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Université d’Evry-Val d’Essonne, Boulevard François Mitterrand, 91025 Evry Cedex, France and

Laboratoire Kastler Brossel, UPMC-Paris 6, ENS,

CNRS ; Case 74, 4 place Jussieu, 75005 Paris, France

We investigate the leading systematic effects in ro-vibrational spectroscopy of the molecular hy-
drogen ions H+

2 and HD+, in order to assess their potential for the realization of optical clocks
that would be sensitive to possible variations of the proton-to-electron mass ratio. Both two-photon
(2E1) and quadrupole (E2) transitions are considered. In view of the weakness of these transitions,
most attention is devoted to the light shift induced by the probe laser, which we express as a function
of the transition amplitude, differential dynamic polarizability and clock interrogation times. Tran-
sition amplitudes and dynamic polarizabilites including the effect of hyperfine structure are then
calculated in a full three-body approach to get a precise evaluation of the light shift. Together with
the quadrupole and Zeeman shifts that are obtained from previous works, these results provide a
realistic estimate of the achievable accuracy. We show that the lightshift is the main limiting factor
in the case of two-photon transitions, both in H+

2 and HD+, leading to expected accuracy levels
close to 5 × 10−16 in the best cases. Quadrupole transitions have even more promising properties
and may allow reaching or going beyond 1× 10−16.

PACS numbers:

I. INTRODUCTION

Space-time variations of the proton-to-electron mass ratio µ is one area where high-precision molecular spectroscopy
plays an important role in testing the fundamental laws of physics. While astrophysical studies on the spectra of
molecular hydrogen, ammonia and methanol have set stringent limits on the variations of µ over cosmological time
scales, laboratory tests provide complementary information on its variations in the current epoch (see [1, 2] for recent
reviews). So far, the most severe model-independent limit from a laboratory measurement, obtained by comparing
rovibrational transitions in SF6 with a Cs clock, is at a level of several 10−14/year [3]. A large number of theoretical
proposals relying on molecular lines with greatly enhanced sensitivities to µ variations, due to a cancellation between
energy contributions from different origins (electronic, vibrational, rotational, fine or hyperfine structure...), have been
formulated in recent years (see e.g. [4–6]).
Ro-vibrational transitions in the hydrogen molecular ions H+

2 and HD+ were among the very first candidates to
be studied in the perspective of high-precision laboratory tests [7]. Despite the fact that they do not benefit from
any sensitivity enhancement effect, several factors still make hydrogen molecular ions attractive. First are the small
natural widths of ro-vibrational lines, which lye in the 10 Hz [8, 9] and 10−7 Hz [10] range for HD+ and H+

2 respectively,
and the possibility to probe single trapped molecular ions with ultra-high resolution using quantum-logic spectroscopy
(QLS) [11, 12]. The demonstration of efficient schemes to prepare the molecules in a selected ro-vibrational state, such
as resonance-enhanced multi-photon ionization [13, 14] or rotational cooling [15, 16], is another important asset; in
general, state preparation is a major experimental challenge to be considered since transitions of enhanced sensitivity
are often rather exotic, i.e. involving highly excited states in complex molecules. Finally, the simplicity of hydrogen
molecular ions allows for precise theoretical calculations of the main systematic shifts that affect the accuracy of the
measurement, and thus reliable performance estimates of the envisaged quantum-logic clock. The purpose of the
present work is to obtain such estimates for a few ro-vibrational transitions of interest in H+

2 and HD+.
This study builds upon a previous investigation of systematic effects for a large number of transitions in HD+,

by D. Bakalov and S. Schiller [17], which included the combined contributions of Zeeman, quadrupole, Stark, and
black-body radiation shifts, and concluded that frequency measurements with a relative accuracy of about 5× 10−16

should be achievable on a few selected one-photon ro-vibrational transitions. Two-photon transitions, which enable
suppression of the first-order Doppler effect even without strong spatial confinement of the ions, were also considered
(see also [18]). However, one of the potentially most important systematic effects that is the light shift induced by
the probe laser, was not calculated. The first Section is devoted to a precise estimate of this effect, and consideration
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is extended to the H+
2 ion. One attractive feature of H+

2 in this context is the extremely small natural width of the
transitions, to which one might add the simpler spin structure. In the second Section, we study one-photon quadrupole
transitions in H+

2 , which benefit from smaller light shifts. It is shown that these transitions could allow for even more
accurate frequency measurements, and are thus highly promising candidates for a molecular ion clock.

II. TWO-PHOTON TRANSITIONS

A. Expression of the light shift

In order to give a correct estimate the light shift, one should first discuss the typical intensity of the probe laser
to be used for optimal operation of a molecular ion clock. Here, the envisaged experimental realization is QLS of a
Be+/HD+ (or Be+/H+

2 ) ion pair. The use of two-photon transitions implies reaching a regime of two-photon Rabi
oscillations; the generalized two-photon Rabi frequency for a transition between states i and f is given by

Ω =

∣

∣

SQif
ǫǫ (E)

∣

∣ I

ǫ0h̄c
(1)

where I, ǫ are the intensity and polarization of the probe laser, and SQif
ǫ1ǫ2

(E) = 〈i|SQǫ1ǫ2(E)|f〉 the two-photon

transition matrix element. E = (Ei + Ef )/2 is the intermediate energy, and the two-photon operator SQǫ1ǫ2(E) is
defined by

