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Convergence of Markovian Stochastic Approximation with

discontinuous dynamics

A. Schreck ‡† G. Fort § E. Moulines † M. Vihola ¶

March 26, 2014

Abstract

This paper is devoted to the convergence analysis of stochastic approximation algorithms of

the form

θn+1 = θn + γn+1H(θn, Xn+1)

where (θn)n is a R
d-valued sequence, (γn)n is a deterministic step-size sequence and (Xn)n is a

controlled Markov chain. The originality of our framework is to address the convergence under

weak assumptions on the smoothness-in-θ of the function θ 7→ H(θ, x). It is usually assumed

that this function is continuous for any x; in this work, we propose a new condition which allows

to consider fields H which are not continuous in θ. Our results are illustrated by consider-

ing stochastic approximation algorithms for quantile estimation and stochastic approximation

algorithms for solving a vector quantization problem.

1 Introduction

Stochastic Approximation (SA) methods have been introduced by [34] as algorithms to find the
roots of h : Rd → R

d when only noisy measurements of h are available. It is therefore among the
class of stochastic (local) optimization algorithms which solve minθ∈C L(θ) where L is the objective
function (also called loss function), θ is the adjustable parameter and C is the constraint set. In this
optimization framework, h is the gradient of the function L or the gradient of the sum of L and a
penalty function to take into account the constraint set.

SA algorithms are iterative algorithms of the form

θn+1 = θn + γn+1ηn+1 (1)

where θn is the estimation of the root of h at time n, {γn, n ∈ N} is a sequence of deterministic
nonnegative stepsizes and {ηn, n ∈ N} is a random sequence of noisy measurements of h. In the
seminal work of Robbins and Monro [34], ηn is a noisy observation of h(θn) while in the paper by
Kiefer and Wolfowitz [20], ηn is an approximation of the gradient of L based on measurements of L.

‡corresponding author. mail: amandine.schreck@telecom-paristech.fr
†Institut Mines-Télécom ; Télécom ParisTech ; CNRS LTCI
§CNRS LTCI ; Télécom ParisTech
¶University of Jyväskylä ; Department of Mathematics and Statistics

1



There is a rich convergence theory developed for many years about stochastic approximation
algorithms. Some of them are about the long-time behavior: they prove the convergence of the
sequence {θn, n ∈ N} to the set {θ : h(θ) = 0} and establish asymptotic normality of the normalized

deviation γ−1/2n (θn − θ⋆) along the event {limn θn = θ⋆}. Robbins and Monro in [34] provide condi-
tions implying the mean-square convergence of the sequence {θn, n ∈ N}, while the first conditions
for almost-sure convergence were given by [7]. The first results on the asymptotic normality were
obtained by [37, 14, 36]. These long-time behavior analyses are derived under conditions on the set
{θ : h(θ) = 0}, on the sequence {γn, n ∈ N} and on the noise sequence {ηn, n ∈ N}. The limiting
set {θ : h(θ) = 0} has to be attractive in some sense. The stepsize sequence has to vanish at a rate
such that

∑
n γn = ∞ in order to prevent the algorithm to have premature and false convergence,

but has to decrease rapidly enough in order to control the noise sequence {ηn, n ∈ N} and allow
the convergence of the iterative scheme (1). About the noise sequence {ηn, n ∈ N}, the first results
were obtained in the case ηn+1 = H(θn,Xn+1) when {Xn, n ∈ N} are independent and identically
distributed. They were then extended to the case the conditional distribution of Xn+1 given the
past history of the algorithm depends on θn or on both (θn,Xn). The former is sometimes called
Robbins-Monro algorithm (see e.g. [6]) and the latter corresponds to a controlled Markovian (also
called state-dependent) dynamic. The interested reader will find in [24, 6, 40, 5, 25, 41, 8] many
results on stochastic approximation algorithms.

The goal of this paper is to provide almost-sure convergence results of the sequence {θn, n ∈ N}
in the case ηn+1 = H(θn,Xn+1) under weaker conditions on the regularity of the field H than what
is usually assumed in the literature; and in the general case when {Xn, n ∈ N} is a controlled Markov
chain.

When the elements of the sequence {Xn, n ∈ N} are independent, no regularity conditions are
required on the field H. Indeed, in this case, convergence results are directly obtained from super-
martingale arguments [6, Section 5]. When {Xn, n ∈ N} is a controlled Markovian sequence, Kushner
[23] and Tadić [43, Theorem 4.1] provide convergence results on SA algorithms by introducing reg-
ularity assumptions on H: for any x, θ 7→ H(θ, x) is assumed to be Hölder-continuous (see [23, Eq.
(4.2)] and [43, Eq. (4.1)]; see also [2, assumption (DRI2) and Proposition 6.1.]). Nevertheless in
many practical cases, the field H may not be continuous with respect to θ: examples are given in
[9, 10] for online learning, in [21] for finding the distribution with minimal quantile of a given order
among a parametric family of distributions; see also Section 4 below.

Convergence results on stochastic approximation algorithm with discontinuous dynamic H are
established under restrictive assumptions. For example, in [27], the sequence {Xn, n ∈ N} has to
satisfy a strong law of large numbers: limn n

−1
∑n

k=1H(θ⋆,Xn) = h(θ⋆) almost surely, at some rate,
for any θ⋆ ∈ {h = 0}. Such a strong law of large numbers with a rate of convergence may reveal to
be restrictive on {Xn, n ∈ N}.

In this paper, we aim at proving the convergence of a stochastic approximation scheme for a
discontinuous dynamic H when {Xn, n ∈ N} is a controlled Markov chain; note that this case covers
the Robbins-Monro case. A preliminary step to the proof of convergence is the proof of stability [25].
Different strategies have been proposed in the literature in order to make SA algorithms stable
(see for example [44, 25, 19]). Among them, Chen and Zhu force the sequence produced by their
algorithm to remain in a randomly growing compact set [12]. Below, we will address the convergence
of the self-stabilized stochastic approximation algorithm proposed in [2]: this algorithm introduces
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truncations on random varying sets, as Chen and Zhou do but with Markovian dynamics, and in
Theorem 2.1(i) sufficient conditions implying that the number of truncations is finite almost-surely
are provided. Therefore, this stabilized algorithm follows the equation (1) after some random (but
almost-surely finite) time. We then provide sufficient conditions for the almost-sure convergence of
{θn, n ∈ N} (see Theorem 2.1(ii)).

These results are motivated by the following applications. Firstly, quantile and multidimensional
median approximation are considered. Such approximations can be used in adaptation processes for
controlled Markov chains, as suggested in [3]. Quantile stochastic approximation is for example used
with Markovian dynamics in [39] as an adaptation process. The second application considered in this
work is vector quantization when solved by the 0 neighbors Kohonen algorithm. This algorithm is
used for example in finance, in frameworks where the observation sequence {Xn, n ∈ N} is Markovian
[33].

The paper is organized as follows: the stabilized stochastic approximation algorithm is described
in Section 2.1; the assumptions and the convergence results are resp. in Sections 2.2 and 2.3. Section 4
is devoted to some applications. Finally, the proofs are postponed in Section 3.

2 Convergence results

2.1 A stabilized Stochastic Approximation algorithm

A popular method to solve the stability problem is to force the sequence {θn, n ∈ N} to remain in
a fixed active compact set K. Nevertheless, this method is not satisfactory because a good choice
for K requires some knowledge about the location of the roots of h. The advantage of the solution
proposed by Chen and Zhu [12] (see also [11, 43]) is that it does not require to fix, prior the run of
the algorithm, a compact set in which all the estimates will be restricted: the active compact set is
allowed to randomly grow. The proof of convergence of this stabilized algorithm relies on the key
fact that the number of updates of the active set will be almost surely finite so that almost-surely,
the limiting points of this stabilized sequence are the limiting points of the original algorithm. The
paper by Andrieu, Moulines and Priouret [2] introduces a slightly different version of the algorithm
of [11] by allowing a control on the stepsizes after each update of the active set and by modifying
the variation mechanism of the active set. A last strategy for stabilization is proposed by Andrieu
and Vihola [4], in which Andradottir’s expanding projection approach is studied in the Markovian
case. Hereafter, we will consider the stochastic approximation algorithm as proposed in [2]. We now
fix some notations and describe this stabilized algorithm.

Let Θ be an open subset of Rd equipped with its Borel σ-field B(Θ); X be a general space with a
countably generated σ-field X ; and let H : Θ×X → R

d be a measurable function. Let {Pθ, θ ∈ Θ}
be a family of transition kernels on (X,X ). For any non negative number γ, define a transition
kernel Qγ on (X×Θ,X × B(Θ)) by

Qγf(x, θ) =

∫
Pθ(x, dy) f(y, θ + γH(θ, y)), x ∈ X, θ ∈ Θ , (2)

for any measurable function f such that the integral is well defined. Before running the stabilized
algorithm, the user has to choose a sequence of increasing compact sets: let {Kq, q ≥ 0} be a sequence
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of compact subsets of Θ such that
⋃

q≥0

Kq = Θ, and Kq ⊂ int(Kq+1), q ≥ 0, (3)

where int(A) denotes the interior of the set A. Roughly speaking, the algorithm runs as follows:
the algorithm is initialized at (X0, θ0) and the active set is set to K0. If, at iteration n, θn is in the
current active set then conditionally to the past, (Xn+1, θn+1) is sampled from Qγςn (Xn, θn; ·, ·) where
{ςn, n ∈ N} is some (possibly random) counter. If θn is not in the active set, then (i) (Xn+1, θn+1) ∼
Qγςn (Φ(Xn, θn); ·, ·) where Φ : X×Θ → X×Θ is a measurable function which is usually chosen as
a projection function on a bounded set of X×Θ; and (ii) the active set is modified.

