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Globally optimal vaccination policies in the SIR
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Abstract

This paper focuses on optimal vaccination policies for a SIR model;
the total cost of the disease is optimized with respect to the cost of a vac-
cination strategy. We show that the value function is the unique viscosity
solution of a HJB equation. This allows to find the global optimal vacci-
nation policy. At odds with existing literature, it is seen that the value
function is not always smooth (sometimes only Lipschitz) and the optimal
vaccination policies are not unique. Moreover we rigorously analyze the
situation when vaccination can be modeled as instantaneous (with respect
to the time evolution of the epidemic) and identify the global optimum
solutions.

Keywords: optimal vaccination; SIR model; vaccination region; im-
munization region

1 Introduction

1.1 The model

In order to model the evolution of a epidemic, we use a SIR (Susceptible -
Infected - Recovered) compartment model (cf., [3, 8, 19] for additional details).

We seek to optimize the cost of the vaccination policy; to this end de-
note by V (t) the proportion of people vaccinated by the time t (of course
limt→∞ V (t) ≤ 1); we consider vaccines that confer lifetime immunity so
that V is an increasing function. The evolution of the disease is described by
the following equations:























dX1(t) = −βX1(t)X2(t)dt− dV (t), X1(0) = X10,

dX2(t) =
(

βX1(t)X2(t)− γX2(t)
)

dt, X2(0) = X20,

dX3(t) = γX2(t)dt, X3(0) = X30,

X4(t) =
∫ t

0
dV, X4(0) = 0.

(1)
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Figure 1: Graphical illustration of the SIR-V model.

Here X1, X2, X3, X4 are the proportion of people in the ”susceptible”
respectively ”infectious”, ”recovered” and ”vaccinated” classes. InitiallyX1(0)+
X2(0) +X3(0) = 1 and X4(0) = 0 (but X4 need not be continuous in 0). See
figure 1 for a graphical view of system (1). Note that (1) implies X1(t)+X2(t)+
X3(t) +X4(t) = 1, ∀t ≥ 0.

Here β is the transmission rate of the disease, V the control to be optimized
and γ the recovery rate.

We denote rV the unitary cost associated with vaccination including the
cost of the vaccine and all possible side-effects and rI the unitary cost incurred
by infected persons. The cost of the disease is independent of the classes X3

and X4 (but dependent on the control V (t)), so we can restrict ourselves to the
evolution of X1 and X2. From now on a vector X will only be supposed to have
two coordinates X1 and X2. Denoting:

Ω = {X = (X1, X2) ∈ R
2 | X1, X2 > 0, X1 +X2 < 1}, (2)

we will work under the constraints X ∈ Ω.
We introduce ΦY,dV (t) = (ΦY,dV

1 (t),ΦY,dV
2 (t)) to denote, at time t ≥ 0, the

solution of the system (1) starting at pointX(0) = Y and with control dV ; in ad-
dition Z = ΦY,dV (·)(−t) means Y = ΦZ,dV (t−·)(t) (the reverse system has a well
defined mathematical meaning). To ease notations, when the measure dV is ab-
solutely continuous with respect to the canonical Lebesgue measure dt on [0,∞[
i.e., when dV can be written dV = u(t)dt we will also write ΦY,u(t)(t) instead

of ΦY,u(t)dt(t) (and the same for the components Φ
Y,u(t)dt
1 (t) and Φ

Y,u(t)dt
2 (t)).

The cost of the disease is:

J(Y, dV ) =

∫ ∞

0

rIβΦ
Y,dV
1 (t)ΦY,dV

2 (t)dt+

∫ ∞

0

rV dV (t). (3)

Moreover we will use the following notation J0(Y ) = J(Y, 0); note that
J0(Y ) is a cost proportional with the number of people infected in absence
of vaccination. This number will be denoted ζ(Y ) thus J0(Y ) = rIζ(Y ) (see
Appendix A for the properties of ζ).
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Remark 1. Equation (1) implies

ΦX,dV
2 (∞) = ΦX,dV

2 (0) +

∫ ∞

0

dΦX,dV
2 (t)

= ΦX,dV
2 (0) +

∫ ∞

0

(

βΦX,dV
1 (t)ΦX,dV

2 (t)− γΦX,dV
2 (t)

)

dt (4)

Thus, since ΦX,dV
2 (∞) = 0:

∫ ∞

0

rIβΦ
X,dV
1 (t)ΦX,dV

2 (t)dt =

∫ ∞

0

rIγΦ
X,dV
2 (t)dt− ΦX,dV

2 (0). (5)

This allows to conclude that the cost functional

Jd(Y, dV ) =

∫ ∞

0

rdIΦ
Y,dV
2 (t)dt+

∫ ∞

0

rV dV (t) (6)

with rdI = rIγ satisfies

Jd(Y, dV ) = J(Y, dV ) + Y2. (7)

Both Jd and J will thus have same optimal strategies (because their difference
is independent of the strategy dV ). Here rdI can be seen as the unitary cost of
infection per unit time.

1.2 The admissible vaccination policies

Vaccination policy dV can be modeled in different ways. Note that the pro-
portion

∫ t

0
dV (s) of individuals vaccinated up to time ”t” is increasing and

∫ t

0
dV (s) ≤ 1, ∀t ≥ 0; therefore V is a bounded variation function and dV (t)

is a positive measure on [0,∞[; this is the most general class of vaccination
strategies. A restrictive class of vaccination policies will also be considered (see
also the literature review in Section 1.4 below) where the speed of vaccination is
bounded; in this case dV (t) = u(t)dt with u(t) ∈ [0, umax]. Generic results (see
e.g., [4]) suggest that considering controls with bounded speed is not restrictive
because the general situation is obtained in the limit umax → ∞. We will rig-
orously prove this assertion in Section 3 and will work with the restricted class
of vaccination policies until then.

Finally, in order to give a meaning to the system (1) we can write it as:

d









X1

X2

X3

X4









=









−βX1X2

βX1X2 − γX2

γX2

0









dt+









−1
0
0
1









dV (t). (8)

Since,

• (X1, X2, X3, X4) 7→ (−βX1X2, βX1X2−γX2, γX2, 0)
T and (X1, X2, X3, X4) 7→

(−1, 0, 0, 1)T are Lipschitz functions,

• V is a bounded variation function,
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results from [13] and [21] can be invoked to conclude that (8) has a solution and
the solution depends smoothly on the initial data and the control V .

Let us make clear how a mathematical object such as V can be translated
into vaccination policies for the unbounded case. Take for instance the trajectory
ΦY,dV (t) driven by the control (here δt=0 is the Dirac mass in t = 0):

dV (t) =















Y1

2
δt=0, t = 0 (9a)

0.10, t ∈]0, 0.5[ (9b)

0, t ≥ 0.5. (9c)

This means that half of the initial susceptible population Y1 is vaccinated
(instantaneously) at the onset t = 0. Then vaccination is pursued with speed
of 10% percent per unit time till time t = 0.5; then no vaccination occurs.
In particular this means that 50 + 0.5 × 10 = 55 percents of the population
is vaccinated in all. Note that the trajectory ΦY,dV (t) is not continuous since

ΦY,dV
1 (0+) = ΦY,dV

1 (0)/2. This trajectory can be seen as the limit when ǫ → 0
of the trajectories ΦY,dVǫ(t) corresponding to the following vaccination policies:

dVǫ(t) =















Y1

2ǫ
, t ∈ [0, ǫ] (10a)

0.10, t ∈]ǫ, 0.5[ (10b)

0, t ≥ 0.5. (10c)

1.3 Notations and first remarks

We introduce the function f : Ω× R 7→ R
2 :

(X,u) ∈ Ω× R 7→ f(X,u) = (−βX1X2 − u, βX1X2 − γX2) ∈ R
2. (11)

Note that f(·, u) is a Lipschitz function with Lipschitz constant Lf indepen-
dent of the second argument, i.e.,

‖f(Y, u)− f(Z, u)‖ ≤ Lf‖Y − Z‖, ∀ Y, Z ∈ Ω. (12)

In order to define the admissible controls we consider a point Y ∈ Ω; for
umax < ∞ we define:

Uumax

Y =
{

u : [0,∞[→ [0, umax]
∣

∣

∣
u measurable, ΦY,u(·)(t) ∈ Ω, ∀t ≥ 0

}

. (13)

When umax = ∞ we define:

U∞
Y =

{

dV positive measure on [0,∞[

∣

∣

∣

∣

∫ ∞

0

dV ≤ Y1 ≤ 1, ΦY,dV (t) ∈ Ω, ∀t ≥ 0

}

.

(14)
Irrespective of whether umax is bounded or not the set Uumax

Y is a closed
subset of the set of (finite, positive) measures on [0,∞[. Note that for any
Y ∈ Ω and any umax : 0 ∈ Uumax

Y .
To make notations easier we will not write the dependence of Uumax

Y with
respect to Y or umax and only denote, when there is no ambiguity, by UY or U
the set of admissible controls.
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For umax < ∞ we define the Hamiltonian Humax : Ω× R
2 → R as:

Humax(X, p) = min
w∈[0,umax]

[p · f(X,w) + rIβX1X2 + rV w] (15)

= −umax(p1 − rV )+ + βX1X2(rI + p2 − p1)− γX2p2. (16)

When umax = ∞ the previous definition is to be replaced by H∞ : Ω×R
2 →

R:
H∞(X, p) = min {rV − p1, βX1X2(rI + p2 − p1)− γX2p2} . (17)

The value function Vumax : Ω → R is (for any umax be it bounded or not):

Vumax(Y ) = inf
u∈Uumax

Y

J(Y, u). (18)

Any u such that J(Y, u) = Vumax(Y ) is called an optimal strategy for
Y ; it is not necessarily unique. However it has been proved in [6] that if
umax < ∞ at least one optimal strategy exists in the set Uumax

Y and has the
form u = umax1[0,θ(Y )] with θ(Y ) ≥ 0. In fact since the total proportion of
people susceptible to be vaccinated is at most 1 then θ(Y ) ≤ Tmax := 1/umax.
From now on we fix θ : Ω → [0,∞[ to be a function (whose existence is guar-
anteed by the above mentioned result) such that umax1[0,θ(Y )] is an optimal
strategy for Y .

We introduce the following notations:

• A = ( γβ , 0) ∈ R
2,

• Γ1 = {(X1, X2) ∈ Ω | X1 +X2 = 1},

• ΓI = {(X1, X2) ∈ Ω | X1 = 0},

• ΓS = {(X1, X2) ∈ Ω | X2 = 0},

• ΓOA = {(X1, X2) ∈ ΓS | 0 ≤ X1 ≤ γ
β },

• ΓA1= {(X1, X2) ∈ ΓS | γ
β ≤ X1 ≤ 1}.

Note that when γ/β > 1: A /∈ Ω, ΓOA = ΓS and ΓA1 = ∅.

Lemma 1.1. The value function Vumax is bounded on Ω. Moreover Vumax |ΓI∪ΓOA
= 0

and Vumax is continuous on ΓI ∪ ΓOA.