SQǫ1ǫ2 =
1

2
(Qǫ1ǫ2 +Qǫ2ǫ1) , Qǫ1ǫ2 = d · ǫ1

1

E −H
d · ǫ2. (2)

QLS clocks are operated with a single interrogation π-pulse [19] whose duration τ is adjusted according to the desired
resolution. τ is typically of the order of 100 ms [20, 21], and we will assume the same value in the case of H+

2 .
However, in HD+ the shorter lifetime τf of excited ro-vibrational state (τf ∼ 15− 55 ms for v = 1− 4) constrains τ to
lower values; in the following we will assume τ = τf/10. The probe laser intensity is determined from the relationship
Ωτ = π yielding

I =
πǫ0h̄c

τ
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The corresponding shift of the transition energy (Ef − Ei)/2 is

∆Eif = −1

4
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where ∆αif
ǫ = αf

ǫ (ωif ) − αi
ǫ(ωif ), ωif = (Ef − Ei)/2h̄ being the two-photon probe laser frequency and αn

ǫ (ω) the
dynamical polarizability of a state n:

αn
ǫ (ω) = −4πa30

(

SQnn
ǫǫ (En + h̄ω) +S Qnn

ǫǫ (En − h̄ω)
)

. (5)

Using the atomic units for polarizabilites and two-photon transition matrix elements (i.e. αn
ǫ in units of 4πa30 and

SQif
ǫ1ǫ2

in units of (ea0)
2/Eh = h̄2e2/me) one obtains the following simple expression for the frequency shift:

∆fLS = − 1

8τ

∆αif
ǫ

∣

∣
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SQif
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∣

∣

. (6)

In order to get a reliable estimate of the light shift, we have calculated the dimensionless transition amplitudes
∣

∣

SQif
ǫǫ (E)

∣

∣ and associated differential polarizabilities ∆αif
ǫ for a large range of two-photon transitions in HD+ and

H+
2 . Selected results are presented in Tables I and II. The methods for calculating two-photon line strengths with

account of the hyperfine structure have been described in detail in [22] in the context of H+
2 (see also [23, 24] for

similar calculations in HD+); they can also be applied for evaluating dynamical polarizabilities of hyperfine sublevels
since both quantities are expressed in terms of matrix elements of the same operator SQǫ1ǫ2(E). A summary of these
methods can be found in the Appendix.
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B. HD+

In the case of HD+ (Table I), two-photon transitions from ro-vibrational states (v = 0, L) were considered, since
v = 0 states, having by far the longest lifetimes, are the only ones in which the ions can be conveniently prepared.
We mainly investigated the transitions towards states with a vibration quantum number v′ = 2 or 1 which are the
strongest, as shown in [25]. Indeed, in a (v = 0, L) → (v′ = 2, L′) transition, a (v′′ = 1, L′′) state lies close to the
one-photon resonance, leading to a strong enhancement of the line strength. Transitions towards higher vibrational
states are much weaker and more difficult to observe experimentally; in view of Eq. (6) they will also be affected
by large lightshifts unless the dynamical polarizabilities of the ground and excited states cancel each other almost
exactly. We also investigated v = 0 → v = 4 transitions but found no such cancellations.
The angular momentum coupling scheme used to denote the hyperfine sublevels (v, L, F, S, J, Jz) of HD+ is the

following [26]: F = Sd + Se, S = F + Sp, J = L + S where Si, i = e, p, d denote the spin operator of the electron,
proton and deuteron; only J is an exact quantum number whereas (F, S) are approximate quantum numbers. As
discussed in [17, 27], two types of transitions are particularly interesting for clock applications:

• Jz = 0 → J ′
z = 0 transitions, which only have a quadratic Zeeman shift;

• pairs of transitions between ”stretched states” where all the angular momenta have their maximum values:
(v, L, F = 1, S = 2, J = L + 2, Jz = ±(L + 2)) → (v′, L′, F ′ = 1, S′ = 2, J ′ = L′ + 2, J ′

z = ±(L′ + 2)). Since
these transitions have strictly linear opposite Zeeman shifts, the effect of the magnetic field can be nulled by
measuring both transition frequencies and computing the average value.

A few Jz = 0 → J ′
z = 0 transitions benefit from a relatively low Zeeman shift (below 100 Hz in a magnetic field of 1 G):

(v = 0, L = 0) → (v′ = 2, L = 0) with (F, S, J) = (0, 1, 1), (v = 0, L = 3) → (v = 2, L = 3) with (F, S, J) = (1, 2, 4),
and (v = 0, L = 4) → (v = 2, L = 4) with (F, S, J) = (1, 2, 3) (see Table 2 of [27]). However, none of them were found
to have interesting properties in terms of systematic effects, and they will not be considered further. In the following
we only discuss transitions between stretched states.
The first seven lines of Table I give the lightshifts of all v = 0 → v = 2 stretched-state transitions with an initial

rotational state L ≤ 2. v = 0 → v = 2 transitions are obvious candidates since they are the most intense, and the
first three of them were considered in [17] (Table IX). Their lightshifts range from a few to a few hundred Hertz, the
most promising among them being the (v = 0, L = 0) → (v′ = 2, L′ = 0) transition which has a 4.0 Hz light shift
and is not affected by Zeeman and quadrupole shifts. The relative frequency shift amounts to ∆fLS/f0 = 7× 10−14

