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Abstract. We present recent results obtained using angle-resolved photo-
emission spectroscopy performed on 17-TiSe,. Emphasis is put on the
peculiarity of the bandstructure of TiSe, compared to other transition metal
dichalcogenides, which suggests that this system is an excellent candidate for
the realization of the excitonic insulator phase. This exotic phase is discussed
in relation to the BCS theory, and its spectroscopic signature is computed via
a model adapted to the particular bandstructure of 17-TiSe,. A comparison
between photoemission intensity maps calculated with the spectral function
derived for this model and experimental results is shown, giving strong support
for the exciton condensate phase as the origin of the charge density wave
transition observed in 17-TiSe,. The temperature-dependent order parameter
characterizing the exciton condensate phase is discussed, both on a theoretical
and an experimental basis, as well as the chemical potential shift occurring in
this system. Finally, the transport properties of 17-TiSe, are analyzed in the
light of the photoemission results.
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1. Introduction

The excitonic insulator phase appeared in the mid-1960s as a theoretical prediction [1, 2]. In
its simplest version, its basic ingredients are a single valence and a single conduction band,
having a semimetallic or semiconductor configuration. Then, if the overlap or the gap between
them is small enough, bound states of holes and electrons, called excitons, will condense in
a macroscopic state and drive the system into a new ground state, provided the temperature
is sufficiently low. A charge density wave (CDW) arises naturally from the coupling between
the valence and conduction bands, opening a gap between them at low temperature (LT) and
transforming the semimetallic or semiconducting configuration into an insulating one. In other
words, the presence of condensed excitons in the system creates the CDW as a purely electronic
process.

Among the collective phenomena at play in condensed matter, superconductivity is among
the most interesting ones, not only for its perspectives on technology but also for its complexity
and its variety. With the seminal work of Bardeen, Cooper and Schrieffer (BCS), a significant
advance has been made in the understanding of this phenomenon. In the BCS theory of
conventional superconductivity, the pairing interaction of electrons has proved to be not trivial.
A delicate mixing of the Coulomb interaction with the dynamical screening effect of phonons is
necessary to achieve the effect of overscreening, essential to transform the repulsive Coulomb
interaction between two electrons into an attractive one, leading to the creation of Cooper pairs,
the basic charged entity of conventional superconductivity.

In the case of the excitonic insulator phase, the situation is fundamentally reversed. The
bare Coulomb interaction turns out to be already attractive between the electron and the
hole, owing to their opposite charges, so that excitons can build up without the interplay
of complicated physics. However, screening of the Coulomb interaction weakens the pairing
interaction, leading to weakly bound excitons, and is unfavorable for the onset of the exciton
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condensate. Excitons are neutral quasi-particles and are therefore undetectable in standard
transport experiments, since their signature in such experiments is similar to that of a
conventional insulator. For this reason, it is more difficult to reveal an excitonic insulator system
than a superconducting one.

The transition metal dichalcogenides (TMDCs) form a large family of quasi-two-
dimensional systems, composed of transition metal atoms and chalcogen atoms. Their atomic
structure is made of layers of transition metal atoms, forming a triangular lattice, in prismatic or
octahedral coordination with their neighboring chalcogen atoms. These layers are stacked along
the c-direction and glued together by van der Waals forces. The chalcogen atom being in an
ns? np* electronic configuration (n is the principal quantum number of the partially filled last
shell), four electrons are taken away from the transition metal atom, in a purely ionic picture.
This means that, for group IVA transition metals ((n — 1)d? ns? electronic configuration), the
atom is left in a d° valence state, while for the group VA transition metals ((n — 1)d* ns?), it
is left in a d' configuration. However, this simple ionic picture does not hold in real TMDCs,
since the nature of the bond is rather covalent [3]. In a real crystal, crystal field splitting and
hybridization between the chalcogen and the transition metal orbitals will modify this situation.
Nonetheless, the typical bandstructure of these systems can still be schematically described in
a simplified picture, by the combination of a valence and a conduction band, whose relative
position depends mainly on the period to which the atoms belong. Considering particular
elements of the group IVA and VA transition metals, the situation can be summarized as in
figure 1. For group IVA, we consider Ti atoms, in combination with S, Se and Te chalcogens. As
mentioned above, in an ionic picture, Ti atoms are left in a d® valence state and the chalcogen
has full subshells. Therefore, the bandstructure of the TMDC must be that of a compensated
system (the hole density is equal to the electron density). Then, for the most electronegative
chalcogen (S), a clear semiconducting configuration (figure 1(a)) is obtained in the pure 17-TiS,
system [3]. This result is confirmed by recent photoemission data [4].

Going to the next chalcogen (Se), which is less electronegative, the electronic configuration
(figure 1(b)) changes into that of a small gap semiconductor or a semimetal (the precise situation
is still debated in the literature [S5]-[8]). Finally, in the case of the chalcogen with the smallest
electronegativity (Te), the system becomes metallic (figure 1(c)), with a large overlap between
the valence and conduction bands [3, 9]. Shifting to the group VA, we consider the particular
case of the transition metal Ta (which is less electronegative than Ti). Due to the extra electron
coming from the d-subshell of Ta, in a first approximation, we expect the chemical potential
to be shifted into the conduction band, leading to an uncompensated system. According to
density functional theory (DFT), 17-TaS, displays already an overlap between the valence
and conduction bands® (figure 1(d)) [10]. Moreover, as expected, the conduction band is now
partially in the occupied states. In the case of 17-TaSe,, the DFT bandstructure is similar to that
of 17-TaS, with a larger overlap between the valence and conduction bands (figure 1(e)) [10].
Finally, when Se is replaced by Te, the 1T structure cannot be achieved. However, the TaTe,
crystal structure is based on a monoclinic unit cell, such that it looks like a distorted 17
structure [11]. The corresponding electronic structure (figure 1(f)) can still be described in our
simple approach with a large overlap between the valence and the conduction bands and with
a valence band partially in the unoccupied states. Of course, this simple view on the electronic
structure of some selected TMDCs may be dramatically changed by strong correlations.

8 To simplify the comparison with the Ti-based compounds, we will still talk about a valence and a conduction
band, although the system based on Ta is now metallic.
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Figure 1. Schematic electronic configuration close to the Fermi energy of typical
TMDCs. Hole-like and electron-like bands are of chalcogen p character and
transition metal d character, respectively.

This simple comparison between the bandstructures of selected TMDCs will now help us
to better understand the particular case of 17-TiSe,. Indeed, among the stereotyped electronic
structures discussed above, the one of 17-TiSe, stands out from the others due to the proximity
of its band extrema to the Fermi energy (Eg). This has two main implications. Firstly, in
opposition to semiconductors with a large gap, the bandstructure of 17°-TiSe, (figure 1(b))
offers enough electronic states close to Ex, which can participate in collective phenomena with
a low energy cost. In other words, we expect that the corresponding electronic susceptibility
will be high for wave vectors connecting the two bands [12]. Secondly, in contrast to metallic
systems, this configuration restrains the effect of screening, since the number of free charge
carriers i1s limited. As explained above, the delicate balance between these two properties is
essential for the possible realization of the excitonic insulator phase, making 17°-TiSe, an
excellent candidate for this exotic phase, as already proposed by Wilson 30 years ago [13, 14].
The electronic configuration is a little bit more complicated than displayed in figure 1(b). In
fact, three symmetry equivalent conduction bands having their minima at the border of the
Brillouin zone (BZ) (at the L point, see figure 2(a)) are coupled to the valence band having its
maximum at the center of the BZ (the I" point). For such a bandstructure, the main difference
compared to the basic excitonic insulator phase is that the electron—hole coupling does not shift
all the conduction bands away from the Fermi energy when opening a gap, leaving therefore
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a) Brillouin zone b) near-Ef band structure

Figure 2. (a) BZ of 1T-TiSe, with its high symmetry points. (b) Left: constant
energy map near Er of 17-TiSe; in planes parallel to the 'M K plane, with
electron pockets at L(M) produced by the conduction band. In parentheses, the
surface BZ notation is indicated for high symmetry points. Right: the valence
bands have their maxima at I and the conduction band has its minimum at L.
In fact, there are three Se4p-derived bands at I'. In our model, however, we will
only consider the topmost one (thick black line).

unperturbed states close to the Fermi energy, which are reducing the insulating character of the
transition [15]. As a consequence, we call this phase the exciton condensate phase. Furthermore,
Zhitomirsky and Rice have shown that intervalley scattering (allowed in this three-conduction-
band electronic configuration) increases the exciton binding energy, stabilizing thereby a dilute
Bose gas of excitons [16]. More recently, stimulated by the possibility of an excitonic insulator
phase in TmSeq45Tegss [17], Fehske and co-workers investigated the phase diagram of the
excitonic insulator phase with particular attention to the BCS—Bose—Einstein condensate (BEC)
crossover, based on an effective mass model [18] and an extended Falicov—Kimball model
(EFKM) [19, 20]. They also focused on the spectral signature of the BCS-BEC crossover in
the EFKM [21].