Proof. Choose u = 0 then

Vumax(X) ≤ J(X, 0) = J0(X) ≤ rIX1 ≤ rI , ∀X ∈ Ω. (19)

Note that J(X,u) = 0 ∀X ∈ ΓI , ∀u ∈ UX ; using (19) we obtain Vumax(X) = 0
∀umax ∈ [0,∞], ∀X ∈ ΓI and the continuity on ΓI . To set the value on ΓOA

note that when X is such that X1 < γ/β then ΦX,0
2 (t) tends exponentially to

zero. Therefore: J(Xn, 0) → 0 when Xn → X ∈ ΓOA.
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X11A = ( γβ , 0)

X2

1

O
ΓA1

ΓI

Γ1

ΓOA •
X11

X2

1

O
ΓS

ΓI

Γ1

Figure 2: Boundary representation when γ
β < 1 (left) and γ

β ≥ 1 (right).

1.4 Literature review

A rich diversity of epidemic models have been proposed in order to describe
epidemic propagation (see [3, 8, 19] for details). Building on these models,
strategies have been documented to control the propagation, among which iso-
lating infected people or immunizing susceptible people; see [16, 6, 10] which also
propose combination of these two methods. In this work we will only analyze
control policies that consist in the vaccination of susceptibles (immunization).
The vaccination is supposed to confer lifetime (i.e., irreversible) immunity. In
the context of immunization, several facts can affect the decisions of vaccination.
The reference [9] discusses this problem in general, [20] proposes an approach
taking the individual point of view, and [17] introduces an extension also using
game theory.

The present work is on the contrary only concerned with finding an optimal
vaccination strategy. Several studies have already considered this approach
recasting it as an optimal control problem.

Historically one of the first to consider this problem, Abakuks explores two
alternatives: in [2] a restrictive class of vaccination policies which allows at any
time to immunize either all or none of the susceptible (therefore optimal policy
immunizes either at once or never); in [1] the author considers policies which at
any time during the course of the epidemic allow to immunize any number of
the susceptible.

Abakuks proves the existence of an immunization region: within this region
it is best to vaccinate with maximum effort and outside it is optimal to do
nothing. The result is only obtained for umax = ∞; moreover the proof only
applies to vaccination policies dV that are finite sums of Dirac masses and it
is not indicated how the value function V∞ (assumed to be continuous) behave
in the limit when Dirac masses accumulate near a point or when such masses
converge to a general measure on [0,∞[.

In another work (see [11]) Hethcote considers a similar problem under ad-
ditional constraints on the total proportion of the population affected and the
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maximum number of infected at the peak; the vaccination policies are taken to
be stepwise constant functions and the cost of vaccination piecewise quadratic
in the number of people vaccinated. He shows that the optimal strategy will be
piecewise constant, with at most a single point of discontinuity.

In a similar work [14] authors consider umax = 1 and define the class of
admissible policies to contain function with only isolated discontinuities. They
show that the optimal strategy has a single point of discontinuity and introduce
the concept of vaccination border. To do this, they assume that the value
function Vumax is C1(Ω) which, as it will be seen in the following, is not always
the case (it depends on the specific choice of parameters β, γ, umax, rV , rI).

In [16] authors set umax < ∞ for a finite horizon framework T < ∞ and
work under the additional presence of a dumping term e−rt in the cost func-

tional which reads:
∫ T

0
e−rt

(

rV u(t)+rIΦ
X,u(t)
2 (t)

)

dt; moreover the infected are

supposed to pay a infection cost per unit time up to the time T and nobody
recovers before time T , i.e., with our notations γ = 0. They use the maximum
principle to characterize the optimal policies which turn out to be of bang-bang
type with only one switch.

In [12] the existence and local optimality of singular controls is investigated
and using the Maximum Principle it is shown that the optimal vaccination
schedule can be singular. This corresponds to our limit umax → ∞. However
no information is obtained on the regularity of the value function.

In the references described so far the authors focused on the optimal strategy
without studying the properties of the value function. Using a similar model
and an approach via optimal control [15] finds, via a Bellman equation, that the
strategy is type bang-bang (only values 0 and umax are taken). However they
assume that the cost function is C1(Ω); finally, the results in the case where
umax → ∞ are extrapolated and they suppose that the optimal strategy is
bang-bang. As such the optimal policies are sometimes at odd with results in
the stochastic case.

In a recent work H. Behncke (see [6]) proves, without using that value func-
tion is C1(Ω), that at least one optimal strategy for the trajectory starting at
X ∈ Ω is of the form umax1[0,θ(X)], θ(X) ≥ 0, ∀X ∈ Ω. Although this informa-
tion is very useful it does not allow to conclude on the regularity of the value
function. As an illustration, we plot two situations: with parameters in figure 3
the function θ(X) is C1(Ω) while with parameters in figure 4 the function θ(X)
is discontinuous.

Finally, without specifically entering in the context of epidemiology but using
a general optimal control framework and the concept of viscosity solution the
reference [18] analyzes the properties of the value function in the situation when
a discount factor is present.

Considering the previous works several questions arise:

1. For which set of parameters (β, γ, umax, rV , rI) is the value function
Vumax of class C1(Ω) and when is it less regular; note that if the value
function Vumax is not C1 some vaccination strategies derived under the C1

hypothesis will not be globally optimal.

2. Are the optimal strategies unique ?

3. What happens when umax = ∞ (i.e., when vaccination is fast with respect
to the epidemic propagation).
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Our work answers these questions. In particular we show that value function
is not always C1, the optimal strategies not always unique and prove rigorously
what happens in the limit umax → ∞.
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Figure 3: θ(X) for parameters umax = 100, rV = 0.5, rI = 1, β = 73,
γ = 36.5. Left: Representation as 3D function. Right: representation as
level lines. We observe that θ is regular.
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Figure 4: θ(X) for parameters umax = 100, rV = 1.4, rI = 1, β = 73, γ = 36.5.
Left: Representation as 3D function. Right: representation as level lines. In
both cases we zoom on the discontinuity curve and plot Ω ∩ ([0.4, 1]× [0, 0.1]).
We observe that θ is discontinuous.

1.5 Specific mathematical difficulties of the problem

The approach proposed in this work faces specific technical difficulties among
which:

• There do not exist natural boundary conditions to set on some parts of the
frontier (Γ1 and ΓA1). This will pose problem when proving the uniqueness
of the solution of the associated HJB equation. See section 2.3 for the
technique used to mitigate this difficulty.
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X11

1

X2

O

Figure 5: A typical example of non-unique optimal vaccination strategy: the
solid trajectory corresponds to zero vaccination while the dashed trajectory
corresponds to vaccination in the colored region followed by non vaccination.
But both trajectories lead to the same, minimal, cost. In this case we expect
the value function to not be of class C1. Non uniqueness appears when the
trajectory with zero vaccination does not enter the vaccination region while the
trajectory with maximal vaccination enters it. See Sections 2.4, 2.5, 3.3 and 3.4
for details.

• The state X is restricted to belong to Ω while the controls e.g., in the
form dV = udt, u ∈ [0, umax] can drive it outside this domain.

• The cost function J(X0, dV ) has no dumping term e−rt, so we need to
work in infinite horizon. This is a problem when trying to obtain Lipschitz
regularity for the value function. See section 2.2.

• In general, a convenient hypothesis (cf. also [7]) to prove the uniqueness of
the viscosity solution of F(x, F (x),∇F (x)) = 0 is that the Hamiltonian F
be strictly monotone in the second argument. But here our Hamiltonians
do not depend on this argument.

• In general optimal controls are unique (and the value function differen-
tiable). Here this is not the case (cf. figure 5) which hints that value
function has regularity defects.

1.6 An introduction to viscosity solutions

This section is largely based on classical works such as [7], [4], [5] [18]. We refer
the reader to these works for additional details.

Let ξ : O → R be a scalar function defined on an open set O ⊆ R
n.

Definition 1.1. The set of super-differentials of ξ at a point x ∈ O is:

D+ξ(x) =

{

p ∈ R
n; lim sup

y→x

ξ(y)− ξ(x)− p · (y − x)

|y − x| ≤ 0

}

. (20)
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Similarly, the set of sub-differentials of ξ at a point x ∈ O is:

D−ξ(x) =

{

p ∈ R
n; lim sup

y→x

ξ(y)− ξ(x)− p · (y − x)

|y − x| ≥ 0

}

. (21)

We will also use the following:

Lemma 1.2. Let ξ ∈ C(O). Then

1. p ∈ D+ξ(x) if and only if there exists a function φ ∈ C1(O) such that
∇φ(x) = p and ξ − φ has a local maximum at x.

2. p ∈ D−ξ(x) if and only if there exists a function φ ∈ C1(O) such that
∇φ(x) = p and ξ − φ has a local minimum at x.

In the following, we consider the first order partial differential equation:

F(x, ξ(x),∇ξ(x)) = 0, (22)

defined on an open set O ∈ R
n. Here, F : O × R

n × R
n → R is a continuous

(possibly nonlinear) function.

Definition 1.2. A function ξ ∈ C(O) is a viscosity subsolution of (22) if

F(x, ξ(x), p) ≤ 0 for every x ∈ O, p ∈ D+ξ(x). (23)

Similarly, ξ ∈ C(O) is a viscosity supersolution of (22) if

F(x, ξ(x), p) ≥ 0 for every x ∈ O, p ∈ D−ξ(x). (24)

Finally, we call ξ a viscosity solution of (22) if it is both a supersolution and
a subsolution in the viscosity sense.

Remark 2. For each particular problem we will explicitly specify latter the
boundary conditions.

2 Bounded vaccination speed (umax < ∞)

In this section we assume that umax < ∞.

2.1 Properties of the value function

Theorem 2.1. The value function Vumax : Ω → R is a Lipschitz function in
Ω. It can uniquely be extended to a Lipschitz function on Ω.

Proof. We first prove that for a fixed control u and time t the function

{Y ∈ Ω | u ∈ UY } ∋ Y 7→ ΦY,u(t),

is Lipschitz with the Lipschitz constant independent of u. We write:

|| d
dt

ΦY,u(t)− d

dt
ΦZ,u(t)|| = ||f(ΦY,u(t), u)− f(ΦZ,u(t), u)||

≤ Lf ||ΦY,u(t)− ΦZ,u(t)||.
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where Lf is the constant in equation (12). Then:

d

dt

(

||ΦY,u(t)− ΦZ,u(t)||2
)

≤ 2Lf ||ΦY,u(t)− ΦZ,u(t)||2. (25)

Using the Gronwall Lemma and taking the square root, we obtain:

||ΦY,u(t)− ΦZ,u(t)|| ≤ ||Y − Z||eLfTmax .

Fix Y, Z ∈ Ω and denote by uY = umax · 1[0,θ(Y )] one optimal control of the
trajectory leaving from Y . Then if uY ∈ UZ and uZ ∈ UY :

Vumax(Z) ≤ J(Z, uY )

≤
∫ Tmax

0

rIβΦ
Z,uY

1 (t)ΦZ,uY

2 (t) + rV uY (t)dt+ J0(Φ
Z,uY (Tmax))

≤
∫ Tmax

0

rIβΦ
Y,uY

1 (t)ΦY,uY

2 (t) + rV uY (t)dt+ J0(Φ
Y,uY (Tmax))

+CuY ,Tmax
‖Y − Z‖ = Vumax(Y ) + CuY ,Tmax

‖Y − Z‖.
Note that uY is member of the compact set {u : [0,∞] → R | u = umax1[0,θ], θ ≤
Tmax}. Thus the constant CuY ,Tmax

only depends on Tmax (and not on Y or
Z). Changing the roles of Y and Z we obtain the reverse inequality thus the
conclusion.

