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its market. Introducing statistical uncertainty in cost estimation is a good way to tackle the risk of going too far while 

minimizing the project budget: it allows the company to determine the best possible trade-off between estimated cost and 

acceptable risk. In this paper, we present new statistical estimators derived from the way IT companies estimate the projects' 

costs. In the current practice, the software to develop is progressively divided into smaller pieces until it becomes easy to 

estimate the associated development workload and the workloads of the usual additionnal activities (documentation, test, 

project management,...) are deduced from the development workload by applying ratios. Finally, the total cost is derived from 

the resulting workload by applying a daily rate. This way, the overall workload cannot be calculated nor estimated 

analytically. We thus propose to use Monte-Carlo simulations on PERT and dependency graphs to obtain the cost distribution 

of the project. 
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ABSTRACT
In the current economic context, optimizing projects’ cost
is an obligation for a company to remain competitive in its
market.
Introducing statistical uncertainty in cost estimation is a
good way to tackle the risk of going too far while minimiz-
ing the project budget: it allows the company to determine
the best possible trade-off between estimated cost and ac-
ceptable risk.
In this paper, we present new statistical estimators derived
from the way IT companies estimate the projects’ costs. In
the current practice, the software to develop is progressively
divided into smaller pieces until it becomes easy to esti-
mate the associated development workload and the work-
loads of the usual additionnal activities (documentation,
test, project management,...) are deduced from the devel-
opment workload by applying ratios. Finally, the total cost
is derived from the resulting workload by applying a daily
rate.
This way, the overall workload cannot be calculated nor es-
timated analytically. We thus propose to use Monte-Carlo
simulations on PERT and dependency graphs to obtain the
cost distribution of the project.

1. INTRODUCTION
When developping software, cost estimation can be reduced
to effort estimation since the project cost is derived by ap-
plying a daily rate.
The effort can be estimated in two ways: following an ap-
proach relying on expert judgment or an approach based on
parametric models. Approaches based on expert judgment
rely on a work breakdown structure; each task is sized based
on an expert intuition and it is possible to model uncer-
tainty by associating probabilistic distribution to each task
estimate.
Concerning approaches relying on parametric models, many
different types are available [2]. Even if model-based ef-
fort estimation processes may rely very much on expert
judgment-based input, propagating uncertainty within the

model becomes complicated.
In this paper we consider an hybrid approach, combining
pure expert judgement for development task workload esti-
mation and simple model-based estimators for other activi-
ties. Uncertainty are introduced wherever expert inputs are
required and propagated to the global project effort estima-
tion.
The paper is organized as follows: in section 2, we intro-
duce a running example to illustrate our approach. Section
3 is dedicated to related work. In Section 4, we discuss the
model we propose to propagate uncertainty into cost mod-
els. The way our model may be used on a concrete example
is described in section 5. Finally, in section 6 we conclude
the paper.

2. RUNNING EXAMPLE
We explain our approach along with a running example
which is presented in the following.
A simple software has to be developped. An expert analysed
the software requirements and identified two development
tasks named Dvt1 and Dvt2. He estimated the associated
development effort as follows:

• Dvt1 should costs 6± 1 man.days (md),

• Dvt2 should also costs between 5 to 7md but it is more
likely to be closer to 5 rather than 7.

In addition to the development activity, the project manager
establishes that for such kind of project the test activity, Tst,
represents 50% of the development effort Dvt1 +Dvt2, and
the reporting activities, Rpt, represents 1md every week,
during the whole project duration. If we consider that the
two development tasks can be performed simultaneously, the
sequence diagram modeling the project is shown in figure 1.
Since we have an uncertainty on Dvt1 and Dvt2 duration,

Dvt1

Dvt2

Tst

Rpt

End

Figure 1: Task sequencing graph

and since activities Tst and Rpt depend on these develop-
ment tasks, we need an approach to determine what is the
best value to consider for the global effort and what is the
resulting uncertainty.



3. RELATED WORK
3.1 Tasks and distributions
In project management, the classic way to introduce uncer-
tainty in project cost-or-duration computation consists in
considering each estimation as a random variable associated
to a beta distribution [4]. The beta distribution is defined
as follows:

f(x) =


a+ (b− a)

 xα−1(1−x)β−1

1∫
0
uα−1(1−u)β−1du

 ∀x ∈ [a, b]

0 otherwise

with: a, b the minimum and maximum of the distri-
bution,

α, β defining the support of the function shape
parameters

Modeling task Dvt1 would lead to the following values: a =
5, b = 7, α = β = 2. The associated distribution is illus-
trated in figure 2. Selecting α = β leads to a symmetrical

65 75.2 5.4 5.6 5.8 6.2 6.4 6.6 6.8
0

1

0.2

0.4

0.6

0.8

1.2

1.4

1.6

Figure 2: Beta distribution with a = 5, b = 7 and
α = β = 2

distribution centered around 6. It is also possible to model
Dvt2 for witch the workload is likely to be closer to 5 by set-
ting β to 3 rather than 2, as shown in figure 3. Considering
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Figure 3: Beta distribution with a = 5, b = 7, α = 2
and β = 3

a bigger project, each task i of the project can be modeled in
the same way as a random variable Xi described by a beta
distribution with parameters ai, bi, αi and βi. The work-
load of the whole project is defined as the sum of all these
random variables. The workload can then be determined in
two ways:

• using the Central Limit Theorem or

• applying Monte-Carlo simulations.