Among the TMDCs, 17 -TiSe, has stimulated much interest for 40 years, especially due
to its commensurate (2 x 2 x 2) CDW phase. At the critical temperature of 7, >~ 200 K, this
second-order phase transition is notably characterized by a peaking resistivity [22, 23] and
a periodic lattice distortion (PLD) involving relatively small ionic displacements (<0.08 A),
accompanied by a phonon softening [24]. The electronic band structure and its elementary
excitations have been measured with angle-resolved photoemission spectroscopy (ARPES).
For recent experiments, see e.g. [5S]—[8]. The bandstructure inferred at room temperature (RT)
is schematically reproduced in figure 2(b), where the relative energy position of the valence
and conduction bands is still controversial. At LT, intense backfolded bands, characteristic of
the CDW phase, appear. As an alternative to the exciton condensate phase scenario, a band
Jahn—Teller effect [25] has been proposed, supported by the fact that the PLD results in a
tendency of the system to pass from the 17" (octhedral environment of the transition atom) to
the 2H (prismatic environment) polytype. Nesting is not favored by the 17'-TiSe, Fermi surface
(FS) topology, since no large parallel portions of FS are present [26]. Recent calculations based
on a one-dimensional model taking into account structural and excitonic charge fluctuations
indicate that both phonons and excitons must underlie the CDW phase of 17-TiSe, [27].

In 2006, superconductivity was discovered in TiSe, intercalated with copper atoms,
Cu,TiSe, [28]. It was shown that Cu intercalation suppresses first the CDW phase and, at
concentrations of x >~ (.06, a superconductive dome develops, reaching a maximum critical
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temperature of 4.15K at x = 0.08. The corresponding phase diagram is reminiscent of the
one of the new iron pnictide superconductors. In this context, it is worth citing the recent
work of Sawatzky et al, emphasizing that the pnictogen- and chalcogen-based materials are
of particular interest, since these atoms possess high polarizability, which is, under certain
circumstances, favorable to non-phonon-mediated superconductivity [29]. This polarizability
can be seen as resulting from virtual excitonic fluctuations. It is then very tempting to suggest
that such a mechanism may be at play in Cu,TiSe,. We close this discussion by mentioning that
superconductivity under pressure has also been discovered in the pure 17-TiSe, compound,
with again a very similar phase diagram [30].

After a short introduction to the general model of the excitonic insulator phase in section 2,
general results of the BCS theory are first recalled and a typical BCS spectroscopic signature
is shown in section 3. In section 4, this serves as a basis for a comparative discussion with the
spectral function derived for the excitonic insulator phase calculated for a two-band electronic
configuration. In section 5, the model is generalized to a four-band electronic configuration
(from now on called the exciton condensate phase), which is more realistic for discussing
the case of 17-TiSe,. In this section, experimental data are also presented, showing very
good agreement with the calculation, leading to strong support for the realization of the
exciton condensate phase in 17-TiSe,. In section 6, an order parameter with a mean-field-like
temperature dependence is introduced in the model to study the corresponding temperature-
dependent spectroscopic signature. This allows us then to discuss ARPES measurements
performed over a wide temperature range, to extract the corresponding experimental order
parameter and to recognize also a substantial chemical potential shift. Finally, in section 7,
the transport properties of 17°-TiSe, are discussed.

2. Description of the model

We give a brief summary of the main results of a previous theoretical work on the exciton
condensate phase adapted to the electronic structure of 17-TiSe, [15], illustrated with the
two-band excitonic insulator phase model. _

We consider, in that model, electronic dispersions describing a single valence band €, (k)
and three (one) conduction bands eé (k),i =1,2,3 (i =1).° The valence band is centered at I"
and the conduction bands (mainly of Ti 3d character), equivalent by symmetry, are centered at
the different L points (at the M point) of the BZ. The I" point is separated from the L points by
the spanning vectors w; = 'L (w; = w = ' M).

The Hamiltonian of the model is composed of a one-electron part Hy and a Coulomb
interaction part W. The one-electron part contains the dispersions of the different bands

Ho=Y " e,(b)a’kya®)+ " el(k+ib)b] (k)b; (k).
‘

ki

Here aT(lz) and bf (12) are operators creating electrons with wave vector k in the valence band
and with wave vector k + w; in the conduction band labeled i, respectively.

° Without loss of generality, we keep the index i for numbering the conduction bands, although it is useless in the
case where only one conduction band is considered.
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The interaction part W contains only the direct Coulomb interaction between electrons in
the valence and the conduction bands

W =>"p@)Ve(@)py (. 1),
q,i

where we have introduced partial electron density operators

pa@ =Y a'k+a®). ppi(G. i)=Y bl(K+§b (k).
k k

In our calculation, only the Coulomb interaction between the valence and the conduction
bands is considered. The Coulomb interaction potential is taken to be of the form (in three
dimensions)

47 e?

€(@)q*
with € being the dielectric function of the material. It must be emphasized here that the chemical
potential is not included ab initio in the model, so that any change in the chemical potential
resulting from the phase transition toward the excitonic insulator phase will not be calculated
self-consistently. This issue will be addressed separately in section 6.

The Greegl’s functions describing the valence band, G,(k, ¢, t’), and the conduction band
labeled i, Gi (k,t,t"), are defined according to

Gk, t,t) = (=) (Tak, t)a' (&, 1)),

Ve(q@) = ey

Gik.1,1') = (=)(Tb; (k, Db] (k. 1)
(T denotes the time-ordering operator). They will be derived at the mean-field level in the
sections below for different types of band structures.

3. Spectral function in the BCS theory

Before looking at the spectral function of the excitonic insulator phase, we make a short
digression in the BCS theory of superconductivity and recall the analytical form of its spectral
function. We cite here only the main results, since their derivations can be easily found in
textbooks [31].

The typical BCS Hamiltonian has the form

- - 1 - - - =/ - =/ -
H =) e(p)eg(Pes(P)+5- Z Z V(Q)el (B+@)el (P = §)ew (P)es (P) 2)
po qgpp’ oo
with an effective attractive interaction designed to model the phonon overscreened Coulomb

interaction, with an attractive constant part up to the Debye frequency of the solid wp

—Vo for |e(q)| < wp,
Vig) = 3)

0 otherwise.

The fermionic operator ¢, (p) creates an electron with momentum p and spin o in the band
of (isotropic) dispersion &(p). This dispersion is such that near the Fermi energy it has
linear behavior. However, a parabolic dispersion will be used here, which provides states
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of momentum —k and +k necessary for building up Cooper pairs of zero center of mass
momentum. The corresponding Green’s functions are

G(p,t—1) = —(Toce (P, 1)L (P, T)),
F(I;’ T— T/) = - (thi(_ﬁ’ I)CT(];’ T/)>7 (4)
F'(p, 7 — ') = (T.c}(p, T)c| (= p. T)),

where G is a standard Green’s function and F and F are called anomalous Green’s functions,
which are identically zero in the normal state.
We now recall directly their final form (in Matsubara frequency space)

. ipa+e(p)
G = R A
A(p) ®
T - . _ p _ > .
F'(p,ipn) = e A F(p,ipy).

