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to cost-effectiveness analysis
Laetitia LAGUZET∗ and Gabriel TURINICI†
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Abstract
This work focuses on optimal vaccination policies for an Susceptible -

Infected - Recovered (SIR) model; the impact of the disease is minimized
with respect to the vaccination strategy. The problem is formulated as an
optimal control problem and we show that the value function is the unique
viscosity solution of an Hamilton - Jacobi - Bellman (HJB) equation. This
allows to find the best vaccination policy. At odds with existing literature,
it is seen that the value function is not always smooth (sometimes only
Lipschitz) and the optimal vaccination policies are not unique. Moreover
we rigorously analyze the situation when vaccination can be modeled as
instantaneous (with respect to the time evolution of the epidemic) and
identify the global optimum solutions. Numerical applications illustrate
the theoretical results. In addition the pertussis vaccination in adults is
considered from two perspectives: first the maximization of DALY averted
in presence of vaccine side-effects; then the impact of the herd immunity
on the cost-effectiveness analysis is discussed on a concrete example.

Keywords: optimal vaccination, SIR model, vaccination region, herd
immunity and cost-effectiveness,

1 Outline of the paper
1.1 Background on vaccination strategies
The mathematical modelling of the spread of an infection disease allows to
propose control strategies to decrease the cost of the epidemic. Among such
control strategies we focus in this work on the vaccination. A vaccination policy
indicates when and how many people should be vaccinated in order to minimize
the overall impact of the epidemic. We consider here a cost that sums the cost of
the infected individuals and the cost to vaccinate the individuals (see formula (3)
below for the mathematical definition). We also apply the same methodology to
cost-effectiveness analysis in the context of a constrained public health budget.
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1.2 State of the art and motivation
The mathematical analysis of the cost, as a function of the vaccination pol-
icy, allows to obtain an optimal vaccination strategy. Consider the epidemic in
Figure 1 (see caption for the detail of the parameters) where the abscissa rep-
resents the number of the susceptible in the population, and the ordinate the
proportion of infected people. In the literature several proposals for the best
vaccination strategy are presented (see for example [2, 10, 23, 27]); however
previous works operated under specific assumptions on the value function (see
below) and consequently did not always selected the best vaccination policy.

For instance, as we illustrate in Figure 1 the solution available in the liter-
ature is, in some cases, not optimal. The two curves represent two scenarios
for an epidemic starting for an initial point X0. The solid curve represents the
epidemic evolution when there is no vaccination (the state of the art solution for
this set of parameters) and the dashed curve plots the epidemic evolution when
there is some partial vaccination. The partial vaccination is seen to outperform
the no vaccination policy.

For further information see the literature review in Section 2.4.

1.3 Methodology and results
Prompted by this remark we look in this work into the details of the calculation
of the best vaccination strategy (using the technique of the ”viscosity solutions”)
and note that all previous works used a specific assumption which is not always
true; we explain precisely when the assumption is correct (and thus the previous
works identified correctly the optimal vaccination policy) and when it is not (and
in this case we describe the best vaccination policy).
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Figure 1: Two trajectories of an epidemic evolution (corresponding to the
SIR model in equations (1)) are presented. The epidemic starts from X0 =
(0.79, 0.0053). The parameters used are β = 73, γ = 36.5, umax = 100, rI = 1
and rV = 1.5 (see formula (3) for the meaning of the parameters rI and rV and
Section 2.2 for umax). The solid curve represents the epidemic evolution when
there is no vaccination (which is the state of the art solution, see [2, 23, 27])
and the dashed curve plots the epidemic evolution when there is some partial
vaccination. The cost for the first trajectory is 0.51 and for the second is 0.49.
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Figure 2: Graphical illustration of the SIR-V model.

1.4 Structure of the paper
The paper is organized as follows: in the next section we describe the math-
ematical model (section 2.1), the admissible vaccination policies (section 2.2),
introduce some notations in section 2.3 and give an overview of the contributions
from the literature in section 2.4; finally we present some technical obstacles in
section 2.5.

In section 3 several applications of the theoretical results (proved in ap-
pendixes D and E) are presented. A summary of the numerical procedure to
find the best vaccination strategy is the object of section 4.

Then in section 5 we consider two applications to the optimal pertussis
vaccination in adults. Finally, conclusions are the object of section 6.

2 Model, notations and first remarks
2.1 The model
In order to model the evolution of an epidemic, we use an SIR (Susceptible -
Infected - Recovered) compartment model (cf., [6, 13, 5] for additional details).

We seek to optimize the cost of the vaccination policy; to this end de-
note by V (t) the proportion of people vaccinated by the time t (of course
limt→∞ V (t) ≤ 1); we consider vaccines that confer lifetime immunity so
that V is an increasing function. The evolution of the disease is described by
the following equations:

dX1(t) = −βX1(t)X2(t)dt − dV (t), X1(0) = X10,

dX2(t) =
(

βX1(t)X2(t) − γX2(t)
)

dt, X2(0) = X20,

dX3(t) = γX2(t)dt, X3(0) = X30,

X4(t) =
∫ t

0 dV, X4(0) = 0.

(1)

Here X1, X2, X3, X4 are the proportion of people in the ”susceptible” re-
spectively ”infectious”, ”recovered” and ”vaccinated” classes. Initially X1(0) +
X2(0) + X3(0) = 1 and X4(0) = 0 (but X4 need not be continuous in 0). See
figure 2 for a graphical view of system (1). Note that (1) implies X1(t)+X2(t)+
X3(t) + X4(t) = 1, ∀t ≥ 0.

3



Here β is the transmission rate of the disease, V is the control to be optimized
and γ is the recovery rate.

We denote rV the unitary cost associated with vaccination including the
cost of the vaccine and all possible side-effects and rI the unitary cost incurred
by infected persons. To simplify the presentation we suppose that costs are
expressed in money and postpone to Section 5 the more realistic and interesting
situations when costs are expressed as medical conditions.

The cost of the disease is independent of the classes X3 and X4 (but depen-
dent on the control V (t)), so we can restrict ourselves to the evolution of X1
and X2. From now on a vector X will only be supposed to have two coordinates
X1 and X2. Denoting:

Ω = {X = (X1, X2) ∈ R2 | X1, X2 > 0, X1 + X2 < 1}, (2)

we will work under the constraints X ∈ Ω.
We introduce ΦY,dV (t) = (ΦY,dV

1 (t), ΦY,dV
2 (t)) to denote, at time t ≥ 0, the

solution of the system (1) starting at point X(0) = Y and with control dV ; in ad-
dition Z = ΦY,dV (·)(−t) means Y = ΦZ,dV (t−·)(t) (the reverse system has a well
defined mathematical meaning). To ease notations, when the measure dV is ab-
solutely continuous with respect to the canonical Lebesgue measure dt on [0, ∞[
i.e., when dV can be written dV = u(t)dt we will also write ΦY,u(t)(t) instead
of ΦY,u(t)dt(t) (and the same for the components ΦY,u(t)dt

1 (t) and ΦY,u(t)dt
2 (t)).

Remark 1. Here and in all that follows we consider the interval [0, ∞[ open at
infinity. This simply means that ∞ is not an admissible value and no strategy
can vaccinate at t = ∞; on the contrary instantaneous vaccination at t = 0 is
possible.

The cost of the disease is:

J(Y, dV ) =
∫ ∞

0
rIβΦY,dV

1 (t)ΦY,dV
2 (t)dt +

∫ ∞

0
rV dV (t). (3)

Moreover we will use the following notation J0(Y ) = J(Y, 0); note that
J0(Y ) is a cost proportional with the number of people infected in absence
of vaccination. This number will be denoted ζ(Y ) thus J0(Y ) = rIζ(Y ) (see
Appendix A for the properties of ζ).
Remark 2. Equation (1) implies

ΦX,dV
2 (∞) = ΦX,dV

2 (0) +
∫ ∞

0
dΦX,dV

2 (t)

= ΦX,dV
2 (0) +

∫ ∞

0

(
βΦX,dV

1 (t)ΦX,dV
2 (t) − γΦX,dV

2 (t)
)

dt (4)

Thus, since ΦX,dV
2 (∞) = 0:∫ ∞

0
rIβΦX,dV

1 (t)ΦX,dV
2 (t)dt =

∫ ∞

0
rIγΦX,dV

2 (t)dt − ΦX,dV
2 (0). (5)

This allows to conclude that the cost functional

Jd(Y, dV ) =
∫ ∞

0
rd

I ΦY,dV
2 (t)dt +

∫ ∞

0
rV dV (t) (6)
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with rd
I = rIγ satisfies

Jd(Y, dV ) = J(Y, dV ) + Y2. (7)

Both Jd and J will thus have same optimal strategies (because their difference
is independent of the strategy dV ). Here rd

I can be seen as the unitary cost of
infection per unit time.

2.2 The admissible vaccination policies
Vaccination policy dV can be modeled in different ways. Note that the pro-
portion

∫ t

0 dV (s) of individuals vaccinated up to time ”t” is increasing and∫ t

0 dV (s) ≤ 1, ∀t ≥ 0; therefore V is a bounded variation function and dV (t)
is a positive measure on [0, ∞[; this is the most general class of vaccination
strategies. A restrictive class of vaccination policies will also be considered (see
also the literature review in Section 2.4 below) where the speed of vaccination is
bounded; in this case dV (t) = u(t)dt with u(t) ∈ [0, umax]. Generic results (see
e.g., [7]) suggest that considering controls with bounded speed is not restrictive
because the general situation is obtained in the limit umax → ∞. We will rigor-
ously prove this assertion in appendix E and will work with the restricted class
of vaccination policies until then.

We can write system (1) as:

d


X1
X2
X3
X4

 =


−βX1X2

βX1X2 − γX2
γX2

0

 dt +


−1
0
0
1

 dV (t). (8)

Recall that (X1, X2, X3, X4) 7→ (−βX1X2, βX1X2−γX2, γX2, 0)T and (X1, X2, X3, X4) 7→
(−1, 0, 0, 1)T are Lipschitz functions, and V is a bounded variation function.

Then using the theoretical results in [11, Section 10, Thm. 10.2.3] it is
possible to conclude that (8) has a solution and the solution depends smoothly
on the initial data and the control V (in L1 norm).

Let us make clear how a mathematical object such as V can be translated
into vaccination policies for the unbounded case. Take for instance the trajectory
ΦY,dV (t) driven by the control (here δt=0 is the Dirac mass in t = 0):

dV (t) =


Y1

2
δt=0, t = 0 (9a)

0.10, t ∈]0, 0.5[ (9b)
0, t ≥ 0.5. (9c)

This means that half of the initial susceptible population Y1 is vaccinated
(instantaneously) at the onset t = 0. Then vaccination is pursued with speed
of 10% percent per unit time till time t = 0.5; then no vaccination occurs.
In particular this means that 50 + 0.5 × 10 = 55 percent of the population
is vaccinated in all. Note that the trajectory ΦY,dV (t) is not continuous since
ΦY,dV

1 (0+) = ΦY,dV
1 (0)/2. This trajectory can be seen as the limit when ϵ → 0
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of the trajectories ΦY,dVϵ(t) corresponding to the following vaccination policies:

dVϵ(t) =


Y1

2ϵ
, t ∈ [0, ϵ] (10a)

0.10, t ∈]ϵ, 0.5[ (10b)
0, t ≥ 0.5. (10c)

2.3 Notations and first remarks
We introduce the function f : Ω × R 7→ R2 :

(X, u) ∈ Ω × R 7→ f(X, u) = (−βX1X2 − u, βX1X2 − γX2) ∈ R2. (11)

Note that f(·, u) is a Lipschitz function with Lipschitz constant Lf indepen-
dent of the second argument, i.e.,

∥f(Y, u) − f(Z, u)∥ ≤ Lf ∥Y − Z∥, ∀ Y, Z ∈ Ω. (12)

In order to define the admissible controls we consider a point Y ∈ Ω; for
umax < ∞ we define:

Uumax

Y =
{

u : [0, ∞[→ [0, umax]
∣∣∣ u measurable, ΦY,u(·)(t) ∈ Ω, ∀t ≥ 0

}
. (13)

When umax = ∞ we define:

U∞
Y =

{
dV positive measure on [0, ∞[

∣∣∣∣∫ ∞

0
dV ≤ Y1 ≤ 1, ΦY,dV (t) ∈ Ω, ∀t ≥ 0

}
.

(14)
Irrespective of whether umax is bounded or not the set Uumax

Y is a closed
subset of the set of (finite, positive) measures on [0, ∞[. Note that for any
Y ∈ Ω and any umax : 0 ∈ Uumax

Y .
To make notations easier we will not write the dependence of Uumax

Y with
respect to Y or umax and only denote, when there is no ambiguity, by UY or U
the set of admissible controls.

For umax < ∞ we define the Hamiltonian Humax : Ω × R2 → R as:

Humax(X, p) = min
w∈[0,umax]

[p · f(X, w) + rIβX1X2 + rV w] (15)

= −umax(p1 − rV )+ + βX1X2(rI + p2 − p1) − γX2p2. (16)

When umax = ∞ the previous definition is to be replaced by H∞ : Ω×R2 →
R:

H∞(X, p) = min {rV − p1, βX1X2(rI + p2 − p1) − γX2p2} . (17)

The value function Vumax : Ω → R is (for any umax be it bounded or not):

Vumax(Y ) = inf
u∈Uumax

Y

J(Y, u). (18)

Any u such that J(Y, u) = Vumax(Y ) is called an optimal strategy for
Y ; it is not necessarily unique. However it has been proved in [10] that if
umax < ∞ at least one optimal strategy exists in the set Uumax

Y and has the
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form u = umax1I[0,θ(Y )] with θ(Y ) ≥ 0. In fact since the total proportion of
people susceptible to be vaccinated is at most 1 then θ(Y ) ≤ Tmax := 1/umax.
From now on we fix θ : Ω → [0, ∞[ to be a function (whose existence is guar-
anteed by the above mentioned result) such that umax1I[0,θ(Y )] is an optimal
strategy for Y .