and is the main limitation to the accuracy. Assuming that it could be calibrated to the percent level, a residual
systematic uncertainty of 7 × 10−16 could be achieved; lightshift calibration beyond that level would be a difficult
experimental challenge. The (v = 0, L = 1) → (v′ = 2, L′ = 1) transition, which seemed promising due to its large
intensity as pointed out in [25], turns out to have a large lightshift, partly due to the weakness of the Zeeman sub-lines
which connect the stretched states. We extended our search to L ≤ 5 initial states and found one more interesting
transition (line before last in Table I): (v = 0, L = 4) → (v′ = 2, L′ = 2), which has both a moderate light shift
(∆fLS/f0 = 1.9× 10−13) and low quadrupole shift (∆fQ/f0 = 3.5× 10−15).
The v = 0 → v = 1 transitions, although less intense, may also be of interest in case of a fortuitous cancellation of

the lightshift. A scan of all transitions from (v = 0, L ≤ 5) states revealed one such instance (last line of Table I):
(v = 0, L = 2) → (v′ = 1, L′ = 0), with a lightshift of 0.34 Hz (∆fLS/f0 = 1.3 × 10−14). For this transition,
the accuracy would be limited by the quadrupole shift (∆fQ/f0 = 2 × 10−13), which according to the discussion in
Ref. [17] could be reduced to a residual uncertainty of about 1× 10−15 by applying a nulling procedure.

C. H+
2

In H+
2 (Table II), two-photon transition amplitudes and polarizabilities follow a very different behaviour from the

HD+ case. Neighbouring rovibrational states not being dipole-allowed, there are no resonant enhancement effects.
Only excited electronic states contribute to the two-photon amplitudes, leading to a smooth variation as a function of
vibration and rotation quantum numbers. It has been shown that only ∆v = 1 two-photon transitions are sufficiently
intense to be conveniently detected [29]. In contradistinction with HD+ the initial vibrational state could take any
value (excited rovibrational states are metastable); however the selectivity in H+

2 production by resonance-enhanced
multiphoton ionization gets worse when the targeted vibrational quantum number increases [14]. (v = 0, L) → (v′ =
1, L′) and (v = 1, L) → (v′ = 2, L′) transitions with L ≤ 3 are listed in Table II.
The spin structure of H+

2 is slightly simpler than in HD+ [30]. The adopted angular momentum coupling scheme
is F = Se + I, J = L + F where I is the total nuclear spin, whose value is 0 (resp. 1) for even (resp. odd) values
of L. No Jz = 0 → J ′

z = 0 transitions exist since the total angular momentum is half integer. There are however
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(v, L) (v′, L′) f0 f0 τf Q
(0)

v,L,v′,L′ Q
(2)

v,L,v′,L′ |Qif | α
(0)
v,L

α
(2)
v,L

αi α
(0)

v′,L′ α
(2)

v′,L′ αf ∆α ∆fLS ∆fZ ∆fQ

[cm−1] [THz] [ms] [a.u.] [a.u.] [a.u.] [a.u.] [a.u.] [a.u.] [a.u.] [a.u.] [a.u.] [a.u.] [Hz] [Hz] [Hz]

(0,0) (2,0) 1864.9281 55.91 29.3 1.4822 0 1.4822 3.8681 0 3.8681 4.0086 0 4.0086 0.1405 4.0 0 0

(0,0) (2,2) 1924.6823 57.70 30.4 0 7.6132 4.1699 5.7365 0 5.7365 5.1294 -5.2596 6.5351 0.7986 7.9 ∓549 7.1

(0,1) (2,1) 1862.9561 55.85 29.5 7.9307 -23.1605 0.6067 8.7670 -19.1522 2.7105 11.4708 -29.6063 2.1085 -0.6021 -42.0 ±5 1.0

(0,1) (2,3) 1962.1424 58.82 30.6 0 4.9846 3.9966 4.1738 -1.1584 4.3570 5.1502 -4.4530 6.5874 2.2304 22.8 ∓544 4.4

(0,2) (2,0) 1799.2675 53.94 29.3 0 5.5963 6.8540 4.9353 2.7023 4.2131 5.6796 0 5.6796 1.4665 9.1 ±558 -5.6

(0,2) (2,2) 1859.0217 55.73 30.4 -1.0086 2.4984 0.3269 1.9452 0.6514 2.2934 -1.8277 3.7284 0.1652 -2.1282 -268 ±9 1.4

(0,2) (2,4) 1997.0422 59.87 31.5 0 3.8963 3.5568 3.9275 -1.7206 4.3820 5.1278 -4.0079 6.5576 2.1756 24.3 ∓538 3.5

(0,4) (2,2) 1707.3273 51.18 30.4 0 9.2358 11.3115 5.8167 -5.4879 7.7745 9.8934 -2.4548 10.5495 2.7749 10.0 ±567 -0.18

(0,2) (1,0) 890.8371 26.71 54.6 0 0.3705 0.4538 2.2803 -2.0531 2.8290 2.8223 0 2.8223 -0.0067 -0.34 ±558 -5.6