If uY /∈ UZ or uZ /∈ UY , suppose, to fix notations, that uY /∈ UZ ; since
uY = umax · 1[0,θ(Y )] then uY /∈ UZ implies θ(Y ) > θ(Z) thus uZ ∈ UY . Take
η ∈ [θ(Z), θ(Y )] to be the maximum value such that umax1[0,η] ∈ UZ ∩ UY .

The maximality implies ΦZ,umax1[0,η](η) ∈ ΓI . Using Lipschitz estimates for
Φ·,umax1[0,η](t) we obtain as above:

Vumax(Z) ≤ J(Z, umax1[0,η]) ≤ CTmax
(‖Y − Z‖) + Vumax(ΦZ,umax1[0,η](η))

+Vumax(Y )− Vumax(ΦY,umax1[0,η](η))

≤ Vumax(Y ) + CTmax
(‖Y − Z‖) + 0 + 0

where we used the fact that X ∈ ΓI implies Vumax(X) = 0 and that Vumax is
positive. From now on we continue as above and obtain the Lipschitz property
for Y and Z.

Since Vumax is a Lipschitz function on Ω with bounded Lipschitz constant it
admits a unique Lipschitz extension over Ω.

2.2 The HJB equation and value function

Theorem 2.2. The value function Vumax is a viscosity solution of the Hamilton-
Jacobi-Bellman (HJB) equation:

(P)







































Find F : Ω → R such that

F is Lipschitz on Ω, (26a)

−Humax(X,∇F (X)) = 0, X ∈ Ω, (26b)

F (X) = 0 on ΓOA, (26c)

F (X) = 0 on ΓI , (26d)

−Humax(X,∇F (X)) = 0 on Γ1. (26e)
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Remark 3. There is no boundary condition on ΓA1.

Proof. Using Lemma 1.2 and Definition 1.2 we first show that Vumax is a
subsolution of (26) then we will show it is also a supersolution.

Step 1. Let Y ∈ Ω and ϕ ∈ C1(Ω) such that Vumax(Y ) − ϕ(Y ) attains a
local maximum at Y . So for Z in a neighborhood of Y :

Vumax(Y )− Vumax(Z) ≥ ϕ(Y )− ϕ(Z). (27)

We will prove that:

−Humax(Y,∇ϕ(Y )) ≤ 0. (28)

This is equivalent to:

− umax(∂X1ϕ(Y )− rV )+ + βY1Y2(rI + ∂X2ϕ(Y )− ∂X1ϕ(Y ))

− γY2∂X2ϕ(Y ) ≥ 0. (29)

Assume that it is not the case. Then there exists, by continuity, a value
w ∈ [0, umax] (see Remark 4 page 14 below) and a constant κ > 0 such that in
a neighborhood of Y :

w(rV −∂X1ϕ(Φ
Y,u(·)))+βΦY,u

1 (·)ΦY,u
2 (·)(rI +∂X2ϕ(Φ

Y,u(·))−∂X1ϕ(Φ
Y,u(·)))

− γΦY,u
2 (·)∂X2ϕ(Φ

Y,u(·)) ≤ −κ, (30)

for any u(t) ∈ [0, umax]. Let u = w on the interval [0, δ] (since Y ∈ Ω, for a
small δ > 0 u ∈ UY ) and denote Z0 = ΦY,w(δ). Then, choosing Z = Z0 in (27)
we obtain:

Vumax(Z0)− Vumax(Y ) ≤ ϕ(Z0)− ϕ(Y ) =

∫ δ

0

d

dt
ϕ(ΦY,w(t))dt (31)

≤
∫ δ

0

〈∇ϕ(ΦY,w(t)), f(ΦY,w(t), w)〉dt

≤
∫ δ

0

−κ− βΦY,w
1 (t)ΦY,w

2 (t)rI − wrV dt

≤ −δκ−
∫ δ

0

βΦY,w
1 (t)ΦY,w

2 (t)rI + wrV dt. (32)

Or, by the definition of the optimality of Vumax in Y :

Vumax(Y ) ≤
∫ δ

0

rIβΦ
Y,w
1 (t)ΦY,w

2 (t) + rV wdt+ Vumax(Z0)

Vumax(Y )− Vumax(Z0) ≤
∫ δ

0

rIβΦ
Y,w
1 (t)ΦY,w

2 (t) + rV wdt,

by summing the inequality we get 0 < −κδ, which is absurd.
Therefore using Lemma 1.2 we obtain:

−Humax(X,∇Vumax(X)) ≤ 0 for all X ∈ Ω.
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To prove (26e) we use appendix B where we prove that trajectories ΦY,u(·)
with Y ∈ Γ1 are strictly entering the domain Ω for all w ∈ [0, umax]. For this
reason when Y ∈ Γ1 ΦY,w(t) /∈ Γ1 for t ∈]0, δ]. Moreover, we choose ϕ such
as ϕ is C(Ω) and C1(Ω). These arguments allow to go from equation (31) to
equation (32). Therefore the proof remains true on Γ1 so:

−Humax(X,∇Vumax(X)) ≤ 0 for all X ∈ Γ1.

By Lemma 1.1, we have that Vumax is bounded on Ω and by Theorem 2.1
Vumax is a Lipschitz function. By definition of Vumax we have Vumax(X) = 0 on
ΓI and ΓOA. So Vumax is a subsolution of (26).

Step 2. Now we prove that Vumax is a supersolution of (26).
Let Y ∈ Ω and ϕ ∈ C1(Ω) such that Vumax(Y ) − ϕ(Y ) attains a local

minimum at Y . So for Z in a neighborhood of Y :

Vumax(Y )− ϕ(Y ) ≤ Vumax(Z)− ϕ(Z). (33)

We will show that:

−Humax(Y,∇ϕ(Y )) ≥ 0 ∀ Y ∈ Ω. (34)

Assume that it is not the case. Then there exists κ > 0 such that
Humax(Y,∇ϕ(Y )) > κ in a neighborhood of Y . So there exists (a small) δ > 0
such that for any u(t) ∈ [0, umax]:

−umax(∂X1
ϕ(ΦY,u(·))−rV )++βΦY,u

1 (·)ΦY,u
2 (·)(rI+∂X2

ϕ(ΦY,u(·))−∂X1
ϕ(ΦY,u(·)))

− γΦY,u
2 (·)∂X2ϕ(Φ

Y,u(·)) > κ ∀t ≤ δ. (35)

Let w be a control in UY and Z0 = ΦY,w(δ) (for small δ any w ∈ [0, umax] is
in UY ). Then:

Vumax(Z0)− Vumax(Y ) ≥ ϕ(Z0)− ϕ(Y )

=

∫ δ

0

〈∇ϕ(ΦY,w(t)), f(ΦY,w(t), w)〉dt

≥ δκ+

∫ δ

0

umax(∂X1ϕ(Φ
Y,w(t))− rV )+ − rIβΦ

Y,w
1 (t)ΦY,w

2 (t)− w∂X1ϕ(Φ
Y,w(t))dt

≥ δκ−
∫ δ

0

wrV + rIβΦ
Y,w
1 (t)ΦY,w

2 (t)dt

+

∫ δ

0

umax(∂X1ϕ(Φ
Y,w(t))− rV )+ − w(∂X1ϕ(Φ

Y,w(t))− rV )dt

≥ δκ−
∫ δ

0

wrV + rIβΦ
Y,w
1 (t)ΦY,w

2 (t)dt.

(because
∫ δ

0
umax(∂X1

ϕ(ΦY,w(t)) − rV )+ − w(∂X1
ϕ(ΦY,w(t)) − rV )dt ≥ 0 since

w ∈ [0, umax]).
So, for any w, we have:

Vumax(Z0) +

∫ δ

0

wrV + rIβΦ
Y,w
1 (t)ΦY,w

2 (t)dt ≥ Vumax(Y ) + δκ. (36)
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Taking the infimum with respect to w we obtain Vumax(Y ) ≥ Vumax(Y )+κδ.
This is absurd, therefore Vumax is a supersolution on Ω.

For the same reasons as previously, we have −Humax(X,∇Vumax(X)) ≥ 0
on Γ1 and Vumax is a supersolution of equation (26).

Step 3. To summarize this proof, we showed that:

- by Theorem 2.1, Vumax is a Lipschitz function,

- Vumax is both a subsolution and a supersolution of (26b) and (26e),

- Vumax(X) = 0 on ΓOA ∪ ΓI by definition of Vumax .

So Vumax is a viscosity solution of the Hamilton-Jacobi-Bellman equation (26).

2.3 Uniqueness of the solution of the HJB problem

Theorem 2.3. Let F1 be a subsolution of (26) and F2 a supersolution. Then:

F1(X) ≤ F2(X) for all X ∈ Ω.

Remark 4. In the following, we will use that, for any A1, B1, A2, B2 ∈ R with
min(A1, B1) ≤ min(A2, B2) there exists ρ ≥ 0 such as: A1 + ρB1 ≤ A2 + ρB2.

Proof. Let Bα ∈ Ω denote the point with coordinates (1− α, α) and:

ΓABα
=

{

(X1, X2) ∈ Ω | X2 > 0,
β

γ
X1 +

γ − β + αβ

αγ
X2 = 1

}

,

ΓBα1 =
{

(X1, X2) ∈ Ω | X1 +X2 = 1 , X2 > α
}

.

Let Dα ⊂ Ω be the domain strictly bounded by ΓI , ΓOA, ΓABα
and ΓBα1,

see figure 6 for a graphical representation. When γ/β ≥ 1 the point A will lie
outside Ω, we take then Dα = Ω, ΓABα

= ∅ and ΓBα1 = Γ1.

X11A = ( γβ , 0)

X2

1

O

Bα = (1− α, α)

ΓI

ΓBα1

Γ0A

ΓABα

Dα

•

•

Figure 6: Boundary used in proof of the Theorem 2.3.
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We prove in appendix B that for any X0 ∈ ∂Dα the trajectory ΦX0,w(t)
with w(t) ∈ [0, umax] ∀t enters Dα.

For X ∈ ΓBα1, X 6= (1, 0), the scalar product with the incoming normal is
positive:

〈f(X,u), (−1,−1)〉 = γX2 + u > 0 ∀X ∈ ΓBα1, X 6= (1, 0), u ∈ [0, umax].

For X ∈ ΓABα
, X 6= (1, 0), the relevant quantity is:

〈f(X,u), (−β

γ
,−γ − β + αβ

γα
)〉 = β

γ
(βX1X2 + u) + γ−1(βX1 − γ)2 > 0.

We now show the Theorem for F1 and F2 restricted to Dα. To this end
we make the change of variable introduce by Kružkov (see [4]), for X ∈ Dα,
W(X) = 1− e−F(X). Formally:

∇W(X) = ∇F(X)e−F(X) = ∇F(X)(1−W(X)) (37)

thus ∇F(X) = ∇W(X)
(1−W(X)) . This motivates the introduction of the following

Hamiltonian:

−umax(
p1

1−W(X)
− rV )+ + βX1X2(rI +

p2
1−W(X)

− p1
1−W(X)

)− γX2
p2

1−W(X)
. (38)

Since 1−W(X) will always be positive, for convenience, we conclude the demon-
stration using the Hamiltonian: H̃umax : Dα × [0, 1]× R

2 → R :

H̃umax(X,W(X), p)

= min
w∈[0,umax]

[

p · f(X,w) + (1−W(X))(rIβX1X2 + rV w)
]

= −umax(p1 − rV (1−W(X)))+ + βX1X2(rI(1−W(X)) + p2 − p1)− γX2p2.