We introduce the following notations:

• A = ( γ
β , 0) ∈ R2,

• Γ1 = {(X1, X2) ∈ Ω | X1 + X2 = 1},

• ΓI = {(X1, X2) ∈ Ω | X1 = 0},

• ΓS = {(X1, X2) ∈ Ω | X2 = 0},

• ΓOA = {(X1, X2) ∈ ΓS | 0 ≤ X1 ≤ γ
β },

• ΓA1= {(X1, X2) ∈ ΓS | γ
β ≤ X1 ≤ 1}.

Note that when γ/β > 1: A /∈ Ω, ΓOA = ΓS and ΓA1 = ∅.

X11A = ( γ
β
, 0)

X2

1

O
ΓA1

ΓI

Γ1

ΓOA
•

X11

X2

1

O
ΓS

ΓI

Γ1

Figure 3: Boundary representation when γ
β < 1 (left) and γ

β ≥ 1 (right).

Lemma 2.1. The value function Vumax is bounded on Ω. Moreover Vumax |ΓI ∪ΓOA
= 0

and Vumax is continuous on ΓI ∪ ΓOA.

Proof. Choose u = 0 then

Vumax(X) ≤ J(X, 0) = J0(X) ≤ rIX1 ≤ rI , ∀X ∈ Ω. (19)

Note that J(X, u) = 0 ∀X ∈ ΓI , ∀u ∈ UX ; using (19) we obtain Vumax(X) = 0
∀umax ∈ [0, ∞], ∀X ∈ ΓI and the continuity on ΓI . To set the value on ΓOA

note that when X is such that X1 < γ/β then ΦX,0
2 (t) tends exponentially to

zero. Therefore: J(Xn, 0) → 0 when Xn → X ∈ ΓOA.
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2.4 Literature review
Many epidemic models have been proposed in order to describe epidemic prop-
agation (see [6, 13, 5] for details). These models can be adapted in order to help
controlling the propagation; several control options are available such as isolat-
ing infected people or immunizing susceptible people (see also [29, 10, 17] which
propose combinations of these two methods). In this work we only analyze con-
trol policies that consist in the vaccination of susceptibles (immunization). The
vaccination is supposed to confer lifetime (i.e., irreversible) immunity. In the
context of immunization, several facts can affect the decisions of vaccination.
The reference [16] discusses this problem in general, [9] proposes an approach
taking the individual point of view, and [31] introduces an extension also using
game theory.

The present work is on the contrary only concerned with finding an optimal
vaccination strategy. Several studies have already considered this approach
recasting it as an optimal control problem.

Historically one of the first to consider this problem, Abakuks explores two
alternatives: in [2] a restrictive class of vaccination policies which allows at any
time to immunize either all or none of the susceptible (therefore optimal policy
immunizes either at once or never); in [1] the author considers policies which at
any time during the course of the epidemic allow to immunize any number of
the susceptible.

Abakuks proves the existence of an immunization region: within this region
it is best to vaccinate with maximum effort and outside it is optimal to do
nothing. The result is only obtained for umax = ∞; moreover the proof only
applies to vaccination policies dV that are finite sums of Dirac masses and it is
not indicated how the value function V∞ (assumed to be continuous) behaves
in the limit when Dirac masses accumulate near a point or when such masses
converge to a general measure on [0, ∞[.

In another work (see [19]) Hethcote considers a similar problem under ad-
ditional constraints on the total proportion of the population affected and the
maximum number of infected at the peak; the vaccination policies are taken to
be stepwise constant functions and the cost of vaccination piecewise quadratic
in the number of people vaccinated. He shows that the optimal strategy will be
piecewise constant, with at most a single point of discontinuity.

In a similar work [23] authors consider umax = 1 and define the class of
admissible policies to contain function with only isolated discontinuities. They
show that the optimal strategy has a single point of discontinuity and introduce
the concept of vaccination border. To do this, they assume that the value
function Vumax is C1(Ω) which, as it will be seen in the following, is not always
the case (it depends on the specific choice of parameters β, γ, umax, rV , rI).

In [29] authors set umax < ∞ for a finite horizon framework T < ∞ and
work under the additional presence of a dumping term e−rt in the cost func-
tional which reads:

∫ T

0 e−rt
(

rV u(t)+rIΦX,u(t)
2 (t)

)
dt; moreover the infected are

supposed to pay an infection cost per unit time up to the time T and nobody
recovers before time T , i.e., with our notations γ = 0. They use the maximum
principle to characterize the optimal policies which turn out to be of bang-bang
type with only one switch.

In [20] the existence and local optimality of singular controls is investigated
and using the Maximum Principle it is shown that the optimal vaccination
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schedule can be singular. This corresponds to our limit umax → ∞. However
no information is obtained on the regularity of the value function.

In the references described so far the authors focused on the optimal strategy
without studying the properties of the value function. Using a similar model
and an approach via optimal control [27] finds, via a Bellman equation, that the
strategy is type bang-bang (only values 0 and umax are taken). However they
assume that the cost function is C1(Ω); finally, the results in the case where
umax → ∞ are extrapolated and they suppose that the optimal strategy is
bang-bang. As such the optimal policies are sometimes at odd with results in
the stochastic case.

In a recent work H. Behncke (see [10]) proves, without using that value
function is C1(Ω), that at least one optimal strategy for the trajectory starting
at X ∈ Ω is of the form umax1I[0,θ(X)], θ(X) ≥ 0, ∀X ∈ Ω. Although this
information is very useful it does not allow to conclude on the regularity of
the value function. As an illustration, we plot two situations: with parameters
in figure 4 the function θ(X) is C1(Ω) while with parameters in figure 5 the
function θ(X) is discontinuous.

Finally, without specifically entering in the context of epidemiology but using
a general optimal control framework and the concept of viscosity solution the
reference [32] analyzes the properties of the value function in the situation when
a discount factor is present.

Considering the previous works several questions arise:

1. For which set of parameters (β, γ, umax, rV , rI) is the value function
Vumax of class C1(Ω) and when is it less regular; note that if the value
function Vumax is not C1 some vaccination strategies derived under the C1

hypothesis will not be globally optimal.

2. Are the optimal strategies unique ?

3. What happens when umax = ∞ (i.e., when vaccination is fast with respect
to the epidemic propagation).

Our work answers these questions. In particular we show that value function
is not always C1, the optimal strategies not always unique and prove rigorously
what happens in the limit umax → ∞.

2.5 Specific mathematical difficulties of the problem
The approach proposed in this work faces specific technical difficulties among
which:

• There do not exist natural boundary conditions to set on some parts of the
frontier (Γ1 and ΓA1). This will pose problem when proving the uniqueness
of the solution of the associated HJB equation. See section D.3 for the
technique used to mitigate this difficulty.

• The state X is restricted to Ω while the controls e.g., in the form dV = udt,
u ∈ [0, umax] can drive it outside this domain.

• The cost function J(X0, dV ) has no dumping term e−rt, so we need to
work in infinite horizon. This is a problem when trying to obtain Lipschitz
regularity for the value function. See section D.2.
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Figure 4: θ(X) for parameters umax = 100, rV = 0.5, rI = 1, β = 73,
γ = 36.5. Left: Representation as 3D function. Right: representation as
level lines. We observe that θ is regular.
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Figure 5: θ(X) for parameters umax = 100, rV = 1.4, rI = 1, β = 73, γ = 36.5.
Left: Representation as 3D function. Right: representation as level lines. In
both cases we zoom on the discontinuity curve and plot Ω ∩ ([0.4, 1] × [0, 0.1]).
We observe that θ is discontinuous.

• In general, a convenient hypothesis (cf. also [12]) to prove the uniqueness
of the viscosity solution of F(x, F (x), ∇F (x)) = 0 is that the Hamiltonian
F is strictly monotone in the second argument. But here our Hamiltoni-
ans do not depend on this argument.

• In general optimal controls are unique (and the value function differen-
tiable). Here this is not the case (cf. figure 6) which hints that value
function has regularity defects.

3 Applications
In this section we apply the theoretical results obtained in appendixes D and E
to several values of the parameters describing the epidemic propagation and
vaccination policies. We refer to the appendixes for all notations used.
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X11

1

X2

O

Figure 6: A typical example of non-unique optimal vaccination strategy: the
solid trajectory corresponds to zero vaccination while the dashed trajectory
corresponds to vaccination in the colored region followed by non vaccination.
But both trajectories lead to the same, minimal, cost. In this case we expect
the value function to not be of class C1. Non uniqueness appears when the
trajectory with zero vaccination does not enter the vaccination region while the
trajectory with maximal vaccination enters it. See subsections D.4, D.5, E.3
and E.4 for details.

3.1 A classical situation: β = 73, γ = 36.5, umax = 10,
rI = 1, rV = 0.5, X0 = (0.3, 0.05)

Here umax < ∞, we are thus in the situation described by appendix D. Using
equation (60) we obtain x∗ = 0.59 therefore Xcrit

umax
= (0.59, 0.41) and using

equation (61) (and formulas involving ∂X1ζ available in the Appendix A) we
obtain rcrit

V,umax
= 1.036. Therefore we are in the situation rV < rcrit

V,umax
rI

treated in Theorem D.7. The Theorem instructs us to plot the level line L∂X1 ζ

rV /rI

(whose equation as a curve is given in formula (31)). Plotting this curve (and
zooming around the starting point X0) we obtain the image in figure 7: the
grey area corresponds to points on level lines L∂X1 ζ

r with r ≥ rV /rI while in
the white area are situated points on level lines L∂X1 ζ

r with r ≤ rV /rI . Our
starting point X0 is in the white domain. The theoretical result states that the
optimal strategy is to not vaccinate at all. To illustrate this choice we compare
numerically in figure 7 the no vaccination strategy with a partial vaccination
strategy. As expected the no vaccination policy is better; this result is consistent
with the existing literature.

3.2 A non classical situation: β = 73, γ = 36.5, umax = 10,
rI = 1, rV = 1.5, X0 = (0.7, 0.01)

The parameters β, γ, umax are the same as in the previous section therefore
rcrit

V,umax
is the same. But here rV > rcrit

V,umax
rI , situation treated in Theo-

rem D.10. Although the theoretical results gives, as before, a precise description
of the vaccination and no vaccination region, we advocate here an even simpler

11
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Figure 7: Two trajectories of an SIR evolution starting from X0 = (0.3, 0.05)
with β = 73, γ = 36.5, umax = 10, rI = 1 and rV = 0.5. The grey region is
the vaccination region while the white region is the no vaccination domain. We
are in the situation rV < rcrit

V,umax
rI and the optimal strategy corresponds to

the dashed curve with a cost equal to 0.05. The solid curve is an example of a
partial vaccination strategy with cost 0.15.

approach: compute first the cost of a no vaccination strategy starting from X0,
denoted Jn. Compute then the cost of a strategy that vaccinates with maxi-
mum intensity (here umax) from the initial time until the time θ where such
that ∂X1ζ(X(θ)) ≤ rV /rI and ⟨f(X(θ)), umax), ∇∂X1ζ(X(θ))⟩ ≤ 0; denote by
Jv this cost. Compare the two values: if Jn ≤ Jv the best strategy is to not
vaccinate at all; otherwise the second strategy is the best. Numerical details
are given in figure 8. In this case the initial point was in the vaccination region;
previous works (see discussion in section 2.4) indicated that this point is in the
no vaccination region.

3.3 Instantaneous vaccination: β = 73, γ = 36.5, umax = ∞,
rI = 1, rV = 1.5, X0 = (0.7, 0.01) and X0 = (0.8, 0.009)

We now illustrate the case umax = ∞ in figures 9 and 10.
Using equation (98) we find Xcrit

∞ = (0.57, 0.43) and computing ∂X1ζ(Xcrit
∞ )

allows to obtain rcrit
V,∞ = 1.0284. We are therefore in the situation rV >

rcrit
V,umax

rI , treated in Theorem E.6. The parametric equations of the frontier
between vaccination and no vaccination are given in equations (106) and (107)
(for Γcrit

sub ) and (108) (for Γcrit
super). We plot both curves.

In both figures, the light gray region is the region delimited by the level
line L∂X1 ζ

rV /rI
and the dark gray region is the additional vaccination region (not

appearing in the literature, delimited by Γcrit
super and L∂X1 ζ

rV /rI
\ Γcrit

sub ). The union
of those two regions is the vaccination region.

In figure 9 the initial point is in the vaccination region delimited by L∂X1 ζ

rV /rI
.

The solid path corresponds to total vaccination, and the dashed path is partial
vaccination (until trajectory exits the vaccination area). The theoretical result
in appendix E.4 states that the total vaccination cost will be larger than partial
vaccination, which is verified numerically (see the figure).

12
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Figure 8: Left: Two trajectories of an SIR evolution starts on X0 =
(0.78, 0.005) with β = 73, γ = 36.5, umax = 10, rI = 1 and rV = 1.5.
The cost for the solid trajectory is Jn = 0.49 and for the vaccination strategy
(dashed) is Jv = 0.48. Right: In order to decide when the dashed trajectory
stops vaccinating we compute ∂X1ζ(X(t)) and ⟨f(X(t)), umax), ∇∂X1ζ(X(t))⟩;
we plot ∂X1ζ(X(t)) and the reference value rV /rI (left axis of the plot)
and ⟨f(X(t)), umax), ∇∂X1ζ(X(t))⟩ and the reference value 0 (right axis of
the plot). Vaccination stops at X1 = 0.62 when ∂X1ζ(X(t)) ≤ rV /rI and
⟨f(X(t)), umax), ∇∂X1ζ(X(t))⟩ ≤ 0.