In order to give a Markovian dynamic to the above algorithm, integer-valued random variables
κn, νn, ςn have to be introduced. κn is the index of the active set at the end of iteration n. νn is the
time spent from the last update of the active set: νn = 0 iff κn 6= κn−1. Finally, the method also
allows a modification of the stepsize sequence every time the active set is modified: at time n, the
step size is γςn where ςn is defined by

ςn+1 =

{
ςn + φ(νn) if the active compact set is modified at iteration n
ςn + 1 otherwise;

and φ : Z+ → Z is a measurable function such that φ(k) > −k for any k. As discussed in [2], different
choices can be made for the function φ. For example, φ(k) = 1 for all k in N implies that the sequence
{ςn, n ∈ N} is deterministic and ςn = n. Another example consists in choosing φ(k) = 1 − k: the
number of iterations between two successive updates of the active set is not taken into account.

The above algorithm can be summarized as follows: it is initialised at (X0, θ0) ∈ X × Θ and
ν0 = κ0 = 0 and ς0 = 1; a transition (Xn, θn, κn, νn, ςn) → (Xn+1, θn+1, κn+1, νn+1, ςn+1) is described
by Algorithm 1.

Algorithm 1

• sample

(Xn+1, θn+1) ∼
{
Qγςn (Φ(Xn, θn); ·) if νn = 0
Qγςn (Xn, θn; ·) otherwise ,

(4)

• set

(κn+1, νn+1, ςn+1) =

{
(κn, νn + 1, ςn + 1) if θn+1 ∈ Kκn

(κn + 1, 0, ςn + φ(νn)) otherwise .
(5)

Note from (2) that, except when the active set is modified at time n, the conditional distribution of
Xn+1 given the past is a Markov transition kernel controlled by the current value of the parameter
θn. The above framework is quite general: it covers the case when {Xn, n ∈ N} is a (non-controlled)
Markov chain by choosing Pθ = P for any θ, the Robbins-Monro case by choosing Pθ(x, ·) = πθ for
any x where {πθ, θ ∈ Θ} is a class of distributions on X, and the case when {Xn, n ∈ N} is an i.i.d.
sequence with distribution π by choosing Pθ(x, dy) = π(dy) for any x, θ.
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2.2 Assumptions

In the rest of the paper, for any d ∈ N, let
〈
·, ·
〉

denote the usual scalar product in R
d and ‖ · ‖

denote the associated norm.
We now introduce sufficient conditions for the stability and the convergence of the sequence

{θn, n ∈ N} described by Algorithm 1. By construction, a path of the sequence {θn, n ∈ N} can be
decomposed into blocks of random length such that during the block, the sequence is in a compact
set. Therefore, as shown in [2], the proof essentially consists in controlling the increment θn+1 − θn
along the event that {θn, n ∈ N} remains in a compact. To that goal, for any K ⊂ Θ, define the
stopping-time

σ(K) = inf{n ≥ 1, θn /∈ K} , (6)

with convention inf ∅ = +∞. For any function W : X → [1,∞), define the W -norm of a measurable
function f : X → R and the W -norm of a signed measure µ on (X,X ) by

|f |W = sup
X

|f |
W

, ‖µ‖W = sup
f,|f |W≤1

|µ(f)| .

Finally, for a sequence γ = {γn, n ∈ N}, denote by P
γ

x,θ (resp. E
γ

x,θ) the probability (resp. the
expectation) associated with the non-homogeneous Markov chain with δ(x,θ) as initial distribution
and Qγ0 , Qγ1 , · · · as transition kernels.

It is assumed that the functions Φ and H satisfy A1; assumptions on the ergodic behavior of
the transition kernels Pθ are given by A2. A4 introduce the conditions on the regularity in θ of the
dynamic H and the mean field function. Finally, conditions on the stepsize sequence {γn, n ∈ N} are
given in A5.

A1 (a) Φ : X×Θ → K×K0 where K ∈ X .

(b) H : Θ ×X → Θ is measurable and there exists a measurable function W : X → [1,∞)
such that for any compact set K ⊂ Θ, supθ∈K |H(θ, .)|W <∞.

(c) supKW <∞.

A2 The kernels {Pθ, θ ∈ Θ} satisfy the following conditions:

(a) For any θ in Θ, the kernel Pθ has a unique stationary distribution πθ.

(b) For any compact K ⊆ Θ, there exist positive constants C < ∞ and λ < 1 such that for
any x ∈ X, l ≥ 0,

sup
θ∈K

‖P lθ(x, .) − πθ‖W ≤ CλlW (x) , sup
θ∈K

πθ(W ) <∞ .

(c) There exists p > 1 and for any compact set K ⊆ Θ, there exists a constant C such that
for q ≥ 0 and any x ∈ X,

sup
θ∈K

sup
k≥0

E
γ
←q

x,θ

[
W p(Xk)1{σ(K)≥k}

]
≤ CW p(x) ,

where γ
←q = {γq+n, n ∈ N}.
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When Pθ = P for any θ, sufficient conditions for A2 are given in [30, Chapters 10 and 15]: they are
mainly implied by a drift condition of the form

PW p(x) ≤ λW p(x) + b1C(x) ,

where 0 < λ < 1, b > 0 and C is small [30, Chapter 5]. When Pθ depends upon θ, A2(b-c) results
in an homogeneous behavior of Pθ for θ being in a compact set. Sufficient conditions in terms of
drift inequality and minorization conditions implying A2(b-c) can be found in [15, Lemma 2.3]. For
example, a family of adaptive Metropolis-Hastings kernels with the same invariant distribution π
satisfies A2 provided π is sub-exponential (see e.g. [38, Proposition 15] or [15, Example 2]). Note
that in general, it is really unlikely that conditions of the form A2(b-c) when the supremum in θ is
for θ ∈ Θ hold. Nevertheless, the stabilization procedure only requires to control the chain when
{θn, n ∈ N} remains in a compact, thus yielding to a supremum over K, for any compact set K.

We now introduce the regularity conditions on H and assume that there exists a global Lyapunov
function for the mean-field h defined by

h(θ) =

∫
πθ(dx) H(θ, x) . (7)

A3 There exists α ∈ (0, 1] and for any compact set K ⊆ Θ, there exists a constant C > 0 such
that for all δ > 0,

sup
θ∈K

∫
πθ(dx) sup

{θ′,‖θ′−θ‖≤δ}

∥∥H(θ′, x)−H(θ, x)
∥∥ ≤ Cδα .

A3 is used to obtain some regularity for the solution to the Poisson equation associated to the
field H (see details below). This solution to the Poisson equation appears when decomposing the
sum of the noises obtained at each iteration in a martingale term and a remaining term. As said
previously, when the sequence {Xn, n ∈ N} is independent, convergence results are directly obtained
with martingale arguments (see [6, Section 5] for details), and there is no need to assume A3.

This assumption does not imply that θ 7→ H(θ, x) is continuous for any x, which is the usual
framework when proving the convergence of SA algorithms [2, Section 6]; the classical assumption is of
the form supθ1,θ2∈K ‖θ1−θ2‖−β |H(θ1, ·)−H(θ2, ·)|W <∞ for some β ∈ (0, 1] and supθ∈K πθ(W ) <∞,
which implies the condition A3 with α = β so that our framework covers this usual case.

A4 h is continuous on Θ and there exists a continuously differentiable function w : Θ → [0,∞)
such that

(a) There exists M0 > supK0
w such that

L :=
{
θ ∈ Θ,

〈
∇w(θ), h(θ)

〉
= 0
}
⊂ {θ ∈ Θ, w(θ) < M0} . (8)

(b) There exists M1 ∈ (M0,∞] such that {θ ∈ Θ, w(θ) ≤M1} is a compact set.

(c) For any θ ∈ Θ \ L,
〈
∇w(θ), h(θ)

〉
< 0.

(d) w(L) has an empty interior.
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Lemma 3.7 shows that under assumptions A2 and A3, h is continuous as soon as limθ→θ′ DW (θ, θ′) =
0 where DW is some measure of the difference between the kernels Pθ and Pθ′ and is defined by

DW (θ, θ′) = sup
x∈X

‖Pθ(x, .) − Pθ′(x, .)‖W
W (x)

. (9)

A4 is a classical assumption in stochastic approximation theory (see for example [6, Part II, Section
1.6], or [8, Section 3.3]). It is known as the Robbins-Siegmund assumption [27] in reference to
the Robbins-Siegmund Lemma [35]. We finally conclude this set of assumptions by conditions on
the stepsize γ = {γn, n ∈ N}. To make these conditions readable, we assume that this sequence is
polynomially decreasing. The proofs are nevertheless written with a generic stepsize sequence and
A6 in Section 3 states the conditions on {γn, n ∈ N} in the general case.

A5 γ = {γ0/(n + 1)β , n ≥ 0} with β satisfying:

(a) β ∈ (max
(
1
2 ,

1+α/p
1+α

)
; 1], where p and α are respectively defined in A2(c) and A3.

(b) For any compact set K ⊂ Θ and any C > 0, there exists r ∈ ( 1
βα − 1

α ; 1 − 1
βp) such that

for any Γ > 0,

lim
q→∞

∑

k:k−⌈C log(k+q)⌉≥0

log2(k + q)

(k + q)β

k∑

j=k−⌈C log(k+q)⌉+1

Dj(q) = 0 ,

where

Dj(q) = sup
(x,θ)∈K×K0

E
γ
←q

x,θ

[
DW (θj , θj−1)

p/(p−1)
1{σ(K)≥j}1‖θj−θj−1‖≤Γ(j+q)−βr

](p−1)/p
,

⌈·⌉ denotes the upper integer part and K, p are respectively given by A1(a) and A2(c).

