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The Nash problem and its solution

The goal of this paper is to give a historical overview of the Nash Problem of arcs in arbitrary dimension, as well as its affirmative solution in dimension two by J. Fernandez de Bobadilla and M. Pe Pereira and a negative solution in higher dimensions by T. de Fernex, S. Ishii and J. Kollár. This problem was stated by J. Nash around 1963 and has been an important subject of research in singularity theory.

Introduction

In this paper, k is an algebraically closed field of characteristic 0 (see Remark 1.8 below for the case of positive characteristic).

Resolution of singularities

Let X be a singular algebraic variety over k and π : X -→ X a divisorial resolution of singularities of X (this means that π is bijective away from the closed set π -1 (Sing X) -such morphisms are called birational -X is a smooth variety and the exceptional set E =: π -1 (Sing X) is a divisor, that is, is of pure codimension one). Let

E = i∈∆ E i (1) 
be the decomposition of E into its irreducible components. The set E has two kinds of irreducible components: essential and inessential. Intuitively, an irreducible divisor is essential if it appears, as an irreducible divisor, on every divisorial resolution of X.

In general (that is, when dim X 3) it is quite difficult to show that a given component is essential (see [START_REF] Plénat | Families of higher dimensional germs with bijective Nash map[END_REF] for a discussion of this question as well as some sufficient conditions for essentiality and [START_REF] Fernex | Three-dimensional counter-examples to the Nash problem[END_REF] and [START_REF] Kollár | Arc spaces of cA 1 singularities[END_REF] for new criteria of essentiality). In dimension two there exists a unique minimal resolution X of X (in the sense that any other resolution of X maps to X) and each irreducible exceptional divisor of X is essential.

Example 1.1

• The first example is the following (see Ishii-Kollar [START_REF] Ishii | The Nash problem on arc families of singularities[END_REF]): Let X be defined by xyuv = 0 in C 4 . The variety X is of dimension 3, with isolated singularity at 0. One can resolve it either by blowing up up the point 0 (the map P 2 on the figure) or by blowing up the surface on X defined by x = u = 0 (the map P 1 ). In the first case, one obtains a divisorial resolution with one divisor, in the second case, the exceptional set E is a curve, hence of codimension 2, and so is not a divisor. Thus in dimension higher than 2, not all the resolutions are divisorial. The second resolution is an example of a small resolution, that is a resolution in which every irreducible component of the exceptional set has codimension strictly greater than 1.

• The second example is the variety defined in C 4 by

x 2 + y 2 + z 2 + w 4 = 0.
This variety can be resolved by two blowing ups at 0, this resolution being divisorial. But there also exists a small resolution, given by only one blowing up the subvariety defined by xy = 0 = zw 2 , which gives only one component for E. Thus one of the two divisors found in the first resolution is not essential. 

The space of arcs of X

In order to study resolutions X of X, J. Nash (around 1963Nash (around , published in 1995 [25] [25]) introduced the space X sing ∞ of arcs meeting the singular locus Sing X.

To give an idea of what the space X sing ∞ and its elements look like, let us first take k = C and consider the space of all the germs of parametrized analytic curves, contained in the algebraic variety X over C and meeting the singular locus Sing X. For example, suppose X is an affine variety, defined in C N by polynomial equations f 1 , . . . , f s in N variables. By definition, a parametrized analytic arc in X, meeting Sing X, is given by N convergent power series

         x 1 (t) = a 10 + a 11 t + a 12 t 2 + . . . x 2 (t) = a 20 + a 21 t + a 22 t 2 + . . . . . . x N (t) = a N 0 + a N 1 t + a N 2 t 2 + . . . (2) 
having the following properties: (a) for all j ∈ {1, . . . , s}, the convergent power series f j (x 1 (t), . . . , x N (t)) is identically zero as a power series in t (b) the point (a 10 , . . . , a N 0 ), which we refer to as the origin of the arc (2), belongs to Sing X.

A specific example of this situation when X is the hypersurface in C 3 defined by the equation

xy -z n+1 = 0 is discussed in Example 1.3 below.
For the purposes of the Nash problem, it is natural to consider formal parametrized curves instead of analytic ones, that is, to drop the convergence assumption on the power series x 1 (t), . . . , x N (t) above. In the algebraic language, we say that the power series (2) define a morphism from Spec C[[t]] to X such that the image of the closed point of Spec C[[t]] belongs to Sing X. Once the definition is expressed in the algebraic language, it is natural to extend it to arbitrary algebraically closed fields k and to varieties X which are not necessarily affine:

Definition 1.2 An arc is a k-morphism from Spec k[[t]] to X.
Let X sing ∞ be the set of arcs whose origin (that is, the image of the closed point) belongs to the singular locus of X.