The figure 10 illustrates a situation when X0 is in the vaccination region
(but outside the region delimited by L∂X1 ζ

rV /rI
). This case is not correctly treated

in the existing literature. We see in the figure that the optimal vaccination is a
partial vaccination.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2
·10

−2

X1

X
2

Figure 9: Two trajectories of an SIR evolution starts in X0 = (0.7, 0.01) with
β = 73, γ = 36.5, umax = ∞, rI = 1 and rV = 1.5. The solid curve corresponds
to a trajectory with vaccination for all susceptible and the dashed trajectory
with partial vaccination. The cost of the first strategy is 1.05 and the cost of
the second strategy is 0.37.

Remark 3. Note that when rV ∈]rcrit
V,umax

rI , 2rI [ the optimal strategy may not
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Figure 10: Two trajectories of an SIR evolution starts in X0 = (0.8, 0.009) with
β = 73, γ = 36.5, umax = ∞, rI = 1 and rV = 1.5. The solid curve corresponds
to a trajectory with vaccination for all susceptible and the dashed trajectory
with partial vaccination. The cost of the first strategy is 1.2 and the cost of the
second strategy is 0.52.

be unique. This happens on the frontier Γcrit
super when two different strategies

give the same cost (because the value function is continuous): either vaccinate
until reaching Γcrit

sub and then stop vaccinating or do not vaccinate at all. See
also figure 6 for an illustration. Otherwise the optimal strategy is unique.

4 Summary of optimal strategies
The previous sections show that the domain Ω is decomposed in two disjoint

regions: a vaccination region and a no vaccination region. The optimal policy
is to vaccinate (only) when the dynamics X(t) is in the vaccination region. In
principle in order to find precisely the vaccination domain one has to solve the
associated HJB equation. But, in this situation, we can build a simpler algo-
rithm to compute the optimal vaccination policy. This algorithm is described
below. It uses as inputs the values β, γ, umax, rI , rV , X0.

We recall that the function ζ and its derivatives are easily computed as
indicated in Appendix A.

1. When umax < ∞:

(a) If rV /rI ≥ 2 the optimal vaccination policy is to not vaccinate. The
overall cost is rIζ(X0).

(b) Otherwise, using equation (60), compute x∗ then Xcrit
umax

= (x∗, 1−x∗)
and rcrit

V,umax
using equation (61).

i. If rV ≤ rcrit
V,umax

rI then compute ∂X1ζ(X0).
A. If ∂X1ζ(X0) ≤ rV /rI the optimal vaccination policy is to not

vaccinate. The overall cost is rIζ(X0).
B. Otherwise the optimal vaccination policy is to vaccinate:

solve numerically equation (1) with dV = umaxdt and mon-
itor ∂X1ζ(X(t)); at the time θ when ∂X1ζ(X(θ)) = rV /rI

stop vaccination.

14



ii. If rV > rcrit
V,umax

rI then compute first rIζ(X0) and denote Jn =
rIζ(X0) (the cost of the no vaccination policy). Also solve nu-
merically equation (1) with dV = umaxdt and monitor ∂X1ζ(X(t))
and ⟨f(X(t), umax), ∇∂X1ζ(X(t))⟩; at the first time θ when ∂X1ζ(X(θ)) ≤
rV /rI and ⟨f(X(θ), umax), ∇∂X1ζ(X(θ))⟩ ≤ 0 stop vaccination.
Denote Jv this cost. Compare Jn and Jv and decide which cost
is the best and adopt the corresponding vaccination policy.

2. When umax = ∞:

(a) If rV /rI ≥ 2 the optimal vaccination policy is to not vaccinate. The
overall cost is rIζ(X0).

(b) Otherwise, using equation (98), compute x∗ then Xcrit
∞ = (x∗, 1−x∗)

and rcrit
V,umax

(from ∂X1ζ(Xcrit
∞ )).

i. If rV ≤ rcrit
V,umax

rI then compute ∂X1ζ(X0).
A. If ∂X1ζ(X0) ≤ rV /rI the optimal vaccination policy is to not

vaccinate. The overall cost is rIζ(X0).
B. Otherwise the optimal vaccination policy is to vaccinate: find

numerically (using (31)) the quantity ∆ such that ∂X1ζ(X0−
(∆, 0)) = rV /rI . Vaccinate ∆ percent of individuals and
then stop vaccination. The optimum cost is ∆rV + rIζ(X0 −
(∆, 0)).

ii. If rV > rcrit
V,umax

rI then compute rIζ(X0) and denote Jn = rIζ(X0)
(the cost of the no vaccination policy). Also find numerically (us-
ing (31)) the quantity ∆ such that ∂X1ζ(X0 − (∆, 0)) = rV /rI

and ∂2
X1X1

ζ(X0−(∆, 0)) ≥ 0. Vaccinate ∆ percent of individuals
and then stop vaccination; denote Jv = ∆rV + rIζ(X0 − (∆, 0)).
Compare Jn and Jv and decide which cost is the best and adopt
the corresponding vaccination policy.

Remark 4. In all situations the algorithm above solves at most once the evolution
equation (1).

Finally, Remark 2 shows that the cost functional in the equation (6) has the
same optimal strategies and vaccination regions.

With respect to the existing literature the above optimal strategies are dis-
tinct in several aspects:

• when umax < ∞: previous contributions take the vaccination region to
be {Y ∈ Ω | ∂X1ζ(Y ) ≥ rV /rI} while our definition is different for rV ∈
[rcrit

V,umax
rI , 2rI ]. The strategies here will lead to lower costs.

• when umax = ∞: we do not ask full vaccination but only vaccinate the
minimum proportion that allows to reach the frontier of the vaccination
region.

5 Pertussis vaccination in adults: maximization
of DALYs averted and cost-effectiveness

In this section we explain how the theoretical results apply to additional sit-
uations. We explore first a situation when the vaccine has known side-effects.
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Then we present an application to cost-effectiveness analysis.
When the vaccine has known side effects or when the illness generates severe

medical conditions the money alone cannot be the only decision dimension.
In this situation other techniques have to be employed. Following works in the
literature we use the Quality Adjusted Life Year (QALY) and Disability-Adjusted
Life Year (DALY) scales that measure the disease burden; see [33, 28, 3] and
related literature for an introduction and criticism.

In the QALY scale each health state is given an utility between 1 (one year of
perfect health) and 0 (death). Each individual has a number of QALY equivalent
to its life expectancy in perfect health. A medical condition can reduce both the
life expectancy and the quality of life and in general the QALY will combine the
expected length of life and quality of life. The effect of any illness is therefore
to reduce the QALY of an individual. The goal of a treatment is to increase
QALY.

The DALY scale, on the contrary, measures the disease burden as disability,
with 0 being no disability (perfect health) and 1 (a full year of life lost). The
DALY is usually computed for an entire population and takes into account the
average life expectancy at age of death in years. The goal of a health policy is
to reduce the DALYs at the level of the population. DALY was introduced and
is the scale of choice of the World Health Organization (WHO), see [25, 24, 14].

Although both scales are similar, in general slight differences in numerical
values are expected for a given health policy.

5.1 Optimal vaccination in presence of vaccine side-effects
We consider here an application to the optimal vaccination of pertussis with
a vaccine that has identified side effects, see [26][Chapters 1,4,5,6] and [21].
We focus more specifically on the combined tetanus toxoid, reduced diphtheria
toxoid, and acellular pertussis vaccine (Tdap).

The vaccine side effects for adults and associated induced utility (or disabil-
ities) are taken from [21] and reproduced in Table 1 together with the same
information for the disease. Note that it is assumed that there are no deaths
among adults due to pertussis (see arguments in the references for further dis-
cussion).

To summarize, the (average) DALYs induced by the vaccine are rV = 3.2605
100′000

and the DALYs of the disease are rI = 3511
100′000 . As a remark, the illness seems

to be ≃ 1000 times less desirable than the vaccine.
The goal is to find a vaccination strategy that minimizes the overall DALY

burden, which is equivalent to minimizing functional J in equation (3).
As an illustration we consider an outbreak of pertussis. The generally ad-

mitted propagation parameters are γ = 1/21, R0 = β/γ = 15.7 (thus β = 0.75),
see for instance [4][pages 1055-1056] and [18][pages 640-641].

Consider now an epidemic starting from a pool of 100 infected individuals
in a susceptible population of 65 Millions individuals among which 10% are
susceptible. Thus X10 = 0.1 and X20 = 100/(6.5 ∗ 107) = 1.54 ∗ 10−6.

We consider first that the vaccination can be implemented very fast which,
with our notations, means umax = ∞. Using the theoretical results of previous
sections it appears that it is optimal to vaccinate 4.657% percent of the pop-
ulation. At the end of the vaccination there is still 5.343% ≤ 1/R0 = 6.36%
percent of the population susceptible.
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Health Utility Probability of Duration contribution
State occurence (in years) to DALY

Vaccine side effects - - - 3.2605/100′000
local reaction 0.95 2% 7/365 1.9178/100′000

systemic reaction 0.93 1% 7/365 1.3425/100′000
anaphylaxis 0.6 0.0001% 2/365 0.00021912/100′000

Disease states - - - 3511/100′000
mild cough illness 0.9 38% 87/365 905.753/100′000

moderate cough illness 0.85 21% 87/365 750.822/100′000
severe cough illness 0.81 40% 87/365 1811.507/100′000

pneumonia 0.82 1% 87/365 42.904/100′000

Table 1: The vaccine side effects for adults and disease health states parameters,
from [21]. The utility U of a given health state can be used to compute the
disability D of the state by the formula D = 1 − U . The DALY contribution of
a given state is computed by multiplying the duration with the disability of the
state weighted by the probability of occurrence. For instance for local reaction
one obtains 2% ∗ (1 − 0.95) ∗ (7/365) = 1.9178

100′000 .

If on the contrary only 1% of the population can be vaccinated in a month,
then umax = 0.12 and it is optimal to vaccinate until the susceptible population
is 5.344%. In this case 4.656% percent (Susceptible) have been vaccinated and
5.987 ∗ 10−5% percent were infected before vaccination stopped.

In both cases vaccination avoids 142708 DALY.

5.2 Cost-effectiveness analysis
A different perspective in vaccination programs arises when a vaccine without
notable side effects (but an economic cost, expressed in $) is to be compared
with other possible public health programs. In this case the money allocated
to the vaccine campaign cannot be allocated to other projects. The optimal
vaccination is found through a cost-effectiveness analysis, adapted below to our
SIR model. We emphasize that what follows is a simple deterministic description
and in practice additional tools, related to societal parameters and uncertainties
have to be taken into account.

Suppose that the available public health budget is B$ and that other projects
spend ρ$ in order to avert one DALY. The goal is to find the optimal vaccination
policy which, combined with all other health programs, maximize the total
DALY averted for the given budget B$. As above, rI will be the DALY lost by
an infected individual and rQ

V to be the (economic) cost of implementing one
vaccine; the total DALYs averted with budget B$ including vaccination with
policy dV are:

JQ(Y, dV ) = 1
ρ

(
B$ −

∫ ∞

0
rQ

V dV (t)
)

+rI

(
ζ(Y ) −

∫ ∞

0
βΦY,dV

1 (t)ΦY,dV
2 (t)dt

)
.

(20)
Algebraic manipulations indicate that the maximization of JQ is equivalent to
the minimization of the cost functional J in equation (3) if we set rV = rQ

V /ρ.
Note that in this case both rI and rV are expressed in DALY (not $).
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As an application we consider again the pertussis vaccination for adults as
an addition to the traditional multi-valent vaccines administered during the
childhood.

Although no consensus for the value of ρ exists, the World Health Orga-
nization, through its CHOICE program (see [14, 30, 15]) considers that for a
country with a Gross Domestic Product (GDP) per capita of g$, a public health
project is considered cost-efficient when it saves at least one DALY for each g$
invested. Many countries in the African ”low income” zone have g around 400$
(United Nations 2013 data: Ethiopia, Madagascar,...). We set the threshold at
ρ = 400$ per DALY averted. For the cost of the implementation of the vaccine
we follow [22][Chapter 2, page 44 and Table 20.4 page 400] and set rQ

V = 20$ (a
mean value). Parameters rI , β, γ are maintained as before.

Susceptibles are set initially to X10 = 15% and the proportion of Infected
class X20 = 0.001%. Note that we are here in the super-critical region rV /rI =
1.42 ≥ rcrit

V,∞.
When the vaccination can be implemented very fast (umax = ∞) the the-

oretical results indicate that it is optimal to vaccinate 8.576% percent of the
population. At the end of the vaccination there is still 6.424% percent of the
population susceptible. For every million individuals in the population 696
DALYs are averted.

Note that the initial point is precisely in a region where previous analyses
in the literature would conclude that optimal strategy is no vaccination.

At the end of the vaccination period the epidemic is still not contained
because 6.424% > 1/R0 = 6.36%. Why does the vaccination stops while the
epidemic still expands ? To understand this, consider first the quotient rQ

V /rI =
569.63 which is above the threshold value ρ = 400. This means that vaccination,
seen as ”treatment”, is not cost-effective. But vaccination, even at high costs,
can reduce the propagation of the epidemic, creating herd immunity and saving
more than the vaccinated individual. As such, when the epidemic is large in size,
vaccination becomes, temporarily, more cost-efficient than other public health
programs. This is precisely what happens here. On the contrary, when the
Susceptible approach 1/R0 the vaccination creates less herd immunity and its
cost becomes a limitation.

The figure 11 illustrates the optimal vaccination policy in terms of classical
cost-effectiveness analysis. For each vaccination level x% two criterions are
plotted: the marginal cost per marginal DALY averted x 7→ rQ

V

rI ∂X1 ζ(X10−x,X20)

and the cumulative cost per DALY averted x 7→ rQ
V

x

rI (ζ(X10,X20)−ζ(X10−x,X20)) . In
this very particular setting, both costs are initially above the threshold ρ. The
theoretical result guarantees that, if the available budget is large enough to
traverse the initial, ”above the threshold” region, both curves will be below the
threshold ρ at the end of the vaccination. In fact the vaccination stops when
the marginal cost reaches ρ the second time.