A(p) is the order parameter characterizing the superconductive phase. We immediately see that
when A = 0, the anomalous Green’s functions vanish, as required by equation (4). The poles of
these Green’s functions are the renormalized dispersions, namely E(p) = +./s(p)2+ A(p)?,
corresponding to the excitation energy of the system. It allows us to rewrite these Green’s
functions in expanded form:
=2 =2
G(p.ipy) = —P__, VP
ipy—E(p) ipn+E(p)

. 1
F(Ginn =~ (s o
ipn—E(p) ip.+E(p)
where the coherence factors u(p)? = (1+¢&(p)/E(p))/2 and v(p)* = (1 —e(p)/E(p))/2 have
been introduced. The spectral function of the system is obtained from the (normal) retarded
Green’s function, namely

) = F(ﬁ? lpn),

. 1 - - - - -
A(p, @) = ——Im G™ (P, w) =u(p)*8(w — E(P)) +v(p)*8(w+E(p)).  (6)

Figure 3(a) displays the renormalization of a parabolic dispersion (dashed line) in the BCS
superconductive phase for an order parameter fixed at A = 0.05¢eV, as seen by photoemission.
Near Ef, a gap opens and separates the dispersion into two curved dispersions, carrying
spectral weights (SWs) corresponding to u(p)? and v(p)2. These SW functions are displayed
in figure 3(b), their sum being normalized to one. The high SW is distributed on the parts of
the renormalized dispersions that are closer to the non-renormalized ones. The gap measured
in photoemission is twice the BCS gap function, E, = 2A. The reason for this is that one
cannot excite just one electron from the BCS ground state (where all electrons are bound into
pairs) when destroying a Cooper pair, but one must excite two electrons, paying therefore at
least 2A.
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Figure 3. (a) Renormalized bands obtained with a bare parabolic dispersion
(dashed line) in the BCS theory with the spectral function (equation (6)) for
A =0.05eV. Their SWs (given by u(p)? and v(p)?), superimposed on the
dispersions in grayscale coding, are plotted in graph (b).

4. The excitonic insulator phase (two bands)

We now proceed to the case of the excitonic insulator phase. For that purpose, we present
in this section the spectral function calculated for a two-band electronic structure like that
of figure 1(b), based on the theory shown in section 2. The dispersions are described by the
following functions:

. 22
e(k) = S—+¢), (7
my
L h(k - )
el =" ®
2m,
where the parameters have been chosen to be of the form ¢ =0.03¢eV, ¢ = —0.04eV, m, =

—0.23m. and m. = 5.5m,, (similar to those in [15], but for a simpler band structure here).

We now give the results for the Green’s functions of the valence and conduction bands
without showing the details of their derivation. This is a mean-field calculation very similar
to what is done in BCS theory of superconductivity [31] (see chapter 3). Its application to the
particular case of the two-band excitonic insulator can be found in [2, 32]. The Green’s function
of the valence band is

Z_gc(ﬁ‘i'u_j) _ 1
@—e (PN —e(P+W) — AP 7 — e, (p) — LARL

Z—¢& (ﬁ+lf))

®)

Gv(ﬁ, Z) =

This particular form of G, emphasizes immediately the role of the self-energy

- IA(D)I?
2(p, 1) =——5—,
z—é&(p+w)

which involves the conduction band (around its minimum) and is purely real.
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The Green’s function for the conduction band reads
Z— &y (ﬁ - u_j)

GC _)’ - - - - -
P = e —aG—5) 1A
1
_ - — (10)
z—e(P) — 2B

Both the valence (equation (9)) and the conduction (equation (10)) Green’s functions have
the same denominator (up to a shift of w)

D(p,2) = (z — &, (P))(z — ec(p +)) — |A(p)? (1)

and its (real) roots are the renormalized dispersions in the condensate phase (T < T), namely

oo 1 - - 1 - .- -
Qi(p) = > (ev(p) +ec(p+w)) £ 5\/(&(19) —e(p+w)’+4APP. (12

With these roots, the Green’s functions can be decomposed into rational functions
(involving only first-order poles) and their spectral functions can be computed:

Ay(P, Q) =12 (D)8 (2 — Q2,(P) + V2 (D)8 (2 — 2_(p)),

(13)
Ac(p, ) = u2(P)8 (2 — Q.(P) +v2(P)S(QL — ()
with the coherence factors being
W2(5) = Q.(p) —e(p+w) v2(F) = Q_(p) —ec(p+w)
Y QLp)-Q(p = Q_(p)—Qu(p) (14
W) = Q. (p) —e(p— w)’ V2(5) = Q_(p)—e(p—w)

Q.(p) — 2-(p) Q_(p) — 2(p)
(satisfying u? +v2 =1 and u?+v? = 1). The spectral functions of the valence and conduction
bands (equation (13)) have a similar form to that of a BCS superconductor (equation (6)). The
renormalized dispersions €2 also represent a band structure gapped at Ef (a self-consistent
calculation of the chemical potential is, however, not included in the model).

In figure 4(a), we plot the dispersions'” in the normal phase (i.e. with A =0meV) for
a semimetal, with a gap of Eg = —0.07¢V (overlap). Figure 4(b) presents the renormalized
dispersions calculated with the roots €2 (k) of equation (12) in the excitonic insulator phase
(with A = 100 meV). Many different features should be emphasized.

e In the excitonic insulator phase, the dispersions at I' are identical to those at M.'! This is
the manifestation of the CDW associated with this exotic phase.

e Similarly to the BCS theory, a gap opens at Ex. However, as we will see in the generalized
case of the next section, this particularity is not intrinsic to the theory but specific to the
initial band structure. The gap always opens at the crossing of the valence and conduction
bands. This causes the system to become insulating in the LT phase (provided the chemical
potential stays in the gap).

10We will distinguish between the dispersion, where only the energy as a function of the wave vector k is
considered, and the band, which is a dispersion carrying a SW.
' This stems from the fact that all Green’s functions have the same denominator (equation (11)).
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Figure 4. (a) Dispersions in the normal phase (A = 0meV) for a semimetallic
configuration. (b) Renormalized dispersions in the excitonic insulator phase (for

A =100meV).
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Figure 5. (a) SWs of the renormalized valence and conduction bands in the
excitonic insulator phase (for A = 100 meV). (b) Renormalized dispersions of
figure 4(a) with their respective SWs.

e The valence band splits into two parts and its main part shifts to higher binding energies in
the occupied states. The conduction band disperses now above Ef, displaying a non-trivial
shape, since, around M, it deviates from its initial parabolic shape and follows now the top
of the former valence band. This can be seen as hybridization between these two bands.

To get a complete picture of the spectroscopic signature of the excitonic insulator phase, we
have to add the SWs to the dispersions of figure 4. It turns out that the four different coherence
factors of equation (14), which are nothing else than the SWs seen in photoemission, reduce
to only two different ones, since u? = v? and v? =u?. They are plotted in figure 5(a), for
A =100meV. We see graphically that they obey the sum rules u2+v2 =1 and u?+v? = 1.
Figure 5(b) shows the renormalized dispersions with their respective SWs, for A = 100 meV.

We note the following changes with respect to the previous picture in figure 4(b).
e The band structure at I" is not identical to that at M anymore. The SW distributions break
this equivalence, so that the CDW appears only partially due to photoemission.

e Due to the sum rules seen above, the SW lost in the valence band at I is totally transferred
into its backfolded version at M and vice versa for the conduction band at L and its
backfolded version at I".
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5. The exciton condensate phase (four bands)

5.1. Main analytical results

We now study the excitonic insulator phase model of section 2 for the four-band model
electronic structure of 17-TiSe,. It consists of the topmost valence band at I and three
symmetry equivalent conduction bands at L (black thick lines in figures 2(b) and (c)), described
by the dispersions €,(k) and eé(k) (i =1,2,3), respectively. These dispersions have been
chosen to be of the form

. k> + k2 2k
) = —=—2 4y, < o 15
€y (k) s +1t, cOS <2k[‘A>+6V (15)
P hz - - - 2 h2 ot - - 2 27T(kz _wlZ) 0
€(k) = —((k—w;)-e;)) + —((k—w;)-€;1)" +1t.cos | —=— | +€_, (16)
2my, 2mg 2kr 4

which describe well the bands near their extrema as they are measured in ARPES [5]. The unit
vectors ¢;; and ¢; | , pointing along and perpendicular to the long axis of the ellipses, respectively,
form a local in-plane basis for the electron pockets at the different L points. The m,, m; and mg
are the effective masses of the valence band holes and of the conduction band electrons along
the long and short axes of the electron pockets, respectively. The hopping parameters ¢, and 7,
represent the amplitudes of the dispersions perpendicular to the surface and kr4 is the distance
in reciprocal space between I' and A. Parameters €? and € are the extrema of the bands.