So we have to prove the following:

Lemma 2.4. Let the Hamilton-Jacobi-Bellman equation:

(PW)







































Find F : Dα → R such that

F is Lipschitz on Dα, (39a)

−H̃umax(X,F,∇F (X)) = 0, ∀X ∈ Dα, (39b)

F (X) = 0 on ΓOA, (39c)

F (X) = 0 on ΓI , (39d)

−H̃umax(X,F (X),∇F (X)) = 0 on ΓABα
∪ ΓBα1. (39e)

If W1 is a subsolution of (39) and W2 a supersolution, then:

W1(X) ≤ W2(X) for all X ∈ Dα.

Proof. Suppose now that the Lemma is not true, then there exists σ > 0 such
that:

sup
x∈Dα

[W1(x)−W2(x)] = σ > 0. (40)
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Consider Ψǫ(x, y) : Dα 7→ R defined by:

Ψǫ(x, y) = W1(x)−W2(y)−
|x− y|2

ǫ
.

For any ǫ this function has a global maximum in (xǫ, yǫ) and we have for ǫ
small enough: Ψǫ(x

ǫ, yǫ) ≥ σ/2 > 0. Since W1, W2 are bounded we obtain also
limǫ→0 |xǫ − yǫ| = 0.

In addition, consider the functions:

ϕ1(x) = W2(y
ǫ) + |x−yǫ|2

ǫ defined on Ωϕ1 = {x ∈ R
∗+ | x+ yǫ < 1},

ϕ2(y) = W1(x
ǫ)− |xǫ−y|2

ǫ defined on Ωϕ2
= {y ∈ R

∗+ | xǫ + y < 1}.
These two functions are C1 on Ωϕ1

and Ωϕ2
respectively.

Then W1(x)− ϕ1(x) reaches its maximum in xǫ, ϕ1 is C1(Ωϕ1
) and W1 is a

subsolution of (39). Using the Lemma (1.2), we have:

− H̃umax

(

xǫ,W1(x
ǫ),

2(xǫ − yǫ)

ǫ

)

≤ 0. (41)

Similarly, using that the application y 7→ W2(y) − ϕ2(y) has its maximum
in yǫ, ϕ2 is C1(Ωϕ2

) and W2 is a supersolution of (39), we have:

− H̃umax

(

yǫ,W2(y
ǫ),

2(xǫ − yǫ)

ǫ

)

≥ 0. (42)

Combining these two equations, we obtain:

−H̃umax

(

xǫ,W1(x
ǫ),

2(xǫ − yǫ)

ǫ

)

≤ −H̃umax

(

yǫ,W2(y
ǫ),

2(xǫ − yǫ)

ǫ

)

. (43)

We use then Remark 4, with H̃umax written as:

H̃umax(X,W, p) = min (umax(rV (1−W)− p1) + βX1X2(rI(1−W) + p2 − p1)

−γX2p2, βX1X2(rI(1−W) + p2 − p1)− γX2p2) . (44)

So we obtain after few simplifications and factorisation (ρ is the constant
given by Remark 4):

− umaxrV (W2(y
ǫ)−W1(x

ǫ))

+ (1 + ρ) [β(−xǫ
1x

ǫ
2 + yǫ1y

ǫ
2)(rI − pǫ1 + pǫ2)− γpǫ2(y

ǫ
2 − xǫ

2)]

− (1 + ρ)βrI [y
ǫ
1y

ǫ
2W2(y

ǫ)− xǫ
1x

ǫ
2W1(x

ǫ)] ≤ 0. (45)

Moreover:

W1(x
ǫ)−W2(y

ǫ) ≤ Ψǫ(x
ǫ, yǫ)

≤ W1(x
ǫ)−W2(y

ǫ) + |W2(x
ǫ)−W2(y

ǫ)| − |xǫ − yǫ|2
2ǫ

.

Hence,

0 ≤ |W2(x
ǫ)−W2(y

ǫ)| − |xǫ − yǫ|2
2ǫ

. (46)
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Since W2 is uniformly continuous (as a continuous function on a compact)
and limǫ→0 |xǫ − yǫ| = 0, we have:

lim
ǫ→0

|xǫ − yǫ|2
2ǫ

= 0. (47)

So,

(−xǫ
1x

ǫ
2 + yǫ1y

ǫ
2)(−pǫ1 + pǫ2) = (−xǫ

1x
ǫ
2 + xǫ

1y
ǫ
2 − xǫ

1y
ǫ
2 + yǫ1y

ǫ
2)
2

ǫ
(−xǫ

1 + yǫ1 + xǫ
2 − yǫ2)

= (−xǫ
1(x

ǫ
2 − yǫ2)− yǫ2(x

ǫ
1 − yǫ2))

2

ǫ
(−(xǫ

1 − yǫ1) + xǫ
2 − yǫ2)

≤ 2

ǫ
(|xǫ

1|+ |yǫ2|)|xǫ
2 − yǫ2||xǫ

1 − yǫ1|+
2

ǫ
|xǫ

1||xǫ
2 − yǫ2|2 +

2

ǫ
|yǫ2||xǫ

1 − yǫ1|2

≤ 4

ǫ
|xǫ

2 − yǫ2||xǫ
1 − yǫ1|+

2

ǫ
|xǫ

2 − yǫ2|2 +
2

ǫ
|xǫ

1 − yǫ1|2.

Hence,
lim
ǫ→0

β|(−xǫ
1x

ǫ
2 + yǫ1y

ǫ
2)(−pǫ1 + pǫ2)| = 0.

Similarly, using (47), we have:

γpǫ2(x
ǫ
2 − yǫ2) = 0.

After eventually extracting a subsequence (ǫn)n≥0 we can suppose that
limǫn→0 x

ǫn = limǫn→0 y
ǫn = x. Note that x1 = 0 or x2 = 0 would imply

x ∈ ΓOA∪ΓI thus W1(x) = W2(x) = 0 in contradiction with Ψ(xǫ, yǫ) ≥ σ
2 and

(47). Therefore x1 6= 0 and x2 6= 0.
We can therefore rewrite (45) as follows:

− [(1 + ρ)rIβx1x2 + umaxrV ] [W2(x)−W1(x)] ≤ 0. (48)

Since rI , rV , β > 0, ρ ≥ 0 and x1 6= 0, x2 6= 0 this implies that:

W2(x) ≥ W1(x). (49)

On the other hand, for ǫ relatively small, we have W1(x
ǫ) ≥ W2(y

ǫ) + σ
2 .

Passing to the limit, we get W1(x) > W2(x). This is in contradiction with (49)
and ends the proof of the Lemma.

As W1 ≤ W2 on Dα, we have also F1 ≤ F2 on Dα. When α → 0, we obtain
F1 ≤ F2 on Ω.

This proof is also available for X ∈ Γ1. For ΓOA and ΓI , we just use the
value of the function.

Theorem 2.5. The value function Vumax is the unique solution of the HJB
problem (26).

Proof. Let F1 and F2 be two viscosity solutions of (26). Since F1 is a subso-
lution and F2 is a supersolution, we have, by Theorem 2.3 that F1 ≤ F2 on Ω.
Interchanging the roles of F1 and F2, we can conclude F2 ≤ F1. So F1 = F2

on Ω and therefore on Ω (by continuity).
Thus the solution is unique. By Theorem 2.8 the value function Vumax is

the unique solution.
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2.4 Solution candidate and its properties: the sub-critical
case

Theorem 2.5 implies that in order to find the value function it is enough to find
a solution of the HJB equation (26).

We expect the solution to lead to a partition of the domain into a vaccina-
tion region and a non-vaccination region. An important question concerns the
regularity of the value function which at its turn is related to the uniqueness
of the optimal strategy. The frontier of the vaccination region will be seen to

be related to the level line L∂X1
ζ

rV /rI
of ∂X1

ζ; see in appendix B the definition of

L∂X1
ζ

rV /rI
.Thus we are about to ask a question similar to that in figure 5: does

L∂X1
ζ

rV /rI
contain points that are entering the domain for control umax and exiting

it for control 0. The level lines L∂X1
ζ

rV /rI
that contain such points will lead to non

unique optimal strategies (and non smooth value functions).
When γ/β < 1, for any umax < ∞ we introduce the critical point Xcrit

umax

which is the unique solution of the equations:
{

X ∈ Γ1

〈f(X,umax),∇∂X1ζ(X)〉 = 0.
(50)

The proof of existence and uniqueness of Xcrit
umax

is left as an exercise for the
reader. One can use the description of the curve 〈f(X,umax),∇∂X1

ζ(X)〉 = 0
(see also the Appendix A for formulaes involving ζ and its derivatives) to show
that Xcrit

umax
= (x∗, 1− x∗) where x∗ is the solution of:

γ

β
−
(

x∗ − γ

β

)
√

umax

βx∗(1− x∗) + umax
= x∗e

− γ
β

[

(1−x∗)+(x∗− γ
β )
(

1+
√

umax
βx∗(1−x∗)+umax

)]

.

(51)
Then the value rcritV,umax

is defined as

rcritV,umax
= ∂X1

ζ(Xcrit
umax

). (52)

For γ/β ≥ 1 we set rcritV,umax
= ∞. Note that in all situations rcritV,umax

> 1.

When rV < rcritV,umax
rI we define a partition of Ω in two regions

ΩNV
umax

= {X ∈ Ω | ∂X1ζ(X) < rV /rI} (53)

ΩV
umax

= {X ∈ Ω | ∂X1
ζ(X) > rV /rI}. (54)

The level line L∂X1
ζ

rV /rI
is situated on the common frontier ∂ΩNV

umax
∩ ∂ΩV

umax
.

For γ/β ≥ 1 it may happen that rV /rI is such that L∂X1
ζ

rV /rI
∩Ω = ∅; then we take

ΩV
umax

= ∅. This can happen for relatively small values of rV /rI as illustrated
in figure 7.

Lemma 2.6. Any trajectory ΦX0,w(t) with X0 ∈ ∂ΩNV
umax

∩ ∂ΩV
umax

is such that
ΦX0,w(t) ∈ ΩNV

umax
for all t > 0 and w ∈ UX0

.

Proof. In order to prove that the trajectory ΦX0,w(t) enters the domain ΩNV
umax

it is enough to prove that the tangent to the trajectory has strictly positive
scalar product with the incoming normal at X0 to ΩNV

umax
i.e.,

〈f(X0, w(0)),−∇∂X1ζ(X0)〉 > 0, ∀X0 ∈ ∂ΩNV
umax

∩ ∂ΩV
umax

.
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This follows (after some straightforward computations) from the definition of
rcritV,umax

and the monotonicity of the derivatives of ζ(·) as rcritV,umax
is the smallest

value r where the trajectory u = umax is tangent to the level line L∂X1
ζ

r (see in

appendix B the definition of L∂X1
ζ

r ).