The analogue of an arc in complex analysis is a test map from a small disc around the origin on the complex plane to X. We will also need to consider more general arcs, which are morphisms from Spec K[[t]] to X, where K is a field extension of k; they are called K-arcs. An arc living on A n and passing through 0 is given by three formal power series

   x(t) = a 1 t + a 2 t 2 + . . . y(t) = b 1 t + b 2 t 2 + . . . z(t) = c 1 t + c 2 t 2 + . . .
whose coefficients are elements of C and such that z(t) n+1 ≡ x(t).y(t). That last equation gives an infinity of equations on the coefficients of the arcs:

                   a 1 b 1 = 0 a 1 b 2 + a 2 b 1 = 0 . . . a 1 b n-1 + a 2 b n-2 + . . . + a n-1 b 1 c n+1 1 = a 1 .b n + . . . + b 1 a n . . .

Let us denote the closed point (the origin) of Spec k[[t]

] by 0 and the generic point by η.

An arc can be lifted to any resolution:

Lemma 1.4 Let f : X → X be a resolution of singularities. Every arc α : Spec K[[t]] → X such that α x (η) ∈ Sing(X) can be lifted uniquely to an arc α :

Spec k[[t]] → X.
The proof comes from the fact that the resolution map π is proper. In other words, as the resolution of singularities is an isomorphism away from E, one can lift the arc without the origin, and then take the closure.

Remark: the closure of each lifted arc intersects at least one of the irreducible exceptional divisors; moreover if an arc is general enough, its lifting intersects transversely one and only one irreducible exceptional divisor.

Let us fix a divisorial resolution of singularities X → X and let E = π -1 (Sing X). Consider the decomposition (1) of E into irreducible components, as above. Let ∆ ′ ⊂ ∆ denote the set which indexes the essential divisors.

M. Lejeune-Jalabert [START_REF] Lejeune-Jalabert | Courbes tracées sur un germe d'hypersurface[END_REF], inspired by Nash's original paper [START_REF] Nash | Arc structure of singularities[END_REF], proposed the following decomposition of the space X sing ∞ : for i ∈ ∆ ′ , let C i be the set of arcs whose lifting in X intersects the essential divisor E i transversally but does not intersect any other exceptional divisor E j . M. Lejeune-Jalabert shows that

X sing ∞ = i∈∆ ′ C i (3) 
and the set C i is an irreducible algebraic subvariety of the space of arcs.

The statement of the problem

Nash used the decomposition (3) to show that X sing ∞ has finitely many irreducible components, F 1 , . . . , F r , called families of arcs, and defined the following map: Definition 1.5 (Nash [25]) Let N : {F 1 , . . . , F r } → { essential divisors } be the map sending the family F i to the exceptional divisor E i such that the generic arc of F i has lifting to the resolution passing through a general point of the component E i .

He showed that this map, now called the Nash map, is injective. The celebrated Nash problem, posed in [START_REF] Nash | Arc structure of singularities[END_REF], is the question whether the Nash map is surjective.

Since the C i are irreducible, the families of arcs are among the C i 's. Moreover there are as many C i as essential divisors E i . Then the Nash problem reduces to showing that the C i , i ∈ ∆ ′ , are precisely the irreducible components of X sing ∞ , that is, to proving card(∆ ′ )(card(∆ ′ ) -1) non-inclusions:

Problem 1.6 Is it true that C i ⊂ C j for all i = j?
Example 1.7 Let us keep our attention on the singularity A n given in C 3 by the equation

z n+1 = x.y
It has an isolated singularity at 0. The exceptional divisor of the minimal resolution of A n consists of n irreducible curves E i , arranged in a chain, such that E i intersects E i+1 transversely for i ∈ {1, . . . , n-1}.

One can show that the first n equations of Example 1.3 completely describe the n irreducible components of A sing n,∞ and that the irreducible component F i is given by the a 1 = ...