6 Conclusion
We analyze in this work the optimal vaccination policy in a SIR model. The
theoretical results allow to compute the global optimum without any smoothness
hypothesis; from the technical point of view we show that the value function
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Figure 11: Illustration of the cost-effectiveness criterions for umax = ∞. Solid
line: the threshold ρ. Dashed line: the cumulative cost per DALY averted
x 7→ rQ

V
x

rI (ζ(X10,X20)−ζ(X10−x,X20)) . Dotted line: the marginal cost per marginal

DALY averted x 7→ rQ
V

rI ∂X1 ζ(X10−x,X20) .

is the unique solution of a Hamilton-Jacobi-Bellman equation. As previous
studies indicate, the Susceptible-Infected plane is divided in two regions: one
vaccination region and one non-vaccination region. This partition is proven to
be globally optimal.

Several applications are considered: first some toy examples when the costs
are expressed as economic values. Then we consider pertussis vaccination in
adults when the vaccine has side-effects and the optimal policy maximizes the
DALYs averted. A final application, still in the framework of pertussis vaccina-
tion in adults, considers the optimal vaccination with constraints on the public
health budget. The theoretical results are particularly relevant in this situation
not adequately considered in the literature: the performance of a vaccination
policy does not only depend on the marginal cost per DALY averted, but also
on the long term herd immunity effects created. The model is able to predict
when the long term effects will offset the initial expense to the point that makes
vaccination cost-effective.

Appendix

A Properties of the number of infected people
without vaccination

We recall some properties of the number of infected people in absence of vacci-
nation. The reader can also consult [2, 1]. Consider the model without control:

dX1(t)
dt = −βX1(t)X2(t),

dX2(t)
dt = βX1(t)X2(t) − γX2(t),

dX3(t)
dt = γX2(t).

(21)
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Lemma A.1. The size ζ of an epidemic without vaccination starting at ΦX,0(0) =
X = (X1, X2) is the unique solution in [0, X1[ of the equation:

1 − ζ

X1
= e− β

γ (X2+ζ). (22)

Moreover ζ(X) > X1 − γ
β , ∀X ∈ Ω and ζ ∈ C1(Ω).

Remark 5. Although ζ depends on X, when there is no ambiguity, we will just
write ζ.

Proof. Denote X∞
1 = limt→∞ ΦX,0

1 (t), X∞
2 = limt→∞ ΦX,0

2 (t). Straightfor-
ward computations allow to prove that:

ΦX,0
1 (t) = X1e− β

γ (1−ΦX,0
1 (t)−ΦX,0

2 (t)). (23)

Or X∞
2 = 0 thus X∞

1 = X1e− β
γ (X1+X2−X∞

1 ). Using that ζ = X1 − X∞
1 we

obtain equation (22).
Let F (y, X1, X2) = e− β

γ (y+X2) − (1 − y
X1

) defined on [0, X1] × Ω. Since
F (0, X1, X2) = e− β

γ X2 − 1 ≤ 0 and F (X1, X1, X2) = e− β
γ (X1+X2) > 0 the equa-

tion (in y) F (y, X1, X2) = 0 has at least a solution in [0, X1[; thus equation (22)
has at least a solution in [0, X1[.

Moreover ∂F
∂y (y, X1, X2) = − β

γ e− β
γ (y+X2) + 1

X1
. Since y ≤ X1 ≤ 1 and

X1 + X2 ≤ 1 we obtain ∂F
∂y (y, X1, X2) ≥ − β

γ e− β
γ + 1 > 0 (because 1 > ze−z for

any z > 0); therefore F (·, X1, X2) is strictly increasing in y and the solution ζ
is unique.

If X1 ≤ γ
β since ζ ≥ 0 we obtain immediately ζ ≥ X1 − γ

β . If on the contrary
X1 ≥ γ

β (thus in particular γ
βX1

∈]0, 1]) we obtain:

F (X1 − γ

β
, X1, X2) = e− β

γ (X1− γ
β +X2) − (1 −

X1 − γ
β

X1
)

≤ e− β
γ (X1− γ

β ) − γ

βX1
≤ 0 (24)

where for the last inequality we used that e1−1/z −z ≤ 0 for any z = γ
βX1

∈]0, 1].
Therefore the solution ζ is in [(X1 − γ/β)+, X1[. When X belongs to the open
set Ω then same arguments show that the inequality ζ > (X1 − γ/β) is strict.

Remark 6. Thanks to (22) we obtain by the implicit function Theorem that ζ
has continuous derivatives around any X ∈ Ω; we can calculate first and second
partial derivatives of ζ with respect to X1 and X2:

∂ζ

∂X1
= ζ

X1

(
1 + β

γ (ζ − X1)
) , (25)

∂ζ

∂X2
= γ/β

ζ − X1 + γ/β
− 1, (26)

∂2ζ

∂X2
1

= − γ

β

ζ(ζ − 2X1 + 2γ/β)(ζ − X1)
X2

1 (ζ − X1 + γ/β)3 , (27)
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∂2ζ

∂X1∂X2
= ∂2ζ

∂X2∂X1
= γ

β

(X1 − γ/β)(ζ − X1)
X1(ζ − X1 + γ/β)3 . (28)

Note that since ζ > X1 − γ
β all fractions are well defined and ζ is even C2(Ω).

B Properties of the trajectories
Lemma B.1. ∂X1J0 = ∂J0

∂X1
is decreasing along trajectories of the system (21).

Proof. We have to prove that:

⟨f(X, 0), ∇∂X1J0(X)⟩ < 0. (29)

Using the expression of ζ, we have: J0(X) =
∫∞

0 rIX1(τ)X2(τ)dτ = rIζ(X).
Equation (29) can thus be rewritten as follows:

⟨f(X, 0), ∇∂X1ζ⟩ < 0. (30)

Using equations (27) and (28), this gives after some computations: X1

(
ζ − X1 + γ

β

)2
> 0

which is always true because X1 is strictly positive and ζ ̸= X1 − γ
β .

Lemma B.2. For all Y ∈ Γ1 ∪ ΓA1 the trajectory ΦY,u(t) is incoming in
Ω ∀u ∈ UY .

Proof. For Γ1, the scalar product with the incoming normal is positive:

⟨f(X, u), (−1, −1)⟩ = γX2 + u ≥ 0 ∀u ∈ [0, umax].

For ΓA1:

⟨f(X, u), (0, 1)⟩ = X2(βX1 − γ) ≥ 0 ∀u ∈ [0, umax].

Lemma B.3. J0 is C1(Ω).

Proof. Since J0 = rIζ the conclusion follows from Lemma A.1.

Lemma B.4. For all X ∈ Ω, we have ∂ζ
∂X1

(X) ≤ 2. Therefore 0 ≤ ∂J0
∂X1

(X) ≤
2rI ∀X ∈ Ω.

Proof. Using expression in (25), to prove ∂X1ζ ≤ 2, we just have to show that
ζ ≥ 2X1(X1− γ

β )
2X1− γ

β
. For that, we take same notation and result as in the proof of

the Lemma A.1 so X1 ≥ γ
β and we denote ξ = 2X1(X1− γ

β )
2X1− γ

β
. We have to prove

that F (ξ, X1, X2) ≤ 0.
With these notations, we have F (ξ, X1, X2) = e− γ

β (ξ+X2) −
γ
β

2X1− γ
β

.

If we note z = β
γ ξ, we obtain, e−z− γ

β X2 − (z +
√

z2 + 1).
As e−z− γ

β X2 ≤ e−z ≤ 1
z+

√
z2+1 , this proves that F (ξ, X1, X2) ≤ 0.
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Lemma B.5. The level lines defined by L∂X1 ζ
r = {(X1, X2) ∈ Ω | ∂ζ

∂X1
(X) = r}

have the parametric equation:

1 −
1 − β

γ X1
1
r − β

γ X1
= e

− β
γ

(
X1

1− β
γ

X1
1
r

− β
γ

X1
+X2

)
. (31)

and have point A = ( γ
β , 0) as limit (but A /∈ L∂X1 ζ

rV /rI
).

Proof. If X = (X1, X2) ∈ L∂X1 ζ
r using the definition of L∂X1 ζ

r and (28) we
have:

ζ = X1
1 − β

γ X1
1
r − β

γ X1
. (32)

Then, we replace in (22) to obtain the parametric equation. Note that ∇Xζ

is not defined at A. The level line L∂X1 ζ
0 is ΓOA and the level line L∂X1 ζ

1
is {X ∈ Ω | X1 = γ

β }. Suppose r /∈ {0, 1}, then for any X ∈ L∂X1 ζ
r we

have ∂ζ
∂X1

(X) ̸= 0. The level line L∂X1 ζ
r is regular in the neighborhood of any

X = (X1, X2) ∈ Ω. Indeed if ∂ζ
∂X1

(X) = r by the implicit function Theo-
rem in the neighborhood of X there exists a curve X2 = X2(X1) such that

∂ζ
∂X1

(
X1, X2(X1)

)
= r. Moreover, by the same Theorem X2(X1) is C1 lo-

cally. Thus the level line L∂X1 ζ
r is regular around any point in Ω. As such

it does not have self-intersections either. In addition for any r ∈ [0, 2] since
limX1→ γ

β
−

∂ζ
∂X1

(X1, 0) = 0 and limX1→ γ
β

+
∂ζ

∂X1
(X1, 0) = 2 by continuity we ob-

tain that L∂X1 ζ
r will be as close to A as wanted thus A is an extremity of L∂X1 ζ

r

(but does not belong to it).

C An introduction to viscosity solutions
This section is largely based on classical works such as [12], [7], [8] [32]. We
refer the reader to these works for additional details.

Let ξ : O → R be a scalar function defined on an open set O ⊆ Rn.

Definition C.1. The set of super-differentials of ξ at a point x ∈ O is:

D+ξ(x) =
{

p ∈ Rn; lim sup
y→x

ξ(y) − ξ(x) − p · (y − x)
|y − x|

≤ 0
}

. (33)

Similarly, the set of sub-differentials of ξ at a point x ∈ O is:

D−ξ(x) =
{

p ∈ Rn; lim inf
y→x

ξ(y) − ξ(x) − p · (y − x)
|y − x|

≥ 0
}

. (34)

We will also use the following:

Lemma C.1. Let ξ ∈ C(O). Then

1. p ∈ D+ξ(x) if and only if there exists a function ϕ ∈ C1(O) such that
∇ϕ(x) = p and ξ − ϕ has a local maximum at x.
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2. p ∈ D−ξ(x) if and only if there exists a function ϕ ∈ C1(O) such that
∇ϕ(x) = p and ξ − ϕ has a local minimum at x.

In the following, we consider the first order partial differential equation:

F(x, ξ(x), ∇ξ(x)) = 0, (35)

defined on an open set O ∈ Rn. Here, F : O × Rn × Rn → R is a continuous
(possibly nonlinear) function.

Definition C.2. A function ξ ∈ C(O) is a viscosity subsolution of (35) if

F(x, ξ(x), p) ≤ 0 for every x ∈ O, p ∈ D+ξ(x). (36)

Similarly, ξ ∈ C(O) is a viscosity supersolution of (35) if

F(x, ξ(x), p) ≥ 0 for every x ∈ O, p ∈ D−ξ(x). (37)

Finally, we call ξ a viscosity solution of (35) if it is both a supersolution and
a subsolution in the viscosity sense.

Remark 7. For each particular problem we explicitly specify the boundary con-
ditions.

D Bounded vaccination speed (umax < ∞)
In this section we assume that umax < ∞.

D.1 Properties of the value function
Theorem D.1. The value function Vumax : Ω → R is a Lipschitz function in
Ω. It can uniquely be extended to a Lipschitz function on Ω.

Proof. We first prove that for a fixed control u and time t the function

{Y ∈ Ω | u ∈ UY } ∋ Y 7→ ΦY,u(t),

is Lipschitz with the Lipschitz constant independent of u. We write: || d
dt ΦY,u(t)−

d
dt ΦZ,u(t)|| = ||f(ΦY,u(t), u)−f(ΦZ,u(t), u)|| ≤ Lf ||ΦY,u(t)−ΦZ,u(t)|| where Lf

is the constant in equation (12). Then:

d

dt

(
||ΦY,u(t) − ΦZ,u(t)||2

)
≤ 2Lf ||ΦY,u(t) − ΦZ,u(t)||2. (38)

Using the Gronwall Lemma and taking the square root, we obtain:

||ΦY,u(t) − ΦZ,u(t)|| ≤ ||Y − Z||eLf Tmax .

Fix Y, Z ∈ Ω and denote by uY = umax · 1I[0,θ(Y )] one optimal control of the
trajectory leaving from Y . Then if uY ∈ UZ and uZ ∈ UY we can obtain the
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following estimates:

Vumax(Z) ≤ J(Z, uY )

≤
∫ Tmax

0
rIβΦZ,uY

1 (t)ΦZ,uY

2 (t) + rV uY (t)dt + J0(ΦZ,uY (Tmax))

≤
∫ Tmax

0
rIβΦY,uY

1 (t)ΦY,uY

2 (t) + rV uY (t)dt + J0(ΦY,uY (Tmax))

+CuY ,Tmax∥Y − Z∥ = Vumax(Y ) + CuY ,Tmax∥Y − Z∥.

Note that uY is member of the compact set {u : [0, ∞] → R | u = umax1I[0,θ], θ ≤
Tmax}. Thus the constant CuY ,Tmax only depends on Tmax (and not on Y or
Z). Changing the roles of Y and Z we obtain the reverse inequality thus the
conclusion.

