
HAL Id: hal-00966102
https://hal.science/hal-00966102v1

Submitted on 26 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Böhm trees as higher-order recursion schemes
Pierre Clairambault, Andrzej Murawski

To cite this version:
Pierre Clairambault, Andrzej Murawski. Böhm trees as higher-order recursion schemes. Foundations
of Software Technology and Theoretical Computer Science (FSTTCS 2013), Dec 2013, Guwahati,
India. pp.91–102, �10.4230/LIPIcs.FSTTCS.2013.91�. �hal-00966102�

https://hal.science/hal-00966102v1
https://hal.archives-ouvertes.fr

Böhm Trees as Higher-Order Recursive Schemes

P. Clairambault1 and A. S. Murawski2

1 CNRS, ENS de Lyon, Inria, UCBL, Université de Lyon, Laboratoire LIP

2 DIMAP and Department of Computer Science, University of Warwick

Abstract

Higher-order recursive schemes (HORS) are schematic representations of functional programs.

They generate possibly infinite ranked labelled trees and, in that respect, are known to be equiv-

alent to a restricted fragment of the λY -calculus consisting of ground-type terms whose free

variables have types of the form o→ ⋯→ o (with o being a special case).

In this paper, we show that any λY -term (with no restrictions on term type or the types of

free variables) can actually be represented by a HORS. More precisely, for any λY -term M , there

exists a HORS generating a tree that faithfully represents M ’s (η-long) Böhm tree. In particular,

the HORS captures higher-order binding information contained in the Böhm tree. An analogous

result holds for finitary PCF.

As a consequence, we can reduce a variety of problems related to the λY -calculus or finitary

PCF to problems concerning higher-order recursive schemes. For instance, Böhm tree equivalence

can be reduced to the equivalence problem for HORS. Our results also enable MSO model-

checking of Böhm trees, despite the general undecidability of the problem.

1998 ACM Subject Classification F.3.3, F.4.1

Keywords and phrases Lambda calculus, Böhm trees, Recursion Schemes

1 Introduction

Higher-order recursive schemes (HORS) are a class of programming schemes introduced to

account for recursive procedures with higher-order parameters [7]. They can be viewed as

grammars describing a potentially infinite tree. As tree generating devices, HORS can be

identified with a limited fragment of the λY -calculus [19] consisting of ground-type terms

whose free variables have types of order at most 1. The free variables play the role of tree

constructors. HORS have recently been intensively investigated in connection with program

verification. Notably, Ong [16] showed that monadic second-order logic (MSO) is decidable

over trees generated by HORS and Kobayashi [12] took advantage of the result to propose a

novel approach to the verification of higher-order functional programs.

As already mentioned, HORS are naturally viewed as a fairly small fragment of the λY -

calculus: they generate potentially infinite trees, whereas normal forms of arbitrary λY -terms

additionally contain variable bindings. This binding information cannot be represented in

HORS explicitly. In fact, it turns out that MSO becomes undecidable over Böhm trees of

λY -terms, if the binding relation is included in the signature. Nevertheless, as we show

in the paper, HORS still allow one to generate faithful representations of (η-long) Böhm

trees of λY -terms, where binding is encoded indirectly via De Bruijn levels [8]. We also

prove an analogous representation theorem for the finitary (finite datatypes) variant PCFf

of PCF [17].

Our results make it possible to recast a variety of problems related to the λY -calculus

or finitary PCF as problems concerning higher-order recursive schemes. For example, we

obtain a reduction of Böhm tree equivalence in the λY -calculus or PCFf to the (tree)

equivalence problem for HORS. Unfortunately, the latter is currently not known to be

© Pierre Clairambault and Andrzej S. Murawski;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Böhm Trees as Higher-Order Recursive Schemes

decidable and is closely related to the equivalence problem for deterministic collapsible

pushdown automata [10]. The Böhm tree equivalence problem for PCFf also has semantic

significance, because PCF Böhm trees [2] are concrete representations of the strategies

representing the terms in game semantics, and therefore characterize contextual equivalence

in PCF with respect to contexts featuring state and control effects.

Other consequences, in the form of decidability results, can be derived by applying Ong’s

decidability result to representations of Böhm trees obtained through our theorems. In this

way, one can show that numerous problems for λY or PCFf are decidable. Examples include

normalizability, finiteness, solvability or having a Böhm tree prefixed by a given finite term.

Some of the results are already known, while others appear new.