= a i-1 = b 1 = ... = b n-i = 0. A general element of F k has the form :    x(t) = a k t k + a k+1 t k+1 + . . . y(t) = b n+1-k t n+1-k + b n+2-k t n+2-k + . . . z(t) = c 1 t + c 2 t 2 + . . . with a k , b n+1-k and c 1 different from zero.
Remark 1.8 All of the above definitions make sense also when car k > 0, with the following modification. An arc family is said to be good if its general element is not entirely contained in Sing X. When char k = 0 it is easy to show that all the arc families are good. Over fields of positive characteristic there may exist some bad families, and the Nash map is only defined on the set of good families. With this in mind, the Nash problem remains the same: is the Nash map, defined on the set of good families, surjective? See [START_REF] Reguera | Arcs and wedges on rational surface singularities[END_REF] for some recent work on the Nash problem in positive characteristic.

Some partial answers in dimension 2

Before the work of Fernandez de Bobadilla -Pe Pereira, the Nash problem for surfaces has been answered affirmatively in the following special cases: for A n singularities by Nash, for minimal surface singularities by A. Reguera [START_REF] Reguera | Families of arcs on rational surface singularities[END_REF] (with other proofs by J. Fernandez-Sanchez [START_REF] Fernandez-Sanchez | Equivalence of the Nash conjecture for primitive and sandwiched singularities[END_REF] and C. Plénat [START_REF] Plénat | A propos du problème des arcs de Nash[END_REF]), for sandwiched singularities by M. Lejeune-Jalabert and A. Reguera (cf. [START_REF] Lejeune-Jalabert | Arcs and wedges on sandwiched surface singularities[END_REF] and [START_REF] Reguera | Image of the Nash map in terms of wedges[END_REF]), for toric vareties in all dimensions by S. Ishii and J. Kollar [START_REF] Ishii | The Nash problem on arc families of singularities[END_REF] (using earlier work of C. Bouvier and G. Gonzalez-Sprinberg [START_REF] Bouvier | Diviseurs essentiels, composantes essentielles des variétés toriques singulières[END_REF] and [START_REF] Bouvier | Système générateur minimal, diviseurs essentiels et G-désingularisations des variétés toriques[END_REF]), for a family of non-rational surface singularities by P. Popescu-Pampu and C. Plénat ([30]), for quotients of C 2 by an action of finite group [START_REF] Pereira | Nash Problem for quotient surface singularities[END_REF] by M. Pe Pereira in 2010 based on the work [START_REF] Fernandez De Bobadilla | Nash problem for surface singularities is a topological problem[END_REF] of J. Fernandez de Bobadilla (other proofs for D n in 2004 by Plénat [START_REF] Plénat | A solution to the Nash Problem for rational double points D n (for n greater than 4)[END_REF], for E 6 in 2010 by C. Plénat and M. Spivakovsky [START_REF] Plénat | Nash Problem and the rational double point E 6[END_REF], with a method that works for some normal hypersurface singularities), and by M. Leyton-Alvarez (2011) for E 6 and E 7 , by applying the method for the following classes of normal hypersurfaces in C 3 : hypersurfaces S(p, h q ) given by the equation z p + h q (x, y) = 0, where h q is a homogeneous polynomial of degree q without multiple factors, and p 2, q 2 are two relatively prime integers [START_REF] Leyton-Alvarez | Résolution du problème des arcs de Nash pour une famille d'hypersurfaces quasi-rationnelles[END_REF]. A. Reguera [START_REF] Reguera | Arcs and wedges on rational surface singularities[END_REF] gave an affirmative answer to the Nash problem for rational surface singularities simultaneously and independently from the work [START_REF] Fernandez De Bobadilla | The Nash problem for surfaces[END_REF].

See the bibliography for a (hopefully) complete list of references on the subject.

In 2011, J. Fernandez de Bobadilla and M. Pe Pereira [START_REF] Fernandez De Bobadilla | The Nash problem for surfaces[END_REF] showed that the answer is positive for any surface singularity. The main aim of this paper is to give an idea of their proof. Before going further into the details, we need to recall some earlier results that lead to the final proof.

The rest of the paper is organized as follow: §2 is dedicated to the work preceding the paper [START_REF] Fernandez De Bobadilla | The Nash problem for surfaces[END_REF]; in §3 an outline of the proof is given. §4 contains a brief discussion of the Nash problem in dimension three and higher.

2 The wedge problem.

2.1 The Wedge problem [START_REF] Lejeune-Jalabert | Arcs analytiques et résolution minimale des singularités des surfaces quasihomogènes[END_REF] ...