3.2 The Central Limit Theorem
The Central Limit Theorem (CLT) [11] states that the arith-
metic mean of a sufficiently large number of iterates of inde-
pendent random variables, each with a well-defined expected
value and well-defined variance, will be approximately nor-
mally distributed.
If we consider the random variable W associated to the
project workload, defined as the sum of Xi random vari-
ables, we have:

W =
∑

i=1..N

Xi (1)

The CLT then states that W converges to a normal distribu-
tion whose mean E(W ) and variance V ar(W ) are approxi-
mated to:

E(W ) =
∑

i=1..N

E(Xi) (2)

=
∑

i=1..N

ai +
∑

i=1..N

(bi − ai)αi

αi + βi
(3)

and:

V ar(W ) =
∑

i=1..N

V ar (Xi) (4)

=
∑

i=1..N

(bi − ai)αiβi

(αi + βi)2(αi + βi + 1)
(5)

CLT is an efficient tool to manage uncertainty within the
workload estimation as it is defined in (1), but it requires
strict conditions [9]:

• the final random variable is a sum of initial ones,

• initial random variables must be identically distributed,
with finite mean and variance,

• initial random variables are independent,

• the sum of random variables tends to be normally dis-
tributed as the number of these variables increases. In
practice, the approximation is considered as accept-
able for a sum of 30 random variables, even 50 if the
distribution of random variables is asymmetric.

In the context described earlier, the second condition is not
strictly fulfilled since different values for α and β lead to
different distributions. An improvement to the CLT, named
Lindberg’s condition, states that the convergence to a nor-
mal distribution is also guaranteed if the second condition
is omitted [8]. However, the first and third conditions are
not fulfilled when considering our running example. Test
and reporting activities are not terms that just have to be
summed with development tasks and they are clearly corre-
lated to the other tasks. CLT cannot be used.

3.3 Monte-Carlo experiments
The Monte-Carlo method is an alternative method allow-
ing to compute complex combination of random variables.
It relies on repeated random (statistical) sampling of ele-
mentary random variables. Simulations are run many times
over in order to calculate the resulting probability heuristi-
cally. The algorithm is simple; the only complexity consists
in generating samples according to associated distributions.
It generally involves transforming a uniform random number
in some way. Two methods are used [3]:



• the inversion method, that consists in integrating up to
an area greater than or equal to the random number;

• the acceptance-rejection method, involves choosing x
and y values according to a uniform distribution (the
standard random function) and testing whether the
distribution function of x is greater than the y value.
If it is, the x value is accepted. Otherwise, the x value
is rejected and the algorithm tries again.

This approach is a way to compute a numerical approxima-
tion which error can be lowered by increasing the number of
generated samples: if we denote R the number of generated
sampling sets, the error is reduced by a factor of 1/

√
R [7].

Since no condition is required unlike in the CLT approach,
Monte-Carlo is clearly an approach that we can use to prop-
agate uncertainty from expert inputs to the global effort.
In order to achieve this, we are now going to elaborate the
analytical model of the effort in accordance with the way it
is expressed within the running example.

4. A MODEL COMBINING HETEROGENE-
OUS TASK ESTIMATORS

As explained previously, development tasks are modeled us-
ing beta distributions: the developer estimates what is the
minimum and maximum time he would need to implement
the associated feature (parameters a and b). Then he tunes
the shape parameters α and β in order to reflect his feeling:
will it be more likely close to the maximum b or to the min-
imum a.
Let’s note Xi the associated random variables with Xi ∈ Tβ ,
where Tβ corresponds to the set of tasks that are modeled
using beta distributions.
When the effort associated to an activity is deduced by ap-
plying a ratio to a set of other tasks workloads, the corre-
sponding random variable is modeled as follows:

Xj = f(aj , bj , αj , βj)
∑
Xl∈T

δj,lXl (6)

where:
δj,l is a boolean value that defines the set of random

variables that are summed. δ4,8 = 1 means that
X8 is used in the calculation of X4.

T is the set containing all the tasks of the project.