The Green’s functions of the valence and conduction bands have already been calculated
in detail in a previous work [15]. Therefore, only the final results are recalled here

1 ,
Gy(p,2)=——- Z—Gé(ﬁ+l§i) ) (17)
D(p, 2) H ( )
o 1 . L B o
Gip)=—=— =N [ [ =l B+5)) =D 1A;(D)leijm| (2 — €' (P +w)))
bp.2) i moii
(18)
(&ijm 1s the permutation symbol).
The denominator D, common to all Green’s functions, is
D(p.2)=G—eP)[[c—eip+15) =D IaGP[ ] (z—el(5+w)))
i i J#i
4
=[] -2 (19

a=1
(here the index « refers to the four zeros of the denominator D, while the other indices refer to
the three conduction bands). In the last line, the denominator is factorized in terms involving its
four (real) zeros ©,(p), which are not only functions of the wave vector p, but also implicitly
functions of the order parameter'?. The functions Q,(p) are the renormalized dispersions in the
exciton condensate phase.

12 These zeros can be calculated exactly. However, their analytical forms are too long to be written here.
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Here A, (p) is the order parameter describing the exciton condensate phase. Similarly to its
homonym in the BCS theory, it obeys a gap equation

A(p)=—1Y V@ F (p+q.t=0) (20)
q

involving an anomalous Green’s function defined as F;(p, t,t") = (—i){(Th;(p, t)a' (p, t')).
The corresponding spectral functions are also recalled here

4
AVB, Q) =) PI(P) 82— Qu(p)),
o 1)

4
ALp+;, Q) =) PI(P) 8(R— 2 (P)),

a=1

where the weights P,(p) (which are also implicitly functions of the order parameter A)
associated with the poles €2, are

[1;(Qa — ec(p+ 1)
l—[ﬁ;ﬁa(Qa - Qﬁ) ’

P;(p) =

PC’_(_,) . (Qot - 6V(ﬁ)) l_[n;éi (Qa - 6?(134' u_jn)) Zm,n;ﬁi |An(ﬁ)|2|6mm|(9a - E(r:n (ﬁ+ u_jn))
o l_[ﬁ#a (Qa - Qﬁ) Hﬁ;ﬁa (Qa - Qﬂ)
Using the threefold symmetry of the system, we get rid of the index of the order parameter,
setting A(k) = A; (k) (the possibility of a phase difference is not considered here, as the absolute
modulus of A only appears in our final formulae). Until now, to ensure the generality of the
theory, we always kept the k-dependence of the order parameter A (k). However, in the practical
analysis that will follow, we will use a k-independent order parameter used as a free parameter.
In figure 6, the dispersions and their SWs, at I' and at L, calculated with the formulae of
equation (21), are shown for different values of the order parameter A along the high symmetry
directions I'M and AL, which coincide with the long axis of the electron pocket ellipsis. As
in the case of the BCS theory, the order parameter A in equation (19) is a good indicator of
the strength of the band renormalization in the exciton condensate phase. Moreover, since this
denominator is the same for both the valence and conduction bands, we see that the valence
band at I' is backfolded at L and that the conduction bands at L are backfolded at I" (as expected
from the electron—hole coupling). This is a first indication of the CDW phase in the system. In
graphs (a), (b) and (c) of figure 6, we show the dispersions of the valence and conduction bands
for A =0, 20 and 100 meV, respectively. The labels vy, ¢y, ¢; and c; refer to the four different
poles of the Green’s functions, being identified as the valence band (v;) and the three symmetry
equivalent conduction bands (c;, ¢3, ¢3). The band labelled ¢, carries in fact zero SW for every
k along I'M and AL and is therefore not visible in figure 6. Besides the position of the bands,
the spectral function contains an additional piece of crucial information, namely the SW carried
by each band in the process of one-electron removal probed by photoemission. It is related to
the numerator of the spectral function. This feature is depicted in grayscale in figure 6. The
evolution from the normal phase (figure 6(a)) to the CDW phase with an order parameter of
20 meV (figure 6(b)) and 100 meV (figure 6(c)) is shown.
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Figure 6. Band dispersions with their corresponding SW at I' and L, along the
['M and AL directions, respectively: (a) the normal phase (A = 0meV), (b) the
CDW phase with moderate excitonic effects (A =20meV) and (c) the CDW
phase with strong excitonic effects (A = 100 meV). The dashed lines indicate a
band (c;) having a small non-zero SW.

In the normal phase, the band structure consists here of a valence band at I having its
maximum at +30 meV and three symmetry equivalent conduction bands at L having their
minima at —40meV. The effective mass of the conduction band being larger than that of
the valence band, this configuration describes an uncompensated semimetal, meaning that the
number of electrons is larger than that of holes. This configuration has been obtained from
fits to the spectra measured on 17-TiSe, [15]. Such an electron doping can be explained in
these samples by an uncontrolled excess of Ti atoms occurring during crystal growth [22] and
corresponds to about 1% of excess Ti. A more detailed analysis of this topic can be found
in [15].

In figure 6, we immediately see that, with respect to the SW, the backfolding is in fact in-
complete even at a large value of the order parameter. In the CDW phase with an order parameter
of A =100meV (figure 6(c)), at I, the original valence band loses SW in favor of the back-
folded conduction band (c3). The dashed lines indicate a conduction band (c;) backfolded to I,
which has a negligibly small SW (see below). At L, the situation is different. Two backfolded
bands appear now, namely a symmetry equivalent conduction band (c3) and the valence band
(vy), taking their SW from the original conduction band (c;). A major difference compared to
the two-band excitonic insulator of section 4 is that, whatever the value of the order parameter,
there is always a band remaining here at its original position (when not considering any change
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Figure 7. Extrema of the renormalized dispersions as a function of the order
parameter A (left). Positions of these extrema on the dispersions (right).

in the chemical potential), which is in this case at the Fermi energy at L (the original conduc-
tion band cy), so that the system is never really insulating. The larger the order parameter, the
larger the transfer of SW from this band to the others, but it always keeps a non-negligible SW.
For this reason, strictly speaking, the denomination excitonic insulator phase in this context is
misleading and we rather adopted the expression exciton condensate phase. This matter of fact
depends, of course, on the position of the conduction band ¢ in the normal phase.

We now turn to the discussion of the extrema of the bands. Figure 7 presents the band
extrema as a function of the order parameter A. We see that, except for small values of the order
parameter, they display linear behavior (this can be shown analytically from the denominator
in equation (19) for k exactly at I' or L where the three original conduction bands have the
same energy). Among the three conduction bands, only one (c3) shifts away from the Fermi
energy and the other bands (c;, ¢;) remain at their original position. Its two minima (blue line)
also increase linearly. Compared to the conduction band c3, the valence band maximum (v;)
follows the inverse behavior, thereby opening a gap below Eg. The distance between v; and c;3
is approximately | Eg|+2A.

5.2. Comparison with the experiment

In this section, we summarize ARPES results on 17°-TiSe, and compare them to photoemission
intensity maps calculated within our exciton condensate phase model [5, 15]. At the photon
energy of 31eV, the normal emission spectra correspond to states located close to the I' point
and the surface notation I' will be used for the measured intensity maps.

Figure 8 presents comparisons between the theoretical (left) and experimental (right)
electronic structures at T' and T respectively. The experimental intensity maps at T = 250K
(figure 8(a)) and T = 65K (figure 8(b)) are compared to calculated bands with A =25 meV
and A =75 meV, respectively. These values for the order parameter in the RT and LT phases,
respectively, have been chosen to ensure the best visual agreement between calculated and
measured intensity maps. This gives thus an estimation of the size of the order parameter
describing the exciton condensate phase in TiSe,. A quantitative study of the value of the order
parameter will be given in the next section (section 6.2). At T = 250K on the experimental
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Figure 8. Comparisons between theoretical and experimental (hv =31¢eV)
electronic structures at I' and T, respectively (see text for an explanation of
this notation). (a) The theoretical bands have been calculated for A =25 meV
and the experimental intensity maps are taken at 7 = 250 K. The continuous
black lines (plotted on the experimental data) highlight the Se4p-derived bands
not considered in the model, while the dashed white line indicates the valence
band corresponding to v;. (b) The theoretical bands have been calculated for
A =75meV and the experimental intensity maps are taken at 7 = 65 K. The
dashed black lines indicate the backfolded conduction band ¢;, which carries a
small non-zero SW. The calculated photoemission intensity maps in the middle
panel have been obtained by broadening the delta peaks of the left panel with a
constant imaginary part of 30 meV. Black arrows indicate the remaining SW.