In the simple case when for any θ ∈ Θ, Pθ = P , DW (θ, θ′) = 0 for any θ, θ′, and A5(b) is trivial.
When for any compact subset K ⊆ Θ, there exists a constant C such that supθ,θ′∈KDW (θ, θ′) ≤

C‖θ− θ′‖ (this is the case for some Adaptive Metropolis kernels Pθ, see [1, Lemma 13]), then A5(b)
holds if β(1 + r) > 1; since α ∈ (0, 1] (see A3), the condition r > α−1(1/β − 1) implies β(1 + r) > 1
and A5(b) holds.

2.3 Main result

Algorithm 1 defines a Θ×X×N
3-valued homogeneous Markov chain Z = {(Xn, θn, κn, νn, ςn), n ∈

N}. We denote by Px,θ (resp. Ex,θ) the canonical probability (resp. the canonical expectation)
associated to Z, with initial distribution δ(x,θ,0,0,1).

The following theorem shows that the number of updates of the active set is finite almost-surely:
this implies that there exists a random time N , finite almost-surely and such that for any n > N ,

θn+1 = θn + γζN+n−NH(θn,Xn+1) .

The second statement establishes the convergence of this stabilized sequence to the set L defined by
(8). The proof of Theorem 2.1 is given in Section 3.
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Theorem 2.1. Assume A1 to A5.

(i) With probability one, the number of updates of the active set is finite: for any x ∈ K and
θ ∈ K0,

Px,θ

(
sup
k≥1

κk <∞
)

= 1 .

(ii) With probability one, the sequence {θn, n ∈ N} converges to the set L given by (8): for any
x ∈ K and θ ∈ K0,

Px,θ

(
lim
k→∞

d(θk,L) = 0

)
= 1 .

3 Proofs

Define the translated sequence γ←q = {γq+n, n ≥ 0} and the level set WM = {θ ∈ Θ, w(θ) ≤ M}.
All the discussions below are written with a generic sequence γn, in order to outline the extension of
our work to the case when γn is not polynomially decreasing. We prove Theorem 2.1 by replacing
A5 with

A6 The sequence γ = {γn, n ∈ N} is a non-increasing positive sequence such that:

(a)
∑
γk = ∞.

(b)
∑(

γpk + γ2k
)
<∞ where p is given by A2(c).

(c) There exists a constant r ∈ (0, 1) satisfying

(i)
∑

k γ
p(1−r)
k <∞, with p defined in A2(c).

(ii) For any constant C > 0,
∑

k γ
1+rα
1∨(k−⌈C| log γk |⌉)

| log(γk)|1+α <∞, with α defined in A3.

(iii) For any constant C > 0, limq→∞ supk ψq(k)γ
r
q+k−ψq(k)

= 0 where ψq(k) = (k − 1) ∧
⌈C| log(γk+q)|⌉.

(iv) For any compact subset K of Θ and any positive constants C,Γ,

lim
q→∞

∑

k

γk+q+1ψ
2
q (k)

k∑

j=k−ψq(k)+1

sup
(x,θ)∈K×K0

E
γ
←q

x,θ

[
DW (θj , θj−1)

p/(p−1)
1{σ(K)≥j}1‖θj−θj−1‖≤Γγrj+q

](p−1)/p
= 0,

where K, p are respectively given by A1(a) and A2(c).

Note that these conditions are verified with γn ∝ n−β (for all large n) with β, r satisfying A5.
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3.1 Proof of Theorem 2.1.(i)

If an update of the active set occurs at time q, then until the next update of the active set, the
update of {θn, n > q} is given by:

θn+1 = θn + γςnh(θn) + γςn (H(θn,Xn+1)− h(θn)) .

As shown in [2, Theorems 2.2. and 2.3.], it is important to control the noise between two successive
updates of the active set. Note that the update of the active set mechanism described in Algorithm 1
differs from the mechanism in [2]: due to their assumptions on the m-iterated transition kernels for
some m ≥ 1 (see [2, Assumptions DRI]), the distance between two successive values of the parameters
have to be controlled. To that goal, they introduce a second update of the active set every time
‖θn+1 − θn‖ is larger than a time-dependent threshold. In this paper, our assumptions on the
transition kernels are in terms of geometric ergodicity (see A2) and therefore, this supplementary
update of the active set is relaxed.

For a stepsize sequence ρ = {ρn, n ∈ N}, a compact subset K of Θ, and l, n ≥ 0, set

Sl,n(ρ,K) = 1{σ(K)≥n}

n∑

k=l

ρk (H(θk−1,Xk)− h(θk−1)) ,

where σ(K), defined by (6) denotes the first exit time from the set K. Following the same approach
as in [2, Sections 4 and 5], the proof of Theorem 2.1(i) is in two steps. The first step consists in
showing that the quantity Px,θ

(
supk≥1 κk ≥ m

)
decreases at a geometric rate. This rate is an upper

bound of the sum of the errors γςn (H(θn,Xn+1)− h(θn)) between two updates of the active set.

Proposition 3.1. Assume A1(a), A1(c) and A4. For any M ∈ (M0,M1], there exist δM > 0 and
qM ∈ N such that for any m ≥ q⋆ ≥ qM ,

sup
x∈K

sup
θ∈K0

Px,θ

(
sup
k≥1

κk ≥ m

)
≤
(
sup
q≥q⋆

sup
x∈K

sup
θ∈K0

P
γ
←q

x,θ

(
sup
k≥1

|S1,k(γ←q,WM )| ≥ δM

))m
.

Proposition 3.1 is a slight adaptation of [2, Corollary 4.3] and the proof is omitted.
The second step of the proof consists in showing that there exist M ∈ (M0,M1) and q⋆ ≥ qM

large enough so that

sup
q≥q⋆

sup
x∈K

sup
θ∈K0

P
γ
←q

x,θ

(
sup
k≥1

|S1,k(γ←q,WM )| ≥ δM

)
< 1 . (10)

To that goal, we decompose S1,n into a martingale and remainder terms; set

gθ =
∑

l≥0

[
P lθ (H(θ, .))− πθ (H(θ, .))

]
. (11)

gθ solves the Poisson equation g − Pθg = H(θ, .) − πθ(H(θ, .)). Under A2(b), such a solution exists
and for any compact set K it holds (see e.g.[30, Chapter 17.4]) supθ∈K (|gθ |W + |Pθgθ |W ) <∞. This
allows to write for any compact set K ⊂ Θ and any sequence {ρn, n ∈ N}

S1,n(ρ,K) = 1{σ(K)≥n}

n∑

k=1

ρk
(
gθk−1

(Xk)− Pθk−1
gθk−1

(Xk)
)
= 1{σ(K)≥n}

5∑

i=1

Ti,n , (12)

9



with

T1,n(K) =

n∑

k=1

ρk
(
gθk−1

(Xk)− Pθk−1
gθk−1

(Xk−1)
)
1{σ(K)≥k} ,

T2,n(K) =

n−1∑

k=1

(ρk+1 − ρk)Pθk−1
gθk−1

(Xk)1{σ(K)≥k+1} ,

T3,n(K) = ρ1Pθ0gθ0(X0)1{σ(K)≥1} − ρnPθn−1gθn−1(Xn)1{σ(K)≥n} ,

T4,n(K) =
n−1∑

k=1

ρk+1

(
Pθkgθk(Xk)− Pθk−1

gθk−1
(Xk)

)
1{σ(K)≥k+1} ,

T5,n(K) = −
n−1∑

k=1

ρkPθk−1
gθk−1

(Xk)1{σ(K)=k} .

Note that 1{σ(K)≥n}T5,n(K) = 0. Then, by Markov’s inequality, for any pi ≥ 1, we write

P
γ
←q

x,θ

(
sup
n≥1

|S1,n(γ←q,K)| ≥ δ

)
≤

3∑

i=1

(
4

δ

)pi
E
γ
←q

x,θ

[
sup
n≥1

1{σ(K)≥n}|Ti,n(K)|pi
]

+ P
γ
←q

x,θ

(
sup
n≥1

|T4,n(K)| ≥ δ/4

)
.

Proposition 3.2 below controls the moments of T1,n, T2,n and T3,n. Since K0 ⊆ WM0 , supKW < ∞
and limq

∑
k γ

2
k+q = limq

∑
k γ

p
k+q = 0 (see assumptions A1(c), A4(a) and A6(b)), Proposition 3.2

implies that for any M ∈ (M0,M1],

lim
q→∞

3∑

i=1

(
4

δM

)pi
sup

(x,θ)∈K×K0

E
γ
←q

x,θ

[
sup
n≥1

1{σ(WM )≥n}|Ti,n(WM )|pi
]
= 0 ,

with (p1, p2, p3) = (1, 1, p). The originality of our work is in the control of the last term T4,n. Note
that under our assumptions on H, the condition (A3) of [2] may not hold so that the computations
in the proof of [2, Proposition 5.2] can not be used for T4,n. Choose r satisfying A6(c) and set

Aγ
←q

Γ (K, j) =
{

sup
1≤k≤j

‖θk − θk−1‖
γrk+q

1{σ(K)≥k} ≤ Γ

}
. (13)

We write for any Γ > 0,

P
γ
←q

x,θ

(
sup
k≥1

|T4,k(K)| ≥ δ/4

)

≤ 4

δ
E
γ
←q

x,θ

[
sup
k≥1

|T4,k(K)|1
∩jA

γ←q

Γ (K,j)

]
+ P

γ
←q

x,θ

(
sup
k

‖θk − θk−1‖
γrk+q

1{σ(K)≥k} > Γ

)
.
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Lemma 3.3 combined with the assumption A1(c) shows that for any ǫ > 0 and any M ∈ (M0,M1],
there exists Γ > 0 such that

sup
q≥0

sup
x∈K

sup
θ∈K0

P
γ
←q

x,θ

(
sup
k

‖θk − θk−1‖
γrk+q

1{σ(K)≥k} > Γ

)
≤ ǫ .