TABLE I: Light shifts of selected two-photon ro-vibrational transitions between stretched states i = (v, L, F = 1, S = 2, J = L+ 2, Jz = ±(L+ 2)) → f = (v′, L′, F ′ =
1, S′ = 2, J ′ = L′+2, J ′

z = ±(L′+2)) in HD+. f0 = (Ef −Ei)/2 is the spin-independent transition frequency (including leading-order relativistic and QED corrections)

taken from [28]. τf is the excited state lifetime from [9]. Q
(k)
v,L,v′,L′ are the scalar (k = 0) and tensor (k = 2) two-photon matrix elements (see Eq. (18)), and Qif is

the resulting amplitude for the hyperfine component that connects the stretched states i, f , obtained using Eq. (15) or (16) according to the polarization case, and

Eq. (27). Similarly, α
(k)
v,L and α

(k)

v′,L′ (k = 0, 2) are the scalar and tensor dynamic polarizabilities (Eq. (5)) of the initial and final ro-vibrational states, αi, αf are the

hyperfine state polarizabilities (obtained through Eq. (15) or (17) with Eq. (27)), and ∆α = αf −αi. A linearly (resp. circularly) polarized laser field was assumed for
L → L (resp. L → L± 2) transitions for which |∆Jz| = 0 (resp. 2). Finally, ∆fLS is the estimated light shift, obtained from Eq. (6). Estimates of the two other most
important systematic effects are also given: the Zeeman shift ∆fZ in a magnetic field of 1 G from [27], and the quadrupole shift ∆fQ in an electric field gradient of
0.67 × 108 V/m2 (see [17] and corrigendum to be published).
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stretched states which have the same properties as in HD+: (v, L, F = 1/2, J = L + 1/2, Jz = ±(L + 1/2)) for even
L and (v, L, F = 3/2, J = L+ 3/2, Jz = ±(L+ 3/2)) for odd L. In the following only transitions between such states
are considered.
The light shifts lie in the few-Hz range, which is comparable to the best transitions in HD+. In the absence of

resonant enhancement effects, the ∆α/|Qif | ratio is less favorable, but this is compensated by the possibility of using
longer probe times and thus lower intensities. L → L − 2 transitions (especially L = 2 → L′ = 0) have the lowest
lightshifts, followed by L → L transitions, while L → L+ 2 transitions are less favourable. The quadrupole shift has
the same order of magnitude, and is lowest for L → L transitions. When v is increased from 0 to 1, the lightshift
slightly decreases but the quadrupole shift slightly increases. The best trade-off depends on the degree of accuracy to
which the different systematic effects can be calibrated and corrected for. We will make the same assumptions as in
Ref. [17] where this issue has been discussed in detail.
The Zeeman shift is nulled by computing the average of the stretched-state transitions Jz → J ′

z and −Jz → −J ′
z.

In [17] it was assumed that each transition frequency can be measured with a resolution equal to 1% of the natural
linewidth. In H+

2 the natural width is extremely small, so that the transition width would probably be limited by
the probe laser. For illustration let us assume a value of 1 Hz. Then the uncertainty on the mean frequency of the
doublet would be 0.01×

√
2 = 0.014 Hz. By repeating these measurements for a set of magnetic field values the error

could be reduced by a further factor of 5, i.e. slightly below 10−16 relative to the transition frequency.
The quadrupole shift is nulled by measuring the transition frequencies for three orthogonal directions of the magnetic

field. Again, the uncertainty of each measurement can be assumed to be 1% of the linewidth, yielding an overall
uncertainty of 0.01/

√
3 = 0.0058 Hz. In addition, the inaccuracy in establishing three perfectly orthogonal magnetic

field directions leads to a residual uncertainty of 0.5% of the value calculated in Table II for an electric field gradient
of 0.67×108 V/m2 (assuming this can be performed with the same accuracy as in the Hg+ ion clock [31]). Supposing,
finally, that the residual uncertainty on the lightshift is equal to 1% of the shift, and adding quadratically the different
errors, the best trade-off would be obtained for L → L transitions, with overall accuracies between 5 and 7 × 10−16

depending on the values of v and L.

III. QUADRUPOLE TRANSITIONS IN H+
2

In the H+
2 ion, quadrupole transitions are a promising alternative as potential clock transitions. Their oscillator

strengths have recently been calculated [10]; they are more intense than two-photon transitions, so that the lighshift
could be significantly reduced. In addition, the possibility to excite transitions towards higher vibrational states is
attractive because increasing the transition frequency generally leads to improving clock performances. However,
transitions become weaker when ∆v is increased, and again it is useful to estimate the lightshift in order to determine
the ∆v range where it does not represent a limitation to the accuracy.
We will thus derive an expression of the light shift along the same lines as in Sec. II A. In the case of quadrupole

transitions, the Rabi frequency writes [34]

Ω =
ea20E0

2h̄

2π

λ
|Θif

ǫ,n| (7)

with

Θif
ǫ,n =

1

3

∑

ij

〈i|Θij |f〉ǫinj (8)

E0, ǫ are respectively the electric field amplitude and polarization of the incident wave, and n the unit vector along
the propagation direction (k = kn). Θ is the quadrupole tensor operator in the center-of-mass frame in atomic units
(i.e. units of ea20). We use the definition of [17]:

Θij = (3/2)
∑

k

Zk

(

RkiRkj − δijRk
2/3

)

. (9)

where Rk is the position of the particle k with respect to the center of mass, and Zk its electric charge. The condition
Ωτ = π (where τ is the probe pulse duration) yields