side (figure 8, right), the situation is more complicated than in our model. Indeed, there are
three Se4p-derived valence bands, out of which two (black lines) are not considered in our
model (see also figure 2(b), right). The dashed white line corresponds to the valence band
vy of the model, which suffers already SW loss at 7 = 250 K. It flattens at its maximum and
deviates from the parabolic shape of the normal phase dispersion (this is clear from energy
distribution curves (EDCs) taken close to kj = 0A~", not shown here). On the theoretical side
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(figure 8(a), left), the §-peak-like dispersion reproduces well the experiment when considering
an order parameter of A =25meV. A calculated photoemission intensity map is also shown
at the center. A constant 30 meV imaginary part has been added to the denominator of the
Green’s functions to widen the §-peaks. However, at this temperature, the system should be in
the normal phase and the order parameter should be zero. Nevertheless, as in high temperature
superconductors, above the critical temperature, we expect fluctuations to persist well above T,
in the exciton condensate phase [33, 34]. Thus, this non-zero order parameter above T, is used
to model such fluctuations, anticipating the condensate phase. This approach will be confirmed
quantitatively in section 6. The most striking consequence of this non-zero order parameter is
to shift the valence band v; into the occupied states, leaving a small part of it at Er and opening
a kind of pseudo-gap just below Eg. Furthermore, according to the theory graphs of figure 8(a)
(on the left), the bottom of the backfolded conduction band c¢; appears just below Eg. This is
even more clear in the calculated maps (center), where some residual intensity appears at Ef.
In parallel, the experiment shows small maxima in momentum distribution curves near Ex (not
seen in the false color map with limited dynamic range). These can be attributed to cs.

At T = 65K (figure 8(b), right), the valence band in the experimental intensity map shifts
to higher binding energies, in agreement with the theoretical dispersions calculated for an order
parameter A = 75 meV (figure 8(b), left). Moreover, on the experimental map, some intensity
emerges just below Ef, as one can see on the map with saturated color scale, revealing a
dispersive feature. While it does not appear directly in the corresponding calculation using
d-peaks, it is reproduced on the broadened calculated photoemission intensity map in the center.
In other words, this dispersive intensity comes from the combined tails of the maximum of the
valence band v; (located in the occupied states) and of the minima of the backfolded conduction
band c; (located in the unoccupied states).

Figure 9 presents comparisons between the theoretical and experimental electronic
structures at the BZ boundary. The experimental intensity maps at 7 = 250 K (figure 9(a)) and
T = 65K (figure 9(b)) are compared to calculated bands with A =25meV and A =75 meV,
respectively. At a photon energy of 31 eV, initial states between M and L are probed (in a
free electron final state picture, we are not probing the BZ exactly at L) and the M notation
is used for the measured intensity maps. At 7 = 250K (figure 9(a)), on the experimental side
(right), the conduction band, highlighted by the dashed white line, is well described by the
theoretical band c; (left). It also exhibits a decrease of intensity at its bottom and it looks
like a band having a large width with surprisingly high intensity even at binding energies of
about 300 meV. These features can be explained by the theoretical bands (figure 9, left) at
A =25meV, where fluctuations in the high-temperature phase are modeled by this non-zero
order parameter. Adding a finite width to the §-peak-like bands, one sees (central graph in (a))
that the conduction band ¢; merges with its close (backfolded) neighbors v, or c3 (depending on
the position along AL), resulting in a band broadening. The residual intensity at high binding
energies is explained with the populated branches of the backfolded valence band v;.

At T =65K (figure 9(b)), on the experimental side (right), a strong signature of the
CDW appears. The valence band is backfolded at M with a high SW. In fact, even a second
Sedp-derived valence band (indicated by the lowest lying black line in the right graph of
figure 8(a)) participates in the backfolding at M. On the theoretical side, this situation
(considering only the topmost Sedp-derived valence band) is reproduced with an order
parameter of A =75meV. The backfolded valence band v, is well separated from the
conduction band c¢;, as in the experiment. It can be clearly seen in the corresponding
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Figure 9. Comparisons between theoretical and experimental (hv =31eV)
electronic structures at the BZ boundary (see text). (a) The theoretical bands
have been calculated for A =25meV and the experimental intensity maps
are taken at T = 250K. The dashed white line indicates the conduction band
corresponding to c;. (b) The theoretical bands have been calculated for A =
75meV and the experimental intensity maps are taken at 7 =65K. The
calculated photoemission intensity maps in the middle panel have been obtained
by broadening the delta peaks of the left panel with a constant imaginary part of
30meV.

experimental intensity map that the conduction band c¢; does not shift with increasing order
parameter (see figure 7) and loses more SW at its bottom. In the model, at L, the intensity
of the backfolded valence band v; is lower than that of the conduction band ¢; for high
values of the order parameter, corresponding to a well-established CDW phase. In the ARPES
measurements presented here, this intensity relation is reversed, as can be seen in the right graph
of figure 9(b). The precise reason for this remains unclear. We recall here that only electronic
degrees of freedom are considered in our model. However, the PLD, developing in 17-TiSe,
and concomitant to the CDW [22], should be included in the model and its influence calculated
self-consistently with the exciton condensate phase. Such a calculation is challenging and has
not yet been performed. Nonetheless, one can suppose that the PLD enhances the effect of the
exciton condensate.
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5.3. Conclusions from the comparison

The good agreement between the photoemission intensity maps calculated within the exciton
condensate phase model and the experimental data leads us to give strong support for the
realization of this exotic phase in 17 -TiSe,. However, a band Jahn—Teller scenario may produce
the same spectral function and thus the same calculated photoemission intensity maps. As we
have seen in section 5.1, the SW of the backfolded bands in the CDW phase is closely related
to the order parameter, whose amplitude is notably given by the Coulomb interaction between
the electrons and holes in the case of the exciton condensate phase. In the case of the band
Jahn-Teller effect, the formalism would be the same, but the interaction responsible for CDW
phase is then the electron—phonon interaction [27, 35]. Nevertheless, the fact that the backfolded
valence band at L exhibits a high intensity, despite the relatively small atomic displacements
(~0.08 A) observed for 17°-TiSe, [22], gives less credibility to the band Jahn—Teller effect.
Indeed, it is well known that the intensity in the backfolded bands is proportional to the
strength of the new potential of competing periodicity in the case of a CDW phase [36, 37].
In other words, from the small atomic displacements in the CDW phase, we do not expect
the electron—phonon interaction at L to play a leading role in the occurrence of the strong
backfolded valence bands.

6. Temperature dependence

In this section, we study the temperature dependence of the features evidenced previously with
the help of the exciton condensate phase model.

6.1. Temperature dependence in the model

First, we focus on the model and study how its spectroscopic features evolve with temperature.

In the previous section, visual agreement between measured and calculated photoemission
intensity maps allowed us to roughly estimate the order parameter in the condensate phase.
However, a more systematic and more precise determination of this order parameter as a
function of temperature, based on photoemission measurements, represents a very profitable
improvement. For that purpose, and to anticipate the experimental work of section 6.2, we
perform a theoretical analysis of the model and introduce temperature effects in a simple
way, by choosing a particular form for the order parameter, namely A(T) = Ag-+/1 — (T / T.)?
where Ay is its value at 7 = 0 K. This function is drawn in figure 10(a) for Ay = 100 meV
and T, =200 K. In that sense, we are modeling the temperature dependence in order to see
what can be expected from photoemission measurements. We first fix a particular temperature
dependence, insert it in the model (in the denominator of equation (19) to calculate the
renormalized dispersions as a function of temperature, and then in equations (21) to obtain
the SWs) and then visualize the evolution of the spectra with temperature.

The renormalized dispersions at I' and L as a function of temperature are displayed in
figure 10(b). Below the transition temperature, the backfolded valence band v; and conduction
band c; shift away from their normal phase positions, exhibiting behavior very similar to
the shape of the order parameter. At the same time, the conduction band ¢; and a symmetry
equivalent version ¢, stay at their initial positions. Considering also SWs and broadening the
5-like peaks with a finite width of 30 meV (for presentation purposes), figure 10(c) displays over
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Figure 10. (a) BCS-like temperature dependence chosen for the order parameter.
(b) Position of the bands at I' and L as a function of temperature for the order
parameter in graph (a). (c) Evolution of the broadened spectra (see text) at L
under the effect of temperature.

a wide temperature range spectra at L (not equivalent to I' due to the SWs). This region of the
BZ has been chosen, because there the excitonic effects are the most spectacular and occur in the
occupied states, accessible to ARPES. Below EFf, one sees that the evolution of the backfolded
valence band v, is characteristic of the temperature dependence of the order parameter. These
calculated spectra highlight how the real temperature behavior of the order parameter can be
extracted experimentally from ARPES data. Precisely these features will be exploited in the
next section to obtain A(7') experimentally.