Introduce also the control uX0
(t) taken to be umax as long as the trajec-

tory ΦX0,uX0
(·)(t) obtained with this control uX0

(t) remains in ΩV
umax

(and zero
otherwise). It is a feedback control. Formally it is the solution of the equation:

uX0
(t) = umax · 1

Φ
X0,uX0

(·)
(t)∈ΩV

umax

. (55)

The fact that such a solution exists is a consequence of the regularity of the
boundary of ΩV

umax
and Lemma 2.6. Note that uX0(t) is of the form umax ·1[0,η]

with η ≥ 0. Define the function ΠrV ,rI
umax

: Ω → R by

ΠrV ,rI
umax

(X0) = J(X0, uX0
(·)). (56)

X11

X2

1

O
A = (γ/β, 0)

∂X1
ζ = 0.25

∂X1
ζ = 0.5

∂X1
ζ = 0.75

∂X1
ζ = 0.9

∂X1ζ = 1

∂X1
ζ = 1.1

∂X1
ζ = 1.4

X11

X2

1

O

∂X1
ζ = 0.15

∂X1
ζ = 0.25

∂X1
ζ = 0.35

∂X1ζ = 0.45

Figure 7: Illustration of level lines L∂X1
ζ

r of the function ∂X1ζ for γ/β < 1 (left)
and γ/β ≥ 1 (right).

Theorem 2.7. For rV < rcritV,umax
rI :

1. ΠrV ,rI
umax

∣

∣

∣
ΩNV

umax

= J0 = rIζ;

2. ΠrV ,rI
umax

∣

∣

∣ΩV
umax

is the unique viscosity solution of the following problem:

(Pv)



































Find F : ΩV
umax

→ R such that

F is Lipschitz on ΩV
umax

, (57a)

−Hvac,umax(X,∇F (X)) = 0, X ∈ ΩV
umax

, (57b)

F (X) = rIζ(X), X ∈ ΩNV
umax

∩ ΩV
umax

, (57c)

−Hvac,umax(X,∇F (X)) = 0, X ∈ ∂ΩV
umax

\ (ΩNV
umax

∩ ΩV
umax

). (57d)

Here Hvac,umax : Ω× R
2 → R is the Hamiltonian function:

Hvac,umax(X, p) = 〈f(X,umax), (p1, p2)〉+ rIβX1X2 − rV umax

= −umax(p1 − rV ) + βX1X2(rI + p2 − p1)− γX2p2. (58)
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3. ΠrV ,rI
umax

∈ C1(Ω);

4. ΠrV ,rI
umax

is a solution of the HJB equation (26).

Proof. We only consider in this proof the circumstance when γ/β < 1, the
proof for γ/β ≥ 1 works in the same way.
Point 1: It is enough to show that a trajectory with initial point in ΩNV

umax

remains there forever. Considering the definition of the domains for any X ∈
ΩV

umax
∩ ΩNV

umax
= L∂X1

ζ

rV /rI
the tangent direction f(X,u) to the trajectory points

strictly to the interior of ΩNV
umax

(for any u ∈ [0, umax]); this follows from
Lemma 2.6.
Point 2: These properties of the function ΠrV ,rI

umax
are obtained as in the proofs

of Theorems 2.1 and 2.2 once we write ΠrV ,rI
umax

as the “value function” of a trivial
control problem where the control is taken in the one-element set {umax} until
reaching the frontier ΩV

umax
∩ΩNV

umax
; on the frontier the value is rIζ(X) = J0(X).

Point 3: The function ζ(X) is C1 on Ω (see Appendix A); in particular ΠrV ,rI
umax

will be C1 on ΩNV
umax

. For X ∈ ΩV
umax

we note that ΠrV ,rI
umax

is the solution
of a quasi-linear first order PDE (cf. point 2) and has boundary conditions

defined on a non-characteristic curve ΩNV
umax

∩ ΩV
umax

= L∂X1
ζ

rV /rI
; the curve is

non-characteristic because on ΩNV
umax

∩ΩV
umax

we have 〈f(X,umax), ∂X1
ζ(X)〉 6=

0. Another way to see things is to parametrize the boundary curve with a
parameter α1 and denote α2 the time required to reach the curve. Using the
regularity properties of the ODE the function is C1 in parameters (α1, α2) and
the change of coordinates from X to (α1, α2) is regular around each point in
the interior of ΩV

umax
. Thus ΠrV ,rI

umax
will be C1 on ΩV

umax
.

It remains to be proved that ΠrV ,rI
umax

is also C1 around any point X ∈ L∂X1
ζ

rV /rI
∩

Ω; since ΠrV ,rI
umax

∣

∣

∣ΩV
umax

and ΠrV ,rI
umax

∣

∣

∣ΩNV
umax

are both C1, the side gradients exist and

it remains only to be proved that

∇ΠrV ,rI
umax

∣

∣

∣ΩV
umax

(X) = ∇ΠrV ,rI
umax

∣

∣

∣ΩNV
umax

(X), ∀X ∈ L∂X1
ζ

rV /rI
.

Using continuity and C1 properties and the fact that ΠrV ,rI
umax

∣

∣

∣ΩV
umax

and ΠrV ,rI
umax

∣

∣

∣ΩNV
umax

coincide on the common frontier it follows that the tangential derivatives along
the frontier are the same. Let us prove that the directional derivative also
coincide in the direction f(X,umax), which can be written:

〈∇ΠrV ,rI
umax

∣

∣

∣ΩV
umax

(X), f(X,umax)〉 = 〈∇ΠrV ,rI
umax

∣

∣

∣ΩNV
umax

(X), f(X,umax)〉. (59)

But ΠrV ,rI
umax

∣

∣

∣ΩV
umax

satisfies (57b) then

〈∇ΠrV ,rI
umax

∣

∣

∣ΩV
umax

(X), f(X,umax)〉 = −rIβX1X2 + rV umax

= −Hvac,umax(X,∇ΠrV ,rI
umax

∣

∣

∣ΩNV
umax

(X)) + 〈∇ΠrV ,rI
umax

∣

∣

∣ΩNV
umax

(X), f(X,umax)〉

= 〈∇ΠrV ,rI
umax

∣

∣

∣
ΩNV

umax

(X), f(X,umax)〉.
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We used above the fact that J0 = rIζ satisfies Hvac,0(X,∇J0) = 0 on Ω and

that forX ∈ L∂X1
ζ

rV /rI
we can add umax multiplied by the null term rI∂X1ζ(X)−rV

to Hvac,0(X,∇J0) to obtain Hvac,umax(X,∇J0) = 0.
Note that the direction f(X,umax) cannot be collinear with the tangent at

X to the boundary L∂X1
ζ

rV /rI
because for rV < rIr

crit
V,umax

the definition of rcritV,umax

ensures that f(X,umax) has non-zero scalar product with the normal∇∂X1
ζ(X)

to the boundary. From (59) and the coincidence of the tangential derivatives it
follows that side gradients ∇ΠrV ,rI

umax

∣

∣

∣ΩV
umax

and ∇ΠrV ,rI
umax

∣

∣

∣ΩNV
umax

coincide on the

common boundary thus ΠrV ,rI
umax

∈ C1(Ω).
Point 4: Giving what was already proved, it remains to show that

∂X1
ΠrV ,rI

umax
(X) ≤ rV ∀X ∈ ΩNV

umax
, (60)

∂X1
ΠrV ,rI

umax
(X) ≥ rV ∀X ∈ ΩV

umax
, (61)

Equation (60) is a simple consequence of (53) and Point 1. For (61) we have
to analyze in detail the function ΠrV ,rI

umax

∣

∣

∣ΩNV
umax

, we will prove that in addition:

∂X2
ΠrV ,rI

umax
(X) > 0 ∀X ∈ ΩV

umax
. (62)

Consider X0 ∈ L∂X1
ζ

rV /rI
. We integrate ∂X1

ΠrV ,rI
umax

on the characteristic curve

ΦY,umax(·) issued from Y ∈ ΩV
umax

that reaches the frontier at time t > 0 and
point X0 which can be written: ΦY,umax(t) = X0. Formally

∂X1
ΠrV ,rI

umax
(Y ) = ∂X1

ΠrV ,rI
umax

(X0)

−
∫ t

0

〈∇∂X1
ΠrV ,rI

umax
(ΦY,umax(τ)), f(ΦY,umax(τ), umax)〉dτ. (63)

From now on we will drop the notation ΦY,umax(τ) and only denote (X1(τ), X2(τ)) =
X(τ) = ΦY,umax(τ). Note that ΠrV ,rI

umax
satisfies Hvac,umax(X,∇ΠrV ,rI

umax
) = 0 on

ΩV
umax

i.e., 〈∇ΠrV ,rI
umax

, f(X,umax)〉+ rIβX1X2 + rV umax = 0 thus by differenti-
ating formally with respect to X1 one obtains:

〈∇∂X1
ΠrV ,rI

umax
(X(τ)), f(X(τ), umax)〉 = βX2(−rI − ∂X1

ΠrV ,rI
umax

+ ∂X2
ΠrV ,rI

umax
).

But this latter quantity is integrable over [0, t] and after classical arguments we

obtain that
∫ t

0
〈∇∂X1

ΠrV ,rI
umax

(ΦY,umax(τ)), f(ΦY,umax(τ), umax)〉dτ is well defined

and equals
∫ t

0
βX2(τ)(−rI − ∂X1Π

rV ,rI
umax

+ ∂X2Π
rV ,rI
umax

)(X(τ))dτ . Moreover using
again the HJB equation satisfied by ΠrV ,rI

umax
this term can be replaced by

∫ t

0

1

X1(τ)

[

umax(∂X1Π
rV ,rI
umax

(X(τ))− rV ) + γX2(τ)∂X2Π
rV ,rI
umax

(X(τ))
]

dτ.

We obtain thus

∂X1
ΠrV ,rI

umax
(Y ) = ∂X1

ΠrV ,rI
umax

(X0) +

∫ t

0

1

X1(τ)

[

umax(∂X1
ΠrV ,rI

umax
(X(τ))− rV )

+γX2(τ)∂X2
ΠrV ,rI

umax
(X(τ))

]

dτ. (64)
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Similar computations allow to write:

∂X2
ΠrV ,rI

umax
(Y ) = ∂X2

ΠrV ,rI
umax

(X0) +

∫ t

0

1

X2(τ)

[

umax(∂X1
ΠrV ,rI

umax
(X(τ))− rV )

]

dτ.

(65)
Then since ΠrV ,rI

umax
is C1 it follows from the properties of ζ that ∂X1

ΠrV ,rI
umax

(X0) =
rV and ∂X2

ΠrV ,rI
umax

(X0) > 0. Combined with the identities (64)-(65) (and
reasoning infinitesimally starting from X0 along the characteristic) we obtain
∂X1Π

rV ,rI
umax

(Y ) > rV and ∂X2Π
rV ,rI
umax

(Y ) > 0 and equations (62) and (61) follow.

Theorem 2.8. For rV < rIr
crit
V,umax

the function ΠrV ,rI
umax

is the unique solution
of the HJB equation (26) and ΠrV ,rI

umax
= Vumax . As a consequence in this case

the value function Vumax is in C1(Ω).

Proof. The Theorem 2.7 proves that ΠrV ,rI
umax

is a solution of (26). Furthermore,
Theorem 2.5 assures the uniqueness of the solution. Then, Vumax = ΠrV ,rI

umax
.