E0 =
h̄λ

ea20τ |Θif
ǫ,n|

, (10)
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(v, L) (v′, L′) f0 f0 Q
(0)

v,L,v′,L′ Q
(2)

v,L,v′,L′ |Qif | α
(0)
v,L

α
(2)
v,L

αi α
(0)

v′,L′ α
(2)

v′,L′ αf ∆α ∆fLS ∆fZ ∆fQ

[cm−1] [THz] [a.u.] [a.u.] [a.u.] [a.u.] [a.u.] [a.u.] [a.u.] [a.u.] [a.u.] [a.u.] [Hz] [Hz] [Hz]

(0,0) (1,0) 1095.5633 32.84 -0.4189 0 0.4189 3.1691 0 3.1691 3.8982 0 3.8982 0.7291 2.2 0 0

(0,0) (1,2) 1178.0933 35.32 0 0.5536 0.3032 3.1692 0 3.1692 3.9360 -2.0593 4.4864 1.3172 5.4 ∓720 6.1

(0,1) (1,1) 1094.0306 32.80 -0.4204 0.3655 0.3048 3.1786 -1.6939 2.6429 3.9106 -2.4125 3.1477 0.5048 2.1 ±3.5 0.53

(0,1) (1,3) 1230.8450 36.90 0 0.3917 0.3141 3.1788 -1.6940 3.4466 3.9741 -2.0189 4.6257 1.1791 4.7 ∓690 3.4

(0,2) (1,0) 1008.4449 30.23 0 0.2705 0.3313 3.1978 -1.4455 3.5841 3.8981 0 3.8981 0.3140 1.2 ±727 -5.3

(0,2) (1,2) 1090.9749 32.71 -0.4234 0.3119 0.2567 3.1978 -1.4455 2.4251 3.9359 -2.0592 2.8352 0.4101 2.0 ±7.2 0.76

(0,2) (1,4) 1280.9902 38.40 0 0.3787 0.3457 3.1980 -1.4456 3.5844 4.0252 -2.0315 4.7499 1.1656 4.2 ∓685 2.5

(0,3) (1,1) 949.6011 28.47 0 0.3071 0.3761 3.2267 -1.4169 3.6840 3.9104 -2.4122 4.2918 0.6078 2.0 ±704 -2.0

(0,3) (1,3) 1086.4155 32.57 -0.4280 0.3056 0.2307 3.2268 -1.4169 2.3122 3.9739 -2.0187 2.6708 0.3586 1.9 ±10.7 0.88

(1,0) (2,0) 1031.9570 30.94 -0.7004 0 0.7004 3.8981 0 3.8981 4.8223 0 4.8223 0.9242 1.6 0 0

(1,0) (2,2) 1110.0556 33.28 0 0.9829 0.5384 3.8982 0 3.8982 4.8724 -2.8800 5.6421 1.7439 4.0 ∓712 6.9

(1,1) (2,1) 1030.4768 30.89 -0.7028 0.6495 0.4974 3.9105 -2.4124 3.1476 4.8381 -3.3710 3.7721 0.6245 1.6 ±3.8 0.57

(1,1) (2,3) 1159.9357 34.77 0 0.7441 0.5966 3.9107 -2.4126 4.2922 4.9232 -2.8244 5.8348 1.5426 3.2 ∓682 3.9

(1,2) (2,0) 949.4269 28.46 0 0.4821 0.5904 3.9357 -2.0590 4.4860 4.8220 0 4.8220 0.3360 0.71 ±720 -6.1

(1,2) (2,2) 1027.5256 30.80 -0.7084 0.5547 0.4119 3.9358 -2.0591 2.8352 4.8722 -2.8797 3.3329 0.4978 1.5 ±7.7 0.81

(1,2) (2,4) 1207.3060 36.19 0 0.6761 0.6172 3.9361 -2.0593 4.4865 4.9911 -2.8432 6.0054 1.5189 3.1 ∓677 2.8

(1,3) (2,1) 893.6624 26.79 0 0.5679 0.6955 3.9737 -2.0184 4.6251 4.8377 -3.3706 5.3706 0.7455 1.3 ±697 -2.3

(1,3) (2,3) 1023.1213 30.67 -0.7166 0.5439 0.3655 3.9738 -2.0185 2.6709 4.9229 -2.8242 3.0999 0.4290 1.5 ±11.7 0.95

TABLE II: Same as Table I, for two-photon ro-vibrational transitions between stretched states i = (v, L, F = 3/2, J = L + 2, Jz = ±(L + 2)) → f = (v′, L′, F ′ =
1, S′ = 2, J ′ = L′ + 2, J ′

z = ±(L′ + 2)) in H+
2 . The spin-independent transition frequencies are taken from [32], and the Zeeman shift ∆fZ is obtained from [33]. The

relationship between hyperfine matrix elements of the two-photon operator and its reduced matrix elements Q
(i)
v,L,v′,L′ is given in Eq. (26).
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from which the corresponding lightshift is easily deduced:

∆fLS = −meλ
2

4h

∆αif
ǫ

τ2|Θif
ǫ,n|2

. (11)

The choices of propagation direction and polarization of the probe laser, which influence both the quadrupole transition
amplitude and lightshift, are given in the Appendix.
We calculated the dimensionless transition amplitudes |Θif

