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Abstract— We show that the open-loop transfer functions
and the stability margins may be defined within the recent
model-free control setting. Several convincing computer
experiments are presented including one which studies the
robustness with respect to delays.
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I. INTRODUCTION

Stability margins are basic ingredients of control theory.

They are widely taught (see, e.g., [1], [2], [9], [10], [11],

[16], and the references therein) and are quite often utilized

in industry in order to check the control design of plants, or,

more exactly, of their mathematical models. The importance

of this topic is highlighted by the following fact: the literature

on theoretical advances and on the connections with many

case-studies contains several thousands of publications! This

communication relates stability margins to the recent model-

free control and the corresponding intelligent PIDs [4],

which were already illustrated by many concrete and varied

applications (see, e.g., the numerous references in [4], and,

during the last months, [3], [14], [17], [19], [20], [21], [24],

[29], [30]).

Remark 1.1: Let us emphasize that our model-free control

design and the corresponding intelligent controllers are most

easily implementable (see [4], [12]).

Our aims are the following ones:

1) Practitioners of stability margins and other frequency

techniques will recognize that their expertise still

makes sense within model-free control.

2) The influence of delays in model-free control is ana-

lyzed for the first time.

Let us briefly explain our viewpoint. Take a monovariable

system which is governed by unknown equations. Consider

the ultra-local model [4]

ẏ = F + αu (1)

where

• u and y are respectively the input and output variables,
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• F subsumes the unknown parts, including the perturba-

tions,

• α is a constant parameter which is chosen by the

engineer in such a way that αu and ẏ are of the same

magnitude.

Remember that Equation (1) applies not only to systems with

lumped parameters, i.e., to systems which are described by

ordinary differential equations of any order, but also to sys-

tems with distributed parameters, i.e., to partial differential

equations (see, e.g., [13]). Close the loop with

u =
−Fest + ẏ⋆ + F

α
(2)

such that

• Fest is a realtime estimate of F (see Section II-C),

• y⋆ is a reference trajectory,

• the closed loop system is

ė+ F = Fest − F (3)

where e = y⋆ − y is the tracking error,

• F is either a proportional controller

F = KP e (4)

or, sometimes, a proportional-integral controller

F = KP e+KI

∫

e (5)

such that

ė+ F = 0 (6)

exhibits the desired asymptotic stability. For instance

KP in Equation (4) should be positive.

Equations (4)-(6) and (5)-(6) yield the usual open-loop

transfer functions

T1OLP =
KP

s
(7)

and

T1OLPI =
1

s
× (KP +

KI

s
) =

KP

s
+

KI

s2
(8)

Their gain and phase margins are by definitions those of the

systems defined by Equations (7) and (8). Note that Fest −F

in Equation (3) should be viewed as an additive disturbance.

Our paper is organized as follows. Basics of model-

free control are briefly revisited in Section II. Section III

computes some open loop functions for iPID’s, iPD’s, iPIs,

iPs as well as the corresponding stability margins. Several

computer experiments are examined in Section IV, including

the robustness with respect to delays. Concluding remarks

are developed in Section V.



II. MODEL-FREE CONTROL: A SHORT REVIEW
1

A. The ultra-local model

Introduce the ultra-local model

y(ν) = F + αu (9)

where

• the order ν ≥ 0 of derivation is a non-negative integer

which is selected by the practitioner,2

• α ∈ R is chosen by the practitioner such that αu and

y(ν) are of the same magnitude,

• F represents the unknown structure of the control

system as well as the perturbations.

B. Intelligent controllers

1) Generalities: Close the loop with respect to Equation

(9) via the intelligent controller

u =
−Fest + y∗(ν) + F(e)

α
(10)

where

• Fest is a realtime estimate of F ,

• y∗ is the output reference trajectory,

• e = y∗ − y is the tracking error,

• F(e) is a functional of e such that the closed-loop

system

e(ν) + F(e) = Fest − F (11)

exhibits a desired behavior. If, in particular, the estima-

tion is perfect, i.e., Fest = F , then

e(ν) + F(e) = 0 (12)

should be asymptotically stable, i.e., limt→+∞ e(t) = 0.

2) Intelligent PIDs: If ν = 2 in Equation (9), i.e.,

ÿ = F + αu (13)

Close the loop via the intelligent proportional-integral-

derivative controller, or iPID,

u =
−Fest + ÿ∗ +KP e+KI

∫

e+KDė

α
(14)

where KP , KI , KD are the usual tuning gains. Combining

Equations (13) and (14) yields

ë+KDė +KP e +KI

∫

e = Fest − F

KI = 0 in Equation (14) yields the intelligent proportional-

derivative controller, or iPD,

u =
−Fest + ÿ∗ +KP e+KDė

α
(15)

Such an iPD was employed in [3].