Proposition 3.4 and the assumption A1(c) imply that for any ǫ > 0, any M ∈ (M0,M1) and any
Γ > 0, there exists q⋆ such that

sup
q≥q⋆

sup
x∈K

sup
θ∈K0

E
γ
←q

x,θ

[
sup
k≥1

|T4,k(WM )|1
∩jA

γ←q

Γ (WM ,j)

]
≤ ǫ .

This will conclude the proof of Theorem 2.1(i).

Proposition 3.2. Assume A1(b) and A2. For any compact subset K ⊂ Θ, there exists a constant
C such that for any q ≥ 0 and any x ∈ X,

sup
θ∈K

E
γ
←q

x,θ

[
sup
n≥0

|T1,n(K)|
]
≤ C

(
∞∑

k=0

γ2k+q

)1/2

W (x) ,

sup
θ∈K

E
γ
←q

x,θ

[
sup
n≥0

|T2,n(K)|
]
≤ CγqW (x) ,

sup
θ∈K

E
γ
←q

x,θ

[
sup
n≥0

|T3,n(K)|p
]
≤ C

(
∞∑

k=0

γpk+q

)
W p(x) ,

where p is given in A2(c).

The proof is on the same lines as the computations in [2, Appendix A] and is omitted.

Lemma 3.3. Assume A1(b-c), A2(c) and let r ∈ (0, 1) satisfying A6(ci). For any compact set
K ⊂ Θ and any ǫ > 0, there exists Γ > 0 such that

sup
q≥0

sup
x∈K

sup
θ∈K0

P
γ
←q

x,θ

(
sup
n

‖θn − θn−1‖
γrn+q

1{σ(K)≥n} > Γ

)
≤ ǫ .

Proof. Fix a compact subset K ⊂ Θ. Under P
γ
←q

x,θ and on the set {σ(K) ≥ n}, θn − θn−1 =
γn+qH(θn−1,Xn) for any n ≥ 0. Then, by A1(b), there exists a constant C such that, on the set
{σ(K) ≥ n}, ‖θn − θn−1‖ ≤ Cγn+qW (Xn). This yields for any Γ > 0,

P
γ
←q

x,θ

(
sup
n

‖θn − θn−1‖
γrn+q

1{σ(K)≥n} > Γ

)
≤ Cp

Γp
E
γ
←q

x,θ

[
sup
n
γ
p(1−r)
n+q W p(Xn)1{σ(K)≥n}

]

≤ Cp

Γp

∑

n

γ
p(1−r)
n+q E

γ
←q

x,θ

[
W p(Xn)1{σ(K)≥n}

]
.
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By A1(c) and A2(c), there exists a constant C ′ such that

sup
q≥0

sup
x∈K

sup
θ∈K0

P
γ
←q

x,θ

(
sup
n

‖θn − θn−1‖
γrn+q

1{σ(K)≥n} > Γ

)
≤ C ′

Γp

∑

n

γp(1−r)n ,

which concludes the proof by A6(ci).

Proposition 3.4. Assume A1 to A4 and A6(b-c). Let M ∈ (M0,M1) and Γ > 0. There exists q⋆
such that for any q ≥ q⋆ and any x ∈ X,

sup
θ∈WM

E
γ
←q

x,θ

[
sup
n≥0

|T4,n(WM )|1
Aγ←q

Γ (WM ,n)

]
≤
(
∞∑

k=1

Ck(γ
←q)

)
W (x) , (14)

where the Ck(γ
←q) are finite constants depending on γ

←q and such that limq→∞
∑

k≥1Ck(γ
←q) = 0.

Proof. Let Γ > 0 and M ∈ (M0,M1) be fixed. Set K = WM (note that by A4(a), K0 ⊂ K)
and let λ ∈ (0, 1) be the ergodic rate given by A2(b) when applied with the compact K. Set

ψq(k) = (k − 1) ∧
⌈
| log(γk+q)|
| log(λ)|

⌉
, where ⌈·⌉ denotes the upper integer part. Fix M ′ ∈ (M,M1) and set

K′ = WM ′ .
By A6(ciii), there exists q⋆ such that for any q ≥ q⋆,

{θ ∈ Θ,d(θ,K) ≤ Γ sup
k
ψq(k)γ

r
q+k−ψq(k)

} ⊆ K′ . (15)

Hereafter, q ≥ q⋆. By definition of gθ (see (11)) and h(θ) (see (7)),

Pθkgθk − Pθk−1
gθk−1

=
∑

l>ψq(k)

[
P lθk (H(θk, .)) − h(θk)

]
−

∑

l>ψq(k)

[
P lθk−1

(H(θk−1, .)) − h(θk−1)
]

+ ψq(k) [h(θk)− h(θk−1)] +

ψq(k)∑

l=1

P lθk(H(θk, .)) − P lθk−1
(H(θk−1, .)) .

This implies T4,n(K) =
∑4

i=1 T
(i)
4,n, with

T
(1)
4,n =

n−1∑

k=1

γq+k+1

∑

l>ψq(k)

[
P lθk (H(θk, .)) (Xk)− h(θk)

]
1{σ(K)≥k+1} ,

T
(2)
4,n = −

n−1∑

k=1

γq+k+1

∑

l>ψq(k)

[
P lθk−1

(H(θk−1, .)) (Xk)− h(θk−1)
]
1{σ(K)≥k+1} ,

T
(3)
4,n =

n−1∑

k=1

γq+k+1ψq(k) [h(θk)− h(θk−1)] 1{σ(K)≥k+1} ,

T
(4)
4,n =

n−1∑

k=1

γq+k+1

ψq(k)∑

l=1

[
P lθk(H(θk, .))(Xk)− P lθk−1

(H(θk−1, .))(Xk)
]
1{σ(K)≥k+1} .
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Control of T
(1)
4,n and T

(2)
4,n

By A1(b) and A2(b), there exists C > 0 such that for any q ≥ 0,

∣∣∣T (1)
4,n

∣∣∣ ≤ C

1− λ

n−1∑

k=1

γq+k+1λ
ψq(k)W (Xk)1{σ(K)≥k+1} .

Hence,

sup
θ∈K

E
γ
←q

x,θ

[
sup
n≥0

∣∣∣T (1)
4,n

∣∣∣
]
≤ C

1− λ

(
∞∑

k=1

γq+k+1λ
ψq(k)

)
sup
θ∈K

sup
k≥0

E
γ
←q

x,θ

[
W (Xk)1{σ(K)≥k}

]
.

Finally, by A2(c), there exists a constant C > 0 (depending upon K) such that for any q ≥ 0,

sup
θ∈K

E
γ
←q

x,θ

[
sup
n≥0

∣∣∣T (1)
4,n

∣∣∣
]
≤ C

(
∞∑

k=1

γq+k+1λ
ψq(k)

)
W (x) . (16)

Similarly, we obtain

sup
θ∈K

E
γ
←q

x,θ

[
sup
n≥0

∣∣∣T (2)
4,n

∣∣∣
]
≤ C

(
∞∑

k=1

γq+k+1λ
ψq(k)

)
W (x) . (17)

Control of T
(3)
4,n

By Lemma 3.7, there exists C > 0 such that for any k ≥ 1

|h(θk)− h(θk−1)|1{σ(K)≥k+1} ≤ C (DW (θk, θk−1) + ‖θk − θk−1‖α) 1{σ(K)≥k+1} .

When k ≤ σ(K), θk − θk−1 = γq+kH(θk−1,Xk) P
γ
←q

x,θ -almost surely. By A1(b), this implies

|h(θk)− h(θk−1)|1{σ(K)≥k+1} ≤ C
(
DW (θk, θk−1) + γαq+kW

α(Xk)
)
1{σ(K)≥k+1} .

A2(c) finally yields

sup
θ∈K

E
γ
←q

x,θ

[
sup
n≥0

∣∣∣T (3)
4,n

∣∣∣1
Aγ←q

Γ (K,n)

]

≤ C

∞∑

k=1

γq+k+1ψq(k)
(
E
γ
←q

x,θ [DW (θk, θk−1)1{k+1≤σ(K)}1Aγ←q

Γ (K,k)
] + γαq+kW

α(x)
)
. (18)

Control of T
(4)
4,n

We finally consider the term T
(4)
4,n along the event Aγ

←q

Γ (K, n). We write

T
(4)
4,n =

n−1∑

k=1

γq+k+1

ψq(k)∑

l=1

[
P lθk(H(θk, .))(Xk)− P lθk−ψq(k)(H(θk−ψq(k), .))(Xk)

]
1{σ(K)≥k+1}

+

n−1∑

k=1

γq+k+1

ψq(k)∑

l=1

[
P lθk−ψq(k)(H(θk−ψq(k), .))(Xk)− P lθk−1

(H(θk−1, .))(Xk)
]
1{σ(K)≥k+1}
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and consider the first term. The second term is on the same lines and will be omitted.
Note that as the sequence γ

←q is non-increasing, on the set Aγ
←q

Γ (K, n), for any k ≤ n ∧ σ(K),

‖θk − θk−ψq(k)‖ ≤ Γ ψq(k) γ
r
q+k−ψq(k)

.

