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WHEN SOME VARIATIONAL PROPERTIES FORCE CONVEXITY

M. Volle1, J.-B. Hiriart-Urruty2 and C. Zălinescu3,4

Abstract. The notion of adequate (resp. strongly adequate) function has been recently introduced to
characterize the essentially strictly convex (resp. essentially firmly subdifferentiable) functions among
the weakly lower semicontinuous (resp. lower semicontinuous) ones. In this paper we provide various
necessary and sufficient conditions in order that the lower semicontinuous hull of an extended real-
valued function on a reflexive Banach space is essentially strictly convex. Some new results on nearest
(farthest) points are derived from this approach.
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1. Introduction

It is known that the convexity of a lower semicontinuous (lsc) extended real-valued function J on a Banach
space X can be derived from the essential Fréchet differentiability of the Legendre–Fenchel conjugate J∗ of J ;
this is also true for a weakly lsc function J on a weakly sequentially complete Banach space X , provided J∗ is
just essentially Gâteaux differentiable ([22], Thm. 2.1, [23], Thm. 1, [28], Thm. 3.9.2, [7], Thm. 4.5.1, Cor. 4.5.2).
In the same spirit, and for X reflexive, it has been recently proved ([25], [Thm. 1) that a weakly lsc function
J is essentially strictly convex if and only if J is adequate, a property we denote here by (A). Reinforcing the
property (A), in [26], Theorem 1 it is shown that a lsc function J is essentially firmly subdifferentiable if and only
if J is strongly adequate, a property we denote here by (A+

s ). This property is linked to the so-called Tychonov
well-posedness of the minimization of the shifted functions J − x∗, where the x∗’s are appropriate continuous
linear forms on X . In this paper we consider the property (A+

w), lying between (A) and (A+
s ), obtained by

replacing the norm topology in (A+
s ) by the weak topology.

We prove that if J , non-necessarily lsc, satisfies a certain property (A0), (A0) weaker than (A), then J satisfies
(A+

w) if and only if the lsc hull of J is essentially strictly convex (Cor. 3.7). Other related facts (Thms. 3.1, 3.6)
are also established.

Keywords and phrases. Convex duality, well posed optimization problem, essential strict convexity, essential smoothness, best
approximation.
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The results we obtain are applied to the nearest and farthest point problems. We prove for instance that a
remotal set S (in a Hilbert space) such that the square of the largest distance to S is Gâteaux differentiable is a
singleton (Cor. 3.4), a result we have not found in the literature. We also prove that the farthest point problem
is Tychonov well-posed (resp. weakly Tychonov well-posed) if and only if S is a singleton, or, if and only if the
antiprojection mapping is norm to norm (resp. weak) continuous (Cor. 3.8), completing in this way well known
results ([6, 14, 18], . . .). Other classical facts in this field are revisited in the light of our conditions (A+

s ) and
(A+

w) (Cors. 3.3, 3.9). The results presented here can also be applied to nearest and farthest point problems
with respect to Bregman distances as in [25, 27], a topic we do not tackle in this paper.

2. Notation and preliminaries

Given a Banach space X, we denote by F (X) the set of functions J : X → R∪ {+∞} finite somewhere (i.e.,
domJ := {x ∈ X | J(x) <∞} �= ∅). To each J ∈ F (X) we associate its Legendre–Fenchel conjugate J∗ defined
on the topological dual space X∗ of X as

J∗(x∗) := sup
x∈X

(〈x, x∗〉 − J(x)) , x∗ ∈ X∗.

The biconjugate J∗∗ of J is defined onX∗∗, the bidual ofX, then restricted toX by J∗∗(x) := supx∗∈X∗(〈x, x∗〉−
J∗(x∗)). As usual, we set Γ (X) := {H ∈ F (X) | H = H∗∗}. Given J ∈ F (X), let us introduce the multifunction
MJ : X∗ ⇒ X defined by:

MJ(x∗) =
{

arg min(J − x∗) if J∗(x∗) ∈ R,
∅ otherwise.