In 1980, M.Lejeune-Jalabert proposed to look at the Nash problem from a new point of view. She formulated in [START_REF] Lejeune-Jalabert | Arcs analytiques et résolution minimale des singularités des surfaces quasihomogènes[END_REF] what is now called "the wedge problem", which is related to a "Curve Selection Lemma" in the space of arcs.

Let X be a singular algebraic variety over k. Let us first define wedge:

Definition 2.1 Let K be a field extension of k. A K-wedge on X is a k-morphism ω : Spec(K[[t, s]]) → X
which maps the set {t = 0} to Sing X.

The wedge ω induces two arcs on X as follows: a K-arc obtained by restricting ω to the set {s = 0} (this arc is called the special arc of ω), and a K((s))-arc, obtained by restricting ω to the set Spec(K[[t, s]]) \ {s = 0} (this arc is called the general arc of ω). We regard ω as a deformation of its special arc to its general arc or, alternatively, as an arc in the space of arcs X sing ∞ .

The wedge is said to be centered at an arc γ 0 if its special arc is γ 0 . Let (X, 0) be a germ of a normal surface singularity, and let π : ( X, E) → (X, 0) be its minimal (and so divisorial) resolution, with E = E j = π -1 (0). Let E i , E j be irreducible components of E (they are essential as X is a surface). Let C i and C j be as above. Then if C j ⊂ C i , E j is not in the image of Nash map. If one had Curve Selection lemma in the space of arcs X sing ∞ , the inclusion above would just mean that one has a k-wedge with special arc in C j and generic arc in C i . Then the morphism ω would not lift to the resolution X as it has an indeterminacy at 0. M. Lejeune-Jalabert proposed the following problem: Problem 2.2 For all irreducible essential divisors of the minimal resolution, any k-wedge centered at γ i ∈ C i can be lifted to X.

It is not trivial to generalize the classical Curve Selection Lemma to the case of infinite-dimensional varieties such as X sing ∞ . A. Reguera proved a Curve Selection Lemma for X sing ∞ thus establishing the equivalence between the the Nash and the wedge problems. The wedges appearing in A. Reguera's theorem are K-wedges rather than k-wedges, where K is an extension of k of infinite transcendence degree. In the following section we discuss this work of A. Reguera and its generalizations due to J. Fernandez de Bobadilla and A. Reguera -M. Lejeune-Jalabert, which reduce the Nash problem to the problem of lifting of k-wedges to the minimal resolution.

...is equivalent to Nash problem of arcs

In the paper [START_REF] Reguera | A curve selection lemma in space of arcs and the image of the Nash map[END_REF], A. Reguera has shown that a positive answer to the wedge problem is equivalent to the surjectivity of the Nash map. She has also extended the wedge problem to all dimensions. Note that she does not assume the singular varieties to be normal. More precisely, she proves the following: Theorem 2.3 Let X be a singular variety. Let E i be an essential divisor over X. Let γ i be the generic point of C i (the closure of the set of arcs lifting transversally to E i ), k i its residue field. The following are equivalent:

1. E i belongs to the image of the Nash map.

2. For any resolution of singularities p : X → X and for any field extension K of k i , any K-wedge whose special arc maps to γ i , and whose generic arc maps to X sing ∞ , lifts to X. 3. There exists a resolution of singularities p : X → X satisfying the conclusion of (2).

To prove this she needed a Curve Selection lemma for X sing ∞ for curves defined over K. This field is of infinite transcendence degree over k, so it is quite difficult to work with. J. Fernandez de Bobadilla [START_REF] Fernandez De Bobadilla | Nash problem for surface singularities is a topological problem[END_REF] and M. Lejeune-Jalabert with A. Reguera [START_REF] Lejeune-Jalabert | Exceptional divisors which are not uniruled belong to the image of the Nash map[END_REF] have shown, independently, that one may replace K by k in A. Reguera's theorem, provided that k is uncountable.

Let us cite some results from Fernandez de Bobadilla's paper. First, he gives the definition of wedges that realize an adjacency between two essential divisors: Definition 2.4 Let E u and E v be two essential divisors, and C u and C v the irreducible subvarieties of X sing ∞ associated to these divisors. A K-wedge realizes an adjacency from E u to E v if its generic arc belongs to C u and its special arc belongs to Ċv (i.e. it is transverse to E v in a general point of E v ).