Again, function f() represents the beta distribution; it al-
lows to model the fact that the ratio may also be uncertain.
Considering our running example, let’s name X1,X2 and X3

the random variables associated to tasks Dvt1, Dvt2 and
Tst respectively. We can write:

X3 = f(0.4, 0.6, 2, 2) (X1 +X2) (7)

= f(0.4, 0.6, 2, 2)
∑

Xl∈Tβ

δ3,lXl (8)

with δ3,1 = 1 and δ3,2 = 1. We also decided to add an
uncertainty to the ratio of 50%; so we replace it by a beta
distribution taking its values between 0.4 and 0.5.
Finally, for task Rpt we need to introduce another type of
estimator: a ratio is applied to the duration of a set of tasks.
It requires that the scheduling of the different tasks has al-
ready been elaborated. This schedule is defined as a directed

graph Gsched = (T, E) where T is the set of node; each node
represents a task of the project and E is a set of edges, i.e.
pairs of T. The workload of each task is associated to each
node. Finding the duration of a set of activities then con-
sists in computing the longest path between the related start
and ending nodes. Let’s note Dur(Gsched, s, e) the function
that computes the duration between the two nodes s and e
within the graph Gsched, we have:

Xk = f(ak, bk, αk, βk)Dur (Gsched, sk, ek) (9)

In our example, graph Gsched is illustrated in figure 1. If
we note X4 the random variable associated to task Rpt, we
would write:

X4 = f(0.15, 0.25, 2, 2)Dur (Gsched,Start,End) (10)

Again, we added an uncertainty to the ratio of 20%; these
20% represent the effort of 1md per week estimated in our
running example.

Our major contribution consists in the resulting global work-
load W that is synthesized below:

W =
∑

Xm∈T

Xm (11)

=
∑

Xi∈Tβ

f(ai, bi, αi, βi)

+
∑

Xj∈Tratio

[
(aj , bj , αj , βj)

∑
Xm∈T

δj,mXm

]
(12)

+
∑

Xk∈Tdur

[f(ak, bk, αk, βk)Dur (Gsched, sk, ek)]

Where Tratio and Tdur are the sets of random variables that
are calculated according to model (6) and (9) respectively.

5. APPLYING MONTE-CARLO
SIMULATIONS

The random variables are clearly no more independent and
the project workload is now more complex than a sum a
initial random variables. As a result, it is not possible to
calculate the project workload using the CLT. The Monte-
Carlo method has to be used. However, the project cost as
expressed in (12) raises two difficulties described hereafter.

5.1 Tasks dependency
Random variables from Tratio and Tdur define a dependency
graph Gdep = (T, E2), where the arcs within E2 are defined
by the adjacency matrix ∆, gathering δi,j as defined in (6).
The associated dependency graph is illustrated in figure 4.

TstDvt1

Dvt2

Rpt

Figure 4: Dependency graph



To be able to compute W , it is necessary to derive an eval-
uation order that respects the given dependencies. Cycles
within Gdep would lead to a situation in which no valid eval-
uation order exists, because none of the objects in the cycle
may be evaluated first.
If it does not have any circular dependencies, the graph
is a directed acyclic graph, and an evaluation order may
be found by topological sorting. There are several algo-
rithms that performs topological ordering; we used the one
described in [6]. Considering our running example, the or-
dering S = {X1, X2, X3, X4} is valid.

5.2 Tasks duration
For random variables from Tdur, we need to compute the du-
ration of a group of tasks. In graph theory, it consists in com-
puting the longest path between two nodes wihtin Gsched.
Several algorithms answer this need but they all require
edge-weighted graphs while we defined a vertex-weighted
graph.
Therefore, Gsched has to be converted into its edge-weighted
dual G′

sched. In the dual graph, the edges represent the ac-
tivities, and the vertices represent the start or the finish of
an activitiy. For this reason, the dual graph is also called an
event-node graph.
The easiest way to tranform Gsched into G′

sched is to replace
each node v in the original graph with two nodes, vin and
vout, connected by a single edge with weight equal to the
original vertex weight. Then the original edges (u, v) are
replaced with edges from uout to vin of zero weight. Finally,
when an original node v has only one predecessor, vin is re-
moved. Considering our example, the resulting dual graph
is shown in figure 5.

EndDvt2-Out

Dvt1-Out

TstOutTstIn

RptOut

X1

X2

X4

X3

Ø

Ø

Ø

Ø

Figure 5: Scheduling dual graph

Since it is a directed acyclic graph, a longest path in the
graphG′

sched corresponds to a shortest path in a graph−G′
sched

derived from G′
sched by changing every workload to its nega-

tion [10]. Longest paths in G′
sched can be found in linear

time by applying a linear time algorithm for shortest paths
in −G′

sched such as [1, 5].

5.3 Running example
AMonte-Carlo simulation of 10000 turns has been performed
on our running example; the repartition of the effort is given
in figure 6. Using this distribution, we can easily tackle the
uncertainty of our project. Depending on the way we want
to manage the associated risk, two kind of questions can
help the project manager in his decision making:

• What is the likehood that the project duration is for
instance less than 19 m.d? In our example, the answer
is 4%
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Figure 6: Distribution of the effort

• What is the maximal workload of the project, with a
likehood of 90%? The answer is 23 m.d

6. CONCLUSION
In this paper we proposed new statistical estimators for ex-
pert judgement-based effort estimation processes.
Because the global workload is a complex combination of
random variables, it is not possible to calculate an analyt-
ical expression of its distribution. The propagation of un-
certainty within the global workload model thus requires a
numerical approach such as the Monte-Carlo simulation.
Even if the mean of the global workload could be easily de-
termined without the help of Monte-Carlo simulation, our
approach also provides an approximation of the workload
distribution. This distribution allows the project manager
to estimate more accurately the project cost and to better
decide the maximum risk he can afford.
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