Thus far, higher-order verification based on HORS focussed on model-checking trees

extracted from programs. Our contribution opens the perspective of applying model-checking

to terms with binding and arbitrary free variables, such as higher-order components of closed

programs.

2 λY -calculus

2.1 Böhm trees of λY -terms

We work with simple types built from a single atom o using the arrow type constructor.

They are defined by the grammar given below.

θ ∶∶= o ∣ θ → θ

The order of a type is defined as follows.

ord(o) = 0 ord(θ1 → θ2) =max(ord(θ1) + 1, ord(θ2))
Terms are considered up to α-equivalence, and equipped with β-reduction and η-expansion

(respectively written →β and →η). We write ≃βη for the symmetric reflexive and transitive

closure of →β and →η. We shall consider several extensions of the simply-typed λ-calculus

over the types introduced above.

The λ�-calculus additionally contains a constant �o ∶ o. More generally, we shall write �θ

for terms specified as follows.

�θ = { �o θ ≡ o

λxθ1 .�θ2
θ ≡ θ1 → θ2

For λ�-terms, let us define a partial order ⊑ (relating only terms with equal types) by

M ⊑M �o ⊑M

M1 ⊑M2

λx.M1 ⊑ λx.M2

M1 ⊑M ′
1 M2 ⊑M ′

2

M1 M2 ⊑M ′
2 M ′

2

.

We will also consider the extension of the λ�-calculus to infinite terms, which we refer

to as the λ�∞-calculus. The partial order ⊑ can be extended to λ�∞-terms to yield an

ω-cpo.

The λY -calculus contains a family of fixed-point operators Yθ ∶ (θ → θ) → θ, where θ

ranges over arbitrary types, equipped with the reduction rule Yθ M →Y M (Yθ M).
▸ Definition 1. Given a λY -term M and n ∈ N, the nth approximant of M , written M ↾ n,

is a λ�-term defined by

x ↾ n = x λx.M ↾ n = λx.(M ↾ n)
M N ↾ n = (M ↾ n) (N ↾ n) Yθ ↾ n = λfθ→θ.fn(�θ).

P. Clairambault and A. S. Murawski 3

▸ Definition 2. The η-long Böhm tree of a λ�-term Γ ⊢ M ∶ θ, written BT(M), is its

β-normal η-long form. For a λY -term Γ ⊢ M , the η-long Böhm tree, also denoted by

BT(M), is defined to be ⊔n BT(M ↾ n).

Being η-long, these infinite normal forms might be more adequately called Nakajima

trees [15]. However, their PCF counterparts are generally called PCF Böhm trees [6]. So, for

consistency, we call them η-long Böhm trees, and for conciseness we will often omit η-long.

▸ Definition 3. λY -terms satisfying Γ ⊢ M ∶ o are called ground. Given n ≥ 0, we shall say

that a ground term Γ ⊢ M ∶ o is of level n if, for all (x ∶ θ) ∈ Γ, we have ord(θ) < n.

Note that the free variables in a ground term of level 2 can have types of order 0 or 1, i.e.

they are of the form o →⋯→ o, where o has at least one occurrence. Thus, Böhm trees of

such terms are (possibly infinite) trees.

The restrictions on types of free variables in ground terms of level 2 are analogous to

the restriction concerning types of terminal symbols in higher-order recursion schemes [7].

In fact, it can be shown that the Böhm trees of level-2 ground terms coincide with trees

generated by higher-order recursive schemes [18], and therefore have a decidable MSO theory.

In this paper, we are interested in the study of the Böhm trees of arbitrary λY -terms.

Unlike in the case of level-2 ground terms, Böhm trees of arbitrary λY -terms involve binders,

as illustrated by the following example.

▸ Example 4. Consider G = Yo→(o→o)→o (λfo→(o→o)→o.λyo.λxo→o. b (x y) (f (x y))) a, which

has type (o → o) → o in context a ∶ o, b ∶ o → ((o → o) → o) → o. Its Böhm tree is

λx1. b (x1

~~
a) (λx2. b (x2cc

(x1

yy
a)) (λx3. b (x3

{{
(x2

ww
(x1jj a))) (λx4. . . .

where the arrows indicate binding information: for each variable occurrence, the arrow

indicates the location of the associated binder. Note that because all bound variables are

used infinitely often, countably many variable names are required to represent binding.

This binding information is far from innocent: in fact, we prove in the next section that

it makes MSO undecidable. In particular, the term G above has an undecidable MSO theory.

2.2 Undecidability of MSO with binders

Let us first make formal what we mean by MSO on Böhm trees with binders.