ǫ,n| and associated differential polarizabilities ∆αif
ǫ for

(v = 0, L) → (v′, L′) transitions with v′ = 1, 2, 3. Our results are summarized in Table III. L → L (with L ≤ 3),
L = 3 → L′ = 1 and L = 4 → L′ = 2 transitions were considered. L → L + 2 and L = 2 → L′ = 0 transitions were
omitted because they have larger quadrupole shifts as can be seen in Table II.
This study shows that the lightshift is negligible for v = 0 → v′ = 1 transitions; for v = 0 → v′ = 2 transitions,

they are still significantly lower (by at least an order of magnitude) than in two-photon transitions. However, for
v = 0 → v′ = 3 transitions they are already much higher. Under the same assumptions as above regarding calibration
of the main systematic effect, we estimate that a relative accuracy of about 1−1.5×10−16 could be reached using the
transitions (v = 0, L) → (v′, L′ = L) with v′ = 1 or 2. Especially promising is the transition (v = 0, L = 4) → (v′ =
2, L′ = 2) which benefits from almost perfect cancellation of the quadrupole shift (about 5 × 10−17 relative to the
transition frequency). Here, nonadiabatic calculations of the quadrupole moments were performed to get sufficient
accuracy on the differential shift since the results of [17] are limited by the Born-Oppenheimer approximation. On
that transition, it could be possible to reach a relative accuracy of about 6× 10−17. The blackbody radiation is not a
limiting factor at this level: at 300K it represents about 10−16 relative to the frequency, and the uncertainty could be
reduced further by at least one order of magnitude by a careful determination of the environment temperature. The
second-order Doppler effect is more likely to play a role, since it amounts to a few 10−17 in the Al+/Be+ clock [20]
and could become larger in the H+

2 /Be
+ case where the mass ratio is less favorable.

IV. CONCLUSION

Our analysis of light shifts in high-resolution spectroscopy of hydrogen molecular ions has allowed assessing the
performances of different types of transitions for a molecular ion clock that would set new limits on the variations
of µ. The lightshift was shown to be the main limiting factor in the case of two-photon transitions, both in H+

2 and
HD+, it seems however possible to reach accuracy levels close to 5 × 10−16 in a few cases. Quadrupole transitions
are even more promising in view of the smaller required intensity; one particular transition that could allow going
below the 10−16 level was pointed out. Hydrogen molecular ions thus have potential to improve the currently best
laboratory limits on µ-variation by several orders of magnitude. Finally, the lightshift can, in principle, be reduced
by using a longer interrogation time, which would make the use of v = 0 → v = 3 quadrupole transitions a realistic
possibility. One advantage of such transitions is that they lye in a convenient wavelength range (λ ∼ 1.6 − 1.7 µm)
for laser technology and absolute frequency measurements. Of course, there are several experimental challenges on
the way towards realization of molecular ion clocks, one of which being the preparation of the ions in the required
hyperfine and Zeeman sublevel.

Acknowledgements. I am grateful to V.I. Korobov for sharing his program for variational calculations of three-
body systems, B. Dailly for his work on lightshift calculations, and L. Hilico and D. Bakalov for helpful discussions.

Appendix

In this Appendix the methods used to compute the two-photon and quadrupole matrix elements including the effect
of the hyperfine structure are briefly summarized.

1. Nonadiabatic wave functions

To compute the wave functions of ro-vibrational states, the Schrödinger equation of the three-body Coulomb
system is solved using a variational approach with exponential basis functions developed by V. Korobov [35]. The
wave function for a state with total orbital angular momentum L and of a total spatial parity π = (−1)L is expanded



8

(v, L) (v′, L′) f0 f0 Θ
(2)

v,L,v′,L′ |Θ
if
ǫ,n| α

(0)
v,L

α
(2)
v,L

αi α
(0)

v′,L′ α
(2)

v′,L′ αf ∆α ∆fLS ∆fZ ∆fQ

[cm−1] [THz] [a.u.] [a.u.] [a.u.] [a.u.] [a.u.] [a.u.] [a.u.] [a.u.] [a.u.] [Hz] [Hz] [Hz]

(0,1) (1,1) 2188.0613 65.60 3.762(-1) 1.145(-2) 3.1798 -1.6950 3.0458 3.9129 -2.4149 3.7220 0.6762 3.7(-3) ±7.0 1.1

(0,2) (1,2) 2181.9499 65.41 4.118(-1) 1.641(-2) 3.1990 -1.4465 3.0057 3.9382 -2.0612 3.6628 0.6571 1.8(-3) ±14 1.5

(0,3) (1,1) 1899.2023 56.94 5.295(-1) 2.723(-2) 3.2276 -1.4176 3.6851 3.9121 -2.4141 4.2938 0.6087 7.8(-4) ±1408 -4.0

(0,3) (1,3) 2172.8311 65.14 4.731(-1) 1.924(-2) 3.2280 -1.4179 2.9992 3.9762 -2.0207 3.6501 0.6509 1.3(-3) ±21 1.8

(0,4) (1,2) 1780.7307 53.38 6.678(-1) 3.029(-2) 3.2663 -1.4260 3.7750 3.9372 -2.0603 4.4878 0.7128 8.4(-4) ±1413 -1.6

(0,1) (2,1) 4249.0149 127.38 2.887(-2) 8.786(-4) 3.1842 -1.6992 3.0499 4.8583 -3.3940 4.5900 1.5401 3.8(-1) ±15 2.2