1See [4] for more details.
2The existing examples show that ν may always be chosen quite low,

i.e., 1, or 2. Most of the times ν = 1. The only concrete example until now
with ν = 2 is provided by the magnetic bearing [3], where the friction is
negligible (see the explanation in [4]).

If ν = 1 in Equation (9), we recover Equation (1).

The loop is closed by the intelligent proportional-integral

controller, or iPI,

u =
−Fest + ẏ∗ +KP e+KI

∫

e

α

KI may often be set to 0. It yields the intelligent proportional

controller, or iP,

u = −
−Fest + ẏ∗ +KP e

α

C. Estimation of F

Assume that F in Equation (9) may be “well” approxi-

mated by a piecewise constant function Fest. According to

the algebraic parameter identification developed in [7], [8],

rewrite, if ν = 1, Equation (1) in the operational domain

(see, e.g., [31])

sY =
Φ

s
+ αU + y(0)

where Φ is a constant. We get rid of the initial condition

y(0) by multiplying both sides on the left by d
ds :

Y + s
dY

ds
= −

Φ

s2
+ α

dU

ds

Noise attenuation is achieved by multiplying both sides on

the left by s−2. It yields in the time domain the realtime

estimate

Fest(t) = −
6

τ3

∫ t

t−τ

((τ − 2δ)y(δ) + αδ(τ − δ)u(δ)) dδ

where τ > 0 might be “small”.

Remark 2.1: As in our first publications on model-free

control, Fest(t) might also be obtained by estimating the

noisy derivative of y (see [5], and [18], [15]).

III. OPEN-LOOP TRANSFER FUNCTIONS

A. Definitions

Assume that in Equation (10) F may be defined by a

transfer function TF. Then Equation (12) yields the transfer

function

TνOL =
TF

sν
(16)

which is called the open-loop transfer function of the system

defined by Equations (9) and (10). If ν = 2, and with an

iPID, the open-loop transfer function (16) of the system

defined by Equations (13) and (14) becomes

T2OLPID =
KP

s2
+

KI

s3
+

KD

s
(17)

It becomes for an iPD:

T2OLPD =
KP

s2
+

KD

s
(18)

If ν = 1, and with an iPI, the open-loop transfer function

of the system defined by Equations (1) and (4) or (5),

the corresponding open-loop transfer functions were already

given by Equations (7) and (8).



Remark 3.1: Notice that T1OLPI and T2OLPD are ex-

pressed by Formulae (8) and (18) , which are identical if

we exchange KP , KI with KI , KD.

B. Stability margins

1) iP: Setting s = jω in Equation (7), where

• ω is a non-negative real number,

• j =
√
−1,

gives T1OLP (jw) = KP

jω = −jKP

ω . Since KP > 0 and

ω ≥ 0, we obtain the following margins:

PhaseMargin1OLP = 90◦

and

GainMargin1OLP = +∞

2) iPI: Setting as above s = jω in Equation (8) yields

a complex quantity where the imaginary part is −jKP

ω .

Therefore

GainMargin1OLPI = +∞

and

PhaseMargin1OLPI = tan−1

(

KPωm

KI

)

where

ωm =

√

K2
P +

√

K4
P + 4K2

I

2

is such that the module of T1OLPI is equal to 1. A phase

margin of 45◦, for instance, is obtained by setting

ωm =
KI

KP

KP and KI are then related by the equation

KI

KP
=

√

K2
P +

√

K4
P + 4K2

I

2

3) iPD: It suffices according to Remark 3.1 to replace,

in the expressions related to the iPIs in Section III-B.2, KP

and KI respectively by KD and KI .