Having the spectral function for the exciton condensate phase as a function of temperature,
we can also compute the temperature dependence of the chemical potential w, using the
condition of conservation of occupied electronic states (weighted with the SWs P,), whose
densities around I" and L are computed with

n—nr+nL—Z / P ON@ 10+ Z / RN - (D

The factor of 2 5 occurs, because there are three halves of an ellipse in the BZ. First we study
the evolution of the chemical potential for our four-band system in the normal phase, fixing
Ap=0meV (with no CDW phase). In such a system, any change in the chemical potential as
a function of temperature is related to the population of the valence and conduction bands due
to the Fermi—Dirac distribution and is thus sensitive to the ratio of the effective masses. Then
we fix Ag=100meV for the excitonic insulator system. Figure 11(a) shows the behavior of
the chemical potential for these two cases. One sees that without excitonic effects, a system
having the modelized configuration of TiSe, undergoes already a chemical potential shift of
about 12 meV over the range of 300 K due to the change in the thermal occupation of electronic
states and the different effective masses. If an excitonic phase transition with Ay = 100 meV sets
in, a drastic change happens at 7, and the chemical potential shift increases up to nearly 60 meV.
This large additional shift of the chemical potential is necessary to compensate for the occupied
electronic states lost below 7. at I' in the valence band v; and at L in the original conduction
band ¢, (the states gained in the backfolded valence band at L are not sufficient to compensate
for this loss). Such a large shift should be visible in ARPES, but it must be emphasized that
this holds only for the simplified 17°-TiSe, electronic bandstructure of this model (in particular
without considering the other Se4p-derived valence bands and the conduction bands at L').
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Figure 11. Compared behavior for the cases of a simple semi-metallic system
(i.e. A9 =0meV, in blue) and an excitonic insulator (i.e. Ag = 100meV, in
red). (a) Temperature dependence of the chemical potential. (b) Temperature
dependence of the free hole (left) and electron (right) density.

Knowing the band dispersions around Ef and their shift due to the combined effect of
the chemical potential and the order parameter, it is also possible to compute the free carrier
density n = nygle + Helectron 10 the system, composed of holes in the valence band and electrons in
the conduction bands. These quantities will provide us with a key component for understanding
the anomalous resistivity of 17°-TiSe,. For that purpose, we use again formulae like that of
equation (22), collecting the electrons in the conduction bands and the holes in the valence band.
Figure 11(b) (left) shows the free hole density as a function of temperature. In comparison with
the normal metal (Ay = 0 meV), in the exciton condensate phase (Ay = 100 meV), the free hole
density is strongly suppressed below 7. This can be explained with figures 6(a), (b) and (c). As
the order parameter increases from a zero value, a gap opens at I', shifting the valence band v,
into the occupied states, depriving the system of a primary source of holes.

As explained in section 5, the four-band electronic structure considered here is that of an
uncompensated semimetal, with about 1% of excess Ti, doping the system with negative charge
carriers. Therefore the free electron density is higher than the free hole density. The chemical
potential u is pinned in the bottom of the conduction bands due to the excess electron doping.
In figure 11(b) (right), the free electron density of the excitonic insulator displays also a strong
decrease below T.. Indeed, at L, the bottom of the conduction band c; loses SW, reducing the
free electron carrier density. In parallel, the chemical potential moves upward in the conduction
band (this shift is nonetheless smaller than the gap produced by the order parameter), making
available new states in the conduction band c¢; with higher SW than those at its bottom. However,
this is not sufficient to counterbalance the previous effect.

In transport measurements, the CDW has a strong signature, raising the resistivity p below
T, as in a (weak) insulator. Having now an approximate behavior of the free charge carrier
density as a function of temperature, we can also estimate the resistivity in the Drude theory by
o =m/ne’t, with T being the relaxation time and m the effective mass. This will be the main
purpose of section 7, based on experimental observations.

6.2. Temperature dependence from the experiment

In the previous section, we have calculated the spectroscopic signature of the temperature
dependence of the order parameter in the photoemission spectra, allowing us to realize that the
behavior of the backfolded valence band at L is characteristic of that of this order parameter. We
also pointed out a chemical potential shift developing especially in the CDW phase due to the
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Figure 12. (a) EDCs measured exactly at M, as a function of temperature (for the
blue EDC, T = 200 K). (b) Position of contributions A, B, and C as a function
of temperature, obtained by fitting EDCs, and with their error bars. (¢c) Chemical
potential shift obtained from our data. The dotted—dashed line represents the
extrapolation of a linear fit to the high temperature part. (d) Order parameter of
the exciton condensate phase. The continuous (blue) line is a fit to a mean-field-
like function.

SW transfers. Therefore, in this section, we present photoemission intensity maps measured at
M (but close to L) over a wide temperature range with small steps to evaluate these quantities.
For each measurement, we extract the EDC exactly at ky = |AL|, where the valence and
conduction bands reach their extrema.

The waterfall of figure 12(a) collects such EDCs as a function of temperature. The blue
EDC was measured at 200K (at 7¢.). The conduction band, labeled C, is clearly recognized
just below Eg. At LT, a new peak, labeled B, develops below the conduction band and is
identified as the valence band backfolded to M. With decreasing the temperature, it shifts
to higher binding energies and becomes much more intense. Another peak, labeled A, also
develops below this backfolded band, which can be identified with a second (spin—orbit split)
valence band backfolded from I to M. Looking carefully at the situation near Ep at the lower
temperatures, one distinguishes a fourth contribution D, barely resolved here, which disappears
at higher temperatures. We identify this peak as the quasi-particle peak originating from the
coupling of the conduction band to phonons as elaborated for surface states in the study of
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Hengsberger et al [38]. Contribution C is then the incoherent peak that mostly follows the
dispersion of the original conduction band.

To obtain more information from the data of figure 12(a), we have fitted the EDCs.
Figure 12(b) shows the position of contributions A, B and C as a function of the temperature,
which are the two backfolded valence bands and the conduction band, respectively. All three
bands undergo a shift towards Ef as the temperature increases, with the largest change below
T.. At RT, the conduction band at M (close to L) lies in the unoccupied states, at 18 meV above
Eg. This result is in apparent contradiction with the photoemission data presented in figure 9 (but
in agreement with earlier ARPES studies [7, 8, 39]), where the position of the conduction band
has been measured below Ef, at E,, = —40 £ 5 meV. The answer to this problem is given by the
uncontrolled Ti excess of the 17T-TiSe, samples: the samples studied in section 5.2 contained a
higher density of such excess Ti atoms, whose electrons mainly filled and shifted the conduction
band into the occupied states.

As we have seen in figure 7, the order parameter A does not influence the minimum
position of the conduction band exactly at L, provided the chemical potential is fixed.
Therefore, in the exciton condensate phase model, any shift of this band with temperature
at L will signify a chemical potential shift. Figure 12(c) shows the chemical potential shift
obtained with the shift of the position of the conduction band (peak C in figure 12(b))
with respect to its RT value, as a function of temperature. This curve can be compared with
the one determined numerically in the previous section and shown in figure 11(a). As in this
calculation, two regimes can be distinguished. Above T, a quasi-linear shift develops due to the
effect of temperature on a two-band system with different effective masses (in practice, there
are four bands, but the three conduction bands are symmetry equivalent). The dashed—dotted
line in figure 12(c) underlines this behavior. Then, below T, a clear increase occurs due to the
exciton condensation. Despite the simplicity of the electronic structure considered in our model,
good agreement between the calculation and the experiment is obtained, not only qualitatively
but also quantitatively.