Note that if such a wedge exists, then C v is not in the image of Nash map. This statement can be interpreted as the easy part of the previous Theorem of A.Reguera (1 =⇒ 2): a wedge realizing the adjacency cannot be lifted to any resolution.

J. Fernandez de Bobadilla proves the following theorem:

Theorem 2.5 Let (X, 0) be a normal surface singularity defined over an uncountable algebraically closed field k of characteristic 0. Let E v be an essential irreducible component of the exceptional divisor of a resolution. Then the following are equivalent:

1. The set C v is in the Zariski closure of C u , where E u is another irreducible component of the exceptional divisor.

2. Given any proper closed subset Z ⊂ C u , there exists an algebraic k-wedge realizing an adjacency from E u to E v and avoiding Z.

3. There exists a formal k-wedge realizing an adjacency from E u to E v .

4. Given any proper closed subset Z ⊂ C u , there exists a finite morphism realizing an adjacency from E u to E v and avoiding Z.

See [START_REF] Fernandez De Bobadilla | Nash problem for surface singularities is a topological problem[END_REF] for the definition of finite morphism realizing an adjacency from E u to γ.

J. Fernandez de Bobadilla also proved in [START_REF] Fernandez De Bobadilla | Nash problem for surface singularities is a topological problem[END_REF] that the Nash problem for surfaces is a topological problem, in other words, if the answer is affirmative for a certain normal surface singularity (X, 0), it is also positive for any normal surface singularity, diffeomorphic to X: Theorem 2.6 The set of adjacencies between exceptional divisors of a normal surface singularity is a combinatorial property of the singularity: it only depends on the dual weighted graph of the minimal good resolution. In the complex analytic case this means that the set of adjacencies only depends on the topological type of the singularity and not on the complex structure.

A sketch of the proof for normal dimension two singularities is the subject of the following section. We will need to first define what a geometric Milnor representative of an arc and a wedge are.

3 Solution of the Nash problem for surfaces Theorem 3.1 Let k be an algebraically closed field of characteristic 0 and (X, 0) a normal singular surface over k. The Nash map associated to (X, 0) is bijective.

In [START_REF] Fernandez De Bobadilla | Nash problem for surface singularities is a topological problem[END_REF] (7.2 p. 163), J. Fernandez de Bobadilla shows that the families of arcs are stable under base change and so is the bijectivity of Nash map. This allows to reduce the problem to the case of normal surface singularities over C.

Let (X, 0) be a normal surface singularity over C. (The non-normal case can be reduced to the normal one).

The proof proceeds by contradiction.

Let E = n i=0 E i be the decomposition of E into irreducible components. Suppose there are two irreducible subvarieties of X sing ∞ C 0 and C i associated with two essential divisors E 0 and E i of the minimal resolution such that C 0 ⊂ C i .

From now on, replace X by its underlying complex-analytic space. By abuse of notation, we will continue to denote this space by X. Let π : X → X be the minimal resolution of X.

For an analytic wedge α : (C 2 , 0) → X we denote the generic arc by α(t, s) = α s (t) and the special arc α(t, 0) by γ(t). Aiming for contradiction, we now consider an analytic wedge α : (C 2 , 0) → X realizing the adjacency from E i to E 0 , that is, a wedge such that the generic arc belongs to C i and the special arc belongs to C 0 .

J. Fernandez de Bobadilla and M. Pe Pereira define the notion of Milnor representative of arcs and wedges.

Let us call X ε0 = X ∩ B ε0 the Milnor representative of X. This means, by definition, that for all 0 < ε ε 0 the sphere S ε is transverse to X and X ∩ S ε is a closed subset of S ε .

Consider the special arc γ : (C, 0) → X ε0 . It is proved in [START_REF] Pereira | Nash Problem for quotient surface singularities[END_REF] and [START_REF] Fernandez De Bobadilla | The Nash problem for surfaces[END_REF] that there exists ε ε 0 such that, restricted to X ε , γ becomes a Milnor arc: Definition 3.2 Milnor arc A Milnor representative of γ is a map of the form γ| U : U → X ε such that γ| U is a proper morphism, U is diffeomorphic to a closed disc, γ -1 (∂X ε ) = ∂U and the mapping γ |U is transverse to any sphere S ε ′ for ε ′ ε. The radius ε is called a Milnor radius for γ.

