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Abstract: We propose a novel concept of all-optical protection switching with link failure 

automatic awareness based on AOWFF. The scheme is experimentally demonstrated using a 

single MG-Y laser diode with a record switching time ~200 ps.  
OCIS codes: (060.1155) All-optical networks; (060.4257) Networks, network survivability; (060.4261) Networks, 

protection and restoration; (190.1450) Bistability.  

1. Introduction 

Protection switching is a key technique to ensure survivability against outages in optical networks by providing 

an alternative path to carry the traffic in case of link failure, thus providing high reliability and availability of the 

communications [1]. Traditionally, some fault detection mechanisms are implemented, which report a failure to the 

network management system. The protection mechanism is then triggered from the control plane, possibly resulting 

in a relatively long delay to establish the protection path. For instance, in widely deployed SONET/SDH networks, 

the protection switching time is typically of the order of ~50 ms [1-2] plus 10 ms [1] for failure detection. For some 

critical applications, such a protection time is prohibitively long. The use of fast electronically tunable lasers has 

been suggested for protection with an improved switching time down to 8 ms [3]. However, such a scheme still 

relies on electronic signaling in order to set the tunable laser currents after the fault has been detected. One way to 

reduce the protection time into the sub-ns scale is to enable the establishment of the protection path to be triggered 

directly in the optical domain. 

For the very first time, this problem is addressed here. In this paper, we propose an all-optical protection scheme, 

with failure detection and protection trigger all implemented on the optical layer. Since there is no upper layer 

mechanism required, the protection can be performed ultra-fast. We also experimentally demonstrate the proposed 

scheme successfully, with reported protection switching time of about 200 ps. The widely opened eye diagrams 

show good performance at both 10 Gbit/s and 40 Gbit/s data modulation. Optical control pulses of 50 ps duration 

and less than 1 pJ/pulse energy are used for triggering the establishment of the protection path. 

2. Operation principle 

The proposed scheme relies on a wavelength-bistable laser (also known as all-optical wavelength flip-flop, 

AOWFF) used as a continuous wave (CW) light source with external data modulation at the transmitter, as shown in 

Fig. 1(a). In an AOWFF, light emission can be switched between two stable operation states on different 

wavelengths by two distinguishable optical control pulses (set and reset). The wavelength of the emitted signal will 

thus depend on the state of the AOWFF. A wavelength selective component such as an arrayed waveguide grating 

(AWG) can then be employed to route the signal on the predefined operation wavelength WLopt to the working fiber, 

or on the protection wavelength WLpro to the backup fiber in case an event triggers the protection switching 

mechanism. The fault detection and subsequent triggering of the AOWFF is implemented as follows. A periodic 

optical control pulses associated with WLopt is generated at the destination side and transmitted via the working path 

fiber back to the source for controlling the AOWFF. This control is denoted CtrlR. The other control, associated with 

WLpro, is locally generated at the source side and denoted CtrlL. The CtrlR and CtrlL pulses are generated periodically 

with the same repetition rate. 

The timing diagram of Fig. 1(b) illustrates the operation of the scheme. Under normal operation (in the interval 

[t0, t1]), CtrlL appears first and turns on WLpro. Shortly after, the remote control pulse CtrlR arrives and resets the 

operation back to WLopt. The time interval over which WLopt is switched on, until it is switched off by the next CtrlL, 

is therefore a time-frame of fixed duration, which can be used for sending the data traffic. If CtrlR does not reach the 

AOWFF due to link failure, as indicated in the interval [t1, t2] in Fig. 1(b), the local control CtrlL will enable WLpro 

as usual, however WLopt will not be reset. This will result in the data being now modulated on the protection 

wavelength and routed to the backup fiber by the AWG. Therefore the protection is realized. As soon as CtrlR is 

back, the operation will be changed back to normal automatically, as illustrated from t2 in Fig. 1(b).  

In this way, the entire protection procedure, including link failure detection and protection trigger, which are all 

performed via the optical remote control pulses CtrlR, is realized on the optical layer. The total protection time will  
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Fig. 1 Proposed scheme for all-optical self-aware protection switching. (a) Physical configuration. (b) Timing diagram for normal operation in the 

interval [t0, t1] and protection operation in [t1, t2]. 

then depend on the switching speed of the AOWFF device, which can be of the order of a few hundred picoseconds, 

as demonstrated further. It also depends on the propagation delay and the size of the frames, but these are common 

to all protection schemes, including those relying on the protocol. The inherent advantage of the scheme, suitable for 

critical applications, is that the establishment of the protection path is performed automatically without referring to 

the management system. This results in a substantial time advantage over traditional schemes where the fault 

detection is performed by time-averaged measurements followed by alarm trigger to the management system, which 

will then decide and take contingency actions, such as switching of fast tunable laser diodes after appropriately 

setting the driving currents. Even though the proposed optical layer protection switching scheme does not provide 

fault location, its main benefit is to allow an ultra-fast set up of the protection link, while the other functionalities 

such as fault monitoring can still be realized through the protocol. The scheme however requires synchronization of 

the local and remote optical clock sources as well as slotted operation. 

3. Experimental demonstration 

 
Fig. 2 Experimental setup for proof-of-concept demonstration of protection switching. 

 

 
Fig. 3 All-optical protection switching demonstration: (a) Gating 

window for emulating the link failure. Waveform on (b) WLopt in 

normal mode and (c) WLpro in protection mode. 