Define the function FL : Θ×X → Θ by

FL(τ, x) = sup
{θ:‖θ−τ‖≤L}

|H(θ, x)−H(τ, x)| .

By A4, the set K′ is a compact set, so that by A1(b), supθ∈K′ |H(θ, .)|W < ∞. Then, (15) implies
that there exists a constant C⋆ such that for any k ∈ N and any q ≥ q⋆, on the set {σ(K) ≥ k−ψq(k)},

|FΓ supk ψq(k)γ
r
q+k−ψq(k)

(θk−ψq(k), ·)|W ≤ C⋆ . (19)

It holds on the set Aγ
←q

Γ (K, n) ∩ {k + 1 ≤ σ(K)}
∣∣∣P lθk(H(θk, .))(Xk)− P lθk−ψq(k)(H(θk−ψq(k), .))(Xk)

∣∣∣

≤ P lθk−ψq(k)

∣∣H(θk, .)−H(θk−ψq(k), .)
∣∣ (Xk) +

∣∣∣
(
P lθk − P lθk−ψq(k)

)
(H(θk, .))(Xk)

∣∣∣

≤ P lθk−ψq(k)FΓψq(k)γrq+k−ψq(k)
(θk−ψq(k), ·)(Xk) + C sup

θ∈K
|H(θ, .)|W DW (θk, θk−ψq(k))W (Xk) (20)

where we used Lemma 3.5 in the last equality, and the constant C only depends on K (and not on
k, q). On one hand, by the Hölder’s inequality and the assumptions A2(c) and A6(civ)

sup
θ∈K

E
γ
←q

x,θ

[
DW (θk, θk−ψq(k))W (Xk)1k+1≤σ(K)1Aγ

←q

Γ (K,n)

]

≤ sup
θ∈K

(
E
γ
←q

x,θ

[
DW (θk, θk−ψq(k))

p/(p−1)
1k+1≤σ(K)1Aγ

←q

Γ (K,k)

])(p−1)/p
W (x) . (21)

On the other hand,

sup
θ∈K

E
γ
←q

x,θ

[
P lθk−ψq(k)

FΓψq(k)γrq+k−ψq(k)
(θk−ψq(k), ·)(Xk)1k+1≤σ(K)1Aγ

←q

Γ (K,k)

]

≤ sup
θ∈K

E
γ
←q

x,θ

[
P lθk−ψq(k)

FΓψq(k)γrq+k−ψq(k)
(θk−ψq(k), ·)(Xk)1k≤σ(K)1Aγ

←q

Γ (K,k)

]

≤ sup
θ∈K

E
γ
←q

x,θ

[
Pθk−1

P lθk−ψq(k)
FΓψq(k)γrq+k−ψq(k)

(θk−ψq(k), ·)(Xk−1)1k≤σ(K)1Aγ
←q

Γ (K,k−1)

]

≤ sup
θ∈K

E
γ
←q

x,θ

[
P l+1
θk−ψq(k)

FΓψq(k)γrq+k−ψq(k)
(θk−ψq(k), ·)(Xk−1)1k≤σ(K)1Aγ

←q

Γ (K,k−1)

]

+ C⋆ sup
θ∈K

E
γ
←q

x,θ

[
DW (θk−1, θk−ψq(k)) W (Xk−1) 1k≤σ(K)1Aγ

←q

Γ (K,k−1)

]
(22)
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where we used (19) in the last inequality. By recursion, we have

sup
θ∈K

E
γ
←q

x,θ

[
P lθk−ψq(k)FΓψq(k)γrq+k−ψq(k)

(θk−ψq(k), ·)(Xk)1k+1≤σ(K)1Aγ
←q

Γ (K,k)

]

≤ C⋆

ψq(k)−1∑

j=1

sup
θ∈K

E
γ
←q

x,θ

[
DW (θk−j, θk−ψq(k)) W (Xk−j) 1k−j+1≤σ(K)1Aγ

←q

Γ (K,k−j)

]

+ sup
θ∈K

E
γ
←q

x,θ

[
P
l+ψq(k)
θk−ψq(k)

FΓψq(k)γrq+k−ψq(k)
(θk−ψq(k), ·)(Xk−ψq(k))1k−ψq(k)+1≤σ(K)

]
. (23)

By A2(b-c), A3 and (19), there exists C such that for any x ∈ X, q, k, ℓ ≥ 0

sup
θ∈K

E
γ
←q

x,θ

[
P
l+ψq(k)
θk−ψq(k)

FΓψq(k)γrq+k−ψq(k)
(θk−ψq(k), ·)(Xk−ψq(k))1k−ψq(k)+1≤σ(K)

]

≤ CC⋆ λ
ℓ+ψq(k)W (x) + C

(
Γψq(k)γ

r
q+k−ψq(k)

)α
. (24)

Therefore, by combining Eqs. (20) to (24), we obtain that there exists a constant C such that for
any q ≥ q⋆,

C sup
θ∈K

E
γ
←q

x,θ

[
sup
n≥0

∣∣∣T (4)
4,n(K)

∣∣∣ 1Aγ←qΓ (K,n)

]

≤
∑

k

γ1+αrq+k−ψq(k)
ψq(k)

1+α +
∑

k

γq+k+1 λ
ψq(k) W (x)

+W (x)
∑

k

γq+k+1ψq(k)

ψq(k)−1∑

j=0

sup
θ∈K

E
γ
←q

x,θ

[
DW (θk−j, θk−ψq(k))

p/(p−1)
1k−j+1≤σ(K)1Aγ

←q

Γ (K,k−j)

](p−1)/p

(25)

Conclusion

Combining the upper bounds (16), (17), (18) and (25), we obtain (14) with Ck(γ←q) given by

Ck(γ
←q) =

∑

k

γ2q+k +
∑

k

γ1+αq+k ψq(k) +
∑

k

γ1+αrq+k−ψq(k)
ψq(k)

1+α

+
∑

k

γk+q+1 ψq(k) sup
θ∈K

E
γ
←q

x,θ

[
DW (θk, θk−1) 1k+1≤σ(K)1Aγ

←q

Γ (K,k)

]

+
∑

k

γq+k+1ψq(k)

ψq(k)−1∑

j=0

sup
θ∈K

E
γ
←q

x,θ

[
DW (θk−j, θk−ψq(k))

p/(p−1)
1k−j+1≤σ(K)1Aγ

←q

Γ (K,k−j)

](p−1)/p

The conditions A6(b) and A6(cii-civ) imply that limq
∑

k Ck(γ
←q) = 0.

Lemma 3.5. Assume A2(b). For any compact set K ⊂ Θ, there exists a constant C such that for
any θ, θ′ ∈ K

sup
n≥0

sup
x∈X

‖Pnθ (x, .)− Pnθ′(x, .)‖W
W (x)

≤ CDW (θ, θ′) ,

where DW is defined by (9).
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Proof. For any measurable function f such that |f |W ≤ 1,

Pnθ f(x)− Pnθ′f(x) =

n−1∑

j=0

P jθ′(Pθ − Pθ′)
(
Pn−j−1θ f(x)− πθ(f)

)
.

Then for any 0 ≤ j ≤ n− 1,
∣∣∣P jθ′(Pθ − Pθ′)

(
Pn−j−1θ f(x)− πθ(f)

)∣∣∣ ≤ P jθ′W (x)
∣∣∣(Pθ − Pθ′)

(
Pn−j−1θ f − πθ(f)

)∣∣∣
W

≤ DW (θ, θ′) P jθ′W (x)
∣∣∣Pn−j−1θ f − πθ(f)

∣∣∣
W

.

By A2(b), there exist C > 0 and λ ∈ (0, 1) such that for any θ, θ′ ∈ K,

P jθ′W (x)
∣∣∣Pn−j−1θ f − πθ(f)

∣∣∣
W

≤ C
(
λjW (x) + πθ′(W )

)
λn−j−1 .

This concludes the proof.

Lemma 3.6. Assume A2(b-c). For any compact set K ⊂ Θ, there exist C > 0 and λ ∈ (0, 1) such
that for any θ, θ′ ∈ K

‖πθ − πθ′‖W ≤ CDW (θ, θ′) .

Proof. For any x ∈ X, ψ ∈ N,

‖πθ − πθ′‖W ≤
∥∥∥πθ − Pψθ (x, ·)

∥∥∥
W

+
∥∥∥Pψθ (x, ·) − Pψθ′ (x, ·)

∥∥∥
W

+
∥∥∥Pψθ′ (x, ·)− πθ′

∥∥∥
W

.

By A2(b), there exist constants C > 0 and λ ∈ (0, 1) such that for any ψ ∈ N and x ∈ X

sup
θ∈K

∥∥∥πθ − Pψθ (x, ·)
∥∥∥
W

≤ CλψW (x) .

Moreover, using Lemma 3.5, there exists a constant C ′ > 0 such that for any θ, θ′ ∈ K and any
x ∈ X,

sup
ψ∈N

∥∥∥Pψθ (x, ·) − Pψθ′ (x, ·)
∥∥∥
W

≤ C ′DW (θ, θ′)W (x) .

The proof follows, upon noting that x is fixed and arbitrarily chosen.

