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Abstract 

 

 We have performed electrical resistivity measurements under pressures up to 20GPa 

between 1 and 300K on monocrystalline hexagonal Rb0.19WO3. For pressures lower than ~5GPa, we 

observe a decrease of the metallic-like resistivity at room temperature as well as a small decrease of 

Tc. At this pressure, the resistivity starts to increase slowly up to 10GPa accompanied by a sharper 

decrease of Tc .The resistivity curves above 10GPa denote an activated behaviour and a Tc lower 

than 3K indicating that there is a phase transition that takes place gradually between 5 and 10GPa. 

We interpret our measurements as the result of structural transformations under high pressure. 
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1. Introduction 

 The study of tungsten bronzes was given a strong momentum after the report of evidence 

for surface superconductivity with a superconducting transition temperature Tc of the order of 100K 

[1,2,3,4]. Tungsten bronzes have been intensively studied in the past due to its highly soft 

perovskite structure that induces a strong interaction between carriers and soft phonons leading to 

polaron and bipolaron formation [5]. The bulk structure of WO3 corresponds to a tetragonal lattice 

formed by WO6 octahedra that can be stacked into a ABO3 perovskite structure with the W 

occupying the B sites and with the A site being empty. Band structure calculations [6] have shown 

that  the material is a semiconductor with a gap of around 1eV (though experimental optical gaps 

are higher [7], indirect gap = 2.5eV), with the valence bands originating mainly from O 2p orbitals 

and the conduction bands from Wd ones. Reduction of the compound results in a small oxygen 

non-stoichiometry and conducting samples. The stoichiometric material shows thermally activated 

hopping conductivity with activation energies between 0.15 and 0.27 eV, depending on the crystal 

quality [8,9,10,11]. At temperatures below 130K there is a change to a regime with much smaller 

activation energies. At even lower temperatures the electrical conductivity becomes nearly 

temperature independent as expected by hopping small polaron conduction affected by 

disorder[12]. In non-stoichiometric samples bipolarons[5] are observed for carrier concentrations 

<3.7x1021 cm-1. On the other hand, sheet superconductivity at 3K in reduced WO3 was also 

reported [13]. Though the superconducting structure is unknown [14], the behaviour of the 

electrical resistivity, obviously the result of the carriers at the origin of the superconducting 

transition, is abnormal with an activated region at low temperatures. 

 Carriers can be introduced also by alcaline ion intercalation. Structural changes occur 

together with the superconducting properties expected for such strong electron-phonon interaction 

materials. In particular the case of Rb intercalation generates hexagonal tungsten bronzes, with 

form 3- and 6-membered rings, leaving trigonal and hexagonal channels along the c axis. The 
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radius of the hexagonal cavities is ~2Å. These materials are superconducting with Tc's that can 

reach 7K[15]. Their properties can be very complex and different reports have claimed some rather 

different normal transport properties [16]. Recently, doping with oxygen replacement by fluorine17 

has yielded the compound WO2.6F0.4 with a Tc=0.4K. 

2. Experimental 

The samples we studied have been obtained by acid etching stoichiometric single crystals to 

reduce their Rb content. The Rb0.33WO3 crystals were grown electrolytically from a melt consisting 

of Rb2CO3 and WO3-according to the method developed by Sienko and Morehouse[18]. The 

homogeneity of the samples and the final x value (0.195 ± .01) was checked by measuring the 

magnetic anomaly associated with the superconducting transition (Tc = 5.5 K at ambiant pressure) 

and confirmed by a micro-probe analysis. 

 The electrical resistivity measurements were performed in a sintered diamond Bridgman 

anvil apparatus using a pyrophillite gasket and two steatite disks as the pressure medium. The Cu-

Be device that locked the anvils can be cycled between 4.2K and 300K in a sealed dewar. The 

overall uncertainty in the quasi-hydrostatic pressure is estimated to be ±15%. The pressure spread 

across the sintered diamond anvils was previously determined on Pb-manometers to be of about 

1.5-2GPa depending on the applied pressure, through the measurement of the superconducting 

transition temperature of Pb at low temperatures. The temperature was determined using calibrated 

Cernox thermometer with a maximum uncertainty (due mainly to temperature gradients across the 

Cu-Be clamp) of 0.5K. Four probes electrical resistivity d.c. measurements were made using a 

Keithley 2182 nanovoltmeter combined with a Keithley 238 current source and by using platinum 

wires to make contacts on the sample.  