 
Fig. 4 Eye diagrams of the data at the transmitter output under 

normal operation on WLopt at (a) 10 Gbit/s and (b) 40 Gbit/s, as well as 

under protection operation on WLpro at (c) 10 Gbit/s and (d) 40 Gbit/s. 

Fig. 2 shows the experimental setup used for the proof-of-concept demonstration of the proposed scheme. The 

AOWFF used in the experiment is a single modulated grating Y-branch (MG-Y) laser structure [4], in which flip-

flop operation over a large wavelength tunable range has been recently demonstrated, with switching time less than 

200 ps and 0.16-0.34 pJ control pulse energy [5]. Two tunable CW lasers were externally modulated using two 

Mach-Zehnder modulators (MZMs) in order to generate the 50 ps long control pulses with, at first, a low repetition 

rate of 78.125 MHz. The control pulses were amplified in erbium-doped fiber amplifiers (EDFAs), filtered in optical 

band-pass filters (BPFs) and their relative delay was adjusted using an optical delay line (DL) before they were 

injected into the MG-Y laser via a circulator. The state of polarization of the control signals was beforehand adjusted 

using polarization controllers (PCs). The MG-Y laser operated at a bistable window with two states on 1554.37 nm 

20 ns/div

20 ns/div

Normal Opt Protect Opt

(a)

(b)

W
L o

p
t

W
L p

ro

(a)

(b)

(c)

(d)



or 1554.66 nm. Its output was then modulated with 10 Gbit/s or 40 Gbit/s non return-to-zero (NRZ) data with a 

231−1 pseudo-random binary sequence (PRBS). Two BPFs were used to emulate an AWG and route the signal to a 

different port depending on its wavelength. The signals at the operation wavelength and at the protection wavelength 

were then monitored on an optical sampling oscilloscope. To emulate the link failure, the remote control pulses were 

periodically suppressed using another MZM driven at 9.766 MHz, resulting in 3 out of 8 CtrlR pulses being 

suppressed. The dynamic extinction ratio of the modulator was about 10 dB and the gating window generated by the 

MZM can be seen in Fig. 3(a). 

 
Fig. 5 Link performance with 10 Gbit/s NRZ data: (a) BER measurement. (b) Time interval between two adjacent frames on WLopt in normal 

operation and (c) Bits on WLpro affected by the local control pulses in protection operation. 

In order to illustrate the scheme, the waveforms on both wavelengths in both normal operation and protection 

regime are shown in Fig. 3(b)-(c). Under normal operation, as indicated in the figure, 5 frames of data traffic on 

WLopt can be seen. In Fig. 3, a short frame length of ~100 bits at 10 Gbit/s was chosen in the experiment to ease the 

visualization of the process on the oscilloscope traces, but the scheme is obviously highly scalable towards lower 

repetition rates of the control signals, allowing much longer data frames to be transmitted.  

The next 3 CtrlR pulses were suppressed, emulating a cut in the working path. As shown in Fig. 3(c), the data 

was immediately switched to WLpro while no more data was sent on WLopt, as can be seen in Fig. 3(b), apart from 

some residual out-of-band crosstalk leaking through the 0.3 nm OBPF used for signal separation in our proof-of-

concept implementation. Fig. 4 shows the eye diagrams of both WLopt in normal operation and WLpro in protection 

operation with 10 Gbit/s and 40 Gbit/s data modulation. The eyes are both widely open, indicating good signal 

quality. BER measurements were also performed with 10 Gbit/s NRZ data modulation, as shown in Fig. 5(a). When 

modulating the MG-Y laser output without any control pulses, the sensitivity is about -34 dBm (at BER=10−9). 

Unfortunately, due to the lack of a proper burst gating control, BER measurements for both normal and protection 

operations could only be performed in continuous gating mode. For error counting, the repetition rate of the control 

signals was set to 9.766 MHz, allowing 1024 bits of 10 Gbit/s signal in every period. As 10 bits were switched off 

from WLopt between two adjacent frames, as shown in Fig. 5(b), and assuming an equal distribution of marks and 

spaces when averaging over many frames, 5 bits on average would be erroneously detected even if no error occurs 

during normal operation, leading to a minimum achievable BER of 4.9×10−3. The measured BER of WLopt with 

sufficient receiver power was exactly lying on this level, indicating no performance degradation for the bits 

transmitted over the frame. On WLpro, some bits were affected by CtrlL, as shown in Fig. 5(c), since it disturbed the 

carrier density of the MG-Y laser, causing a moderate power penalty compared to CW operation, as shown in 

Fig. 5(a). 

6. Conclusion 

A novel concept of all-optical protection switching was proposed. Link failure detection and protection trigger 

were both implemented on the optical layer. The concept was experimentally demonstrated using a wavelength 

tunable AOWFF based on a single MG-Y laser structure. The achieved protection switching time was less than 

200 ps. The good quality of the signal following the establishment of the protection path was evaluated at 10 and 

40 Gbit/s. The method provides a fast establishment of the protection path, resulting in a minimum loss of data for 

critical applications, while the failure can still be detected by conventional slower means (e.g. by monitoring the 

power at the output ports of the wavelength router) resulting in the network management being informed by the 

protocol and appropriate measures being taken.  
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