▸ Definition 5. A binding structure B = (S,→) is a labelled transistion system, namely

a set of states S and a relation →⊆ S ×L × S, where L is the set of labels L = N ∪ {λ}. For

l ∈ L, we write a
l
→ b for (a, l, b) ∈→.

Every λ�∞-term M defines a binding structure B(M) in which the states are nodes in

the syntax tree of M , a
n
→ b holds if b is the n-th child of a and a

λ
→ b expresses the fact that

b is a binder-node λx and a an occurrence of x. The MSO formulas over binding structures

are given as follows.

φ ∶∶= X x ∣ x λ
→ y ∣ x n

→ y ∣ ¬φ ∣ φ ∨ φ ∣ φ ∧ φ ∣ ∃x. φ ∣ ∀x. φ ∣ ∃X. φ ∣ ∀X. φ

We write the first-order variables x, y in a different font to distinguish them from the variable

names of the λ-calculus. The validity of an MSO formula φ on a binding structure B, written

B ⊧ φ, is defined as usual.

4 Böhm Trees as Higher-Order Recursive Schemes

(a) The Böhm tree of G

.

g1,3
R //

U

OO

g2,3
R //

U

OO

g3,3

U

OO

g1,2
R //

U

OO

g2,2

U

OO

g1,1

U

OO

(b) The half-grid in BT(G)

Figure 1 Construction of the half-grid

▸ Theorem 6. MSO is undecidable on binding structures corresponding to Böhm trees of

λY -terms.

Proof. We reduce the well-known undecidable problem of deciding MSO on the infinite

half-grid to MSO over binding structures generated by λY -terms. In particular, we will show

that the binding structure B(BT(G)) contains an MSO-definable half-grid. The nodes of

the half-grid will be occurrences of bound variables in BT(G), which are definable by the

formula grid(x) ≜ ∃y. x
λ
→ y.

We say that a bound variable occurrence xi is at layer j if it occurs after j applications

of b. Then for any 1 ≤ i ≤ j, there is a unique occurrence of the bound variable xi at layer j,

we denote it by gi,j . The gi,j ’s will be the nodes of the half-grid; in Figure 1a we describe the

intended correspondence between occurrences of bound variables in BT(G) and the half-grid.

The following two relations correspond respectively to moving right and up inside the grid.

x
R
→ y ≜ y

0
→ x

x
U
→ y ≜ ∃z. z

0∗

→ x ∧ z
10∗

→ y ∧ ∃x′. x
λ
→ x′ ∧ y

λ
→ x′

where
e1e2→ and

e∗

→ are respectively the relational composition of
e1→ and

e2→ and the transitive

closure of
e
→, both MSO-definable. The relations define the half-grid in the sense that for any

1 ≤ i ≤ j and 1 ≤ i′ ≤ j′ we have gi,j
R
→ gi′,j′ iff i′ = i + 1 and j′ = j, and gi,j

U
→ gi′,j′ iff i′ = i

and j′ = j + 1. Consequently, the half-grid is MSO-definable within BT(G) and, thus, the

latter must have an undecidable MSO theory. ◂

2.3 De Bruijn representations of binders

Theorem 6 exhibits a difference in expressivity between HORS and the λY -calculus. Nonethe-

less, in the following, we shall show how to construct HORS that faithfully capture Böhm

trees generated by λY -terms. To that end, we shall use binder-free representations. As a

consequence, we will be able to recast problems concerning the λY -calculus in the setting of

HORS. In particular, we will retain the decidability of MSO model-checking such representa-

tions, which will provide us with a technique to verify a variety of properties of λY -terms in

spite of Theorem 6.

Our binder-free representation scheme will rely on De Bruijn levels [8]: each bound

variable x is given an index i, where i is the sum of a starting index and the number of

P. Clairambault and A. S. Murawski 5

lambdas enclosing the binding location (De Bruijn levels should not be confused with De

Bruijn indices, which associate numbers to variable uses and not their points of introduction,

and can associate different numbers to different occurrences of the same variable).

▸ Example 7. Consider the term M = λf (o→o)→o.Yo (λyo.f (λxo.b x y)), of type ((o→ o) →
o) → o in context b ∶ o→ o→ o. The Böhm tree of M , annotated with De Bruijn levels, has

the shape λx1.x1 (λx2.x0 x2 (x1 (λx3.x0 x3 (x1 (λx4. . . . , where b ∶ o → o → o is given an

index of 0. Note that each variable introduction and use are now labelled with a natural

number. This representation is unique, in the sense that, for a fixed choice of indices for

free variables and a choice of a starting index, two α-equivalent terms must have the same

representation.