If uY /∈ UZ or uZ /∈ UY , suppose, to fix notations, that uY /∈ UZ ; since
uY = umax · 1I[0,θ(Y )] then uY /∈ UZ implies θ(Y ) > θ(Z) thus uZ ∈ UY . Take
η ∈ [θ(Z), θ(Y )] to be the maximum value such that umax1I[0,η] ∈ UZ ∩ UY .
The maximality implies ΦZ,umax1I[0,η](η) ∈ ΓI . Using Lipschitz estimates for
Φ·,umax1I[0,η](t) we obtain as above:

Vumax(Z) ≤ J(Z, umax1I[0,η]) ≤ CTmax(∥Y − Z∥) + Vumax(ΦZ,umax1I[0,η](η))
+Vumax(Y ) − Vumax(ΦY,umax1I[0,η](η)) ≤ Vumax(Y ) + CTmax(∥Y − Z∥) + 0 + 0

where we used the fact that X ∈ ΓI implies Vumax(X) = 0 and that Vumax is
positive. From now on we continue as above and obtain the Lipschitz property
for Y and Z.

Since Vumax is a Lipschitz function on Ω with bounded Lipschitz constant it
admits a unique Lipschitz extension over Ω.

D.2 The HJB equation and value function
Theorem D.2. The value function Vumax is a viscosity solution of the Hamilton-
Jacobi-Bellman (HJB) equation:

(P)



Find F : Ω → R such that
F is Lipschitz on Ω, (39a)
−Humax(X, ∇F (X)) = 0, X ∈ Ω, (39b)
F (X) = 0 on ΓOA, (39c)
F (X) = 0 on ΓI , (39d)
−Humax(X, ∇F (X)) = 0 on Γ1. (39e)

Remark 8. There is no boundary condition on ΓA1.
Remark 9. See appendix C for an introduction to viscosity solutions.

Proof. Using Lemma C.1 and Definition C.2 we first show that Vumax is a
subsolution of (39) then we will show it is also a supersolution.

Step 1. Let Y ∈ Ω and φ ∈ C1(Ω) such that Vumax(Y ) − φ(Y ) attains a
local maximum at Y . So for Z in a neighborhood of Y :

Vumax(Y ) − Vumax(Z) ≥ φ(Y ) − φ(Z). (40)
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We will prove that:

− Humax(Y, ∇φ(Y )) ≤ 0. (41)

This is equivalent to:

− umax(∂X1φ(Y ) − rV )+ + βY1Y2(rI + ∂X2φ(Y ) − ∂X1φ(Y ))
− γY2∂X2φ(Y ) ≥ 0. (42)

Assume that it is not the case. Then there exists, by continuity, a value
w ∈ [0, umax] (see Remark 10 page 27 below) and a constant κ > 0 such that in
a neighborhood of Y :

w(rV −∂X1φ(ΦY,u(·)))+βΦY,u
1 (·)ΦY,u

2 (·)(rI +∂X2φ(ΦY,u(·))−∂X1φ(ΦY,u(·)))

− γΦY,u
2 (·)∂X2φ(ΦY,u(·)) ≤ −κ, (43)

for any u(t) ∈ [0, umax]. Let u = w on the interval [0, δ] (since Y ∈ Ω, for a
small δ > 0 u ∈ UY ) and denote Z0 = ΦY,w(δ). Then, choosing Z = Z0 in (40)
we obtain:

Vumax(Z0) − Vumax(Y ) ≤ φ(Z0) − φ(Y ) =
∫ δ

0

d

dt
φ(ΦY,w(t))dt (44)

≤
∫ δ

0
⟨∇φ(ΦY,w(t)), f(ΦY,w(t), w)⟩dt ≤

∫ δ

0
−κ − βΦY,w

1 (t)ΦY,w
2 (t)rI − wrV dt

≤ −δκ −
∫ δ

0
βΦY,w

1 (t)ΦY,w
2 (t)rI + wrV dt. (45)

Or, by the definition of the optimality of Vumax in Y :

Vumax(Y ) ≤
∫ δ

0
rIβΦY,w

1 (t)ΦY,w
2 (t) + rV wdt + Vumax(Z0)

Vumax(Y ) − Vumax(Z0) ≤
∫ δ

0
rIβΦY,w

1 (t)ΦY,w
2 (t) + rV wdt,

by summing the inequality we get 0 < −κδ, which is absurd.
Therefore using Lemma C.1 we obtain:

−Humax(X, ∇Vumax(X)) ≤ 0 for all X ∈ Ω.

To prove (39e) we use appendix B where we prove that trajectories ΦY,u(·)
with Y ∈ Γ1 are strictly entering the domain Ω for all w ∈ [0, umax]. For this
reason when Y ∈ Γ1 ΦY,w(t) /∈ Γ1 for t ∈]0, δ]. Moreover, we choose φ such
that φ is C(Ω) and C1(Ω). These arguments allow to prove equation (45) from
equation (44). Moreover the same proof can be used for all X ∈ Γ1 and we
obtain:

−Humax(X, ∇Vumax(X)) ≤ 0 for all X ∈ Γ1.

By Lemma 2.1, we have that Vumax is bounded on Ω and by Theorem D.1
Vumax is a Lipschitz function. By definition of Vumax we have Vumax(X) = 0 on
ΓI and ΓOA. So Vumax is a subsolution of (39).

Step 2. Now we prove that Vumax is a supersolution of (39).
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Let Y ∈ Ω and φ ∈ C1(Ω) such that Vumax(Y ) − φ(Y ) attains a local
minimum at Y . So for Z in a neighborhood of Y : Vumax(Y ) − φ(Y ) ≤
Vumax(Z) − φ(Z). We will show that: −Humax(Y, ∇φ(Y )) ≥ 0 ∀ Y ∈ Ω .

Assume that it is not the case. Then there exists κ > 0 such that
Humax(Y, ∇φ(Y )) > κ in a neighborhood of Y . So there exists (a small) δ > 0
such that for any u(t) ∈ [0, umax]:

−umax(∂X1φ(ΦY,u(·))−rV )++βΦY,u
1 (·)ΦY,u

2 (·)(rI+∂X2φ(ΦY,u(·))−∂X1φ(ΦY,u(·)))

− γΦY,u
2 (·)∂X2φ(ΦY,u(·)) > κ ∀t ≤ δ. (46)

Let w be a control in UY and Z0 = ΦY,w(δ) (for small δ any w ∈ [0, umax] is
in UY ). Then:

Vumax(Z0) − Vumax(Y ) ≥ φ(Z0) − φ(Y ) =
∫ δ

0
⟨∇φ(ΦY,w(t)), f(ΦY,w(t), w)⟩dt

≥ δκ +
∫ δ

0
umax(∂X1φ(ΦY,w(t)) − rV )+ − rIβΦY,w

1 (t)ΦY,w
2 (t) − w∂X1φ(ΦY,w(t))dt

≥ δκ −
∫ δ

0
wrV + rIβΦY,w

1 (t)ΦY,w
2 (t)dt

+
∫ δ

0
umax(∂X1φ(ΦY,w(t)) − rV )+ − w(∂X1φ(ΦY,w(t)) − rV )dt

≥ δκ −
∫ δ

0
wrV + rIβΦY,w

1 (t)ΦY,w
2 (t)dt.

(because
∫ δ

0 umax(∂X1φ(ΦY,w(t)) − rV )+ − w(∂X1φ(ΦY,w(t)) − rV )dt ≥ 0 since
w ∈ [0, umax]).

So, for any w, we have:

Vumax(Z0) +
∫ δ

0
wrV + rIβΦY,w

1 (t)ΦY,w
2 (t)dt ≥ Vumax(Y ) + δκ. (47)

Taking the infimum with respect to w we obtain Vumax(Y ) ≥ Vumax(Y )+κδ.
This is absurd, therefore Vumax is a supersolution on Ω.

For the same reasons as previously, we have −Humax(X, ∇Vumax(X)) ≥ 0
on Γ1 and Vumax is a supersolution of equation (39).

Step 3. To summarize this proof, we showed that:

- by Theorem D.1, Vumax is a Lipschitz function,

- Vumax is both a subsolution and a supersolution of (39b) and (39e),

- Vumax(X) = 0 on ΓOA ∪ ΓI by definition of Vumax .

So Vumax is a viscosity solution of the Hamilton-Jacobi-Bellman equation (39).
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D.3 Uniqueness of the solution of the HJB problem
Theorem D.3. Let F1 be a subsolution of (39) and F2 a supersolution. Then:

F1(X) ≤ F2(X) for all X ∈ Ω.

Remark 10. In the following, we will use that, for any A1, B1, A2, B2 ∈ R with
min(A1, B1) ≤ min(A2, B2) there exists ρ ≥ 0 such as: A1 + ρB1 ≤ A2 + ρB2.

Proof. Let Bα ∈ Ω denote the point with coordinates (1 − α, α) and:

ΓABα =
{

(X1, X2) ∈ Ω | X2 > 0,
β

γ
X1 + γ − β + αβ

αγ
X2 = 1

}
,

ΓBα1 =
{

(X1, X2) ∈ Ω | X1 + X2 = 1 , X2 > α
}

.

Let Dα ⊂ Ω be the domain strictly bounded by ΓI , ΓOA, ΓABα and ΓBα1,
see figure 12 for a graphical representation. When γ/β ≥ 1 the point A will lie
outside Ω, we take Dα = Ω, ΓABα = ∅ and ΓBα1 = Γ1.

Figure 12: Boundary used in proof of the Theorem D.3.

We prove in appendix B that for any X0 ∈ ∂Dα the trajectory ΦX0,w(t) with
w(t) ∈ [0, umax] ∀t enters Dα.

For X ∈ ΓBα1, X ̸= (1, 0), the scalar product with the incoming normal is
positive:

⟨f(X, u), (−1, −1)⟩ = γX2 + u > 0 ∀X ∈ ΓBα1, X ̸= (1, 0), u ∈ [0, umax].

For X ∈ ΓABα , X ̸= (1, 0), the relevant quantity is:

⟨f(X, u), (−β

γ
, −γ − β + αβ

γα
)⟩ = β

γ
(βX1X2 + u) + γ−1(βX1 − γ)2 > 0.

We now show the Theorem for F1 and F2 restricted to Dα. To this end
we make the change of variable introduce by Kružkov (see [7]), for X ∈ Dα,
W(X) = 1 − e−F(X). Formally:

∇W(X) = ∇F(X)e−F(X) = ∇F(X)(1 − W(X)) (48)
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thus ∇F(X) = ∇W(X)
(1−W(X)) . This motivates the introduction of the following

Hamiltonian:

−umax( p1

1 − W(X)
− rV )+ + βX1X2(rI + p2

1 − W(X)

− p1

1 − W(X)
) − γX2

p2

1 − W(X)
. (49)

Since 1−W(X) will always be positive, for convenience, we conclude the demon-
stration using the Hamiltonian: H̃umax : Dα × [0, 1] × R2 → R :

H̃umax(X, W(X), p)

= min
w∈[0,umax]

[
p · f(X, w) + (1 − W(X))(rIβX1X2 + rV w)

]
= −umax(p1 − rV (1 − W(X)))+ + βX1X2(rI(1 − W(X)) + p2 − p1) − γX2p2.

So we have to prove the following:

Lemma D.4. Let the Hamilton-Jacobi-Bellman equation:

(PW)



Find F : Dα → R such that
F is Lipschitz on Dα, (50a)
−H̃umax(X, F, ∇F (X)) = 0, ∀X ∈ Dα, (50b)
F (X) = 0 on ΓOA, (50c)
F (X) = 0 on ΓI , (50d)
−H̃umax(X, F (X), ∇F (X)) = 0 on ΓABα ∪ ΓBα1. (50e)

If W1 is a subsolution of (50) and W2 a supersolution, then W1(X) ≤
W2(X) for all X ∈ Dα.

Proof. Suppose now that the Lemma is not true, then there exists σ > 0 such
that:

sup
x∈Dα

[W1(x) − W2(x)] = σ > 0. (51)

Consider Ψϵ(x, y) : Dα 7→ R defined by Ψϵ(x, y) = W1(x) − W2(y) − |x−y|2

ϵ .
For any ϵ this function has a global maximum in (xϵ, yϵ) and we have for ϵ

small enough: Ψϵ(xϵ, yϵ) ≥ σ/2 > 0. Since W1, W2 are bounded we obtain also
limϵ→0 |xϵ − yϵ| = 0.