In factMJ is nothing else but the inverse of the subdifferential of the (not necessarily convex) function J ∈ F (X):
MJ = (∂J)−1, the subdifferential of J at a point x ∈ X being the set

∂J(x) := {x∗ ∈ X∗ | J(u) ≥ J(x) + 〈u− x, x∗〉 for all u ∈ X}.

The subdifferential of J∗ will be understood with respect to the duality between X∗ and the bidual X∗∗ of X:

∂J∗(x∗) = {x∗∗ ∈ X∗∗ | J∗(u∗) ≥ J∗(x∗) + 〈u∗ − x∗, x∗∗〉 for all u∗ ∈ X∗} .

We thus have, for any x∗ ∈ X∗ :

MJ(x∗) ⊂MJ∗∗(x∗) = X ∩ ∂J∗(x∗) ⊂ ∂J∗(x∗) ⊂ X∗∗. (2.1)

According to [5], Definition 5.2, one says that H ∈ Γ (X) is essentially strictly convex if MH is locally bounded
and H is strictly convex on the line segments in dom∂H ; H is said to be essentially smooth (or essentially
Gâteaux differentiable) if dom∂H is open and ∂H is single-valued on dom ∂H. Of course, if H ∈ Γ (X) is
essentially Gâteaux differentiable then dom ∂H = int(domH) and H is Gâteaux differentiable on dom∂H. We
thus have:

Theorem 2.1 ([5], Thm. 5.4). Assume X is reflexive and let H ∈ Γ (X). Then H is essentially strictly convex
if and only if H∗ is essentially Gâteaux differentiable.

We now introduce some general notions about well-posed optimization problems (see e.g. [10]). Given I ∈
F (X), the problem minX I is said to be (weakly) Tychonov well-posed (TWP) if I has a unique global minimizer
over X toward which each minimizing sequence of I (weakly) converges. The problem minX I is said to be
(weakly) well-posed in the generalized sense (WPGS) if argminX I is nonempty and every minimizing sequence
of I has a subsequence (weakly) converging toward some element of arg minX I. Of course (see [10], p. 24),
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the problem minX I is (weakly) TWP if and only if it is (weakly) WPGS and argminX I is a singleton. Given
J ∈ F (X), the following assumption will be intensively used in the paper:

(A0) : domMJ = dom ∂J∗ is nonempty and open.

Observe that if J ∈ F (X) admits a continuous affine minorant function, then dom∂J∗ is necessarily nonempty.
In the case when J is cofinite (i.e., J∗ is real-valued), (A0) amounts to domMJ = X∗. If X is reflexive,
any weakly lsc J ∈ F (X) such that lim‖x‖→∞ J(x)/ ‖x‖ = ∞ satisfies (A0) (because J − x∗ admits a global
minimizer for each x∗ ∈ X∗).

Since J∗ is subdifferentiable at each point of int(domJ∗), the condition (A0) entails:

∅ �= dom∂J∗ = int(domJ∗) = domMJ. (2.2)

Reinforcing (A0) for J ∈ F (X), let us consider the new assumption

(A) : J satisfies (A0) and MJ is single-valued on its domain.

In such a case we introduce the mapping

mJ : int(domJ∗) → X with MJ(x∗) = {mJ(x∗)}.

Condition (A) amounts to the notion of adequate function introduced in [25], for reflexive X . The main result
about this notion is the following.

Theorem 2.2 ([25], Thm. 1). Assume X is reflexive, and let J ∈ F (X) be weakly lsc. Then J satisfies (A) if
and only if J is essentially strictly convex.

We now reinforce (A) by introducing:

(A+
s )

{
J satisfies (A0) and, for every x∗ ∈ domMJ, the problem
minX(J − x∗) is TWP.