Lemma 3.7. Assume A1(b), A2(b-c) and A3. For any compact set K ⊂ Θ, there exist C > 0 and
λ ∈ (0, 1) such that for any θ, θ′ ∈ K,

|h(θ)− h(θ′)| ≤ C
(
DW (θ, θ′) + ‖θ − θ′‖α

)
,

where DW and α are given by (9) and A3.
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Proof. Let K be a compact subset of Θ and θ and θ′ be in K. By definition of h, it holds

|h(θ)− h(θ′)| = |πθ(H(θ, .)) − πθ′(H(θ′, .))| ≤ πθ(|H(θ, .)−H(θ′, .)|) + |(πθ − πθ′)(H(θ′, .))| .

Condition A3 implies that there exists a constant C > 0 such that for any θ, θ′ ∈ K,

πθ(|H(θ, .) −H(θ′, .)|) ≤ C‖θ − θ′‖α .

By Lemma 3.6 and condition A1(b), there exist constants C > 0 and λ ∈ (0, 1) such that for any
θ, θ′ ∈ K,

∣∣πθ(H(θ′, .))− πθ′(H(θ′, .))
∣∣ ≤ CDW (θ, θ′) .

The proof follows.

3.2 Proof of Theorem 2.1(ii)

By Theorem 2.1(i), there is an almost-sure finite number κ of updates of the active set. Denoting
by Tκ the time when the last update occurs, the second step of the proof consists in studying the
sum of the errors made from this last update to the end. Define

Bκ = lim sup
l→∞

sup
n≥Tκ+l

∣∣∣∣∣∣

n∑

j=Tκ+l

γςj (H(θj−1,Xj)− h(θj−1))

∣∣∣∣∣∣
1{Tκ<∞} .

Following the same lines as in [2, Theorem 5.5.], it can be shown that Propositions 3.2 and 3.4 imply
Bκ = 0 almost surely. This concludes the proof of Theorem 2.1.(ii) using [2, Theorem 2.3]. Details
are omitted and can be found in [2, Section 5].

4 Examples - Illustration

In all this section, for any d ∈ N, any x ∈ R
d and any r > 0 we define

B(x, r) = {y ∈ R
d, ‖y − x‖ ≤ r} .

4.1 Quantile approximation

The goal of this section is to estimate the quantile of order q, for a fixed q ∈ (0, 1), of a given
distribution π which is assumed to satisfy the following conditions:

E1 The distribution π on R
d is absolutely continuous with respect to the Lebesgue measure, with

bounded Radon–Nikodym derivative, and satisfies
∫
‖x‖π(dx) <∞.

In particular, E1 implies that the cumulative distribution function associated with π is continuous.

E2 {Pθ, θ ∈ Θ} is a family of kernels satisfying A2, and such that πθ = π for any θ ∈ Θ.
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4.1.1 Quantile in one dimension

We focus here on the case of quantile approximation in one dimension (i.e. d = 1); Θ = R and
X = R. Let q ∈ (0, 1). We consider the stochastic approximation procedure with field

H(θ, x) = q − 1{x≤θ} . (26)

We prove that the conditions A1 (b), A3 and A4 are satisfied. Therefore, Algorithm 1 run with
(π, Pθ) satisfying conditions E1 and E2, H given by (26), a truncation mapping Φ satisfying A1 (a)
and a sequence {γn, n ∈ N} of stepsizes satisfying A6 defines a sequence {θn, n ∈ N} converging to
L = {θ ∈ Θ,Pπ(X ≤ θ) = q}.

Proposition 4.1. Assume E1 and E2. Then conditions A1 (b), A3 and A4 are satisfied for H given
by (26), with L = {θ ∈ Θ,Pπ(X ≤ θ) = q}.

Proof. H is bounded, so A1(b) is satisfied for any function W ≥ 1. Moreover,

|H(θ1, x)−H(θ2, x)| = 1{θ1∧θ2≤x<θ1∨θ2} ,

and by E1,

sup
θ∈R

∫
sup

θ1,θ2∈B(θ,δ)
|H(θ1, x)−H(θ2, x)|π(dx) ≤ sup

θ∈R

∫
1{θ−δ≤x≤θ+δ}π(dx) ≤ 2δ sup

X

π . (27)

Therefore, A3 is satisfied with α = 1 and C = 2 supX π.
Define

w(θ) =
1

2
Eπ [|θ −X|] +

(
1

2
− q

)
θ ,

where under Pπ (and the associated expectation Eπ), X ∼ π. We have for any t ≥ 0,

w(θ + t)− w(θ) =
1

2

∫
(|θ + t− x| − |θ − x|) π(x)dx+

(
1

2
− q

)
t

=
t

2

∫

{x,x≤θ}
π(x)dx − t

2

∫

{x,x≥θ+t}
π(x)dx

+

∫

{x,θ≤x≤θ+t}
(θ − x)π(x)dx+

t

2

∫

{x,θ≤x≤θ+t}
π(x)dx+

(
1

2
− q

)
t .

Therefore, w is differentiable, and

w′(θ) =
1

2
(Pπ(X ≤ θ)− (1− Pπ(X ≤ θ))) +

(
1

2
− q

)
= Pπ(X ≤ θ)− q .

By definition of h and H (see (7) and (26)),

h(θ) = π(H(θ, .)) = q − Pπ(X ≤ θ) = −w′(θ) .
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Therefore, the set L in A4(a) is given by L = {θ ∈ Θ,Pπ(X ≤ θ) = q}, and A4(c) is satisfied. Note
that w is constant on L since w′(θ) = 0 for any θ ∈ L and L is an interval. Hence, A4(a) and A4(d)
hold. Moreover, by (27), there exists a constant C such that

∣∣h(θ)− h(θ′)
∣∣ =

∣∣w′(θ)− w′(θ′)
∣∣ =

∣∣π
(
H(θ, .)−H(θ′, .)

)∣∣ ≤ C|θ − θ′| .

Therefore, w′ and h are continuous.
In addition, as w is continuous, A4(b) holds if lim|θ|→∞w(θ) = ∞. Note that this holds true

since under E2,

w(θ) ≥ |θ|
2

+

(
1

2
− q

)
θ − 1

2
Eπ[|X|] −→

|θ|→∞
∞ .

Finally, observe that w(θ) reaches its minimum at θ⋆ ∈ L. Since the Lyapunov function w is
defined up to an additive constant, we can assume with no loss of generality that w is non-negative,
which concludes the proof.

4.1.2 Median in multi-dimensional spaces

Here, d > 1, Θ = R
d and X = R

d. This section aims at approximating the median of a multi-
dimensional distribution. To that goal, we consider the stochastic approximation procedure with
field

H(θ,X) =
X − θ

‖X − θ‖1X 6=θ . (28)

Proposition 4.2. Assume E1 and E2. Then conditions A1 (b), A3 and A4 are satisfied for the field

H defined by (28), and L is the singleton {θ∗}, where θ∗ is the unique solution of Eπ

[
X−θ
‖X−θ‖

]
= 0.

Proof. Throughout the proof, set u(x)
def
= x/‖x‖. As ‖H‖ = 1, A1(b) is satisfied for any function

W ≥ 1. Moreover, for x /∈ {θ1, θ2},

‖H(θ1, x)−H(θ2, x)‖ =

∥∥∥∥
(x− θ1)‖x− θ2‖ − (x− θ2)‖x− θ1‖

‖x− θ1‖‖x − θ2‖

∥∥∥∥

=

∥∥∥∥
x− θ1

‖x− θ1‖‖x− θ2‖
(‖x− θ2‖ − ‖x− θ1‖) +

θ2 − θ1
‖x− θ2‖

∥∥∥∥

≤ 2
‖θ1 − θ2‖
‖x− θ2‖

.

Define

∆Hθ,δ(x) = sup
θ1,θ2∈B(θ,δ)

‖H(θ1, x)−H(θ2, x)‖ .
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Let 0 < β < 1/d. Then
∫
π(x)∆Hθ,δ(x)dx =

∫

x∈B(θ,δ+δβ)
π(x)∆Hθ,δ(x)dx+

∫

x/∈B(θ,δ+δβ)
π(x)∆Hθ,δ(x)dx

≤
∫

x∈B(θ,δ+δβ)
2 sup
θ,x

‖H(θ, x)‖π(x)dx +

∫

x/∈B(θ,δ+δβ)
2 sup
θ1,θ2∈B(θ,δ)

‖θ1 − θ2‖
‖x− θ2‖

π(x)dx

≤ 2

∫

x∈B(θ,δ+δβ)
π(x)dx + 4δ1−β .

By E1, there exists a constant C > 0 such that for any δ ∈ (0, 1),

sup
θ∈Θ

∫
π(dx)∆Hθ,δ(x) ≤ C(δβd + δ1−β) ,

and A3 is satisfied with α = βd ∧ (1− β) < 1. To prove that A4 is satisfied, define

w(θ) = Eπ [‖X − θ‖] .

For any x, θ, t ∈ R
d it holds

‖x−θ+t‖ = ‖x−θ‖−
〈
t, u(x−θ)

〉
+
1

2
tT
(∫ 1

0

1− λ

‖x− θ + λt‖
(
I − u(x− θ + λt)u(x− θ + λt)T

)
dλ

)
t .

Therefore,

E [‖X − θ + t‖] = E [‖X − θ‖]−
〈
t,E [u(X − θ)]

〉
+

1

2
tTR(θ, t)t ,

where

R(θ, t)
def
= E

[∫ 1

0

1− λ

‖X − θ + λt‖
(
I − u(X − θ + λt)u(X − θ + λt)T

)
dλ

]
.

Lemma 4.3 and the Fubini theorem imply that

R(θ, t) =

∫ 1

0
E

[
1− λ

‖X − θ + λt‖
(
I − u(X − θ + λt)u(X − θ + λt)T

)]
dλ .