With De Bruijn levels, λ�-terms can be represented as level-2 ground terms, typable in a

special context defined below.

▸ Definition 8. Let Γrep be the following context.

{ z ∶ o, succ ∶ o→ o, var ∶ o→ o, app ∶ o→ o→ o, lam ∶ o→ o→ o}

Given n ∈ N, we write n for the term succn(z).

In particular, the terms n will be used to represent binding information as De Bruijn levels.

▸ Definition 9. Let Γ ⊢ M ∶ θ be a λ�-term and let ν ∶ Γ → N be an injection. We define

another λ�-term Γrep ⊢ repν(M, n) ∶ o by

repν(�, n) = � repν(λx.M, n) = lam n repν⊕{x↦n}(M, n + 1)
repν(x, n) = var ν(x) repν(MN, n) = app repν(M, n) repν(N, n).

Note that, as long as n > max(x∶θ)∈Γ ν(x), repν(M, n) faithfully represents the syntactic

structure of M . Given Γ ⊢ M ∶ θ, where Γ = {x1 ∶ θ1,⋯, xk ∶ θk}, let ν ∶ Γ→ N be defined by

ν(xi) = i − 1. We define rep(M) to be repν(M, k).
For any finite λ�-term M , rep(M) gives a binder-free representation of M as a ground

λ�-term in context Γrep. Being monotonic, the function rep preserves ω-chains, and therefore

can be used to represent the Böhm tree of any λY -term as a ground infinite λ�∞-term in

context Γrep. This invites the question whether this infinite λ�∞-term can always be obtained

as the Böhm tree of a level-2 ground λY -term.

▸ Example 10. Consider again the term M of Example 7. The binder-free representation

of M ’s Böhm tree can be captured as an open (infinite) term in context Γrep, namely,

M∞ = lam 1 T (2), where

T (n) = app (var 1) (lam n (app (app (var 0) (var n) T (n + 1))))

More precisely, we have ⊔n rep(BT(M ↾ n)) = M∞. In this case, it is easy to extract

a λY -term Γrep ⊢ Mrep ∶ o such that BT(Mrep) = M∞ from the definition of M∞. This

can be done by expressing the coinductive definition of M∞ inside the λY -calculus as

Mrep = lam 1 (Yo→o Mstep 2), where

Mstep = λT o→o. λno.app (var 1) (lam n (app (app (var 0) (var n)) (T (succ n)))).

Consequently, the Böhm tree of Mrep is a binder-free representation of the Böhm tree of M .

In our paper, we show how to obtain such representations in a systematic way.

6 Böhm Trees as Higher-Order Recursive Schemes

▸ Theorem 11. Let Γ ⊢ M ∶ θ be a λY -term. There exists a level-2 λY -term Γrep ⊢ Mrep ∶ o

such that BT(Mrep) = ⊔n rep(BT(M ↾ n)).

Next we describe the construction underlying our proof of Theorem 11. In this section we

only provide the necessary definitions, delegating the proof and a methodological discussion

to Section 3. The construction uses normalization by evaluation [9] and, in particular, the

observation that the technique can be internalized within the λY -calculus in our case.

Consider Γ ⊢ M ∶ θ with Γ = {x1 ∶ θ1,⋯, xk ∶ θk}. First we apply a simple transformation

on type annotations inside M and substitute o→ o for o: let M∗ be defined as M[o→ o/o].

The substitution is meant to be applied to types θ occurring in λ-abstractions (λxθ.M) and

fixed-point combinators (Yθ). Observe that x1 ∶ θ
∗
1 ,⋯, xk ∶ θ

∗
k ⊢ M∗ ∶ θ∗, where

o∗ = o→ o, (θ′ → θ′′)∗ = (θ′)∗ → (θ′′)∗.
Next we define by mutual recursion two families of λ-terms {↓θ}, {↑θ}, subject to the following

conditions: Γrep ⊢↓θ ∶ θ∗ → o → o and Γrep ⊢↑θ ∶ (o → o) → θ∗. We write λ.M for λzo.M ,

where z does not occur in M .