In addition, consider the functions:
φ1(x) = W2(yϵ) + |x−yϵ|2

ϵ defined on Ωφ1 = {x ∈ R∗+ | x + yϵ < 1},

φ2(y) = W1(xϵ) − |xϵ−y|2

ϵ defined on Ωφ2 = {y ∈ R∗+ | xϵ + y < 1}.
These two functions are C1 on Ωφ1 and Ωφ2 respectively.
Then W1(x) − φ1(x) reaches its maximum in xϵ, φ1 is C1(Ωφ1) and W1 is a

subsolution of (50). Using the Lemma (C.1), we have:

− H̃umax

(
xϵ, W1(xϵ), 2(xϵ − yϵ)

ϵ

)
≤ 0. (52)

Similarly, using that the application y 7→ W2(y)−φ2(y) has its maximum in
yϵ, φ2 is C1(Ωφ2) and W2 is a supersolution of (50), we have −H̃umax

(
yϵ, W2(yϵ), 2(xϵ−yϵ)

ϵ

)
≥ 0.
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Combining these two equations, we obtain:

− H̃umax

(
xϵ, W1(xϵ), 2(xϵ − yϵ)

ϵ

)
≤ −H̃umax

(
yϵ, W2(yϵ), 2(xϵ − yϵ)

ϵ

)
. (53)

We use then Remark 10, with H̃umax written as:

H̃umax(X, W, p) = min (umax(rV (1 − W) − p1) + βX1X2(rI(1 − W) + p2 − p1)
−γX2p2, βX1X2(rI(1 − W) + p2 − p1) − γX2p2) . (54)

So we obtain after few simplifications and factorisation (ρ is the constant
given by Remark 10):

− umaxrV (W2(yϵ) − W1(xϵ))
+ (1 + ρ) [β(−xϵ

1xϵ
2 + yϵ

1yϵ
2)(rI − pϵ

1 + pϵ
2) − γpϵ

2(yϵ
2 − xϵ

2)]
− (1 + ρ)βrI [yϵ

1yϵ
2W2(yϵ) − xϵ

1xϵ
2W1(xϵ)] ≤ 0. (55)

Moreover, W1(xϵ) − W2(yϵ) ≤ Ψϵ(xϵ, yϵ) ≤ W1(xϵ) − W2(yϵ) + |W2(xϵ) −
W2(yϵ)| − |xϵ−yϵ|2

2ϵ .
Hence, 0 ≤ |W2(xϵ) − W2(yϵ)| − |xϵ−yϵ|2

2ϵ .
Since W2 is uniformly continuous (as a continuous function on a compact)

and limϵ→0 |xϵ − yϵ| = 0, we have:

lim
ϵ→0

|xϵ − yϵ|2

2ϵ
= 0. (56)

So,

(−xϵ
1xϵ

2 + yϵ
1yϵ

2)(−pϵ
1 + pϵ

2) = (−xϵ
1xϵ

2 + xϵ
1yϵ

2 − xϵ
1yϵ

2 + yϵ
1yϵ

2)2
ϵ

(−xϵ
1 + yϵ

1 + xϵ
2 − yϵ

2)

= (−xϵ
1(xϵ

2 − yϵ
2) − yϵ

2(xϵ
1 − yϵ

2)) 2
ϵ

(−(xϵ
1 − yϵ

1) + xϵ
2 − yϵ

2)

≤ 2
ϵ

(|xϵ
1| + |yϵ

2|)|xϵ
2 − yϵ

2||xϵ
1 − yϵ

1| + 2
ϵ

|xϵ
1||xϵ

2 − yϵ
2|2 + 2

ϵ
|yϵ

2||xϵ
1 − yϵ

1|2

≤ 4
ϵ

|xϵ
2 − yϵ

2||xϵ
1 − yϵ

1| + 2
ϵ

|xϵ
2 − yϵ

2|2 + 2
ϵ

|xϵ
1 − yϵ

1|2.

Hence, limϵ→0 β|(−xϵ
1xϵ

2 + yϵ
1yϵ

2)(−pϵ
1 + pϵ

2)| = 0.
Similarly, using (56), we have γpϵ

2(xϵ
2 − yϵ

2) = 0.
After eventually extracting a subsequence (ϵn)n≥0 we can suppose that

limϵn→0 xϵn = limϵn→0 yϵn = x. Note that x1 = 0 or x2 = 0 would imply
x ∈ ΓOA ∪ ΓI thus W1(x) = W2(x) = 0 in contradiction with Ψ(xϵ, yϵ) ≥ σ

2 and
(56). Therefore x1 ̸= 0 and x2 ̸= 0.

We can therefore rewrite (55) as follows:

− [(1 + ρ)rIβx1x2 + umaxrV ] [W2(x) − W1(x)] ≤ 0. (57)

Since rI , rV , β > 0, ρ ≥ 0 and x1 ̸= 0, x2 ̸= 0 this implies that:

W2(x) ≥ W1(x). (58)

On the other hand, for ϵ relatively small, we have W1(xϵ) ≥ W2(yϵ) + σ
2 .

Passing to the limit, we get W1(x) > W2(x). This is in contradiction with (58)
and ends the proof of the Lemma.

29



As W1 ≤ W2 on Dα, we have also F1 ≤ F2 on Dα. When α → 0, we obtain
F1 ≤ F2 on Ω.

This proof is also available for X ∈ Γ1. For ΓOA and ΓI , we just use the
value of the function.

Theorem D.5. The value function Vumax is the unique solution of the HJB
problem (39).

Proof. Let F1 and F2 be two viscosity solutions of (39). Since F1 is a subso-
lution and F2 is a supersolution, we have, by Theorem D.3 that F1 ≤ F2 on Ω.
Interchanging the roles of F1 and F2, we can conclude F2 ≤ F1. So F1 = F2
on Ω and therefore on Ω (by continuity).

Thus the solution is unique. By Theorem D.8 the value function Vumax is
the unique solution.

D.4 Solution candidate and its properties: the sub-critical
case

Theorem D.5 implies that in order to find the value function it is enough to find
a solution of the HJB equation (39).

We expect the solution to lead to a partition of the domain into a vaccina-
tion region and a non-vaccination region. An important question concerns the
regularity of the value function which at its turn is related to the uniqueness
of the optimal strategy. The frontier of the vaccination region will be seen to
be related to the level line L∂X1 ζ

rV /rI
of ∂X1ζ; see in appendix B the definition of

L∂X1 ζ

rV /rI
.Thus we are about to ask a question similar to that in figure 6: does

L∂X1 ζ

rV /rI
contain points that are entering the domain for control umax and exiting

it for control 0. The level lines L∂X1 ζ

rV /rI
that contain such points will lead to non

unique optimal strategies (and non smooth value functions).
When γ/β < 1, for any umax < ∞ we introduce the critical point Xcrit

umax

which is the unique solution of the equations:{
X ∈ Γ1

⟨f(X, umax), ∇∂X1ζ(X)⟩ = 0.
(59)

The proof of existence and uniqueness of Xcrit
umax

is left as an exercise for the
reader. One can use the description of the curve ⟨f(X, umax), ∇∂X1ζ(X)⟩ = 0
(see also the Appendix A for formulaes involving ζ and its derivatives) to show
that Xcrit

umax
= (x∗, 1 − x∗) where x∗ is the solution of:

γ

β
−
(

x∗ − γ

β

)√
umax

βx∗(1 − x∗) + umax
= x∗e

− β
γ

[
(1−x∗)+(x∗− γ

β )
(

1+
√

umax
βx∗(1−x∗)+umax

)]
.

(60)
Then the value rcrit

V,umax
is defined as

rcrit
V,umax

= ∂X1ζ(Xcrit
umax

). (61)

For γ/β ≥ 1 we set rcrit
V,umax

= ∞. Note that in all situations rcrit
V,umax

> 1.
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When rV < rcrit
V,umax

rI we define a partition of Ω in two regions

ΩNV
umax

= {X ∈ Ω | ∂X1ζ(X) < rV /rI} (62)
ΩV

umax
= {X ∈ Ω | ∂X1ζ(X) > rV /rI}. (63)

The level line L∂X1 ζ

rV /rI
is situated on the common frontier ∂ΩNV

umax
∩ ∂ΩV

umax
.

For γ/β ≥ 1 it may happen that rV /rI is such that L∂X1 ζ

rV /rI
∩Ω = ∅; then we take

ΩV
umax

= ∅. This can happen for relatively small values of rV /rI as illustrated
in figure 13.

Lemma D.6. Any trajectory ΦX0,w(t) with X0 ∈ ∂ΩNV
umax

∩∂ΩV
umax

is such that
ΦX0,w(t) ∈ ΩNV

umax
for all t > 0 and w ∈ UX0 .

Proof. In order to prove that the trajectory ΦX0,w(t) enters the domain ΩNV
umax

it is enough to prove that the tangent to the trajectory has strictly positive
scalar product with the incoming normal at X0 to ΩNV

umax
i.e.,

⟨f(X0, w(0)), −∇∂X1ζ(X0)⟩ > 0, ∀X0 ∈ ∂ΩNV
umax

∩ ∂ΩV
umax

.

This follows (after some straightforward computations) from the definition of
rcrit

V,umax
and the monotonicity of the derivatives of ζ(·) as rcrit

V,umax
is the smallest

value r where the trajectory u = umax is tangent to the level line L∂X1 ζ
r (see in

appendix B the definition of L∂X1 ζ
r ).

Introduce also the control uX0(t) taken to be umax as long as the trajec-
tory ΦX0,uX0 (·)(t) obtained with this control uX0(t) remains in ΩV

umax
(and zero

otherwise). It is a feedback control. Formally it is the solution of the equation:

uX0(t) = umax · 1IΦX0,uX0 (·)(t)∈ΩV
umax

. (64)

The fact that such a solution exists is a consequence of the regularity of the
boundary of ΩV

umax
and Lemma D.6. Note that uX0(t) is of the form umax ·1I[0,η]

with η ≥ 0. Define the function ΠrV ,rI
umax

: Ω → R by

ΠrV ,rI
umax

(X0) = J(X0, uX0(·)). (65)

Theorem D.7. For rV < rcrit
V,umax

rI :

1. ΠrV ,rI
umax

∣∣∣ΩNV
umax

= J0 = rIζ;

2. ΠrV ,rI
umax

∣∣∣ΩV
umax

is the unique viscosity solution of the following problem:

(Pv)



Find F : ΩV
umax

→ R such that

F is Lipschitz on ΩV
umax

, (66a)
−Hvac,umax(X, ∇F (X)) = 0, X ∈ ΩV

umax
, (66b)

F (X) = rIζ(X), X ∈ ΩNV
umax

∩ ΩV
umax

, (66c)

−Hvac,umax(X, ∇F (X)) = 0, X ∈ ∂ΩV
umax

\ (ΩNV
umax

∩ ΩV
umax

). (66d)
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Figure 13: Illustration of level lines L∂X1 ζ
r of the function ∂X1ζ for γ/β < 1

(left) and γ/β ≥ 1 (right).

Here Hvac,umax : Ω × R2 → R is the Hamiltonian function:

Hvac,umax(X, p) = ⟨f(X, umax), (p1, p2)⟩ + rIβX1X2 − rV umax

= −umax(p1 − rV ) + βX1X2(rI + p2 − p1) − γX2p2. (67)

3. ΠrV ,rI
umax

∈ C1(Ω);

4. ΠrV ,rI
umax

is a solution of the HJB equation (39).

Proof. We only consider in this proof the circumstance when γ/β < 1, because
proof for γ/β ≥ 1 is similar to the proof for γ/β < 1.
Point 1: It is enough to show that a trajectory with initial point in ΩNV

umax

remains there forever. Considering the definition of the domains for any X ∈
ΩV

umax
∩ ΩNV

umax
= L∂X1 ζ

rV /rI
the tangent direction f(X, u) to the trajectory points

strictly to the interior of ΩNV
umax

(for any u ∈ [0, umax]); this follows from
Lemma D.6.
Point 2: These properties of the function ΠrV ,rI

umax
are obtained as in the proofs of

Theorems D.1 and D.2 once we write ΠrV ,rI
umax

as the “value function” of a trivial
control problem where the control is taken in the one-element set {umax} until
reaching the frontier ΩV

umax
∩ΩNV

umax
; on the frontier the value is rIζ(X) = J0(X).

Point 3: The function ζ(X) is C1 on Ω (see Appendix A); in particular ΠrV ,rI
umax

will be C1 on ΩNV
umax

. For X ∈ ΩV
umax

we note that ΠrV ,rI
umax

is the solution
of a quasi-linear first order PDE (cf. point 2) and has boundary conditions
defined on a non-characteristic curve ΩNV

umax
∩ΩV

umax
= L∂X1 ζ

rV /rI
; the curve is non-

characteristic because on ΩNV
umax

∩ ΩV
umax

we have ⟨f(X, umax), ∂X1ζ(X)⟩ ≠ 0.
Another way to prove the result is to parametrize the boundary curve with a
parameter α1 and denote α2 the time required to reach the curve. Using the
regularity properties of the ODE the function is C1 in parameters (α1, α2) and
the change of coordinates from X to (α1, α2) is regular around each point in
the interior of ΩV

umax
. Thus ΠrV ,rI

umax
will be C1 on ΩV

umax
.

It remains to be proved that ΠrV ,rI
umax

is also C1 around any point X ∈ L∂X1 ζ

rV /rI
∩

Ω; since ΠrV ,rI
umax

∣∣∣ΩV
umax

and ΠrV ,rI
umax

∣∣∣ΩNV
umax

are both C1, the side gradients exist and
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it remains only to be proved that

∇ΠrV ,rI
umax

∣∣∣ΩV
umax

(X) = ∇ΠrV ,rI
umax

∣∣∣ΩNV
umax

(X), ∀X ∈ L∂X1 ζ

rV /rI
.

Using continuity and C1 properties and the fact that ΠrV ,rI
umax

∣∣∣ΩV
umax

and ΠrV ,rI
umax

∣∣∣ΩNV
umax

coincide on the common frontier it follows that the tangential derivatives along
the frontier are the same. Let us prove that the directional derivative also
coincide in the direction f(X, umax), which can be written:

⟨∇ΠrV ,rI
umax

∣∣∣ΩV
umax

(X), f(X, umax)⟩ = ⟨∇ΠrV ,rI
umax

∣∣∣ΩNV
umax

(X), f(X, umax)⟩. (68)

But ΠrV ,rI
umax

∣∣∣ΩV
umax

satisfies (66b) then

⟨∇ΠrV ,rI
umax

∣∣∣ΩV
umax

(X), f(X, umax)⟩ = −rIβX1X2 + rV umax

= −Hvac,umax(X, ∇ΠrV ,rI
umax

∣∣∣ΩNV
umax

(X)) + ⟨∇ΠrV ,rI
umax

∣∣∣ΩNV
umax

(X), f(X, umax)⟩

= ⟨∇ΠrV ,rI
umax

∣∣∣ΩNV
umax

(X), f(X, umax)⟩.