Since ‖u(x)‖ ≤ 1, there exists a constant C such that for any t, θ,

|tTR(θ, t)t| ≤ C sup
θ∈Θ

E
[
‖X − θ‖−1

]
‖t‖2 .

This implies that ∇w(θ) = −E [u(X − θ)] = −h(θ) and directly gives the condition A4(c).
In addition, we can write

∥∥h(θ′)− h(θ)
∥∥ ≤ Eπ

[∥∥∥∥
X − θ

‖X − θ‖ − X − θ′

‖X − θ′‖

∥∥∥∥
]
.

so that, by the dominated convergence theorem, ∇w and h are continuous.
Moreover, by E1, A4(b) is satisfied because

w(θ) ≥ ‖θ‖ − Eπ[‖X‖] −→
‖θ‖→∞

∞ .

Finally, by E1 and [31], L contains a single point, and A4(a) and A4(d) are satisfied.
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Lemma 4.3. Under E1, for any 0 ≤ κ < d,

sup
θ∈Θ

Eπ

[
1

‖X − θ‖κ
]
<∞ .

Proof. Let 0 < κ < d.

Eπ

[
‖X − θ‖−κ

]
=

∫ ∞

0
Pπ

[
‖X − θ‖κ ≤ 1

t

]
dt ≤ 1 +

∫ ∞

1
Pπ

[
‖X − θ‖κ ≤ 1

t

]
dt .

By E1, there exists a constant C such that for any t ≥ 1,

sup
θ∈Θ

Pπ

[
‖X − θ‖κ ≤ 1

t

]
= sup

θ∈Θ

∫

x∈B(θ,t−1/κ)
π(dx) ≤ C t−d/κ ,

This concludes the proof since d/κ > 1.

4.2 Vector quantization

4.2.1 Context

Vector quantization is a well known problem [42] which consists in approximating a random vector in
R
d by a random vector taking at most N values in R

d. Such a problem occurs in many mathematical
fields, as for example information theory, speech coding [18], numerical integration [32] or finance
[33].

For θ = (θ1, θ2, . . . , θN ) ∈ (Rd)N , and for any 1 ≤ i ≤ N , define the Voronoi cells associated to
the sites θ by

Ci(θ) =

{
u ∈ R

d, ‖u− θi‖ = min
1≤j≤N

‖u− θj‖
}
.

A Voronoi partition (Ci(θ))1≤i≤N of Rd associated with θ ∈ (Rd)N is a collection of sets satisfying

N⋃

i=1

Ci(θ) = R
d , Ci(θ) ∩ Cj(θ) = ∅ if θi 6= θj and Ci(θ) ⊂ Ci(θ) ∀ 1 ≤ i ≤ N .

This partition allows to approximate a random vector X by X̂θ =
∑N

i=1 θi1Ci(θ)(X). Denote by w

the mean squared error when approximating X by X̂θ:

w(θ) = E

[
‖X − X̂θ‖2

]
=

N∑

i=1

E
[
‖X − θi‖21Ci(θ)(X)

]
. (29)

w is often called the distortion. Whenever π is such that E[‖X‖2] < ∞, then w is guaranteed to be
finite. Given the distribution of X, vector quantization consists in finding θ ∈ (Rd)N minimizing the
distortion w.

Numerous studies of optimal quantizers and their asymptotic properties, when N → ∞, have
been done (see for example [17]). In practice the optimal quantizer has no explicit formulation,
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and needs to be approximated. It was first proposed in the literature to retrieve optimal quantiz-
ers by deterministic methods based on a fixed point property of this optimum (see [28] and [29]).
Unfortunately, these methods are in general intractable in more than one or two dimensions. There-
fore, some stochastic methods with more tractable computations have been introduced by Kohonen
[22]. The Kohonen algorithm (with 0 neighbors) is a stochastic approximation algorithm with field
H : (Rd)N × Rd → (Rd)N given by

H(θ, u) = −2
(
(θi − u)1Ci(θ)(u)

)
1≤i≤N

. (30)

An iteration of this algorithm is given by

θ(n+1) = θ(n) + γn+1H(θ(n),Xn+1) , (31)

where (Xn)n∈N are random vectors with distribution related (in some sense, see below for an example)
to the distribution of X.

There exist few results on the theoretical properties of the Kohonen algorithm (see [16] for a
review). Indeed, the convergence of this algorithm has only been proven in one dimension for i.i.d.
observations (Xn)n∈N with the same distribution as X [13]. Nevertheless, in many applications
the dimension is larger than one, and the dynamics of the observations can be Markovian (see for
example the examples in finance described in [33]). The goal here is to extend these results.

4.2.2 Convergence of the Kohonen algorithm

We consider here Algorithm 1 run with H defined in (30) and a collection of kernels {Pθ, θ ∈ Θ}
satisfying assumptions E3 and E4:

E3 The distribution of X is absolutely continuous with respect to the Lebesgue measure on R
d.

Denote by π its density. The density π has a bounded support, that is π(x) = 0 for any
x ∈ B(0,∆)c for some ∆ > 0.

E4 {Pθ, θ ∈ Θ} is a family of kernels satisfying A2, and such that πθ = π for any θ ∈ Θ.

Let Θ =
{
θ = (θ1, . . . θN ) ∈ (Rd)N ∩ (B(0,∆))N , θi 6= θj ∀i 6= j

}
. Lemma 4.4 shows that if the

algorithm is initialized in Θ (θ(0) ∈ Θ), then it remains in Θ almost surely (P(∀n ∈ N, θ(n) ∈ Θ) = 1).

Lemma 4.4. For any γ ≤ 1/2, z ∈ B(0,∆) and θ ∈ Θ, θ + γH(θ, z) ∈ Θ.

Proof. Let z ∈ B(0,∆) and θ = (θ1, · · · , θN ) ∈ (B(0,∆))N . Denote by i the unique integer in
{1, · · · , N} such that z ∈ Ci(θ). Set θ′ = θ + γH(θ, z). Then

θ′j = θj, j 6= i θ′i = (1− 2γ)θi + 2γz . (32)

Since 2γ ∈ (0, 1), θk ∈ B(0,∆) for any k and z ∈ B(0,∆), then θ′ ∈ (B(0,∆))N . Let us prove that
θ′j 6= θ′k for any j 6= k. Since θ ∈ Θ, this holds true by (32) for any j, k 6= i. When k = i, we have

‖θ′i − θ′j‖ = ‖θi − θj + 2γ(z − θi)‖ ≥ |1− 2γΠ(z)| ‖θi − θj‖

where we wrote z−θi = Π(z)(θj−θi)+(z−θi)⊥ for Π(z) ∈ R such that
〈
(z−θi)⊥, θj−θi

〉
= 0. We

also have z − θj = (Π(z)− 1)(θj − θi) + (z − θi)
⊥. Since z ∈ Ci(θ), ‖z − θi‖ ≤ ‖z − θj‖ and we have

|Π(z)| ≤ |Π(z)−1| which is equivalent to Π(z) ≤ 1/2. Then, 1−2γΠ(z) ≥ 1/2 and ‖θ′i−θ′j‖ > 0.
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Lemma 4.5, which is a restatement of [32, Proposition 5 and 9] establishes that there exist optimal
quantizers in Θ, which are also in the set of the zeros of the mean field associated to H.

Lemma 4.5. Assume E3 and let h be the mean field function defined by (7) associated to the function
H given by (30). Then,

1. w is continuous on (Rd)N and differentiable on Θ; h(θ) = −∇w(θ) and h is continuous on Θ.

2. argminθ∈(Rd)Nw(θ) ∩Θ 6= ∅ and argminθ∈(Rd)Nw(θ) ⊂
{
θ ∈ (Rd)N , θi 6= θj ∀i 6= j

}
.

3. argminθ∈Θw(θ) ⊂ {θ ∈ Θ, h(θ) = 0}.
Proposition 4.6 shows that our assumptions on the function H are satisfied under E3 and E4.

Proposition 4.6. Assume E3 and E4. Then conditions A1(b), A1(c), A3, A4(a) and A4(c) are
satisfied by the field H defined in (30) and the Lyapunov function w defined in (29).

The proof of Proposition 4.6 is postponed in Section 4.2.3. Proposition 4.6 implies the convergence
of the Kohonen algorithm, as stated in Corollary 4.7.

Corollary 4.7. Assume E3, E4 and that the density π is such that conditions A4(b) and A4(d) are
satisfied. Then the 0 neighbors Kohonen algorithm converges to L = {θ ∈ Θ,∇w(θ) = 0}, where w
is the distortion (see (29)).

Remark 4.1. By Sard’s theorem, A4(d) is satisfied if w is Nd times continuously differentiable. A
sufficient condition for A4(b) and A4(d) to hold is:

L = argminθ∈Θ(w(θ)) . (33)

Indeed, under (33), w(L) = minθ∈Θw(θ) is a singleton, so that A4(d) is satisfied. Moreover, by
Lemma 4.5(2) and continuity of w, w(L) < M , where

M = inf
{
w(θ), θ = (θ1, . . . θN ) ∈ (Rd)N |∃i 6= j, θi = θj

}
.

By choosing M0 and M1 such that w(L) < M0 < M1 < M , we have that

{θ ∈ Θ, w(θ) ≤M1} =
{
θ ∈ (Rd)N ∩ B(0,∆)N , w(θ) ≤M1

}
,

which is a compact set by Lemma 4.5(1). Therefore A4(b) is satisfied.

If d = 1 and π is log-concave (example: uniform distribution, Gaussian distribution), then it is
proved in [26] (see also [13, Theorem 3]) that L is a singleton (up to a permutation of its elements),
and therefore, by Lemma 4.5(3), (33) is satisfied.