2.5 Solution candidate and its properties: the super-critical
case

We work here under the hypothesis rV ≥ rcritV,umax
. In particular this implies

γ/β < 1.
The simplest case is when rV ≥ 2rI and will be dealt with directly latter

in Theorem 2.12. On the contrary, the situation when rV ∈ [rcritV,umax
rI , 2rI [

requires some more work. In this case the value function Vumax will not be C1.
Define (see also figure 8):

Γcrit
sub = {P ∈ L∂X1

ζ

rV /rI
|f(P, umax),∇∂X1ζ(P )〉 ≤ 0}. (66)

Using the formulas for f and the derivatives of ζ one can prove with straight-
forward computations:

• L∂X1
ζ

rV /rI
⊂ {X ∈ Ω|X1 > γ/β} (since rcritV,umax

> 1);

• ∂X2X1
ζ(P ) < 0, ∀P ∈ L∂X1

ζ

rV /rI
;

• Γcrit
sub is connected; denote by P crit

rV the other extremity of the curve; then
〈f(P crit

rV , umax),∇∂X1
ζ(P crit

rV )〉 = 0;

• ∀P ∈ L∂X1
ζ

rV /rI
\ Γcrit

sub , P1 ≥ (P crit
rV )1;

• the trajectories starting from points on the curve Γcrit
sub enter the domain

{X ∈ Ω|∇∂X1
ζ(X) ≤ rV /rI} for any u ∈ [0, umax];

• the trajectories starting from points in L∂X1
ζ

rV /rI
\ Γcrit

sub exit this domain for
u = umax.

For any Y ∈ Γcrit
sub introduce

tY = sup
{

t ≥ 0
∣

∣

∣ J0(Y ) + rV tumax

+

∫ t

0

rIβΦ
Y,umax

1 (−τ)ΦY,umax

2 (−τ)dτ ≤ J0(Φ
Y,umax(−t))

}

. (67)
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X2

X1

1

10 A = ( γβ , 0)
•

P crit
rV•

ΩNV
umax

Figure 8: Illustration of the construction of the domains ΩV
umax

and ΩNV
umax

. The

solid curve is L∂X1
ζ

rV /rI
. The dashed curves are Γcrit

sub (from A to P crit
rV ) and Γcrit

super

(from P crit
rV ). The gray domain is ΩV

umax
.

We note that the previous properties imply that tX0
> 0; indeed, take Z =

ΦY,umax(−ǫ) for ǫ small enough; then integrating over the curve τ 7→ ΦZ,umax(τ)
we obtain:

J0(Y ) = J0(Φ
Z,umax(ǫ)) = J0(Z) (68)

+

∫ ǫ

0

〈∇J0(Φ
Z,umax(τ)), f(ΦZ,umax(τ), umax)〉dτ. (69)

Developing the last term and using the HJB equation satisfied by J0 we can
write:

J0(Y ) = J0(Z)− rV tumax −
∫ t

0

rI

[

βΦZ,umax

1 (τ)ΦZ,umax

2 (τ)

+umax(∂X1
J0(Φ

Z,umax(τ))− rV )
]

dτ. (70)

The curve τ 7→ ΦZ,umax(τ) belongs to the domain where ∂X1
J0(Φ

Z,umax(τ)) ≥
rV therefore Z = ΦY,umax(−ǫ) satisfies the inequality in the equation (67) and
as such we obtain tY ≥ ǫ > 0.

We define a curve Γcrit
super as:

Γcrit
super = {ΦY,umax(−tY ) | Y ∈ Γcrit

sub }. (71)

The curves Γcrit
sub and Γcrit

super define a domain that will be denoted ΩV
umax

; set

also ΩNV
umax

= Ω \ ΩV
umax

as illustrated in figure 8.

Lemma 2.9. The following inclusion holds:

{X ∈ Ω | ∂X1
ζ(X) ≥ rV /rI} ⊂ ΩV

umax
. (72)

Therefore we also have:

ΩNV
umax

⊂ {X ∈ Ω | ∂X1
ζ(X) ≤ rV /rI}. (73)
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Proof. Let Z ∈ {X ∈ Ω | ∂X1
ζ(X) ≥ rV /rI} and consider the trajectory

ΦZ,umax(t) starting from Z. This trajectory will exit this set at some point on

the border L∂X1
ζ

rV /rI
, more precisely at some point of Γcrit

sub (the direction tangent

to the trajectory has to exit the domain, which is precisely the definition of
Γcrit
sub ). Denote this point Y = ΦZ,umax(τ∗). Using the same arguments as in the

proof of tY > 0 above and recalling that ∂X1
J0(Φ

Z,umax(τ)) ≥ rV for all τ ≤ τ∗

we obtain tY ≥ τ∗ and in particular Z ∈ ΩV
umax

.

Introduce the solution candidate ΠrV ,rI
umax

: Ω → R defined by equation (56),
but with the control uX0

(·) defined in equation (55) depending on the newly
defined set ΩV

umax
.

Theorem 2.10. For rV ∈ [rcritV,umax
rI , 2rI [:

1.

ΠrV ,rI
umax

(Y ) =



















J0(Y ), if Y ∈ ΩNV
umax

(74a)

rV t+

∫ t

0

rIβΦ
Y,umax

1 (τ)ΦY,umax

2 (τ)dτ + J0(Φ
Y,umax(t)),

if Y ∈ ΩV
umax

and ΦY,umax(t) ∈ Γcrit
sub ; (74b)

2. ΠrV ,rI
umax

∣

∣

∣ΩV
umax

is the unique viscosity solution of the following problem:

(Pv)



































Find F : ΩV
umax

→ R such that

F is Lipschitz on ΩV
umax

, (75a)

−Hvac,umax(X,∇F (X)) = 0, X ∈ ΩV
umax

, (75b)

F (X) = rIζ(X), X ∈ ΩNV
umax

∩ ΩV
umax

, (75c)

−Hvac,umax(X,∇F (X)) = 0, X ∈ ∂ΩV
umax

\ (ΩNV
umax

∩ ΩV
umax

); (75d)

3. ΠrV ,rI
umax

is Lipschitz on Ω;

4. ΠrV ,rI
umax

is a solution of the HJB equation (26).

Proof. Much of the proof uses concepts already invoked in the proof of Theo-
rem 2.7. We will only emphasize points that are specific to this situation.
Point 1: A trajectory with initial point in ΩNV

umax
remains there forever there-

fore we conclude as above that ΠrV ,rI
umax

∣

∣

∣ΩNV
umax

= J0 = rIζ; to prove the second

property note that the function J satisfies

J(Y, u(·)) =
∫ t

0

rV u(τ) + rIβΦ
Y,u
1 (τ)ΦY,u

2 (τ)dτ

+J(ΦY,u(·)(t), u(·+ t)). (76)

Thus the two definitions coincide as the control is umax on ΩV
umax

and 0 on
ΩNV

umax
because once the trajectory reaches the frontier Γcrit

sub of ΩNV
umax

it enters
ΩNV

umax
and remains there.

Point 2: The proof follows the same lines as point 2 in Theorem 2.7.
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Point 3: The definition of the domain ΩV
umax

and the previous point ensures
that ΠrV ,rI

umax
is continuous in points of the common boundary ∂ΩV

umax
∩ ∂ΩNV

umax

thus it is continuous on Ω. It is also Lipschitz on ΩV
umax

and ΩNV
umax

with Lipschitz

constants that are universally bounded, thus it is Lipschitz on Ω.
Moreover, as before, one can prove that ΠrV ,rI

umax
is C1 on Γcrit

sub .
Another alternative is to repeat the arguments used to prove that the value

function is Lipschitz (here the control has the same structure: it has value umax

from 0 to some finite time and then 0).
Point 4: We have to prove (the analogues of) the equations (60) and (61).

Any trajectory from Z ∈ ΩV
umax

(for control u = umax1X∈ΩV
umax

) will en-

counter Γcrit
sub when exiting the domain ΩV

umax
. Together with the fact that

ΠrV ,rI
umax

is C1 in Γcrit
sub this allows to use identities (64)-(65) and obtain as above

that ∂X1
ΠrV ,rI

umax
(Y ) > rV and ∂X2

ΠrV ,rI
umax

(Y ) > 0 for any Y ∈ ΩV
umax

; then (61)
follows.

To prove (60) use Lemma 2.9 and point 3 of this Theorem.

Theorem 2.11. For rV ∈ [rIr
crit
V,umax

, 2rI [ the function ΠrV ,rI
umax

(defined by equa-
tion (56) with the control uX0

(·) defined in equation (55) depending on the set
ΩV

umax
) is the unique solution of the HJB equation (26) and ΠrV ,rI

umax
= Vumax .

The value function Vumax is Lipschitz in Ω.

Proof. The Theorem 2.10 proves that ΠrV ,rI
umax

is a solution of (26). Furthermore,
Theorem 2.5 assures the uniqueness of the solution. Then, Vumax = ΠrV ,rI

umax
.

Theorem 2.12. For rV ≥ 2rI the function J0 = rIζ is the unique solution of
the HJB equation (26) and Vumax = J0. As a consequence in this case the value
function Vumax is in C1(Ω).

Proof. Straightforward computation and the results from Lemma B.4 indicate
that the derivative J0 does not exceed 2rI and as such (∂X1

ζ − rV )+ = 0 and
J0 satisfies the required HJB equation.

3 Instantaneous vaccination

Recall that for umax = ∞ the value function is denoted as V∞; also consult
equation (17) for the definition of H∞.

The following result connects the bounded and unbounded control problems
(see also [4] pages 113-115 for generic related results):

Theorem 3.1. The sequence (Vumax)umax≥0 is decreasing and

lim
umax→∞

Vumax = V∞. (77)

Moreover the convergence is uniform over compacts of Ω and V∞ is Lipschitz
over Ω.

Proof. Since for any u2 ≥ u1 ≥ 0 we have the inclusion Uu1

Y ⊂ Uu2

Y the sequence
(Vumax)umax≥0 is decreasing. Therefore lim infumax→∞ Vumax ≥ V∞.

Let Y ∈ Ω and (dVn)n≥0 ⊂ U∞
Y a sequence of strategies such that

lim
n→∞

J(Y, dVn) = V∞(Y ). (78)
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For each n construct an approximating sequence of admissible strategies un
w ∈

Uw
Y such that lim

w→∞
un
w = dVn. Then Vw(Y ) ≤ J(Y, un

w) → J(Y, dVn) thus

lim supw→∞ Vw(Y ) ≤ J(Y, dVn). Passing once more to the limit n → ∞ we
obtain lim supw→∞ Vw(Y ) ≤ V∞(Y ).

Then limumax→∞ Vumax = V∞. Since functions Vumax are Lipschitz with
Lipschitz constants independent of umax the limit V∞ will be Lipschitz and the
convergence will hold in a neighborhood of Y (thus uniformly over compacts of
Ω).

3.1 HJB equation and value function

Theorem 3.2. The value function V∞ is a viscosity solution of the Hamilton-
Jacobi-Bellman equation:

(P)







































Find F : Ω → R such that

F is Lipschitz on Ω, (79a)

−H∞(X,∇F (X)) = 0, X ∈ Ω, (79b)

F (X) = 0 on ΓOA, (79c)

F (X) = 0 on ΓI , (79d)

−H∞(X,∇F (X)) = 0 on Γ1. (79e)

Proof. We will use the same arguments and notations as in the proof of the
Theorem 2.2.