In fact, (A+
s ) coincides with the notion of strongly adequate function introduced in [26], Definition 1. In

order to recall the main results in [26], we need some definitions: H ∈ Γ (X) is said to be essentially Fréchet
differentiable (see [24, 26], Prop. 2) if H is Fréchet differentiable on dom ∂H. Setting

Γ0 := {ψ : R+ → [0,∞] | ψ convex lsc, ψ(t) = 0 only for t = 0} ,

a mappingH ∈ Γ (X) is essentially firmly subdifferentiable ([26], Def. 4), if for any x ∈ dom∂H, any x∗ ∈ ∂H(x),
there exists ψ ∈ Γ0 such that H(u) ≥ H(x) + 〈u− x, x∗〉 + ψ(‖u− x‖), for any u ∈ X. We thus have:

Theorem 2.3 ([26], Prop. 3). Let J ∈ F (X) be lsc. Then J satisfies (A+
s ) if and only if J∗ is essentially

Fréchet differentiable.

Theorem 2.4 ([26], Thm. 1). Let J ∈ F (X) be lsc. If J satisfies (A+
s ), then J is essentially firmly sub-

differentiable. The converse holds for X reflexive.

Let us complete the result above with the following:

Corollary 2.5. Assume X is reflexive, and let J ∈ F (X) be lsc. Then the following are equivalent:

(i) J satisfies (A+
s );

(ii) J is essentially firmly subdifferentiable;
(iii) J∗ is essentially Fréchet differentiable;
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(iv) J satisfies (A) and mJ is (norm to norm) continuous.

Proof. Theorem 2.4 says that (i) ⇔ (ii), and Theorem 2.3 ensures that (i) ⇔ (iii). According to (2.1), mJ is a
selection of ∂J∗, and [20], Proposition 2.8, says that (iii) ⇔ (iv). �

We now illustrate the situation with two classical examples. For this we need to recall further definitions.
Given S ⊂ X, we denote by ιS the indicator function of S : ιS(x) := 0 if x ∈ S, ιS(x) := +∞ if x ∈ X \ S;
convS stands for the convex hull of S, and S for its closure; dS(y) := infx∈S ‖y − x‖ denotes the distance from
y ∈ X to S, and ΔS(y) := supx∈S ‖y − x‖ the largest deviation from y to S. Needless to say, one has

dS = dS , ΔS = ΔS . (2.3)

Given f, g ∈ F (X), we denote by y �−→ (f�g)(y) := infx∈X (f(y − x) + g(x)) the infimal convolution of f
and g. One has for instance dS = ‖·‖�ιS .
Example 2.6. Given a nonempty set S in a Hilbert space X, let us consider JS := 1

2 ‖·‖2 + ιS , which is always
cofinite. The function JS satisfies (A0) if and only if S is proximinal, which means: any point of X admits a
nearest point in S. Condition (A) amounts to saying that S is Tchebychev: any point of X has a single nearest
point in S. One says that S is approximately compact [11] if for any y ∈ X, any sequence (xn) ⊂ S such that
limn→∞ ‖y − xn‖ = dS(y) contains a subsequence converging to an element of S. Thus, JS satisfies (A+

s ) if and
only if S is Tchebychev and approximately compact. For a Tchebychev S, we denote by pS(y) the projection of
y ∈ X onto S. We thus have pS = mJS .

Lemma 2.7. Let S be a nonempty subset in a Hilbert space X. The following then are equivalent:

(i) S is closed and convex;
(ii) JS is essentially firmly subdifferentiable;
(iii) JS is essentially strictly convex;
(iv) JS ∈ Γ (X).

Proof. (i) ⇒ (ii) By the Moreau–Rockafellar theorem (see e.g. [28], Thm. 2.8.7) one has J∗
S = (1

2 ‖·‖2)∗�ι∗S =
1
2 ‖·‖2 �ι∗S , which is Fréchet differentiable on X ([17], Prop. 7.d). By Corollary 2.5, JS is thus essentially firmly
subdifferentiable. The implications (ii) ⇒ (iii) ⇒ (iv) ⇒ (i) are obvious. �

Applying Theorem 2.2 and Lemma 2.7 to JS , we recover Klee’s theorem [15]: a nonempty weakly closed subset
of a Hilbert space is convex if and only if it is Tchebychev. Applying Corollary 2.5 and Lemma 2.7 to JS , we
obtain that a Tchebychev set is approximately compact if and only if it is convex ([11], Thm. 3).