(0,2) (2,2) 4237.0011 127.02 3.169(-2) 1.262(-3) 3.2035 -1.4501 3.0097 4.8927 -2.8994 4.5053 1.4955 1.8(-1) ±30 3.1

(0,3) (2,1) 3960.1559 118.72 2.776(-2) 1.428(-3) 3.2318 -1.4208 3.6904 4.8555 -3.3907 5.3916 1.7013 1.8(-1) ±1416 -2.9

(0,3) (2,3) 4219.0738 126.48 3.653(-2) 1.485(-3) 3.2325 -1.4214 3.0031 4.9436 -2.8435 4.4847 1.4816 1.3(-1) ±45 3.7

(0,4) (2,2) 3835.7819 114.99 2.889(-2) 1.310(-3) 3.2704 -1.4292 3.7803 4.8887 -2.8956 5.6626 1.8823 2.6(-1) ±1428 0.006

(0,1) (3,1) 6187.0684 185.48 4.044(-3) 2.461(-4) 3.1910 -1.7057 3.0562 6.1156 -4.7609 5.7392 2.6831 1.6(+1) ±23 3.4

(0,2) (3,2) 6169.3302 184.95 4.448(-3) 3.571(-4) 3.2103 -1.4556 3.0158 6.1627 -4.0692 5.6189 2.6031 7.4 ±46 4.9

(0,3) (3,1) 5898.2094 176.82 2.632(-3) 0.3048 3.2384 -1.4260 3.6986 6.1075 -4.7514 6.8588 3.1601 1.7(+1) ±1424 -1.7

(0,3) (3,3) 6142.8586 184.16 5.146(-3) 4.185(-4) 3.2394 -1.4268 3.0092 6.2324 -3.9929 5.5880 2.5789 5.4 ±70 5.7

(0,4) (3,2) 5768.1110 172.92 2.013(-3) 0.3313 3.2770 -1.4343 3.7887 6.1515 -4.0579 7.2360 3.4473 4.3(+1) ±1445 1.8

TABLE III: Same as Table II, for quadrupole ro-vibrational transitions between stretched states i = (v, L, F = 3/2, J = L + 2, Jz = ±(L + 2)) → f = (v′, L′, F ′ =

1, S′ = 2, J ′ = L′ + 2, J ′

z = ±(L′ + 2)) in H+
2 . Θ

(2)
v,L,v′,L′ is the reduced matrix element of the quadrupole operator between initial and final rovibrational states (see

Sec. IV). |Θif
ǫ,n| is the amplitude of the hyperfine component that connects the stretched states i, f , taking into account the geometrical factors associated with the

propagation direction and polarization of the probe laser (Eqs. (8) and (32)). The quadrupole shift ∆fQ is calculated from the quadrupole moments published in [17]
(with a corrigendum to be published), excepted for the (v = 0, L = 4) → (v′ = 2, L′ = 2) transition where a nonadiabatic calculation was performed to obtain a more
precise estimate.
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as follows:

Ψπ
LM(r1, r2) =

∑

l1+l2=L

Y l1l2
LM (r̂1, r̂2)G

Lπ
l1l2

(r1, r2, r12),

GLπ
l1l2

(r1, r2, r12) =
N
∑

n=1

{

Cn Re
[

e−αnr12−βnr1−γnr2
]

+Dn Im
[

e−αnr12−βnr1−γnr2
]

}

.

(12)

where r1, r2, r12 are the interparticle distances, and the complex exponents α, β, γ are generated in a pseudorandom
way. Since very high accuracy is not required for transition probabilities, relatively small basis lengths of N =
1000− 2000 were used, yielding a relative accuracy of at least a few parts in 109 for the nonrelativistic energies, and
a few parts in 105 for the matrix elements.

2. Two-photon matrix elements

The two-photon operator SQ defined in Eq. (2), being a symmetrical tensor obtained by coupling of two vector
operators, has a representation in terms of irreducible tensors that involves a scalar tensor Q(0)a and a tensor Q(2)a

of rank 2. Its components SQq1,q2 (where qi = −1, 0, 1 correspond to the standard polarizations σ−, π, σ+) can be
expressed in terms of the components of these irreducible tensors:

SQq1q2 =

2
∑

q=−2

a(2)q Q(2)a
q + a

(0)
0 Q

(0)a
0 (13)

The values of the coefficients a
(k)
q for all combinations of the standard polarizations can be found in Table IV of [22].

Here, we have adopted a slightly different definition for the irreducible tensors:

Q(0) = −Q(0)a/
√
3, Q(2) =

√

2/3 Q(2)a (14)

so that the linear-linear polarization component is simply written as:

SQ00 = Qzz = Q
(0)
0 +Q

(2)
0 . (15)

Other components used in transition amplitude and lightshift calculations are:

SQ±1±1 =
√

3/2 Q
(2)
2 (16)

−SQ±1∓1 = Q
(0)
0 −Q

(2)
0 /2 (17)

The first step is to calculate the reduced matrix elements
〈

vL‖Q(k)‖v′L′
〉

with k = 0, 2. More precisely, the
quantities given in the Tables are

Q
(k)
v,L,v′,L′ =

〈

vL‖Q(k)‖v′L′
〉

√
2L+ 1

(18)