4) iPID: It follows from Equation (17) that the stability

margins necessitates here the famous Cardano formulae

which give the roots of third degree algebraic equations (see,

e.g., [28]). A single root is moreover real. Then

GainMargin2OLPID =
KI

KDKP

and

PhaseMargin2OLPID = tan−1

(

KDω2
m −KI

KPwm

)

where

ωm =

√

A+
B

C
+D

A, B, C, D are given by

A =
(

K2
I

2
+

K6
P

27
−

K2
P (2KIKP −K2

D)

6

)2/6

−
(

K2
D

3
+

K4
P

9
−

2KIKP

3

)3/6

+

(

K2
I

2
+

K6
P

27
−

K2
P (2KIKP −K2

D)

6

)1/3

B =
K2

D

3
+

K4
P

9
−

2KIKP

3

C =
(

K2
I

2
+

K6
P

27
−

K2
P (2KIKP −K2

D)

6

)2/3

−
(

K2
D

3
+

K4
P

9
−

2KIKP

3

)1/6

+

(

K2
I

2
+

K6
P

27
−

K2
P (2KIKP −K2

D)

6

)1/3

(19)

D =
K2

P

3

Remark 3.2: Since model-free control encompasses to

some extent nonlinear control, the above calculations yield

a kind of nonlinear generalization of stability margins (see

Section IV-A). Remember that the stability margins for non-

linear systems have been studied in a number of publications

(see, e.g., [25]).

IV. NUMERICAL ILLUSTRATIONS

The equations of the systems considered below are only

given for achieving of course computer simulations.

A. A nonlinear academic example

1) Description and control: Consider the stable single-

input single-output system

ÿ + 4ẏ + 3y = 3u̇u2 + 2u3 (20)

Our ultra-local model is

ẏ = F + u (21)

i.e., ν = 1, α = 1 in Equation (9). We employ the iP

controller (4) where KP = 1. The gain and phase margins

are given by Section III-B.1, as in many concrete systems.

2) Some computer experiments: According to the above

control scheme, a “good” estimation of F in Equation (21)

plays a key rôle. Equations (20) and (21) yield the following

expression which is used for comparison’s sake.

F =
3u̇u2 + 2u3 − 4u− ÿ − 3y

4

Figure 1 displays excellent results with a sampling time

interval Test = 0.01s for estimating F .3 The results shown in

3Test = 0.01s is also equal to the sampling time period.



Figures 2 and 3 are respectively obtained for Test = 1s and

Test = 10s. The damages are visible. Figure 3 demonstrates

that the results with Test = 10s cannot be exploited in

practice.
Remark 4.1: Let us emphasize that corrupting noises are

neglected here for simplicity’s sake.

B. A linear academic case

1) Description and control: Consider the unstable single-

input single-output linear system

2ẏ − 3y = u (22)

Equation (21) is again used as an ultra-local model. The loop

is closed via the iP controller (4) with some suitable gain KP .

As above, in Section IV-A.1, the gain and phase margins are

given by Section III-B.1. Stability is therefore ensured with a

good robustness. Figure 4 displays simulations with KP = 1,

a sampling time period Te = 0.01s, and an additive Gaussian

corrupting noise N(0, 0.03) on the output. The trajectory

tracking is excellent.
2) Robustness with respect to a delayed control: Introduce

a time lag τ in the control transmission. The transfer function

of (22) is no more
1

2s− 3
but

e−τs

2s− 3
Remark 4.2: Such delays, which might occur in practice,

have already been studied in the literature (see, e.g., [22],

[23], [27]).
Remark 4.3: Systems with transfer functions of the form

T (s)e−τs

where T ∈ R(s) is a rational function, are according to

[6] the most usual linear delay single-input single-output

systems. It is also well known that they are used for

approximating “complex” nonlinear systems without delays

(see, e.g., [26]). It has been emphasized in [4] that such

approximations are becoming useless when applying model-

free control design.

Assume that we are doing the same computations as in

Section IV-B.1, and, in particular, that F is estimated with

the techniques presented in Section II-C. It amounts saying

that we are in fact replacing Equation (21) by

y(t) = F + u(t− τ)

The open loop transfer function becomes therefore

T1τOLP =
KP e

−τs

s

Solving the equation

T1τOLP (jω) = −1

yields

τmax =
π

2KP

i.e., the maximum admissible time lag for stability.

3) Computer experiments with delay: Figure 5 displays

an excellent stability obtained with a time lag τ = 0.2s and

KP = 1. Then τmax ≃ 1.57s.

With the “high” gain KP = 10, τmax ≃ 0.16s. Stability is

then lost as shown by Figure 6.

V. CONCLUSION

We have demonstrated that the calculations related to

stability margins may be easily extended to our recent model-

free techniques, where they provide some new insight on the

robustness with respect to delays. As already discussed in [4],

delays, which remain one of the most irritating questions in

the model-free setting, do necessitate further investigations.4

The key point nevertheless in order to ensure satisfactory

performances is in our opinion a “good” estimate of F . This

question, which

• has been summarized in Section II-C,5

• might become difficult with very severe corrupting

noises and/or a poor time sampling,

seems unfortunately to be far apart from the stability margins

techniques.
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