↓o = λxo→o.x

↓θ′→θ′′ = λx(θ
′→θ′′)∗ . λvo. lam v (↓θ′′ (x (↑θ′ λ.(var v))) (succ v))

↑o = λxo→o.x

↑θ′→θ′′ = λeo→o. λa(θ
′)∗ . ↑θ′′ (λvo. app (e v) (↓θ′ a v))

Now, with all the definitions in place, it turns out that one can take Mrep to be

↓θ M∗[↑θ1
λ.(var 0)/x1 , ⋯ , ↑θk

λ.(var k − 1)/xk] k.

In the next section we shall prove that Mrep indeed represents the Böhm tree of M in the

sense of Theorem 11. Before that, we illustrate the outcome of the construction on an

example.

▸ Example 12. Let us revisit the term M from Example 7. We have

M∗ = λf ((o→o)→(o→o))→(o→o).Yo→o (λyo→o.f (λxo→o.b x y))

and, thus, Mrep =↓((o→o)→o)→o M∗[↑o→o→o λ.(var 0)/b] 1. By unfolding the definitions of

↓θ, ↑θ and applying β-reduction the term can be rewritten. In fact, taking advantage of the

β-equivalences

↑o→o→o ≃β λeo→o
1 .λao→o

1 .λao→o
2 .λvo

2. app (app (e1 v2) (a1 v2)) (a2 v2)

↓((o→o)→o)→o ≃β λx(((o→o)→o)→o)∗ .λvo
1. lam v1 (x Maux (succ v1)),

where Maux = λa(o→o)∗ .λvo
2. app (var v1) (lam v2 (a (λ.var v2) (succ v2))), one can show

that Mrep is β-equivalent to

lam 1 (Y (λy. λv.app (var 1) (lam v (app (app (var 0) (var v)) (y (succ v))))) 2),

the manually constructed term from Example 10.

P. Clairambault and A. S. Murawski 7

3 Internalized normalization by evaluation

In this section, we present the mathematical development that led to the term transformation

of the previous section. As already mentioned, the main idea comes from normalization by

evaluation (NBE). NBE is a general method used to construct normal forms for terms through

their denotational semantics; the reader is referred to [9] for an introduction. The basic idea

is to interpret terms in a suitable semantic universe. By soundness, the interpretation will

be invariant under syntactic reduction. Moreover, if one uses a class of domains expressive

enough to encode representations of normal forms, then one can attempt to extract a

representation of the normal form of a term from the semantics. Notably, the extraction can

be performed by evaluating the interpretation map on well-chosen elements of the domain,

which yields an entirely semantic normalization procedure. NBE has been described for a

variety of languages, including the simply-typed λ-calculus [5] as well as richer languages

with coproducts [4], or type theory [1]. Our presentation of NBE follows along the lines of [9].

The main novelty is the internalization of the process within the λY -calculus itself, which

ultimately allows us to present NBE as a term transformation.

3.1 Semantic NBE for the λY -calculus

We first describe a domain semantics for the λY -calculus that will be exploited to obtain

an NBE procedure. We assume the basic vocabulary of domain theory, e.g. [20]. Let us

recall that an ω-cpo is a partial order where each ω-chain (of the form x1 ≤ x2 ≤ . . .) has a

supremum. We will interpret types as pointed ω-cpos, i.e., ω-cpos with a bottom element

written �. A function f ∶ A→ B is continuous if it preserves suprema of ω-chains. The set of

continuous functions from A to B, ordered pointwise, is itself a pointed ω-cpo, denoted by

A→ B.

Our NBE procedure will generate representations of Böhm trees of λY -terms as elements

of the pointed ω-cpo of λ�∞-terms of ground type in context Γrep, henceforth referred to

as E. Representations based on De Bruijn levels lack compositionality: the indices present in

a subterm depend on the number of variables abstracted in the context in which the subterm

occurs. In order to overcome the difficulty, instead of constructing directly De Bruijn terms

in E, we will construct term families [9], intuitively functions N → E, which - unlike De

Bruijn terms - can be manipulated compositionally.

We now describe our semantic NBE for λY . In our case, E will also be used to represent

natural numbers, so term families will be interpreted as elements of the pointed ω-cpo

Ê = E → E, where the first E plays the role of N. For the sake of clarity, we will sometimes

write N instead of E to highlight subterms representing natural numbers. This should not

create any confusion.

Our NBE relies on the standard interpretation of the λY -calculus with JoK = Ê. Note

that we write λ, rather than λ, to stress that the semantic operation of function abstraction

(on continuous functions between pointed ω-cpos) is meant.