We used above the fact that J0 = rIζ satisfies Hvac,0(X, ∇J0) = 0 on Ω and
that for X ∈ L∂X1 ζ

rV /rI
we can add umax multiplied by the null term rI∂X1ζ(X)−rV

to Hvac,0(X, ∇J0) to obtain Hvac,umax(X, ∇J0) = 0.
Note that the direction f(X, umax) cannot be collinear with the tangent at

X to the boundary L∂X1 ζ

rV /rI
because for rV < rIrcrit

V,umax
the definition of rcrit

V,umax

ensures that f(X, umax) has non-zero scalar product with the normal ∇∂X1ζ(X)
to the boundary. From (68) and the coincidence of the tangential derivatives it
follows that side gradients ∇ΠrV ,rI

umax

∣∣∣ΩV
umax

and ∇ΠrV ,rI
umax

∣∣∣ΩNV
umax

coincide on the

common boundary thus ΠrV ,rI
umax

∈ C1(Ω).
Point 4: Given what was already proved, it remains to show that

∂X1ΠrV ,rI
umax

(X) ≤ rV ∀X ∈ ΩNV
umax

, (69)
∂X1ΠrV ,rI

umax
(X) ≥ rV ∀X ∈ ΩV

umax
, (70)

Equation (69) is a simple consequence of (62) and Point 1. For (70) we have
to analyze in detail the function ΠrV ,rI

umax

∣∣∣ΩNV
umax

, we will prove that in addition:

∂X2ΠrV ,rI
umax

(X) > 0 ∀X ∈ ΩV
umax

. (71)

Consider X0 ∈ L∂X1 ζ

rV /rI
. We integrate ∂X1ΠrV ,rI

umax
on the characteristic curve

ΦY,umax(·) issued from Y ∈ ΩV
umax

that reaches the frontier at time t > 0 and
point X0 which can be written: ΦY,umax(t) = X0. Formally

∂X1ΠrV ,rI
umax

(Y ) = ∂X1ΠrV ,rI
umax

(X0)

−
∫ t

0
⟨∇∂X1ΠrV ,rI

umax
(ΦY,umax(τ)), f(ΦY,umax(τ), umax)⟩dτ. (72)
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From now on we will drop the notation ΦY,umax(τ) and only denote (X1(τ), X2(τ)) =
X(τ) = ΦY,umax(τ). Note that ΠrV ,rI

umax
satisfies Hvac,umax(X, ∇ΠrV ,rI

umax
) = 0 on

ΩV
umax

i.e., ⟨∇ΠrV ,rI
umax

, f(X, umax)⟩ + rIβX1X2 + rV umax = 0 thus by differenti-
ating formally with respect to X1 one obtains:

⟨∇∂X1ΠrV ,rI
umax

(X(τ)), f(X(τ), umax)⟩ = βX2(−rI − ∂X1ΠrV ,rI
umax

+ ∂X2ΠrV ,rI
umax

).

But this latter quantity is integrable over [0, t] and after classical arguments we
obtain that

∫ t

0 ⟨∇∂X1ΠrV ,rI
umax

(ΦY,umax(τ)), f(ΦY,umax(τ), umax)⟩dτ is well defined
and equals

∫ t

0 βX2(τ)(−rI − ∂X1ΠrV ,rI
umax

+ ∂X2ΠrV ,rI
umax

)(X(τ))dτ . Moreover using
again the HJB equation satisfied by ΠrV ,rI

umax
this term can be replaced by∫ t

0

1
X1(τ)

[
umax(∂X1ΠrV ,rI

umax
(X(τ)) − rV ) + γX2(τ)∂X2ΠrV ,rI

umax
(X(τ))

]
dτ.

Thus, we obtain

∂X1ΠrV ,rI
umax

(Y ) = ∂X1ΠrV ,rI
umax

(X0) +
∫ t

0

1
X1(τ)

[
umax(∂X1ΠrV ,rI

umax
(X(τ)) − rV )

+γX2(τ)∂X2ΠrV ,rI
umax

(X(τ))
]
dτ. (73)

Similar computations allow to write:

∂X2ΠrV ,rI
umax

(Y ) = ∂X2ΠrV ,rI
umax

(X0) +
∫ t

0

1
X2(τ)

[
umax(∂X1ΠrV ,rI

umax
(X(τ)) − rV )

]
dτ.

(74)
Since ΠrV ,rI

umax
is C1 it follows from the properties of ζ that ∂X1ΠrV ,rI

umax
(X0) =

rV and ∂X2ΠrV ,rI
umax

(X0) > 0. Combined with the identities (73)-(74) (and
reasoning infinitesimally starting from X0 along the characteristic) we obtain
∂X1ΠrV ,rI

umax
(Y ) > rV and ∂X2ΠrV ,rI

umax
(Y ) > 0 and equations (71) and (70) follow.

Theorem D.8. For rV < rIrcrit
V,umax

the function ΠrV ,rI
umax

is the unique solution
of the HJB equation (39) and ΠrV ,rI

umax
= Vumax . As a consequence in this case

the value function Vumax is in C1(Ω).

Proof. Theorem D.7 proves that ΠrV ,rI
umax

is a solution of (39). Furthermore,
Theorem D.5 assures the uniqueness of the solution. Then, Vumax = ΠrV ,rI

umax
.

D.5 Solution candidate and its properties: the super-critical
case

We work here under the hypothesis rV ≥ rcrit
V,umax

. In particular this implies
γ/β < 1.

The simplest case is when rV ≥ 2rI and will be dealt with directly later
in Theorem D.12. On the contrary, the situation when rV ∈ [rcrit

V,umax
rI , 2rI [

requires some more work. In this case the value function Vumax will not be C1.
Define (see also figure 14):

Γcrit
sub = {P ∈ L∂X1 ζ

rV /rI
|⟨f(P, umax), ∇∂X1ζ(P )⟩ ≤ 0}. (75)

Using the formulas for f and the derivatives of ζ one can prove with straight-
forward computations:
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• L∂X1 ζ

rV /rI
⊂ {X ∈ Ω|X1 > γ/β} (since rcrit

V,umax
> 1);

• ∂X2X1ζ(P ) < 0, ∀P ∈ L∂X1 ζ

rV /rI
;

• Γcrit
sub is connected; denote by P crit

rV
the other extremity of the curve; then

⟨f(P crit
rV

, umax), ∇∂X1ζ(P crit
rV

)⟩ = 0;

• ∀P ∈ L∂X1 ζ

rV /rI
\ Γcrit

sub , P1 ≥ (P crit
rV

)1;

• the trajectories starting from points on the curve Γcrit
sub enter the domain

{X ∈ Ω|∇∂X1ζ(X) ≤ rV /rI} for any u ∈ [0, umax];

• the trajectories starting from points in L∂X1 ζ

rV /rI
\ Γcrit

sub exit this domain for
u = umax.

For any Y ∈ Γcrit
sub introduce

tY = sup
{

t ≥ 0
∣∣∣ J0(Y ) + rV tumax

+
∫ t

0
rIβΦY,umax

1 (−τ)ΦY,umax

2 (−τ)dτ ≤ J0(ΦY,umax(−t))
}

. (76)

We note that the previous properties imply that tX0 > 0; indeed, take Z =
ΦY,umax(−ϵ) for ϵ small enough; then integrating over the curve τ 7→ ΦZ,umax(τ)
we obtain:

J0(Y ) = J0(ΦZ,umax(ϵ)) = J0(Z) (77)

+
∫ ϵ

0
⟨∇J0(ΦZ,umax(τ)), f(ΦZ,umax(τ), umax)⟩dτ. (78)

Developing the last term and using the HJB equation satisfied by J0 we can
write:

J0(Y ) = J0(Z) − rV tumax −
∫ t

0
rI

[
βΦZ,umax

1 (τ)ΦZ,umax

2 (τ)

+umax(∂X1J0(ΦZ,umax(τ)) − rV )
]
dτ. (79)

The curve τ 7→ ΦZ,umax(τ) belongs to the domain where ∂X1J0(ΦZ,umax(τ)) ≥
rV therefore Z = ΦY,umax(−ϵ) satisfies the inequality in the equation (76) and
as such we obtain tY ≥ ϵ > 0.

We define a curve Γcrit
super as:

Γcrit
super = {ΦY,umax(−tY ) | Y ∈ Γcrit

sub }. (80)

The curves Γcrit
sub and Γcrit

super define a domain that will be denoted ΩV
umax

; set
also ΩNV

umax
= Ω \ ΩV

umax
as illustrated in figure 14.

Lemma D.9. The following inclusion holds:

{X ∈ Ω | ∂X1ζ(X) ≥ rV /rI} ⊂ ΩV
umax

. (81)

Therefore we also have:

ΩNV
umax

⊂ {X ∈ Ω | ∂X1ζ(X) ≤ rV /rI}. (82)
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Figure 14: Illustration of the construction of the domains ΩV
umax

and ΩNV
umax

.
The solid curve is L∂X1 ζ

rV /rI
. The dashed curves are Γcrit

sub (from A to P crit
rV

) and
Γcrit

super (from P crit
rV

). The gray domain is ΩV
umax

.

Proof. Let Z ∈ {X ∈ Ω | ∂X1ζ(X) ≥ rV /rI} and consider the trajectory
ΦZ,umax(t) starting from Z. This trajectory will exit this set at some point on
the border L∂X1 ζ

rV /rI
, more precisely at some point of Γcrit

sub (the direction tangent
to the trajectory has to exit the domain, which is precisely the definition of
Γcrit

sub ). Denote this point Y = ΦZ,umax(τ∗). Using the same arguments as in the
proof of tY > 0 above and recalling that ∂X1J0(ΦZ,umax(τ)) ≥ rV for all τ ≤ τ∗

we obtain tY ≥ τ∗ and in particular Z ∈ ΩV
umax

.

Introduce the solution candidate ΠrV ,rI
umax

: Ω → R defined by equation (65),
but with the control uX0(·) defined in equation (64) depending on the newly
defined set ΩV

umax
.

Theorem D.10. For rV ∈ [rcrit
V,umax

rI , 2rI [:

1.

ΠrV ,rI
umax

(Y ) =


J0(Y ), if Y ∈ ΩNV

umax
(83a)

rV t +
∫ t

0
rIβΦY,umax

1 (τ)ΦY,umax

2 (τ)dτ + J0(ΦY,umax(t)),

if Y ∈ ΩV
umax

and ΦY,umax(t) ∈ Γcrit
sub ; (83b)

2. ΠrV ,rI
umax

∣∣∣ΩV
umax

is the unique viscosity solution of the following problem:

(Pv)



Find F : ΩV
umax

→ R such that

F is Lipschitz on ΩV
umax

, (84a)
−Hvac,umax(X, ∇F (X)) = 0, X ∈ ΩV

umax
, (84b)

F (X) = rIζ(X), X ∈ ΩNV
umax

∩ ΩV
umax

, (84c)

−Hvac,umax(X, ∇F (X)) = 0, X ∈ ∂ΩV
umax

\ (ΩNV
umax

∩ ΩV
umax

); (84d)
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3. ΠrV ,rI
umax

is Lipschitz on Ω;

4. ΠrV ,rI
umax

is a solution of the HJB equation (39).

Proof. Much of the proof uses concepts already invoked in the proof of Theo-
rem D.7. We will only emphasize points that are specific to this situation.
Point 1: A trajectory with initial point in ΩNV

umax
remains there forever there-

fore we conclude as above that ΠrV ,rI
umax

∣∣∣ΩNV
umax

= J0 = rIζ; to prove the second

property note that the function J satisfies

J(Y, u(·)) =
∫ t

0
rV u(τ) + rIβΦY,u

1 (τ)ΦY,u
2 (τ)dτ + J(ΦY,u(·)(t), u(· + t)). (85)

Thus the two definitions coincide as the control is umax on ΩV
umax

and 0 on
ΩNV

umax
because once the trajectory reaches the frontier Γcrit

sub of ΩNV
umax

it enters
ΩNV

umax
and remains there.

Point 2: The proof follows the same lines as point 2 in Theorem D.7.
Point 3: The definition of the domain ΩV

umax
and the previous point ensures

that ΠrV ,rI
umax

is continuous in points of the common boundary ∂ΩV
umax

∩ ∂ΩNV
umax

thus it is continuous on Ω. It is also Lipschitz on ΩV
umax

and ΩNV
umax

with Lipschitz
constants that are universally bounded, thus it is Lipschitz on Ω.

Moreover, as before, one can prove that ΠrV ,rI
umax

is C1 on Γcrit
sub .

Another alternative is to repeat the arguments used to prove that the value
function is Lipschitz (here the control has the same structure: it has value umax

from 0 to some finite time and then 0).
Point 4: We have to prove (the analogues of) the equations (69) and (70).

Any trajectory from Z ∈ ΩV
umax

(for control u = umax1IX∈ΩV
umax

) will en-
counter Γcrit

sub when exiting the domain ΩV
umax

. Together with the fact that
ΠrV ,rI

umax
is C1 in Γcrit

sub this allows to use identities (73)-(74) and obtain as above
that ∂X1ΠrV ,rI

umax
(Y ) > rV and ∂X2ΠrV ,rI

umax
(Y ) > 0 for any Y ∈ ΩV

umax
; then (70)

follows.
To prove (69) use Lemma D.9 and point 3 of this Theorem.

Theorem D.11. For rV ∈ [rIrcrit
V,umax

, 2rI [ the function ΠrV ,rI
umax

(defined by equa-
tion (65) with the control uX0(·) defined in equation (64) depending on the set
ΩV

umax
) is the unique solution of the HJB equation (39) and ΠrV ,rI

umax
= Vumax .

The value function Vumax is Lipschitz in Ω.

Proof. The Theorem D.10 proves that ΠrV ,rI
umax

is a solution of (39). Furthermore,
Theorem D.5 assures the uniqueness of the solution. Then, Vumax = ΠrV ,rI

umax
.

Theorem D.12. For rV ≥ 2rI the function J0 = rIζ is the unique solution of
the HJB equation (39) and Vumax = J0. As a consequence in this case the value
function Vumax is in C1(Ω).

Proof. Straightforward computation and the results from Lemma B.4 indicate
that the derivative J0 does not exceed 2rI and as such (∂X1ζ − rV )+ = 0 and
J0 satisfies the required HJB equation.
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E Instantaneous vaccination
Recall that for umax = ∞ the value function is denoted as V∞; also consult
equation (17) for the definition of H∞.

The following result connects the bounded and unbounded control problems
(see also [7] pages 113-115 for generic related results):

Theorem E.1. The sequence (Vumax)umax≥0 is decreasing and

lim
umax→∞

Vumax = V∞. (86)

Moreover the convergence is uniform over compacts of Ω and V∞ is Lipschitz
over Ω.