3. Results 

We show on Fig. 1 the electrical resistance as a function of temperature for different 

pressures. We observe that for the first pressures there is an irreversibility of the curves : the up 
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curves show an increase of the resistance that results in a bump. Behaviour similar to this has been 

reported by Stanley et al. [16] who attributed it to a phase transition, that can be a charge density 

wave (CDW), an ordering of the alkaline, or a coupled version of both phenomena, as in some 

organic compounds[19]. With increasing pressures, the irreversibilities become less visible and are 

totally inexistent in the curves obtained at 4 GPa.  

As pressure is increased we note a change in the temperature dependence of the resistivity : 

it passes from a metallic behaviour to an activated,  i.e. increasing with decreasing behaviour. It is 

clear that there are important changes in the sample, possibly a phase transition under pressure. A 

lattice distortion has been reported in Rb0.31WO3 [20] for pressures higher than 2GPa : the octahedra 

that form the channel tilt around the c axis of the lattice. Considering that our pressure gradient is 

of about 2GPa (as determined by the width of the superconducting transitions of Pb manometers), 

the transition temperature reported for this distortion coincides with the disappearance of the 

irreversibilities. It may thus explain why we do not see the apparent ordering of the Rb atoms at 

4GPa, as the tilted octahedra can impede the normal displacements of the Rb atoms along the 

channels. It is possible that as pressure is increased different or more pronounced distortions of the 

structure may appear in this soft lattice.  

We show on Fig. 2 a detail of the superconducting transitions. The transition temperature 

decreases as a function of pressure as shown on Fig. 3. It is clear that there is a structural phase 

transition between 5 and 10GPa, as both the resistance at 10K and Tc show a significant change 

around this pressure. It is interesting to note that both the Tc and the resistance curves at the higher 

pressures look very much like those of superconducting [13] reduced WO3. The activated behaviour 

does not seem to indicate that the material has become semiconducting as, it that case we would 

expect an insulator at low temperatures, not a superconductor. We have verified that the 

superconducting transition is due to the whole of the sample by testing the critical currents at the 

foot of the superconducting transition. These were of the same order of magnitude for the sample at 
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low pressures and the sample at high pressures (filamentary superconductivity would have yielded 

much smaller critical currents. 

4. Discussion 

 The picture that evolves from our results seems to be the following. At low pressures, we 

observe irreversibilities in the electrical resistance with pressure that are most probably due to an 

hysteretic ordering of the Rb atoms. As the material undergoes the pressure-induced distortion [20], 

the Rb atoms are pinned down by them, and can no longer move along the channels. As a 

consequence, the carriers that coupled to the Rb ordering are now also pinned down by the static 

Rb atoms, and can only conduct by activated hopping. We thus expect a 3D variable range hopping 

( exp (T0 T )
1 4!" #$ ) or a polaronic (T ! exp T

H
T[ ] ) type conductance or eventually a plain 

semiconducting type (exp !
H
T[ ] ). There are clearly two régimes for the electrical resistance, first 

one above ~60K and a second one between this temperature and the superconducting transition. We 

have not been able to fit the high temperature régimes for the different pressures with any of the 

mentioned dependences. In the low temperature régime, the fit with the largest temperature range 

(20K) corresponds to the plain semiconducting type (exp !
H
T[ ] )However, the gap values 

obtained are too small for an actual semiconductor, ~ one tenth of kBT. Thus, another interpretation 

is necessary for this dependence. Obviously it would be interesting to confirm the phase transition 

around 10GPa with crystallographic measurements under pressure, in order to determine the 

distortion involved. 

 

5. Conclusions 

 Our pressure measurements show at low pressures an irreversibility of the electrical 

resistance, most probably due to an ordering of Rb atoms at low temperatures. At about 10GPa 

there is a transition to another phase with a lower Tc=3K. The proposed new high pressure phase 

shows in the electrical resistance an activated behaviour, that is flattened at around 25K towards an 
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apparent Arrhenius behaviour. Further theoretical and experimental studies are needed to 

understand the origin of the unusual pre-transitional behaviour in Rb0.19WO3. 
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Figures 

 

Figure 1 

Electrical resistance of a Rb0.19WO3 monocrystal as a function of temperature for several 

pressures. The terms d and u correspond to data taken on cooling or on heating. We observe 

that only for the two lowest pressures there is an irreversibility, probably due to the ordering 

of the non-stoichiometric Rb atoms at low temperature. We note that the high pressure 

curves show an activated behaviour. 
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Figure 2 

Detail of the superconducting transition at low temperature 
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Figure 3 

Pressure dependence of the superconducting transition temperature Tc and of the value of the 

resistance at 10K. It is clear that a transition, probably a structural distortion, happens  
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