In section 5.1, it has been stated that the roots of the denominator of the Green’s function
(equation (19)) represent the renormalized dispersions in the exciton condensate phase model.
No general analytical form was given, since the formulae are too complicated. However, exactly
at L, the situation simplifies drastically and the formulae become

Eg 1
Q. (A) = E,, — 76 _ E,/Eé+12A2,

S.ZC] (A) == EC] ’ S.2C2(A) = EC1 bl (23)

Ec 1[5 ;
Qo (A) = E, —7+§,/EG+12A :

with E., = 18meV, the position of the conduction band at RT, and Eg:=E. — E,, =
—12meV, the gap between the valence and conduction bands in the normal phase, which in
our case is an overlap (E,, = 30meV is the position of the valence band for A =0 meV taken
from the study of section 5.2) (see also [5]). These relationships are of great interest since they
provide a simple way to extract the temperature dependence of the order parameter A(7') from
the position of the backfolded bands.

In our case, as mentioned above, only the backfolded valence band E,, (A) is useful, since
the band ¢; cannot be observed by photoemission. It must also be emphasized that calculations
leading to relations (23) have been done in a mean-field approximation, meaning that these
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relation is valid only below T.. Nonetheless, we use them above T to get an idea of the strength
of fluctuations already identified in figure 9(a) (right panel) at 250 K, where there is diffuse
intensity below the conduction band, which, interpreted as a precursor of the backfolded valence
band, confirms this hypothesis.

Inverting thus the first equation in (23) and inserting the temperature-dependent position
of the valence band of figure 12(b) (E,,(A), contribution B, which corresponds to v;) results
in the data points of figure 12(d). For comparison, they are superimposed on a mean-field-like
order parameter of the form

A(T)= Ay, [1— (l) + Aot (24)
fitted to the experiment (continuous blue line), with « = 1. One sees immediately that the critical
temperature extracted from the ARPES data T.~ 175K is smaller than that determined from
resistivity measurements [22], 7. = 200 K. However, the presence of electron—hole fluctuations
smooths the sharpness of the mean-field-like transition, as one can guess from the curve of
figure 12(d), so that it is difficult to obtain 7, with the function of equation (24). To ensure
the best agreement with the data, an offset value for the order parameter A,s = 72meV has
to be added above T, to model roughly the strong electron—hole fluctuations above T.. Once
the temperature decreases below T, the order parameter displays a clear increase in a mean-
field fashion. This is a strong indication of the macroscopic condensation of coherent excitons.
At the lowest temperature, the order parameter reaches the value of A(T =0K) = 120 meV
(extrapolated from A(T = 13K) =116 meV). This value allows us to estimate the strength
of the coupling with the well-known BCS relationship 2A(7T = 0K)/kgT. = 12.5-15.5. This
value is four times that of conventional superconductive BCS systems, suggesting that a strong
coupling is at play in 17-TiSe, to build excitons. This is not surprising, since the pairing
interaction is a weakly screened Coulomb interaction for excitons (rather than an overscreened
one for Cooper pairs).

In our present understanding of the phase transition of 17-TiSe, within the exciton
condensate phase model and based on the photoemission analysis, we believe that these strong
electron—hole fluctuations above 7, (enhanced by the FS topology) drive an electronic instability
in the system at 7T, leaving an intense signature in the spectral function and producing the soft
phonon mode observed by Holt et al [24]. Below T, the system recovers from the electronic
instability by building the exciton condensate, whose influence on the electronic system is
evidenced by photoemission and which naturally induces a new periodicity of the electronic
density, the CDW. As a consequence of the coupling between the electrons and the lattice,
(small) atomic displacements are provoked below 7. in response to the new periodic potential
produced by the exciton condensate. This approach is similar to what Fehske and co-workers
discussed in detail by looking at the divergence of the electron—hole 7-matrix within an effective
mass model [18] and at the poles of the exciton Green’s function within the EFKM [19] to build
the phase diagram of the excitonic insulator phase.

7. Effects of the exciton condensation on the transport properties

The goal of this section is to give a better understanding of the transport properties of 17-TiSe,,
based on the knowledge presented in the previous sections. For that purpose, we first recall the
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different effects at play in 17-TiSe,, evidenced in this work with photoemission, and then relate
them to transport properties.

e In the exciton condensate phase, a gap opens below the conduction band and shifts the
valence band into the occupied states, as a function of A(7T), whose behavior has been
shown in section 6.2.

e As A(T) increases, more and more SW is transferred from the original conduction band
(c1) (which remains close to Ef) to the backfolded bands, removing charge carriers.

e The chemical potential, which has been determined in section 6.2, progressively shifts the
bands into the occupied states.

e Finally, a dramatic renormalization of the effective mass of the conduction band occurs at
LT [40] as shown below.

At temperatures below 100 K, a dramatic renormalization of the effective mass of the conduction
band occurs. With the exciton condensate phase model, this phenomenon is reproduced
qualitatively and its origin is therefore related to strong electronic correlations. However, it must
be emphasized that, as the temperature drops below 100 K, the effective mass of the conduction
band near its minimum decreases drastically, meaning that correlations in the system cause an
effective mass reduction, in opposition to the common belief that strong correlations enhance
the effective mass.

At these temperatures, the dispersion of the conduction band deviates largely from an
ellipsoid and two parts can then be distinguished (see figure 13). Around L (center of figure 13
(a)), it disperses like a paraboloid (see figure 13(b), bottom pannel), with effective masses
mp yighe along AL (long axis of the ellipsis) and mg along LH (short axis). This part is called the
‘light’ part (labeled A in figure 13(a)). Away from L (but still in the occupied states, labeled B),
the effective mass along AL, 71 neavy, is considerably larger below 100 K and gives rise to the
‘heavy’ part. These effective masses have been estimated for different temperatures and are
summarized in table 1.

_ The electrical conductivity in the relaxation time approximation for a band of dispersion
(k) in the vicinity of Er (metallic system) is given by (at zero temperature)
) &
o =e“t(EFR) —M (k)
occ 47{3
’ A 2 &’k -1
Mg, (k) + 7T (ER) 3 My ()

_ 2
= e"t(EF) o
occ,heavy

occ,light 47T3
= Olight + Oheavy

where the integration runs over the occupied states [41]. M (lg) is the effective mass tensor and

can be separated into the ‘light” and ‘heavy’ parts in our case, leading to the conductivities of the

‘light” and ‘heavy’ charge carriers, respectively. This observation leads us to consider separately
these two types of charge carriers in our approach to the transport properties of 17-TiSe;.

7.1. Resistivity obtained by photoemission

We now want to use the information collected for the electron pocket at L to estimate the
resistivity. The easiest way to compute resistivity is to use the Drude formula
m
p= (25)

ne’r
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Table 1. Renormalized effective masses of the conduction band (in units of the
bare electron mass) along the long axis (AL) for the light part 771 jign and the
heavy part 71, neavy, and along the short axis mg (LH) of its elliptic Fermi surface,
as a function of temperature.
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Figure 13. (a) Constant energy map of the electron pocket at the Fermi energy
and at L, showing the typical shape of the main contribution to the FS of
1T-TiSe, at LT (here at 81 K). Two characteristic parts are distinguished.
(b) Dispersion plots along the long axis of the ellipse to show the drastic
mass renormalization of the effective mass. (c) Temperature dependence of
the integrated intensity of parts A and B in the partial FS of graph (a).
(d) Temperature-dependent relaxation rate in 17°-TiSe,, obtained from fits to the
measured reflectance of Li et al [42].