Let γ | U : U → X ε be a Milnor Representative of γ. For the disc D δ of radius δ around the origin in the complex plane we will use the notation Ḋδ = D δ \ {0}.

We replace α by its restriction to U ×D δ , where δ is a small positive number, specified immediately below.

Milnor wedge.

There exist δ > 0 small enough, an open set U ⊂ U × D δ and a map

β : U × D δ → X ε × D δ (t, s) → (α s (t), s)
such that the set U s = U ∩C×{s} is diffeomorphic to a disc for all s and satisfying some other transversality and finiteness conditions, which we omit in order not to overburden the exposition with technical details.

Definition 3.3

The map β restricted to U is a Milnor representative of the wedge α. Remark 3.4 One has to prove that such a representative does exist, in particular that the set U can be taken to be differomorphic to a bidisk. See [START_REF] Pereira | Nash Problem for quotient surface singularities[END_REF] or [START_REF] Fernandez De Bobadilla | The Nash problem for surfaces[END_REF].

These definitions of representatives are a key point in the proof of the theorem.

The main idea of the proof: Let α s : U s → X ε be a generic arc of the wedge. By construction, U s is a disk and thus has Euler characteristic equal to one. The aim of the rest of the proof is to show that the Euler characteristic of U s is bounded above by an expression less or equal to 0, and thus get a contradiction.

Eliminating the indeterminacy of α

Let β be the meromorphic map defined as the composition of σ

-1 • β with σ = (π, id | D δ ): Xε × D δ σ U β ; ; w w w w w β / / X ε × D δ
The indeterminacy locus of σ -1 • β is of codimension 2. Thus we may assume that, shrinking the radius δ, if necessary, (0, 0) is the only indeterminacy point of β.

Moreover there exists a unique meromorphic lifting α of α such that:

Y / / Xε π U α ? ? α / / X ε Let Y be the analytic Zariski closure of σ -1 (β(U)\({0} × D δ )) and let Y s = Y ∩ ( Xε × {s}).
The surface Y is reduced and is a Cartier divisor in the smooth threefold X × D δ . One can prove the following ( [START_REF] Fernandez De Bobadilla | The Nash problem for surfaces[END_REF]):

Y s = αs (U s ) ∀s ∈ Ḋδ .

Remark 3.5 Y s can be thought as the topological image of the lifting of the arc α s on Xε .

Moreover, one has that:

Lemma 3.6 The mapping αs : U s → Y s is the morphism of normalization of Y s .

To prove this, we use the following lemma :

Lemma 3.7 The mapping α s : U s → X ε is one-to-one. As explained before, to obtain a contradiction we want to show that U s has non-positive Euler characteristic. To do this, Fernandez de Bobadilla and Pe Pereira give an upper bound on χ(U s ) in terms of χ(Y s ), χ(Y 0 ) and the possible returns.

End of the proof

The curve Y 0 = Y ∩ ( Xε × {0}) does not need to be reduced. It contains Z 0 := α0 (U 0 ) and a sum of the exceptional components E i with suitable multiplicities. We express this situation by the equation Y 0 = Z 0 + a i E i ; the analytic space Y 0 is reduced along Z 0 \E. A crucial point in the proof of Fernandez de Bobadilla -Pe Pereira is the fact that Y s is a deformation of Y 0 , and hence is numerically equivalent to it, that is, Y s and Y 0 have the same intersection number with any compact curve in Xε . We construct a tubular neighborhood of E in the following way.

Define Ėi = E i \Sing(Y red 0 ). Let Sing(Y red 0 ) = {p 0 , p 1 , ..., p m }, where p 0 = Z 0 ∩ E. Let B k be a small ball in X centered at p k . For j ∈ {0, . . . , n}, let T j be a tubular neighborhood of E j , small enough so that its intersection with each B k is transverse. Let T n+1 be a tubular neighborhood of Z 0 , small enough so that its intersection with B 0 is transverse. Let W j = T j \ m k=0 B k . All the neighborhoods are chosen so that 

χ(U s ) = n+1 j=0 χ( αs -1 (Y s ∩ W j )) + m k=0 χ( αs -1 (Y s ∩ B k )). (4) 
(Y s ∩ T j ∩ B k ) = 0. (5) 
It remains to bound above each summand on the right hand side of (4). Using topological techniques, the authors prove, under some extra assumptions, that

χ(U s ) i a i (2 -2g i + E i .E i ). (6) 
This last sum is less or equal to 0 as each member is less than or equal to 0. This proves that the disc U s has non-positive Euler characteristic, which gives the desired contradiction. In the general case, the authors obtain a more complicated version of the formula [START_REF] Fernandez-Sanchez | Equivalence of the Nash conjecture for primitive and sandwiched singularities[END_REF], which leads to the same final conclusion.