Step 1. First, we prove that V∞ is a subsolution of (79b). We take
the same notations and the same reasoning as in the case umax < ∞. So
equation (29) becomes:

min {rV − p1, βY1Y2(rI + p2 − p1)− γY2p2} ≥ 0. (80)

Suppose that there exists κ > 0 such that:

min {rV − p1, βY1Y2(rI + p2 − p1)− γY2p2} ≤ −κ.

Remark 4 page 14 assures that there exists ρ ≥ 0 such that:

ρ(rV − ∂X1
ϕ(Y )) + βY1Y2(rI + ∂X2

ϕ(Y )− ∂X1
ϕ(Y )− γY2∂X2

ϕ(Y ) ≤ −κ.

Here, we choose the control ρ on the interval [0, δ] and for the same reasons
as above, we obtain:

V∞(Z0)− V∞(Y ) ≤ −κδ −
∫ δ

0

ρrV + rIβΦ
Y,ρ
1 (t)ΦY,ρ

2 (t)dt. (81)

In particular, by the optimality of V∞ on Y , we have:

V∞(Y ) ≤
∫ δ

0

rIβΦ
Y,ρ
1 (t)ΦY,ρ

2 (t) + ρrV dt. (82)

And we can conclude as above that V∞ is solution of equation (79).
Step 2. We prove that V∞ is a supersolution of (79).
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Using the same notations and reasoning as in the proof for umax < ∞
equation (35) becomes:

min{rV −∂X1
ϕ(Y ), βY1Y2(rI+∂X2

ϕ(Y )−∂X1
ϕ(Y ))−γY2∂X2

ϕ(Y )} > κ. (83)

In order to invalidate (83) we invalidate, in a neighborhood of Y :

βΦY,u
1 (·)ΦY,u

2 (·)(rI+∂X2
ϕ(ΦY,u(·))−∂X1

ϕ(ΦY,u(·)))−γΦY,u
2 (·)∂X2

ϕ(ΦY,u(·))) > κ.
(84)

We obtain, as above:

V∞(Z0)− V∞(Y ) ≥ ϕ(Y )− ϕ(Z0) ≥
∫ δ

0

〈∇ϕ(ΦY,w(t)) · f(ΦY,w(t), w)〉dt

> δκ+

∫ δ

0

−βΦY,w
1 (t)ΦY,w

1 (t)rI − w∂X1ϕdt

> δκ−
∫ δ

0

wrV + rIβΦ
Y,w
1 (t)ΦY,w

2 (t)dt+

∫ δ

0

w(rV − ∂X1
ϕ(Y ))dt

> δκ−
∫ δ

0

wrV + rIβΦ
Y,w
1 (t)ΦY,w

2 (t)dt,

because w(rV −∂X1
ϕ(ΦY,w(·))) ≥ 0 since w ≥ 0 and (rV −∂X1

ϕ(ΦY,w(·))) ≥
H∞(ΦY,w(·),∇ϕ(ΦY,w(·)) ≥ κ > 0.

Once again, we conclude as in the proof of the Theorem 2.2.

3.2 Uniqueness of the solution of the HJB problem.

Theorem 3.3. Let F1 a subsolution of (79) and F2 a supersolution. Then:

F1(X) ≤ F2(X) for all X ∈ Ω.

Proof. We use the same notation and reasoning as in the proof in Section 2.3.
The Hamiltonian used here is:

H̃∞(X,W∞(X), p) = min(rV (1−W∞), βX1X2(rI(1−W∞)+p2−p1)−γX2p2).
(85)

Equation (45) becomes:

− ρrV (W∞
2 (yǫ)−W∞

1 (xǫ))

+ [β(−xǫ
1x

ǫ
2 + yǫ1y

ǫ
2)(rI − pǫ1 + pǫ2)− γpǫ2(y

ǫ
2 − xǫ

2)]

− βrI [y
ǫ
1y

ǫ
2W∞

2 (yǫ)− xǫ
1x

ǫ
2W∞

1 (xǫ)] ≤ 0. (86)

And for the same reasons as in the proof for umax bounded we obtain instead
of (48):

− [rIβx1x2 + ρrV ] [W∞
2 (x)−W∞

1 (x)] ≤ 0. (87)

We can conclude as when umax is bounded.
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3.3 A candidate value function: the sub-critical case

We introduce the critical point value rcritV,∞:

rcritV,∞ = sup{r ≥ 0 | ∂2
X1X1

ζ(X) > 0 ∀X ∈ L∂X1
ζ

r }. (88)

We see (after some computations) that rcritV,∞ < ∞ for γ/β < 1 and rcritV,∞ = ∞
for γ/β ≥ 1. Note that in all situations rcritV,∞ > 1.

We introduce the critical point Xcrit
∞ which is the unique solution of the

following equation:
∂2
X1X1

ζ(Xcrit
∞ ) = 0, Xcrit

∞ ∈ Γ1. (89)

As in (51), we show that Xcrit
∞ = (x∗, 1− x∗) where x∗ is the solution of:

γ

β
−
(

x∗ − γ

β

)

= x∗e−
γ
β [(1−x∗)+2(x∗− γ

β )]. (90)

When rV < rcritV,∞rI we define a partition of Ω in two regions

ΩNV
∞ = {Y ∈ Ω | ∂X1

ζ(Y ) < rV /rI} (91)

ΩV
∞ = {Y ∈ Ω | ∂X1

ζ(Y ) > rV /rI}. (92)

Note that rcritV,∞ = limumax→∞ rcritV,umax
and for umax large enough ΩV

umax
=

ΩV
∞ (and ΩNV

umax
= ΩNV

∞ ). As before we can prove the following:

Lemma 3.4. Any trajectory ΦY,dV (t) with Y ∈ L∂X1
ζ

rV /rI
= ∂ΩNV

∞ ∩ ∂ΩV
∞ is such

that ΦY,dV (t) ∈ ΩNV
∞ for all t > 0 (dV ∈ UY ).

To any Y ∈ Ω associate the unique ∆Y ≥ 0 such that (Y1−∆Y, Y2) ∈ L∂X1
ζ

rV /rI

and define: ΠrV ,rI∞ (Y ) = J(Y,∆Y δt=0). If ∆Y does not exist then set ∆Y = 0
with the convention 0 × δt=0 = 0. Note that ∆Y = 0 for any Y ∈ ΩNV

umax
and

moreover:

ΠrV ,rI
∞ (Y ) =

{

J0(Y ) if Y ∈ ΩNV
∞

J0(Y1 −∆Y, Y2) + rV (∆Y ) if Y ∈ ΩV
∞, (Y1 −∆Y, Y2) ∈ L∂X1

ζ

rV /rI
, ∆Y ≥ 0.

(93)
For umax large enough ΠrV ,rI

umax
and ΠrV ,rI∞ coincide on ΩNV

umax
. Moreover since

for any Y ∈ ΩV
umax

and given umax the optimal strategies uumax

Y converge (when
umax → ∞) to the Dirac delta function ∆Y δt=0 then:

V∞(Y ) = lim
umax→∞

Vumax(Y ) = lim
umax→∞

J(Y, uumax

Y ) = J(Y,∆Y δt=0) = ΠrV ,rI
∞ (Y ).

(94)
Therefore we proved the following:

Theorem 3.5. For rV < rIr
crit
V,∞ the function ΠrV ,rI∞ is the unique solution of

the HJB equation (79) and ΠrV ,rI∞ = V∞. As a consequence in this case the
value function V∞ is in C1(Ω).

Proof. The proof is already above.
A direct proof also can be given; for instance suppose one wants to prove

e.g., that −H∞(Y,∇ΠrV ,rI∞ (Y )) = 0 for Y ∈ Ω.
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The mere definition of the domain ΩNV
∞ imply that rV − ∂X1

J0 ≥ 0 on
this domain; on the other hand βX1X2(rI + ∂X2

J0 − ∂X1
J0) − γX2∂X2

J0 = 0
everywhere; thus −H∞(Y,∇ΠrV ,rI∞ (Y )) = 0 for Y ∈ ΩNV

∞ .

For Y ∈ ΩV
∞ (with (Y1 − ∆Y, Y2) ∈ L∂X1

ζ

rV /rI
) the definition of ΠrV ,rI∞ im-

plies that for any ǫ < ∆Y : ΠrV ,rI∞ (Y1, Y2) = ΠrV ,rI∞ (Y1 − ǫ, Y2) + rV ǫ thus
∂X1Π

rV ,rI∞ (Y ) = rV ; in addition ∂X2Π
rV ,rI∞ (Y ) = ∂X2Π

rV ,rI∞ (Y1 − ∆Y, Y2) and

the conclusion follows from the HJB equation of J0 on the L∂X1
ζ

rV /rI
.

3.4 A candidate value function: the super-critical case

We consider here the situation rV /rI ≥ rcritV,umax
; note that this implies γ/β ≤ 1.

Introduce
Γcrit
sub = {Y ∈ L∂X1

ζ

rV /rI
| ∂2

X1X1
ζ(Y ) ≤ 0}. (95)

For any Y ∈ Γcrit
sub define:

Y super
1 = sup{Z1 ≥ Y1 | J0(Y ) + rV (Z1 − Y1) ≤ J0(Z1, Y2)}. (96)

We define a curve Γcrit
super as:

Γcrit
super = {(Y super

1 , Y2) | Y ∈ Γcrit
sub }. (97)

Remark 5. We can express Γcrit
sub in a parametric form:

Γcrit
sub = {(X∆

1 , X∆
2 ) ∈ Ω | 0 ≤ ∆ ≤ ∆max},

where ∆max is such that X∆max

2 = 0 and

X∆
1 =

∆(e
− γ

β

rV
rI

∆ − 1)

1−∆β
γ

rV
rI

− e
− γ

β

rV
rI

∆
(98)

X∆
2 = −β

γ
ln

(

1− rV
rI

1 + rV
rI

β
γX

∆
1

)

−
rV
rI
X∆

1 (1 + β
γX

∆
1 )

1 + rV
rI

β
γX

∆
1

. (99)

The curves Γcrit
sub and Γcrit

super define a domain that will be denoted ΩV
∞; set

also ΩNV
∞ = Ω \ ΩV

∞.
Note that when rV ≥ 2rI the sets Γcrit

sub , Γ
crit
super and ΩV

∞ are empty.

To any Y ∈ Ω associate the unique ∆Y ≥ 0 such that (Y1 −∆Y, Y2) ∈ Γcrit
sub

and define: ΠrV ,rI∞ (Y ) = J(Y,∆Y δt=0). If ∆Y does not exist then set ∆Y = 0
with the convention 0 × δt=0 = 0. Note that ∆Y = 0 for any Y ∈ ΩNV

∞ and
moreover:

ΠrV ,rI
∞ (Y ) =

{

J0(Y ) if Y ∈ ΩNV
∞

J0(Y1 −∆Y, Y2) + rV (∆Y ) if Y ∈ ΩV
∞, (Y1 −∆Y, Y2) ∈ Γcrit

sub , ∆Y ≥ 0.