The calculation of two-photon reduced matrix elements has been described in [22]; for easier reference we recall the
main formulas here. The following three terms, which correspond to the possible values L−1, L+1, L for the angular
momentum of the intermediate state, are evaluated numerically:

a− = −
∑

v′′

〈vL‖d‖v′′L−1〉 〈v′′L−1‖d‖v′L′〉
√

(2L+1)(2L′+1)(h̄ω − Ev′′L−1)
(19)

a+ = −
∑

v′′

〈vL‖d‖v′′L+1〉 〈v′′L+1||d||v′L′〉
√

(2L+1)(2L′+1)(h̄ω − Ev′′L+1)
(20)

a0 =
∑

v′′

〈vL‖d‖v′′L〉 〈v′′L‖d‖v′L′〉
√

(2L+1)(2L′+1)(h̄ω − Ev′′L)
(21)
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where Ev′′,L′′ is the energy of the intermediate state |v′′L′′〉 and ω is the photon energy. The reduced matrix elements

of Q(k) are related to a−, a+, a0 in the following way:
〈

vL‖Q(0)‖v′L
〉

√
2L+ 1

=
1

3

(

a− + a0 + a+
)

, (22)

〈

vL‖Q(2)‖v′L−2
〉

√
2L+ 1

= −
√

2(2L−3)

3(2L−1)
a− , (23)

〈

vL‖Q(2)‖v′L
〉

√
2L+ 1

= −1

3

√

(2L+3)(2L−1)L(L+1)

[

a−
L(2L−1)

− a0
L(L+1)

+
a+

(2L+3)(L+1)

]

, (24)

〈

vL‖Q(2)‖v′L+2
〉

√
2L+ 1

= −
√

2(2L+5)

3(2L+3)
a+ . (25)

Standard angular algebra procedures are then used to obtain the matrix elements between the initial and final
hyperfine states. The expressions are made simpler by the fact that we only consider the ”stretched states” which are
”pure” states of angular momentum coupling. In the case of H+

2 one obtains
〈

v, L, F, J = L+ F, Jz = ±J |Q(k)
q |v′, L′, F, J ′ = L′ + F, J ′

z = ±J ′
〉

=

−
√
2J ′ + 1 〈J ′kJ ′

zq|JJz〉
{

L k L′

J ′ F J

}

〈

vL‖Q(k)‖v′L′
〉

(26)

where F = 1/2 (resp. 3/2) for even (resp. odd) values of L. The expression for HD+ is similar:
〈

v,L,F =1,S=2,J=L+2,Jz=±(L+2)|Q(k)
q |v′,L′,F =1,S=2,J ′=L′+2,J ′

z=±(L′+2)
〉

=

−
√
2J ′ + 1 〈J ′kJ ′

zq|JJz〉
{

L k L′

L′ + 2 2 L+ 2

}

〈

vL‖Q(k)‖v′L′
〉

. (27)

The incident light is assumed to be linearly polarized for ∆L = 0 transitions where ∆Jz = 0 and circularly polarized
for ∆L = ±2 transitions where ∆Jz = ±2.

3. Quadrupole matrix elements

In order to calculate its matrix elements, the quadrupole operator (9) of a three-body system with masses mi and
charges Zi (i = 1, 2, 3) is written in terms of irreducible tensor operators associated with the coordinates r1, r2 and
r12:

Θij = c1

(

r1ir1j−
δij
3
r21

)

+c2

(

r2ir2j−
δij
3
r22

)

+c3

(

r12ir12j−
δij
3
r212

)

, (28)

c1 =
(m1 +m3)

2Z2 +m2
2(Z1 + Z3)

m2
T

(29)

c2 =
(m1 +m2)

2Z3 +m2
3(Z1 + Z2)

m2
T

(30)

c3 =
m2m3Z1 −−m3(m1 +m3)Z2 −m2(m1 +m2)Z3

m2
T

(31)

with mT = m1+m2+m3. Using this expression one obtains the reduced matrix elements
〈

v, L‖Θ(2)‖v′, L′
〉

(denoted

Θ
(2)
v,L,v′,L′ in Table III). Matrix elements between stretched hyperfine states

〈

i|Θ(2)
q |f

〉

can then be obtained from

Eq. (26) (with the replacement of Q(k) by Θ(2)). The quantity Θif
ǫ,n defined in Eq. (8) which appears in the Rabi

frequency (7) can be expressed in terms of matrix elements of the standard components of the quadrupole operator:

Θif
ǫ,n =

1

3

∑

ij

2
∑

q=−2

〈

i|Θ(2)
q |f

〉

c
(q)
ij ǫinj (32)
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where the expressions of the second rank tensors c
(q)
ij can be found in [34]. The choice of polarization and propagation

direction of the probe laser is made so as to maximize the transition amplitude:

• for L → L, ∆Jz = 0 transitions, we choose a propagation direction n making an angle of π/4 with the z axis,

and polarization in the plane defined by n and the z axis. The geometrical factor |g0| = |∑ij c
(0)
ij ǫinj | is then

equal to 1/2.

• for L → L±2, ∆Jz = ±2 transitions, we choose a propagation direction orthogonal to the z axis, and polarization

orthogonal to the plane defined by n and the z axis. The geometrical factor |g±2| = |
∑

ij c
(±2)
ij ǫinj| is equal to

1/
√
6.
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