Since J∗
S = 1

2

(
‖·‖2 − d2

S

)
(see [3, 13]), J∗

S is essentially Fréchet differentiable if and only if d2
S is Fréchet

differentiable on X. We thus infer from Corollary 2.5 and Lemma 2.7 that for any nonempty closed set S it
holds (see e.g. [28], Thm. 3.9.3, or also [12], Thm. 4.3):

d2
S is Fréchet differentiable ⇐⇒ S is convex. (2.4)

Finally, Corollary 2.5 and Lemma 2.7 allow us to recover that a Tchebychev (hence closed) set is convex if
and only if the projection mapping pS : X → S is (norm to norm) continuous ([2], p. 237).

Example 2.8. With each nonempty bounded set S in a Hilbert space X let us associate the mapping JS :=
− 1

2 ‖·‖2 + ι−S , which is always cofinite. One easily sees that JS satisfies (A0) if and only if S (equivalently
−S) is remotal ([9, 18, 21], . . .): any point of X admits a farthest point in S; JS satisfies (A) if and only if S is
uniquely remotal: each point of X has a single farthest point in S; S is said to be nearly compact (or M-compact,
or Δ compact [6, 18, 19], . . .) if for any u ∈ X, any sequence (xn) ⊂ S such that limn→∞ ‖u− xn‖ = ΔS(u)
contains a subsequence converging to an element of S. Of course, a compact set is nearly compact, but a nearly
compact set does not need to be closed. Observe that JS satisfies (A+

s ) if and only if S is uniquely remotal and
nearly compact. If S is uniquely remotal, we denote by qS(u) the point of S the farthest from u and call qS an
antiprojection S ([1]). We thus have qS(u) = −mJS(u) for u ∈ X.
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Lemma 2.9. For any nonempty bounded set S in a Hilbert space, the following are equivalent:

(i) S is a singleton;
(ii) JS is essentially firmly subdifferentiable;
(iii) JS is essentially strictly convex;
(iv) JS is convex.

Proof.

(i) ⇒ (ii) If S = {a}, then JS = ι{−a} − 1
2 ‖a‖2 is clearly essentially firmly subdifferentiable.

(ii) ⇒ (iii) Because JS is essentially firmly subdifferentiable, S is closed (and convex); hence JS is lsc. By
Theorem 2.4 JS satisfies (A+

s ), and so, JS satisfies (A0). By Theorem 2.3 JS is essentially strictly convex.
The implications (iii) ⇒ (iv) ⇒ (i) are easy. �

Applying Corollary 2.5 and Lemma 2.9 to the function JS we obtain that a uniquely remotal set is a singleton
if and only if it is nearly compact ([6]). Since (JS)∗ = 1

2

(
Δ2

S − ‖·‖2
)

(see [14]), (JS)∗ is essentially Fréchet

differentiable if and only if Δ2
S is Fréchet differentiable on X. We thus have by Corollary 2.5 and Lemma 2.9

that, for any nonempty closed bounded set S ⊂ X :

Δ2
S is Fréchet differentiable on X ⇐⇒ S is a singleton,

or, by (2.3), for any nonempty bounded set S ⊂ X :

Δ2
S Fréchet differentiable on X ⇐⇒ S singleton ⇐⇒ S singleton (2.5)

(see [14]). Finally, Corollary 2.5 and Lemma 2.9 allow us to retrieve that a closed uniquely remotal set is a
singleton if and only if qS : X → S is (norm to norm) continuous ([6]).

3. The main results

In this section X is a Banach space.
Given J ∈ F (X), we denote by J the lsc hull (or closure) of J.

Theorem 3.1. Assume J ∈ F (X) satisfies (A0) and J∗ is essentially Gâteaux differentiable. Then J = J∗∗

and J is essentially strictly convex.