(100)
Note that for any given Y ∈ ΩV

∞ for umax large enough Y ∈ ΩV
umax

. Moreover
for any Y ∈ ΩV

umax
and given umax the optimal strategies uumax

Y converge (when
umax → ∞) to a Dirac delta function ∆Y δt=0 then:

V∞(Y ) = lim
umax→∞

Vumax(Y ) = lim
umax→∞

J(Y, uumax

Y ) = J(Y,∆Y δt=0) = ΠrV ,rI
∞ (Y ).

(101)
Therefore we proved the following:
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Theorem 3.6. For rV ≥ rIr
crit
V,∞ the function ΠrV ,rI∞ is the unique solution

of the HJB equation (79) and ΠrV ,rI∞ = V∞. In particular when rV ≥ 2rI :
V∞ = J0 ∈ C1(Ω) but when rV ∈]rIrcritV,∞, 2rI [ the value function V∞ is only
Lipschitz.

4 Summary of optimal strategies

When umax < ∞ from the equations (60) and (61), the Bellman principle and
the properties of the value function it follows that for Y ∈ ΩV

umax
the optimal

strategy is initially u = umax while in ΩNV
umax

the optimal control is necessar-
ily null. Similar arguments hold for other situations; thus we can completely
describe the optimal strategies for an arbitrary initial point Y ∈ Ω:

• when umax < ∞: if Y ∈ ΩV
umax

vaccinate with rate umax until reaching
the frontier of domain ΩV

umax
and then stop vaccination. If Y /∈ ΩV

umax
do

not vaccinate at all;

• when umax = ∞: if Y ∈ ΩV
∞ instantaneously vaccinate the minimal num-

ber of individuals that allow to reach the frontier of domain ΩV
∞ and then

stop vaccination. If Y /∈ ΩV
∞ do not vaccinate at all.

Note that when rV ∈]rcritV,umax
rI , 2rI [ the optimal strategy may not be unique.

This happens on the frontier Γcrit
super when two different strategies give the same

cost (because the value function is continuous): either vaccinate until reaching
Γcrit
sub and then stop vaccinating or do not vaccinate at all. See also figure 5 for

an illustration. Otherwise the optimal strategy is unique.
We refer to the text for the definitions of the domains ΩV

umax
and ΩV

∞, for
instance when umax < ∞ and rV ≤ rcritV,umax

rI (for γ/β < 1): ΩV
umax

= {Y ∈
Ω | ∂X1

ζ(Y ) ≥ rV /rI} but when umax < ∞ and rV ∈ [rcritV,umax
rI , 2rI ] (for

γ/β < 1) the definition of the domain ΩV
umax

is more involved (cf. previous
sections); same for ΩV

∞ and rcritV,∞.
With respect to the existing literature the above optimal strategies are dis-

tinct in several aspects:

• when umax < ∞: previous contributions take ΩV
umax

= {Y ∈ Ω | ∂X1
ζ(Y ) ≥

rV /rI} while our definition is different for rV ∈ [rcritV,umax
rI , 2rI ]. The

strategies here will lead to lower costs.

• when umax = ∞: we do not ask full vaccination but only vaccinate the
minimum proportion that allows to reach the frontier of ΩV

∞.

Finaly, Remark 1 shows that the cost functional in the equation (6) has the
same optimal strategies and vaccination regions.
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Appendix

A Properties of the number of infected people
without vaccination

We recall some properties of the number of infected people in absence of vacci-
nation. The reader can also consult [2, 1]. Consider the model without control:











dX1(t)
dt = −βX1(t)X2(t),

dX2(t)
dt = βX1(t)X2(t)− γX2(t),

dX3(t)
dt = γX2(t).

(102)

Lemma A.1. The size ζ of an epidemic without vaccination starting at ΦX,0(0) =
X = (X1, X2) is the unique solution in [0, X1[ of the equation:

1− ζ

X1
= e−

β
γ
(X2+ζ). (103)

Moreover ζ(X) > X1 − γ
β , ∀X ∈ Ω and ζ ∈ C1(Ω).

Remark 6. Although ζ depends on X, when there is no ambiguity, we will just
write ζ.

Proof. Denote X∞
1 = limt→∞ ΦX,0

1 (t), X∞
2 = limt→∞ ΦX,0

2 (t). Straightfor-
ward computations allow to prove that:

ΦX,0
1 (t) = X1e

− β
γ
(1−ΦX,0

1 (t)−ΦX,0
2 (t)). (104)

Or X∞
2 = 0 thus X∞

1 = X1e
− β

γ
(X1+X2−X∞

1 ). Using that ζ = X1 − X∞
1 we

obtain equation (103).

Let F (y,X1, X2) = e−
β
γ
(y+X2) − (1 − y

X1
) defined on [0, X1] × Ω. Since

F (0, X1, X2) = e−
β
γ
X2 − 1 ≤ 0 and F (X1, X1, X2) = e−

β
γ
(X1+X2) > 0 the equa-

tion (in y) F (y,X1, X2) = 0 has at least a solution in [0, X1[; thus equation (103)
has at least a solution in [0, X1[.

Moreover ∂F
∂y (y,X1, X2) = −β

γ e
− β

γ
(y+X2) + 1

X1
. Since y ≤ X1 ≤ 1 and

X1 +X2 ≤ 1 we obtain ∂F
∂y (y,X1, X2) ≥ −β

γ e
− β

γ + 1 > 0 (because 1 > ze−z for

any z > 0); therefore F (·, X1, X2) is strictly increasing in y and the solution ζ
is unique.

If X1 ≤ γ
β since ζ ≥ 0 we obtain immediately ζ ≥ X1− γ

β . If on the contrary

X1 ≥ γ
β (thus in particular γ

βX1
∈]0, 1]) we obtain:

F (X1 −
γ

β
,X1, X2) = e−

β
γ
(X1− γ

β
+X2) − (1−

X1 − γ
β

X1
)

≤ e−
β
γ
(X1− γ

β
) − γ

βX1
≤ 0 (105)

where for the last inequality we used that e1−1/z−z ≤ 0 for any z = γ
βX1

∈]0, 1].
Therefore the solution ζ is in [(X1 − γ/β)+, X1[. When X belongs to the open
set Ω then same arguments show that the inequality ζ > (X1 − γ/β) is strict.
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Remark 7. Thanks to (103) we obtain by the implicit function Theorem that ζ
has continuous derivatives around any X ∈ Ω; we can calculate first and second
partial derivatives of ζ with respect to X1 and X2:

∂ζ

∂X1
=

ζ

X1

(

1 + β
γ (ζ −X1)

) , (106)

∂ζ

∂X2
=

γ/β

ζ −X1 + γ/β
− 1, (107)

∂2ζ

∂X2
1

= −γ

β

ζ(ζ − 2X1 + 2γ/β)(ζ −X1)

X2
1 (ζ −X1 + γ/β)3

, (108)

∂2ζ

∂X1∂X2
=

∂2ζ

∂X2∂X1
=

γ

β

(X1 − γ/β)(ζ −X1)

X1(ζ −X1 + γ/β)3
. (109)

Note that since ζ > X1 − γ
β all fractions are well defined and ζ is even C2(Ω).

B Properties of the trajectories

Lemma B.1. ∂X1
J0 = ∂J0

∂X1
is decreasing along trajectories of the system (102).

Proof. We have to prove that:

〈f(X, 0),∇∂X1
J0(X)〉 < 0. (110)

Using the expression of ζ, we have: J0(X) =
∫∞
0

rIX1(τ)X2(τ)dτ = rIζ(X).
Equation (110) can thus be rewritten as follows:

〈f(X, 0),∇∂X1ζ〉 < 0. (111)

Using equations (108) and (109), this gives after some computations:

X1

(

ζ −X1 +
γ

β

)2

> 0

which is always true because X1 is strictly positive and ζ 6= X1 − γ
β .

Lemma B.2. For all Y ∈ Γ1 ∪ ΓA1 the trajectory ΦY,u(t) is incoming in
Ω ∀u ∈ UY .

Proof. For Γ1, the scalar product with the incoming normal is positive:

〈f(X,u), (−1,−1)〉 = γX2 + u ≥ 0 ∀u ∈ [0, umax].

For ΓA1:

〈f(X,u), (0, 1)〉 = X2(βX1 − γ) ≥ 0 ∀u ∈ [0, umax].

Lemma B.3. J0 is C1(Ω).

Proof. Since J0 = rIζ the conclusion follows from Lemma A.1.
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Lemma B.4. For all X ∈ Ω, we have ∂ζ
∂X1

(X) ≤ 2. Therefore 0 ≤ ∂J0

∂X1
(X) ≤

2rI ∀X ∈ Ω.

Proof. Using expression in (106), to prove ∂X1ζ ≤ 2, we just have to show that

ζ ≥ 2X1(X1− γ
β
)

2X1− γ
β

. For that, we take same notation and result as in the proof of

the Lemma A.1 so X1 ≥ γ
β and we denote ξ =

2X1(X1− γ
β
)

2X1− γ
β

. We have to prove

that F (ξ,X1, X2) ≤ 0.

With these notations, we have F (ξ,X1, X2) = e−
γ
β
(ξ+X2) −

γ
β

2X1− γ
β

.

If we note z = β
γ ξ, we obtain, e−z− γ

β
X2 − (z +

√
z2 + 1).

As e−z− γ
β
X2 ≤ e−z ≤ 1

z+
√
z2+1

, this proves that F (ξ,X1, X2) ≤ 0.

Lemma B.5. The level lines defined by L∂X1
ζ

r = {(X1, X2) ∈ Ω | ∂ζ
∂X1

(X) = r}
have the parametric equation:

1−
1− β

γX1

1
r − β

γX1

= e
− β

γ

(

X1

1−
β
γ

X1

1
r
−

β
γ

X1

+X2

)

. (112)

and have point A = ( γβ , 0) as limit (but A /∈ L∂X1
ζ

rV /rI
).

Proof. If X = (X1, X2) ∈ L∂X1
ζ

r using the definition of L∂X1
ζ

r and (109) we
have:

ζ = X1

1− β
γX1

1
r − β

γX1

. (113)

Then, we replace in (103) to obtain the parametric equation. Note that ∇Xζ

is not defined at A. The level line L∂X1
ζ

0 is ΓOA and the level line L∂X1
ζ

1

is {X ∈ Ω | X1 = γ
β }. Suppose r /∈ {0, 1}, then for any X ∈ L∂X1

ζ
r we

have ∂ζ
∂X1

(X) 6= 0. The level line L∂X1
ζ

r is regular in the neighborhood of any

X = (X1, X2) ∈ Ω. Indeed if ∂ζ
∂X1

(X) = r by the implicit function Theo-

rem in the neighborhood of X there exists a curve X2 = X2(X1) such that
∂ζ
∂X1

(

X1, X2(X1)
)

= r. Moreover, by the same Theorem X2(X1) is C1 lo-

cally. Thus the level line L∂X1
ζ

r is regular around any point in Ω. As such
it does not have self-intersections either. In addition for any r ∈ [0, 2] since
limX1→ γ

β
−

∂ζ
∂X1

(X1, 0) = 0 and limX1→ γ
β

+
∂ζ
∂X1

(X1, 0) = 2 by continuity we ob-

tain that L∂X1
ζ

r will be as close to A as wanted thus A is an extremity of L∂X1
ζ

r

(but does not belong to it).
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