Proof. Since for any u2 ≥ u1 ≥ 0 we have the inclusion Uu1
Y ⊂ Uu2

Y the sequence
(Vumax)umax≥0 is decreasing. Therefore lim infumax→∞ Vumax ≥ V∞.

Let Y ∈ Ω and (dVn)n≥0 ⊂ U∞
Y a sequence of strategies such that limn→∞ J(Y, dVn) =

V∞(Y ). For each n construct an approximating sequence of admissible strate-
gies un

w ∈ Uw
Y such that lim

w→∞
un

w = dVn. Then Vw(Y ) ≤ J(Y, un
w) → J(Y, dVn)

thus lim supw→∞ Vw(Y ) ≤ J(Y, dVn). Passing once more to the limit n → ∞
we obtain lim supw→∞ Vw(Y ) ≤ V∞(Y ).

Then limumax→∞ Vumax = V∞. Since functions Vumax are Lipschitz with
Lipschitz constants independent of umax the limit V∞ will be Lipschitz and the
convergence will hold in a neighborhood of Y (thus uniformly over compacts of
Ω).

E.1 HJB equation and value function
Theorem E.2. The value function V∞ is a viscosity solution of the Hamilton-
Jacobi-Bellman equation:

(P)



Find F : Ω → R such that
F is Lipschitz on Ω, (87a)
−H∞(X, ∇F (X)) = 0, X ∈ Ω, (87b)
F (X) = 0 on ΓOA, (87c)
F (X) = 0 on ΓI , (87d)
−H∞(X, ∇F (X)) = 0 on Γ1. (87e)

Proof. We will use the same arguments and notations as in the proof of the
Theorem D.2.

Step 1. First, we prove that V∞ is a subsolution of (87b). We take
the same notations and the same reasoning as in the case umax < ∞. So
equation (42) becomes:

min {rV − p1, βY1Y2(rI + p2 − p1) − γY2p2} ≥ 0. (88)

Suppose that there exists κ > 0 such that:

min {rV − p1, βY1Y2(rI + p2 − p1) − γY2p2} ≤ −κ.
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Remark 10 page 27 assures that there exists ρ ≥ 0 such that:

ρ(rV − ∂X1φ(Y )) + βY1Y2(rI + ∂X2φ(Y ) − ∂X1φ(Y ) − γY2∂X2φ(Y ) ≤ −κ.

Here, we choose the control ρ on the interval [0, δ] and for the same reasons
as above, we obtain:

V∞(Z0) − V∞(Y ) ≤ −κδ −
∫ δ

0
ρrV + rIβΦY,ρ

1 (t)ΦY,ρ
2 (t)dt. (89)

In particular, by the optimality of V∞ on Y , we have:

V∞(Y ) ≤
∫ δ

0
rIβΦY,ρ

1 (t)ΦY,ρ
2 (t) + ρrV dt. (90)

And we can conclude as above that V∞ is solution of equation (87).
Step 2. We prove that V∞ is a supersolution of (87).
Using the same notations and reasoning as in the proof for umax < ∞

equation (46) becomes:

min{rV −∂X1φ(Y ), βY1Y2(rI +∂X2φ(Y )−∂X1φ(Y ))−γY2∂X2φ(Y )} > κ. (91)

In order to invalidate (91) we invalidate, in a neighborhood of Y :

βΦY,u
1 (·)ΦY,u

2 (·)(rI+∂X2φ(ΦY,u(·))−∂X1φ(ΦY,u(·)))−γΦY,u
2 (·)∂X2φ(ΦY,u(·))) > κ.

(92)
We obtain, as above:

V∞(Z0) − V∞(Y ) ≥ φ(Y ) − φ(Z0) ≥
∫ δ

0
⟨∇φ(ΦY,w(t)) · f(ΦY,w(t), w)⟩dt

> δκ +
∫ δ

0
−βΦY,w

1 (t)ΦY,w
1 (t)rI − w∂X1φdt

> δκ −
∫ δ

0
wrV + rIβΦY,w

1 (t)ΦY,w
2 (t)dt +

∫ δ

0
w(rV − ∂X1φ(Y ))dt

> δκ −
∫ δ

0
wrV + rIβΦY,w

1 (t)ΦY,w
2 (t)dt,

because w(rV −∂X1φ(ΦY,w(·))) ≥ 0 since w ≥ 0 and (rV −∂X1φ(ΦY,w(·))) ≥
H∞(ΦY,w(·), ∇φ(ΦY,w(·)) ≥ κ > 0.

Once again, we conclude as in the proof of the Theorem D.2.

E.2 Uniqueness of the solution of the HJB problem.
Theorem E.3. Let F1 a subsolution of (87) and F2 a supersolution. Then:

F1(X) ≤ F2(X) for all X ∈ Ω.
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Proof. We use the same notation and reasoning as in the proof in Section D.3.
The Hamiltonian used here is:

H̃∞(X, W∞(X), p) = min(rV (1−W∞), βX1X2(rI(1−W∞)+p2−p1)−γX2p2).
(93)

Equation (55) becomes:

− ρrV (W∞
2 (yϵ) − W∞

1 (xϵ))
+ [β(−xϵ

1xϵ
2 + yϵ

1yϵ
2)(rI − pϵ

1 + pϵ
2) − γpϵ

2(yϵ
2 − xϵ

2)]
− βrI [yϵ

1yϵ
2W∞

2 (yϵ) − xϵ
1xϵ

2W∞
1 (xϵ)] ≤ 0. (94)

And for the same reasons as in the proof for umax bounded we obtain instead
of (57):

− [rIβx1x2 + ρrV ] [W∞
2 (x) − W∞

1 (x)] ≤ 0. (95)

We can conclude as when umax is bounded.

E.3 A candidate value function: the sub-critical case
We introduce the critical point value rcrit

V,∞:

rcrit
V,∞ = sup{r ≥ 0 | ∂2

X1X1
ζ(X) > 0 ∀X ∈ L∂X1 ζ

r }. (96)

We see (after some computations) that rcrit
V,∞ < ∞ for γ/β < 1 and rcrit

V,∞ = ∞
for γ/β ≥ 1. Note that in all situations rcrit

V,∞ > 1.
We introduce the critical point Xcrit

∞ which is the unique solution of the
following equation:

∂2
X1X1

ζ(Xcrit
∞ ) = 0, Xcrit

∞ ∈ Γ1. (97)

As in (60), we show that Xcrit
∞ = (x∗, 1 − x∗) where x∗ is the solution of:

γ

β
−
(

x∗ − γ

β

)
= x∗e− β

γ [(1−x∗)+2(x∗− γ
β )]. (98)

When rV < rcrit
V,∞rI we define a partition of Ω in two regions

ΩNV
∞ = {Y ∈ Ω | ∂X1ζ(Y ) < rV /rI} (99)

ΩV
∞ = {Y ∈ Ω | ∂X1ζ(Y ) > rV /rI}. (100)

Note that rcrit
V,∞ = limumax→∞ rcrit

V,umax
and for umax large enough ΩV

umax
=

ΩV
∞ (and ΩNV

umax
= ΩNV

∞ ). As before we can prove the following:

Lemma E.4. Any trajectory ΦY,dV (t) with Y ∈ L∂X1 ζ

rV /rI
= ∂ΩNV

∞ ∩∂ΩV
∞ is such

that ΦY,dV (t) ∈ ΩNV
∞ for all t > 0 (dV ∈ UY ).

To any Y ∈ Ω associate the unique ∆Y ≥ 0 such that (Y1 −∆Y, Y2) ∈ L∂X1 ζ

rV /rI

and define: ΠrV ,rI
∞ (Y ) = J(Y, ∆Y δt=0). If ∆Y does not exist then set ∆Y = 0
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with the convention 0 × δt=0 = 0. Note that ∆Y = 0 for any Y ∈ ΩNV
umax

and
moreover:

ΠrV ,rI
∞ (Y ) =

{
J0(Y ) if Y ∈ ΩNV

∞

J0(Y1 − ∆Y, Y2) + rV (∆Y ) if Y ∈ ΩV
∞, (Y1 − ∆Y, Y2) ∈ L∂X1 ζ

rV /rI
, ∆Y ≥ 0.

(101)
For umax large enough ΠrV ,rI

umax
and ΠrV ,rI

∞ coincide on ΩNV
umax

. Moreover since
for any Y ∈ ΩV

umax
and given umax the optimal strategies uumax

Y converge (when
umax → ∞) to the Dirac delta function ∆Y δt=0 then:

V∞(Y ) = lim
umax→∞

Vumax(Y ) = lim
umax→∞

J(Y, uumax

Y ) = J(Y, ∆Y δt=0) = ΠrV ,rI
∞ (Y ).
(102)

Therefore we proved the following:

Theorem E.5. For rV < rIrcrit
V,∞ the function ΠrV ,rI

∞ is the unique solution of
the HJB equation (87) and ΠrV ,rI

∞ = V∞. As a consequence in this case the
value function V∞ is in C1(Ω).

Proof. The proof is already above.
A direct proof also can be given; for instance suppose one wants to prove

e.g., that −H∞(Y, ∇ΠrV ,rI
∞ (Y )) = 0 for Y ∈ Ω.

The mere definition of the domain ΩNV
∞ imply that rV − ∂X1J0 ≥ 0 on

this domain; on the other hand βX1X2(rI + ∂X2J0 − ∂X1J0) − γX2∂X2J0 = 0
everywhere; thus −H∞(Y, ∇ΠrV ,rI

∞ (Y )) = 0 for Y ∈ ΩNV
∞ .

For Y ∈ ΩV
∞ (with (Y1 − ∆Y, Y2) ∈ L∂X1 ζ

rV /rI
) the definition of ΠrV ,rI

∞ im-
plies that for any ϵ < ∆Y : ΠrV ,rI

∞ (Y1, Y2) = ΠrV ,rI
∞ (Y1 − ϵ, Y2) + rV ϵ thus

∂X1ΠrV ,rI
∞ (Y ) = rV ; in addition ∂X2ΠrV ,rI

∞ (Y ) = ∂X2ΠrV ,rI
∞ (Y1 − ∆Y, Y2) and

the conclusion follows from the HJB equation of J0 on the L∂X1 ζ

rV /rI
.

E.4 A candidate value function: the super-critical case
We consider here the situation rV /rI ≥ rcrit

V,∞; note that this implies γ/β ≤ 1.
Introduce

Γcrit
sub = {Y ∈ L∂X1 ζ

rV /rI
| ∂2

X1X1
ζ(Y ) ≤ 0}. (103)

For any Y ∈ Γcrit
sub define:

Y super
1 = sup{Z1 ≥ Y1 | J0(Y ) + rV (Z1 − Y1) ≤ J0(Z1, Y2)}. (104)

We define a curve Γcrit
super as:

Γcrit
super = {(Y super

1 , Y2) | Y ∈ Γcrit
sub }. (105)

Remark 11. We can express Γcrit
sub in a parametric form:

Γcrit
sub = {(X∆

1 , X∆
2 ) ∈ Ω | 0 ≤ ∆ ≤ ∆max},

where: X∆max
1 = γ

β , X∆max
2 = 0, X0

1 = 2 γrI

βrV
and X0

2 = − γ
β ln[ rV

rI
− 1] + 2 γ

β (1 −
2 rI

rV
) and

X∆
1 = ∆(e− β

γ

rV
rI

∆ − 1)

1 − ∆ β
γ

rV

rI
− e

− β
γ

rV
rI

∆
, for ∆ > 0 (106)
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X∆
2 = − γ

β
ln

(
1 −

rV

rI
(1 − β

γ X∆
1 )

1 − rV

rI

β
γ X∆

1

)
−

rV

rI
X∆

1 (1 − β
γ X∆

1 )
1 − rV

rI

β
γ X∆

1
. (107)

With these notations,

Γcrit
super = {(Y ∆

1 , Y ∆
2 ) ∈ Ω| Y ∆

1 = X∆
1 + ∆, Y ∆

2 = X∆
2 }. (108)

The curves Γcrit
sub and Γcrit

super define a domain that will be denoted ΩV
∞; set

also ΩNV
∞ = Ω \ ΩV

∞.
Note that when rV ≥ 2rI the sets Γcrit

sub , Γcrit
super and ΩV

∞ are empty.
To any Y ∈ Ω associate the unique ∆Y ≥ 0 such that (Y1 − ∆Y, Y2) ∈ Γcrit

sub

and define: ΠrV ,rI
∞ (Y ) = J(Y, ∆Y δt=0). If ∆Y does not exist then set ∆Y = 0

with the convention 0 × δt=0 = 0. Note that ∆Y = 0 for any Y ∈ ΩNV
∞ and

moreover:

ΠrV ,rI
∞ (Y ) =

{
J0(Y ) if Y ∈ ΩNV

∞
J0(Y1 − ∆Y, Y2) + rV (∆Y ) if Y ∈ ΩV

∞, (Y1 − ∆Y, Y2) ∈ Γcrit
sub , ∆Y ≥ 0.

(109)
Note that for any given Y ∈ ΩV

∞ for umax large enough Y ∈ ΩV
umax

. Moreover
for any Y ∈ ΩV

umax
and given umax the optimal strategies uumax

Y converge (when
umax → ∞) to a Dirac delta function ∆Y δt=0 then:

V∞(Y ) = lim
umax→∞

Vumax(Y ) = lim
umax→∞

J(Y, uumax

Y ) = J(Y, ∆Y δt=0) = ΠrV ,rI
∞ (Y ).
(110)

Therefore we proved the following:

Theorem E.6. For rV ≥ rIrcrit
V,∞ the function ΠrV ,rI

∞ is the unique solution
of the HJB equation (87) and ΠrV ,rI

∞ = V∞. In particular when rV ≥ 2rI :
V∞ = J0 ∈ C1(Ω) but when rV ∈]rIrcrit

V,∞, 2rI [ the value function V∞ is only
Lipschitz.
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