Proof. Since J∗∗ ≤ J ≤ J, it suffices to prove that J(x) = J∗∗(x) for any x ∈ domJ∗∗. From (A0) it follows that
J∗∗ is proper. By the Brøndsted–Rockafellar Theorem ([28], Thm. 3.1.2) there exists a sequence ((xn, x

∗
n))n≥1 ⊂

∂J∗∗ such that ‖xn − x‖ → 0 and J∗∗(xn) → J∗∗(x). Since x∗n ∈ ∂J∗∗(xn) and J∗∗∗ = J∗, one has xn ∈ ∂J∗(x∗n),
and so xn = ∇J∗(x∗n) ∈ X. By using (A0) we get, for any n ≥ 1, ∅ �= MJ(x∗n) ⊂ ∂J∗(x∗n) = {xn}, whence
xn ∈MJ(x∗n) and, consequently, J(xn) = J∗∗(xn). We thus have

J(x) ≤ lim inf
n→∞ J(xn) = lim

n→∞J∗∗(xn) = J∗∗(x) ≤ J(x),

and finally J(x) = J∗∗(x). Hence J = J∗∗.
Let us prove that J∗∗ is essentially strictly convex. To this end we first observe that (∂J∗∗)−1 = ∂J∗; in fact

if x∗∗ ∈ ∂J∗(x∗) then x∗ ∈ dom ∂J∗ = domMJ , and there exists x ∈ X such that x ∈ MJ(x∗) ⊂ ∂J∗(x∗).
Since J∗ is Gâteaux differentiable at x∗ we have that x = ∇J∗(x∗) = x∗∗. Therefore, (∂J∗∗)−1 = ∂J∗ is locally
bounded ([5], Cor. 2.19). It remains to prove that J∗∗ is strictly convex on the line segments in dom∂J∗∗ or,
equivalently ([5], Lem. 5.1), that

∂J∗∗(x) ∩ ∂J∗∗(y) �= ∅ ⇒ x = y.

So, assume that x∗ ∈ ∂J∗∗(x) ∩ ∂J∗∗(y) �= ∅. Then x and y belong to ∂J∗(x∗) and x = y = ∇J∗(x∗). �
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Corollary 3.2. With the same hypothesis as in Theorem 3.1, J is strictly convex on every convex subset of
dom ∂J = dom∂J∗∗.

Proof. We first check that dom∂J = dom∂J∗∗. The inclusion ⊂ is easy (see e.g. [28], Thm. 2.4.1). Conversely, for
any x ∈ dom ∂J∗∗ there exists x∗ ∈ ∂J∗∗(x), and so x ∈ ∂J∗(x∗). Since J∗ is essentially Gâteaux differentiable,
we get x = ∇J∗(x∗). By (A0) we have that x∗ ∈ domMJ and so ∅ �= MJ(x∗) ⊂ ∂J∗(x∗) = {x}. Consequently,
MJ(x∗) = {x}, whence x∗ ∈ ∂J(x), and so x ∈ dom∂J.

By Theorem 3.1 we know that J∗∗ is essentially strictly convex, and so strictly convex on every convex subset
of dom ∂J∗∗ = dom ∂J. Since J and J∗∗ coincide on dom ∂J (see e.g. [28], Thm. 2.4.1), we have proved that J
is strictly convex on every convex subset of dom ∂J∗∗. �

Note that even for J lower semicontinuous, Theorem 3.1 can not be derived from [7], Cor. 4.5.2: (a) can not
be applied because J∗ is not Fréchet differentiable, while (b) can not be applied because J is not sequentially
weakly lsc. However, in the case dimX <∞ and J lsc, Theorem 3.1 follows from [27], Fact 2.7 because Fréchet
and Gâteaux differentiability coincide for convex functions.

Applying Theorem 3.1 in the context of Example 2.6, we obtain the following result which is stated in an
equivalent form in [8], Corollary 4.7.

Corollary 3.3. Let S be proximinal in a Hilbert space X. Then, S is convex if and only if d2
S is Gâteaux

differentiable on X.

Proof. Necessity: since S is convex, we know that d2
S is Fréchet (hence Gâteaux) differentiable on X (see (2.4)).