Higher dimensions

For singularities of higher dimensions, the Nash Problem stated as above is false, though a few positive results have been proved: in [START_REF] Ishii | The Nash problem on arc families of singularities[END_REF], S. Ishii and J. Kollar give an affirmative answer for toric varieties in all dimensions. Affirmative answers were given for a family of singularities in dimension higher than 2 by P. Popescu-Pampu and C. Plénat ( [31]) and for another family by M. Leyton-Alvarez [START_REF] Leyton-Alvarez | Résolution du problème des arcs de Nash pour une famille d'hypersurfaces quasi-rationnelles[END_REF] (2011).

In [START_REF] Ishii | The Nash problem on arc families of singularities[END_REF], S. Ishii and J. Kollár give a counterexample to the Nash problem in dimension greater than or equal to 4: the hypersurface x 3 + y 3 + z 3 + u 3 + w 6 = 0 which has a resolution with two irreducible exceptional components. These are essential, as one is the projectivization of the tangent cone at the singular point (hence it clearly corresponds to a Nash family), and the other one is not uniruled. Then the authors construct geometrically a wedge whose generic arc is in the Nash family, and whose special arc is in the second family. In May 2012, T. de Fernex gave a counterexample in dimension 3 ([3], 2012). The equation is (x 2 + y 2 + z 2 )w + x 3 + y 3 + z 3 + w 5 + w 6 = 0 (7)

In the algebraic setting, he can prove that the two exceptional components obtained after two blowing-ups are essential. But as an analytic variety, the hypersurface obtained from ( 7) by blowing up the origin is locally isomorphic to the non-degenerate quadratic cone, hence it admits a small resolution; this implies that the second exceptional component is not essential, so the counterexample does not apply in the analytic category. Deforming the equation ( 7), de Fernex obtains a counterexample to the Nash problem in dimension 3, valid in both the algebraic and the analytic setting:

(x 2 + y 2 )w + x 3 + y 3 + z 3 + w 5 + w 6 = 0.

An even more recent paper on the Nash problem is due J. Kollár [START_REF] Kollár | Arc spaces of cA 1 singularities[END_REF]. In that paper, J. Kollár gives a new family of counterexamples to the Nash problem in dimension 3, called cA 1 -type singularities:

x 2 + y 2 + z 2 + t m = 0 with m odd, m > 3. These singularities are isolated and have only one Nash family, but two of the exceptional components in the resolution are essential. Moreover, Kollár formulates the Revised Nash problem, which we now explain. Definition 4.1 Let X be a variety over a field k, k ⊂ K a field extension of k and φ : Spec K[[t]] → X an arc such that Supp φ -1 (Sing(X)) = {0}. A sideways deformation of φ is an extension of φ to a morphism Φ : Spec K[[t, s]] → X such that Supp Φ -1 (Sing(X)) = {(0, 0)}. Definition 4.2 We say that X is arcwise Nash-trivial if every general arc in X sing ∞ has a sideways deformation. Definition 4.3 Let X be a variety over k. A divisor over X is called very essential if the following holds. Let p : Y → X be a proper birational morphism such that Y is Q-factorial and has only arcwise Nash-trivial singularities. Then center Y E is an irreducible component of p -1 (Sing(X)).

In fact in the three counterexamples above, the components corresponding to Nash families are given precisely by the unique very essential divisor. Imitating and conceptualizing the proofs of nonessentiality appearing in the above counterexamples, one can show in full generality that divisors appearing in the image of the Nash map are always very essential. We are lead to the following problem: 
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 1 Figure 1 : Two resolutions of xy-uv=0

Example 1 . 3

 13 Let us have a look at the singularity A n given in C 3 by the equation z n+1 = x.y It is the first example studied by J.Nash. It has an isolated singularity at 0.

Figure 2 :

 2 Figure 2 : Wedge representative

Figure 3 :

 3 Figure 3 : Normalization map
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 44 Is the Nash map surjective onto the set of very essential divisors?