As a conclusion of the above discussion, we established the convergence of the 0 neighbors Ko-
honen algorithm under weaker assumptions on the dynamics (Xn)n∈N and on π than previous works
(see e.g. [13]):

• Our framework addresses the case when (Xn)n∈N is a Markov chain with invariant distribution
π, or when (Xn)n∈N is a controlled Markov chain where each transition kernel admits π as
invariant density.

• We have no condition on the dimension d. Our results apply whatever d is provided A4(b) and
A4(d) are satisfied.
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4.2.3 Proof of Proposition 4.6

We start with a preliminary lemma which gives a control on the intersection of two Voronoi cells
associated with two different sites θ, θ′ ∈ (Rd)N .

Lemma 4.8. For any compact set K of Θ, there exists δK > 0 such that for any θ ∈ K and any
i 6= j:

(i)

sup
δ≤δK

1√
δ

sup
θ′∈B(θ,δ)N∩Θ

∥∥∥∥∥
θ′j − θ′i
‖θ′j − θ′i‖

− θj − θi
‖θj − θi‖

∥∥∥∥∥ <∞ . (34)

(ii) for any δ ≤ δK, there exists a measurable set Ri,j(θ, δ) such that

sup
θ′∈B(θ,δ)∩Θ

1Ci(θ)∩Cj (θ′)∩B(0,∆) ≤ 1Ri,j(θ,δ) , sup
δ≤δK

1√
δ

∫
1Ri,j(θ,δ)(x) dx <∞ . (35)

Proof. Let K be a compact set of Θ. The function on (Rd)N given by θ 7→ mini 6=j ‖θi − θj‖ is
continuous. Since K is a compact subset of Θ, there exists bK > 0 such that for any θ ∈ K,
mini 6=j ‖θi − θj‖ ≥ bK. Choose δK ∈ (0, bK/2 ∧ 1). Let i 6= j ∈ {1, · · · , N} and θ ∈ K be fixed. For
any δ ≤ δK and θ′ ∈ B(θ, δ), it holds

‖θ′j − θ′i‖ ≥ ‖θj − θi‖ − ‖θ′j − θj‖ − ‖θ′i − θi‖ ≥ ‖θj − θi‖ − 2δ (36)

≥ bK − 2δ > 0 .

Similarly,
‖θ′j − θ′i‖ ≤ ‖θj − θi‖+ 2δ . (37)

Define

n =
θj − θi

‖θj − θi‖
and n′ =

θ′j − θ′i
‖θ′j − θ′i‖

.

Proof of (34) We have ‖n− n′‖2 = 2
(
1−

〈
n, n′

〉)
. In addition, for any δ ≤ δK and θ′ ∈ B(θ, δ),

〈
n, n′

〉
= ‖θj − θi‖−1

〈
θj − θi, n

′
〉

= ‖θj − θi‖−1
〈
‖θ′j − θ′i‖n′ + θj − θ′j + θ′i − θi, n

′
〉

≥
‖θ′j − θ′i‖
‖θj − θi‖

− 2δ

‖θj − θi‖
≥ 1− 4δ

‖θj − θi‖
≥ 1− 4δ

bK
,

where we used (36) in the last row. Therefore

‖n − n′‖2 ≤ 8δ/bK , (38)

which concludes the proof.
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Proof of (35) Let x ∈ Ci(θ). We write

x− θi =
〈
x− θi, n

〉
n+m where

〈
m,n

〉
= 0 .

It stands ‖x−θi‖2 =
∣∣∣
〈
x− θi, n

〉∣∣∣
2
+‖m‖2. Moreover, x−θj = x−θi+θi−θj =

〈
x−θi, n

〉
n−‖θi−

θj‖n+m leading to ‖x−θj‖2 =
∣∣∣
〈
x− θi, n

〉
− ‖θi − θj‖

∣∣∣
2
+‖m‖2. Since x ∈ Ci(θ), ‖x−θi‖ ≤ ‖x−θj‖

so that
∣∣∣
〈
x− θi, n

〉∣∣∣
2
≤
∣∣∣
〈
x− θi, n

〉
− ‖θi − θj‖

∣∣∣
2
. This implies that

〈
x − θi, n

〉
≤ ‖θj − θi‖/2.

Therefore,

Ci(θ) ⊂
{
x ∈ R

d,
〈
x− θi, n

〉
≤ 1

2
‖θj − θi‖

}
.

Let now x ∈ Cj(θ
′) ∩ B(0,∆). Following the same lines as above and using (37)

〈
x− θ′j, n

′
〉
≥ −1

2
‖θ′j − θ′i‖ ≥ −1

2
‖θj − θi‖ − δ . (39)

Moreover
〈
x− θi, n

〉
=
〈
x− θi, n− n′

〉
+
〈
x− θ′j, n

′
〉
+
〈
θ′j − θ′i, n

′
〉
+
〈
θ′i − θi, n

′
〉

=
〈
x− θi, n− n′

〉
+
〈
x− θ′j, n

′
〉
+ ‖θ′j − θ′i‖+

〈
θ′i − θi, n

′
〉
.

Since x, θi ∈ B(0,∆), we have by (36), (38) and (39)

〈
x− θi, n

〉
≥ −2∆‖n− n′‖ − 1

2
‖θj − θi‖ − δ + ‖θj − θi‖ − 2δ − δ

≥ 1

2
‖θj − θi‖ − 4δ − 4∆

√
2/bK

√
δ .

Therefore,

Cj(θ
′) ∩ B(0,∆) ⊂

{
x ∈ R

d,
〈
x− θi, n

〉
≥ 1

2
‖θj − θi‖ − 4δ − 4∆

√
2/bK

√
δ

}
.

Hence,

Ci(θ) ∩ Cj(θ′) ∩ B(0,∆) ⊂
{
x ∈ B(0,∆),

1

2
‖θj − θi‖ − 4δ − 4∆

√
2/bK

√
δ ≤

〈
x− θi, n

〉
≤ 1

2
‖θj − θi‖

}
.

Finally, since δK < 1, we have δ ≤
√
δ, and this concludes the proof, by noticing that this last set is

independent of θ′.

Proof of Proposition 4.6. For any compact set K ⊂ Θ, there exists C such that supθ∈K ‖H(θ, u)‖ ≤
C(‖u‖+ 1). Therefore, A1(b) and A1(c) are satisfied with W (u) = 1 + ‖u‖.

By Lemma 4.5(1), w is nonnegative and continuously differentiable on Θ. Moreover, as ∇w = −h,
A4(c) is satisfied. And A4(a) is satisfied as w is bounded on Θ.
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Let us prove that A3 is satisfied. Let K be a compact set of Θ. For any θ ∈ K, any θ′ ∈ Θ, and
any x ∈ R

d,

1/4‖H(θ′, x)−H(θ, x)‖2

=
N∑

i=1

[
‖θ′i − θi‖21Ci(θ)∩Ci(θ′)(x) + ‖θi − x‖21Ci(θ)∩Ci(θ′)c(x) + ‖θ′i − x‖21Ci(θ)c∩Ci(θ′)(x)

]
.

Therefore, for any x ∈ B(0,∆), any θ ∈ K, and any θ′ ∈ B(0, δ),

1/2‖H(θ′, x)−H(θ, x)‖ ≤

√√√√
N∑

i=1

‖θ′i − θi‖2 +
N∑

i=1

N∑

j=1,j 6=i

‖θi − x‖1Ci(θ)∩Cj (θ′)(x)

+

N∑

i=1

N∑

j=1,j 6=i

‖θ′i − x‖1Cj (θ)∩Ci(θ′)(x)

≤ δ + 2∆N2 sup
i 6=j

1Ci(θ)∩Cj(θ′)∩B(0,∆)(x) .

By Lemma 4.8, there exists δK such that for any δ ≤ δK, there exist a measurable set Ri,j(θ, δ) such
that

sup
θ′∈B(0,δ)

1Ci(θ)∩Cj(θ′)∩B(0,∆)(x) ≤ 1Ri,j(θ,δ)(x) .

Therefore,

1/2‖H(θ′, x)−H(θ, x)‖ ≤ δ + 2∆N2 sup
i 6=j

1Ri,j(θ,δ)(x) .

Under E3, π is bounded on Θ. In addition, Lemma 4.8 shows that

sup
δ≤δK

1√
δ
sup
θ∈K

sup
i 6=j

∫
1Ri,j(θ,δ)(x)dx <∞ .

Then, there exists C ′ such that for any δ ≤ δK,

sup
θ∈K

∫
π(dx) sup

{θ′,‖θ′−θ‖≤δ}

∥∥H(θ′, x)−H(θ, x)
∥∥ ≤ C ′

√
δ .

Moreover, as ‖H‖ is bounded on Θ× B(0,∆), for any δ ≥ δK,

sup
θ∈K

∫
π(dx) sup

{θ′,‖θ′−θ‖≤δ}

∥∥H(θ′, x)−H(θ, x)
∥∥ ≤ 2 sup

Θ×supp(π)
(‖H‖) 1

min(1,
√
δK)

√
δ .

Therefore A3 is satisfied with α = 1/2.
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5 Conclusion

As briefly illustrated in Section 4, stochastic approximation procedures with discontinuous field can
be found in a lot of applications, for which the independence assumption for the observation sequence
{Xn, n ∈ N} may be unrealistic as, for example, in learning or in finance. In this paper, we have
proposed a theoretical justification for the use of such procedures, in the case where the associated
fields are discontinuous. This provides for example a justification to adaptation procedures using
stochastic approximations of quantiles or median in Markov chain or for vector quantization in
Markovian contexts that often arise in finance.
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