Sufficiency: since S is proximinal, S is closed. Moreover J∗
S = 1

2

( ‖·‖2 − d2
S)

)
is Gâteaux differentiable on X.

By Theorem 3.1 we infer that JS = JS is convex, and S = domJS is convex too (see also Lem. 2.7). �

We now apply Theorem 3.1 to the farthest points problem. Recall that a remotal set is necessarily bounded
but not necessarily closed. We have not found the next result in the literature. It has to be compared with (2.4)
and (2.5).

Corollary 3.4. Let S be remotal in a Hilbert space X. Then, S is a singleton if and only if Δ2
S is Gâteaux

differentiable on X.

Proof. Necessity is clear. Sufficiency: we know that (JS)∗ = 1
2

(
Δ2

S − ‖·‖2 )
is Gâteaux differentiable on X. By

Theorem 3.1 it follows that JS = − 1
2 ‖·‖2 + ι−S is strictly convex. This is only possible if −S (hence S) is a

singleton (see also Lem. 9). �

In order to give further applications of Theorem 3.1, we must now consider the following question: given
J ∈ F (X) satisfying (A0), when is J∗ essentially Gâteaux differentiable? To this end we first state an important
consequence of [4], Corollary 6, corresponding to the bornology generated by the singletons (see also [28],
Thm. 3.9.1). We adopt the same method as in [16], Proposition 4 for the case of the Fréchet bornology.

Lemma 3.5. Let K ∈ F (X) be finite and weakly lsc at a given x ∈ X, and let x∗ ∈ int(domK∗). Then the
following are equivalent:

(i) The problem minX(K − x∗) is weakly TWP with solution x;
(ii) K∗ is Gâteaux differentiable at x∗ with ∇K∗(x∗) = x.

Proof. According to [4], Corollary 6, we just have to verify the condition

lim inf
λ→∞

λ−1 inf
‖v‖>λ

(K(x+ v) −K(x) − 〈v, x∗〉) > 0. (3.1)

Since K∗ is finite and continuous at x∗ ∈ int(domK∗), there exist r ∈ R and ρ > 0 such that

K∗ ≤ r + ιB∗(x∗,ρ), (3.2)
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where B∗(x∗, ρ) is the closed dual ball of center x∗ and radius ρ. Taking the conjugates of both sides in (3.2)
we get K ≥ K∗∗ ≥ ρ ‖·‖ + x∗ − r. We thus have

K(x+ v) −K(x) − 〈v, x∗〉 ≥ ρ ‖x+ v‖ + 〈x, x∗〉 − r −K(x).

Consequently,
λ−1 inf

‖v‖>λ
(K(x+ v) −K(x) − 〈v, x∗〉) ≥ ρ+ λ−1s,

where s := 〈x, x∗〉 − ρ ‖x‖ − r −K(x); hence (3.1) holds. �

We now provide a necessary condition for having J∗ essentially Gâteaux differentiable. For that we introduce
the following property, which is weaker than (A+

s ) :

(A+
w)

{
J satisfies (A0) and, for every x∗ ∈ domMJ, the problem
minX(J − x∗) is weakly TWP.

Theorem 3.6. Let J ∈ F (X) satisfy (A0). Then J∗ is essentially Gâteaux differentiable if and only if J verifies
(A+

w).

Proof. Observe first that domMJ = dom∂J∗ = int(domJ∗) because (A0) holds.
Assume that J∗ is essentially Gâteaux differentiable and take x∗ ∈ domMJ. Then ∅ �= MJ(x∗) ⊂ ∂J∗(x∗) =

{∇J∗(x∗)}. It follows that x := ∇J∗(x∗) ∈ dom∂J, and so J is weakly lsc at x. By Lemma 3.5 we obtain that
J − x∗ is weakly TWP.