JoK = Ê JxKρ = ρ(x) J�Kρ = � Jλxθ.MKρ = λaJθK.JMKρ⊕{x↦a}

Jθ1 → θ2K = Jθ1K→ Jθ2K JM NKρ = JMKρ(JNKρ) JYθKρ =⊔
n

λf JθK→JθK.fn(�)

We claimed above that unlike raw De Bruijn terms, term families can be constructed

compositionally. This is done with the help of the following continuous functions, which

8 Böhm Trees as Higher-Order Recursive Schemes

generalize term constructors of E to Ê.

v̂ar = λvN .λnN .var v ∶ N → Ê

âpp = λeÊ
1 .λeÊ

2 .λnN .app (e1(n)) (e2(n)) ∶ Ê → Ê → Ê

l̂am = λfN→Ê .λnN .lam n (f(n)(succ n)) ∶ (N → Ê) → Ê

Using these extended constructors, one can define families of continuous functions, tradition-

ally called reification (⇓θ ∶ JθK→ Ê) and reflection (⇑θ ∶ Ê → JθK).

⇓o x = x ⇓θ1→θ2
x = l̂am(λnN . ⇓θ2

(x(⇑θ1
(v̂ar(n)))))

⇑o e = e ⇑θ1→θ2
e = λxJθ1K. ⇑θ2

(âpp(e)(⇓θ2
(x)))

For closed terms ⊢ M ∶ θ, the normalization-by-evaluation function can now be defined by

setting nbe(M) =⇓θ (JMK)(0). In order to apply the same method to open terms Γ ⊢ M ∶ θ,

where Γ = {x1 ∶ θ1, . . . , xk ∶ θk}, we need to build a canonical inhabitant of JΓK by defining

the canonical semantic environment ρΓ ∶ Πxi∈ΓJθiK, associating ⇑θi
(λ_N .var (i − 1)) ∈ JθiK

to any xi. This leads to a generalized variant of the normalization function, defined by:

nbe(M) =⇓θ (JMKρΓ
)(k).

▸ Proposition 13. For any λ�-term Γ ⊢ M in β-normal η-long form, nbe(M) = rep(M). For

any λY -term Γ ⊢ M ∶ θ, nbe(M) = ⊔n rep(BT(M ↾ n)).

Proof. The first part is proved by induction on M . For the second part, we reason equationally

as follows: nbe(M)
(1)= ⇓θ (JMKρΓ

)(k)
(2)= ⇓θ (⊔nJM ↾ nKρΓ

)(k)
(3)= ⊔n ⇓θ (JM ↾ nKρΓ

)(k)
(4)=

⊔n ⇓θ (JBT(M ↾ n)KρΓ
)(k)

(5)= ⊔n rep(BT(M ↾ n)) where (1) is by definition of NBE, (2)

is by induction on M from the definition of interpretation, (3) is by continuity of ⇓θ and

application. Since M ↾ n is a simply-typed λ�-term, it has a normal form BT(M ↾ n)
such that M ↾ n ≃βη BT(M ↾ n). By soundness of the domain semantics, this implies that

JM ↾ nKρ = JBT(M ↾ n)Kρ and (4) is true. Finally, (5) follows from the first part. ◂

3.2 Internalization

Following Section 2, for any λY -term Γ ⊢ M ∶ θ, we define the syntactic NBE by snbe(M) =↓θ
M∗[↑θi

λ.(var i − 1)/xi] k so that Γrep ⊢ snbe(M) ∶ o (↓θ and ↑θ are the terms defined in

Section 2). In the remainder of this section we show the correctness of snbe, namely

BT(snbe(M)) = ⊔n rep(BT(M ↾ n)), by noting that snbe amounts to an internalization of

the NBE procedure inside the λY -calculus, i.e., that the following triangle commutes.

λY

snbe(−)

��

nbe(−)

!!
λY

BT(−)
// E

To carry out the argument, below we introduce another interpretation of terms Γrep, Γ ⊢ θ,

written j−o, which will treat variables from Γrep as constants. Accordingly, the sequents will

be interpreted by a continuous function from jΓo to jθo, with Γrep omitted. Similarly, the

semantic environment for a context Γrep, x1 ∶ θ1, . . . , xk ∶ θk is simply ρ ∶ Πxi∈Γjθio. In the

same vein, whenever we write Γ ⊢ M ∶ θ from now on, we will assume that none of the

variables from Γrep occurs in Γ (this does not affect the generality of our results, as free

variables of a λY -term can be renamed to avoid clashes with Γrep). Below we let z range

over the variables from Γrep.

