3 : Normalization map

We do not need to count χ(Ys ∩ Tj ∩ Bk) since by the assumed transversality each of these intersections
is a finite union of circles and thus

χ(Ys ∩ Tj ∩ Bk) = 0. (5)

It remains to bound above each summand on the right hand side of (4). Using topological tech-
niques, the authors prove, under some extra assumptions, that

χ(Us) 6
∑

i

ai(2 − 2gi + Ei.Ei). (6)

This last sum is less or equal to 0 as each member is less than or equal to 0. This proves that the disc
Us has non-positive Euler characteristic, which gives the desired contradiction. In the general case, the
authors obtain a more complicated version of the formula (6), which leads to the same final conclusion.

4 Higher dimensions

For singularities of higher dimensions, the Nash Problem stated as above is false, though a few positive
results have been proved: in [15], S. Ishii and J. Kollar give an affirmative answer for toric varieties in all
dimensions. Affirmative answers were given for a family of singularities in dimension higher than 2 by P.
Popescu-Pampu and C. Plénat ( [31]) and for another family by M. Leyton-Alvarez [22] (2011).
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In [15], S. Ishii and J. Kollár give a counterexample to the Nash problem in dimension greater than
or equal to 4: the hypersurface

x3 + y3 + z3 + u3 + w6 = 0

which has a resolution with two irreducible exceptional components. These are essential, as one is the
projectivization of the tangent cone at the singular point (hence it clearly corresponds to a Nash family),
and the other one is not uniruled. Then the authors construct geometrically a wedge whose generic arc
is in the Nash family, and whose special arc is in the second family.

In May 2012, T. de Fernex gave a counterexample in dimension 3 ([3], 2012). The equation is

(x2 + y2 + z2)w + x3 + y3 + z3 + w5 + w6 = 0 (7)

In the algebraic setting, he can prove that the two exceptional components obtained after two blowing-ups
are essential. But as an analytic variety, the hypersurface obtained from (7) by blowing up the origin is
locally isomorphic to the non-degenerate quadratic cone, hence it admits a small resolution; this implies
that the second exceptional component is not essential, so the counterexample does not apply in the
analytic category. Deforming the equation (7), de Fernex obtains a counterexample to the Nash problem
in dimension 3, valid in both the algebraic and the analytic setting:

(x2 + y2)w + x3 + y3 + z3 + w5 + w6 = 0.

An even more recent paper on the Nash problem is due J. Kollár [16]. In that paper, J. Kollár
gives a new family of counterexamples to the Nash problem in dimension 3, called cA1-type singularities:

x2 + y2 + z2 + tm = 0

with m odd, m > 3. These singularities are isolated and have only one Nash family, but two of the
exceptional components in the resolution are essential.
Moreover, Kollár formulates the Revised Nash problem, which we now explain.

Definition 4.1 Let X be a variety over a field k, k ⊂ K a field extension of k and φ : Spec K[[t]] → X

an arc such that Supp φ−1(Sing(X)) = {0}. A sideways deformation of φ is an extension of φ to a
morphism Φ : Spec K[[t, s]] → X such that Supp Φ−1(Sing(X)) = {(0, 0)}.

Definition 4.2 We say that X is arcwise Nash-trivial if every general arc in Xsing
∞ has a sideways

deformation.

Definition 4.3 Let X be a variety over k. A divisor over X is called very essential if the following
holds. Let p : Y → X be a proper birational morphism such that Y is Q-factorial and has only arcwise
Nash-trivial singularities. Then centerY E is an irreducible component of p−1(Sing(X)).

In fact in the three counterexamples above, the components corresponding to Nash families are
given precisely by the unique very essential divisor. Imitating and conceptualizing the proofs of non-
essentiality appearing in the above counterexamples, one can show in full generality that divisors appear-
ing in the image of the Nash map are always very essential. We are lead to the following problem:

Problem 4.4 Is the Nash map surjective onto the set of very essential divisors?
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