This describes the resistivity of metals arising from charge carriers of density n, having
an effective mass m, which undergo scattering with a relaxation time 7. In the case of
1T-TiSe,, information about the contribution of holes cannot be easily obtained by means of
photoemission, since the top of the valence band suffers a large SW loss. Furthermore, with
decreasing temperature, the valence (hole) band at I' rapidly shifts towards higher binding
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energies and disappears from Eg. We therefore focus only on the contribution of electrons in
the conduction bands, which we have measured and analyzed in detail. Knowing the Drude
formula, its parameters can be determined as follows.

e As depicted in figure 13(a), the conduction band can be separated into two parts at LTs,
which we call the ‘light’ and ‘heavy’ parts. We already obtained their corresponding
effective masses previously. Now their relative intensities are estimated. This is done by
integrating the SWs at L and k >~ 0.85 AL, respectively, over £50 meV around EF, in the
same manner as done in our previous study [43]. Indeed, the electron density n of the
occupied states in the conduction band can be obtained by

+Aw
ny, o« / &’k / dwA.(k, ®)np(w). (26)
Vi —Aw

Here ng(w) is the Fermi—Dirac distribution. Ac(lg, w)is the spectral function at L, which is
measured by photoemission. Therefore, limiting the energy integration to the neighborhood
of the Fermi energy with Aw = 50meV permits us to focus on the contribution of the
conduction band. Furthermore, restricting the integration in k-space over a particular region
Vi allows one to focus on a particular contribution. In our case, we restrict ourselves to
contributions A and B of the FS to focus on 7;gh and neqvy. The relative density (of electron
type) of the light njign and heavy nype,yy, charge carriers is reproduced in figure 13(c). It is
important to keep in mind here that such curves are obtained by comparing the integrated
intensities over the same regions in k-space, where the only parameter changed during the
experiment is the temperature. This allows us to say that such curves reflect a change in the
probed electron densities, without being affected by photoemission matrix element effects.

e In table 1, the information concerning the effective mass mg along the short axis of the
ellipsoidal electron pocket is incomplete (since the conduction band is close to the Fermi
level and at the same time it disperses strongly along the short axis). To give an idea of
the resistivity based on the information derived from our photoemission data, we therefore
focus on the contributions of the light and heavy charge carriers along the long axis, having
the effective masses 71 jigh and 71, neavy, respectively.

e In general, the relaxation rate can be estimated from ARPES data using the wave vector
width Ak of the conduction band at Ef [44]. However, in our case, at high temperatures
the centroid of the conduction band does not cross Ef, and at LT, the unusual form of the
conduction band makes such an analysis clearly difficult and inaccurate. Alternatively, Li
et al have derived the relaxation rate for the Drude term, which captures the contribution
of free carriers (but not that of interband—rvalence to conduction band—transitions) for
1T-TiSe, from optical data [42], but without distinguishing the contribution of holes at I"
and electrons at L. Due to the differences in the shape of the corresponding FS, we expect
their relaxation rates to be different. Figure 13(d) shows their result'?, where holes and
electrons are mixed together.

It may be questionable to use the Drude formula, which is established for simple metals, for the
case of 1T-TiSe,, where the conduction band lies above Eg at RT. However, a non-negligible
intensity around EF is present at every temperature and, in our simple approach, it is used as an
indication of the charge carrier density n.

3 Asa comparison, this relaxation rate at RT has values similar to that of gold [41].

New Journal of Physics 12 (2010) 125019 (http://www.njp.org/)


http://www.njp.org/

28 10P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

a) < 100 L b) E
) £ — Olignt ) o
5 < 30+ -
« 804 Theavy| |- 3
= — Ot 2
‘E 604 B % 20- L
x G
2 404 - o
S S 104 —— measured
'g 204 - 5 —+— calculated ( constant),
o %] —+— calculated (variable 1)
o 1 1 1 T T é 0 1 - 1 1 1 T -
50 100 150 200 250 50 100 150 200 250
Temperature (K) Temperature (K)

Figure 14. (a) Total (black curve) and partial (from the light, red curve,
and heavy, blue curve, charge carriers, respectively) conductivities calculated
from the integrated intensities and effective masses inferred from ARPES
measurements (see text). (b) Calculated resistivity from the total conductivity of
graph (a) (red curve) and with additionally a temperature-dependent relaxation
rate (green curve), in comparison to the measured one (blue curve). Reprinted
from [22]. Copyright 1976, with permission from Elsevier.

Using all these parameters, the conductivity corresponding to the light and heavy charge
carriers is computed as a function of temperature (for a constant common relaxation time 7):

2 2
Niight€™ T Nheavy€ T
0 = Olight T Oheavy = . + s (27)
Miight Mheavy

first separately as shown in figure 14(a), with the red and blue curves, respectively. In this figure,
two regimes are clearly evidenced. At high temperatures, the conductivity is dominated by the
numerous heavy carriers, despite their large effective mass. At lower temperatures, whereas the
effective mass of the heavy charge carriers increases strongly, quenching their contribution to the
conductivity, that of the light charge carriers decreases strongly, enhancing their contribution,
which dominates the conductivity.

Then, the resistivity is calculated as the inverse of the total conductivity (black curve in
figure 14(a)) and is displayed in figure 14(b) (red curve), together with the measured one
(blue line) [22]. We emphasize that only relative values for the charge carrier density n can
be derived. Therefore, their absolute value is determined by ensuring visual agreement with the
measured resistivity. This gives rise to a RT charge carrier (of electron type) density of ne =~
0.8 x 10?° cm™3, which is similar to the value derived by Di Salvo et al, n = 10*° cm~3 [22].

The resistivity calculated with the constant relaxation rate (red curve in figure 14(b)) (which
is equal to the RT value of the one obtained in [42]) is increasing over the whole temperature
range as a consequence of the two favorable regimes in the conductivity described above. It
has a shoulder around 150 K, where the measured resistivity (blue curve) shows its anomaly.
However, the number of data points in the resistivity calculated from our photoemission
measurements does not allow us to clearly resolve a peak around 150 K. Above 200K, it
still increases, in opposition to the experiment. This discrepancy comes from the fact that the
participation of holes at I" is not considered in this calculation. Near RT, despite the presence of
electron—hole fluctuations that mimic the effects of the exciton condensate phase and thus open
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a gap at I, the valence band is sufficiently close to the Fermi energy to provide very light holes
(note that m, = —0.23m., m. being the bare electron mass) for conduction. This contribution
would therefore strongly enhance the conductivity above 7' 2 200 K and decrease the resistivity
in this temperature range.

The resistivity calculated with the temperature-dependent relaxation rate from Li et al [42]
(green curve in figure 14(b)) does not compare well with the experiment, as it is already strongly
reduced below 200 K and falls nearly to zero below T.. As explained above, the relaxation rate
used in this approach is not fully reliable, because holes and electrons are not distinguished in
its derivation. Furthermore, for a (schematical) two-band system with a small gap or overlap
like 17-TiSe,, we expect that the interband (valence to conduction band) transitions will have a
substantial effect on the relaxation rate.

Having different components leading to the resistivity, we are able to relate the upturn
and the downturn of the measured curve to particular effects. We associate the major changes
happening below 7. with the electron-type charge carrier density variation and in particular to
the dramatic reduction of their effective mass, summarized in table 1. Above T, our analysis
suggests that the holes in the valence band at I' provide the major contribution to transport
(in agreement with the Hall resistivity measurement of Di Salvo et al [22]) and are mainly
suppressed by the gap opening appearing in the CDW phase due to the onset of the exciton
condensate phase, causing the resistivity upturn above 7.

However, the influence of the relaxation rate remains unclear and may play a major
role. We believe that it should show a marked increase when the temperature approaches 7
from higher values, in answer to the interband scattering channel offered by the electron—hole
fluctuations evidenced in our photoemission measurements. This scattering channel would
disappear progressively below T, when the exciton condensate is well established and when
fluctuations decrease, so that the scattering rate should decrease again. At the same time, the
soft phonon mode observed at 7. [24] is also expected to strongly contribute to a relaxation
rate increase around this temperature. Furthermore, the disappearance of the hole pocket at I"
certainly leads to a drastic change of the relaxation rate. A detailed calculation (e.g. via the
Boltzmann equation) taking into account the FS topology, the electron—hole fluctuations and
the soft phonon mode is necessary to clarify the situation.

8. Conclusion

We have shown recent ARPES results on 17-TiSe,, which we interpret in the framework
of the exciton condensate phase model. Calculation of the spectral function from this model
allows us to compute photoemission intensity maps, which compare well with the experiment,
supporting strongly this mechanism as the origin of the CDW phase of 17-TiSe,. The
temperature dependence of the corresponding order parameter is extracted from photoemission
measurements, together with a substantial chemical potential shift. The order parameter reaches
values above 100 meV at LT, pointing towards a strong coupling between electrons and holes
below T.. It also suggests that intense electron—hole fluctuations are already present above T,
anticipating the exciton condensation. All these elements give us a deeper understanding of
the possible realization of the exciton condensate phase. Finally, the transport properties of
1T-TiSe, are addressed with this knowledge, and basic ingredients leading to the anomalous
resistivity of this system are suggested.
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However, as outlined in section 5.3, direct evidence of the exciton condensate at LT in
1T-TiSe,, is still lacking; it could prove unambiguously the existence of this exotic phase. We
hope that this work will stimulate other studies that will possibly find this direct evidence.
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