P. Clairambault and A. S. Murawski 9

joo = E jxoρ = ρ(x) jvaroρ = λnE .var n

jθ → θ′o = jθo → jθ′o jM Noρ = jMoρ(jNoρ) jappoρ = λeE
1 .λeE

2 .app e1 e2

jλxθ.Moρ = λajθo.jMoρ⊕{x↦a} jlamoρ = λnE .λeE .lam n e

jzoρ = z jYθoρ = ⊔n λf jθo→jθo.fn(�) jsuccoρ = λnE .succ n

The interpretations J−K and j−o are related by the following lemma, which is easily

proved by induction. We apply j−o to M⋆ on the understanding that Γ ⊢ M ∶ θ implies

Γrep, Γ⋆ ⊢ M⋆ ∶ θ⋆ and that JΓK = jΓrep, Γ⋆o.

▸ Lemma 14. For any type θ, JθK = jθ⋆o. For any λY -term Γ ⊢ M ∶ θ and any semantic

environment ρ ∈ JΓK, we have JMKρ = jM⋆oρ.

On the other hand, j−o is related to Böhm trees by the following lemma.

▸ Lemma 15. For any λY -term Γrep ⊢ M ∶ o, we have jMo = BT(M).

Proof. Suppose first that Γrep ⊢ M ∶ o is a λ�-term in β-normal η-long form, i.e. M = BT(M).
Then M must be an applicative term built from �, z, succ, var , lam and app. By induction

on M it follows that jMo =M and, thus, jMo = BT(M).
Now consider arbitrary Γrep ⊢ M ∶ o, and n ∈ N. By construction, M ↾ n is a λ�-term.

By normalization of the simply-typed λ-calculus, M ↾ n has a Böhm tree BT(M ↾ n)
such that M ↾ n ≃βη BT(M ↾ n). By soundness of the denotational model, it follows that

jM ↾ no = jBT(M ↾ n)o. By the first part above, we can deduce jM ↾ no = BT(M ↾ n). The

lemma then follows by continuity. ◂

Putting all the lemmas together, we arrive at our main result.

▸ Theorem 16. For any λY -term Γ ⊢ M ∶ θ, BT(snbe(M)) = ⊔n rep(BT(M ↾ n)).

Proof. From the following calculations. BT(snbe(M))
(1)= jsnbe(M)o

(2)= j↓θ M∗[↑θi

λ.(var i − 1)/xi] ko
(3)= j↓θo(jM∗oxi↦j↑θi

λ.(var i−1)o)(jko)
(4)= ⇓θ (JMKxi↦⇑θi

(λ.(var i−1)))(k)
(5)=

nbe(M)
(6)= ⊔n rep(BT(M ↾ n)). (1) follows from Lemma 15, (2) and (3) from the definitions

of snbe and j−o respectively, (4) is a consequence of j↓θo =⇓θ, j↑θo =⇑θ and Lemma 14. Finally,

(5) follows from the definition of nbe and (6) from Proposition 13. ◂

We conclude this section with a discussion on the effect of the M ↦ snbe(M) transformation

on the order of terms (the order of a λY -term, written ord(M), is the maximal order of

the types of its subterms). We note that, given Γ ⊢M ∶ θ, the term snbe(M) is of order at

most ord(M) + 2, because it contains ↓θ, which has type θ∗ → (o → o) of order ord(θ) + 2.

However, as in Example 12, snbe(M) can be simplified by one size-decreasing β-reduction

step to M ′ of order ord(M) + 1. Furthermore, if one is interested in obtaining an equivalent

HORS then M ′ can be transformed into a HORS of order ord(M) [18].

4 Generalization to PCF

Here we show that the methodology of the previous section can be applied to PCF [17]. This

brings us closer to realistic programs, which can branch on data values. PCF extends the

λY -calculus in that the ground type o is replaced with the type of natural numbers, basic

arithmetic and zero testing. It was designed to be Turing-complete, so in order to avoid

obvious undecidability we focus on its finitary variants. In what follows we consider boolean

PCF2 in which o is the type of booleans, but it should be clear that the techniques extend

to any finite ground type.

10 Böhm Trees as Higher-Order Recursive Schemes

4.1 PCF2 and PCF2 Böhm trees

PCF2 types are defined by the grammar θ ∶∶= B ∣ θ → θ and terms are given by M, N ∶∶= tt ∣

ff ∣ if M then N1 else N2 ∣ x ∣ λxθ.M ∣M N ∣ Yθ M . The following typing rules apply.