Conversely, assume that J satisfies (A+
w) and take x∗ ∈ dom∂J∗ = domMJ. Let x ∈ MJ(x∗). Then

x∗ ∈ ∂J(x), and so J is weakly lsc at x and x is a minimum point of J − x∗. By (A+
w) we have that J − x∗ is

weakly TWP with solution x. Using again Lemma 3.5 we have that J∗ is Gâteaux differentiable at x∗. �

Corollary 3.7. Assume that X is reflexive, and let J ∈ F (X) be satisfying (A0). The following are then
equivalent:

(i) J satisfies (A+
w);

(ii) J∗ is essentially Gâteaux differentiable;
(iii) J satisfies (A) and mJ is norm to weak continuous;
(iv) J is essentially strictly convex.

Proof.

(i) ⇔ (ii) comes from Theorem 3.6. Theorem 3.1 says that (ii) ⇒ (iv). Since J∗ = (J)∗, Theorem 2.1 says
that (iv) ⇒ (ii).

(ii) ⇒ (iii) Since J satisfies (A0) and J∗ is essentially Gâteaux differentiable, it follows from (2.1) that mJ =
∇J∗, and ∇J∗ is norm to weak continuous by [20], Proposition 2.8.

(iii) ⇒ (ii) By (2.1), mJ is a norm to weak selection of ∂J∗, and [20], Proposition 2.8, says that J∗ is Gâteaux
differentiable on int(domJ∗) = dom∂J∗. �

We now return to Examples 2.6 and 2.8.

Corollary 3.8. Let S be a nonempty subset of a Hilbert space X. Then the following are equivalent:

(i) for any u ∈ X, the problem minx∈S ‖u− x‖ is weakly TWP;
(ii) for any u ∈ X, the problem minx∈S ‖u− x‖ is TWP;
(iii) S is closed and convex;
(iv) S is Tchebychev and pS is norm to norm continuous;
(v) S is Tchebychev and pS is norm to weak continuous.
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Proof.

(i) ⇒ (ii) Let (xn) be such that ‖u− xn‖ → dS(u). By (i), there exists x ∈ S such that ‖u− x‖ = dS(s), and
(xn) converges weakly to x. Now, 1

2 ‖xn − x‖2 = 1
2 ‖xn − u‖2 + 1

2 ‖u− x‖2 + 〈xn − u, u− x〉 , and, since
〈xn, u− x〉 → 〈x, u− x〉 we obtain that 1

2 ‖xn − x‖2 → 0 and, finally, limxn = x.
(ii) ⇒ (iii) Observe that S is proximinal (even Tchebychev), hence closed. The function JS is lsc and satisfies

(A+
s ). By Theorem 2.4 (or Cor. 2.5) JS is convex, and S = domJS is convex, too.

(iii) ⇒ (iv) By Lemma 2.7, JS is essentially firmly subdifferentiable, and by Corollary 2.5, JS satisfies (A+
s ) or,

equivalently, the condition (iv).
(iv) ⇒ (v) is obvious.
(v) ⇒ (i) The assertion (v) amounts to saying that JS satisfies (A) and mJS = pS is norm to weak continuous.

By Corollary 3.7, JS satisfies (A+
w) or, equivalently, condition (i). �

Corollary 3.9. For any nonempty bounded set S in a Hilbert space X, the following are equivalent:

(i) for any u ∈ X, the problem maxx∈S ‖u− x‖ is TWP;
(ii) for any u ∈ X, the problem maxx∈S ‖u− x‖ is weakly TWP;
(iii) S is uniquely remotal and qS is norm to weak continuous;
(iv) S is a singleton;
(v) S is uniquely remotal and qS is norm to norm continuous.

Proof.

(i) ⇒ (ii), (iv) ⇒ (v), and (v) ⇒ (i) are clear. Condition (ii) amounts to saying that JS satisfies (A+
w). By

Corollary 3.7 we thus have: (ii) implies that qS = −mJS is norm to weak continuous which, in turn, is equivalent
to stating that JS = JS is essentially strictly convex. By Lemma 2.9 this amounts to having that S is a singleton
or, equivalently, that S is a singleton. Consequently (ii) ⇔ (iii) ⇔ (iv). �
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