Γ ⊢ tt ∶ B Γ ⊢ ff ∶ B

Γ ⊢ M ∶ B Γ ⊢ N1 ∶ θ Γ ⊢ N2 ∶ θ

Γ ⊢ if M then N1 else N2 ∶ θ

For PCF2, the canonical forms that we wish to generate are PCF Böhm trees: they are

(potentially infinite) trees generated by the rules displayed below.

Γ ⊢ �, tt, ff ∶ B

Γ,
ÐÐÐÐÐÐÐÐ→
. . . , xi ∶ Ai, . . . ⊢M ∶ B

Γ ⊢ λÐ→x .M ∶
Ð→
A → B

ÐÐÐÐÐÐ→
Γ ⊢Mi ∶ θi Γ ⊢ N1, N2 ∶ B (x ∶

Ð→
θ → B) ∈ Γ

Γ ⊢ if x
Ð→
M then N1 else N2 ∶ B

Such trees were first introduced along with the game semantics for PCF [11, 2], serving as a

syntactic counterpart to strategies. Later developments in game semantics [3, 13] showed

that two terms of PCF have the same strategy, i.e. the same PCF Böhm tree, if and only

if they are indistinguishable by evaluation contexts having access to computational effects

such as state and control operators. This makes PCF Böhm trees a natural candidate for a

representation of higher-order programs to be used for verification purposes, since purely

functional programs are eventually executed in runtime environments that have access to

such effects.

We also consider the variant PCF2,� consisting of Y -free terms of PCF2, extended with a

constant � ∶ B. They are partially ordered by the obvious adaptation of the partial order ⊑
on λ�-terms, still written ⊑. As before, this partial order extends to an ω-cpo on infinite

terms of PCF2,�, referred to as PCF∞2,�.

The operational semantics for PCF2 for which PCF Böhm trees can be taken to be

canonical representatives is obtained by adding the rules listed below to β, η and Y . For

brevity, if M then N1 else N2 is written as if(M, N1, N2). The rules are restricted to the

cases where both sides typecheck.

if(tt, N1, N2)→β′
1

N1 M →η′ if(M, tt, ff) if(M, N1, N2) N ′ →γ1
if(M, N1 N ′, N2 N ′)

M →η′ if(M, tt, ff) if(if(M, N1, N2), N3, N4)→γ2
if(M, if(N1, N3, N4), if(N2, N3, N4))

We write ≃PCF for the corresponding equational theory. For PCF2,� we also add the rule

if(�, N1, N2)→� �. The following property can then be established by standard means.

▸ Proposition 17. For any term Γ ⊢ M ∶ θ of PCF2,� there is a PCF Böhm tree Γ ⊢ BT(M) ∶ θ

such that M ≃PCF BT(M).

To define Böhm trees of arbitrary PCF2-terms Γ ⊢ M ∶ θ, we define the nth approximant of

M , written M ↾ n, by replacing fixpoint combinators Yθ with λfθ.fn(�θ), yielding a term of

PCF2,�. In the general case, the PCF Böhm tree is then defined by BT(M) = ⊔n BT(M ↾ n).

4.2 Representability

We would like to represent PCF Böhm trees of PCF2-terms as level-2 ground λY -terms. To

that end, we shall use a new context Γpcf , defined as Γrep augmented with { tt ∶ o, ff ∶ o, if ∶

o→ o→ o→ o} to take the shape of PCF Böhm trees into account. Just as before, the set of

ground λ�∞-terms typed in context Γpcf forms a pointed ω-cpo. It will be the target of our

transformation and, again, we will denote it by E. The representation function rep(−) of

Section 2 extends easily to a function mapping any PCF2,�-term Γ ⊢ M ∶ θ to a λ�-term

Γpcf ⊢ rep(M) ∶ o using De Bruijn levels. Our representation result for PCF2 can then be

stated as follows.

P. Clairambault and A. S. Murawski 11

▸ Theorem 18. For any PCF2 term Γ ⊢ M ∶ θ, there is a level-2 λY -term Γpcf ⊢ Mrep ∶ o

such that BT(Mrep) = ⊔n rep(BT(M ↾ n)).

To construct Mrep from M , we first apply the following syntactic transformation translating

types and terms of PCF2 to λY -terms, combining the operation (−)∗ on λY -terms defined

in Section 2 with an elimination of booleans based on Church encodings.

B
∗ = (o→ o) → (o→ o) → (o→ o) tt∗ = λao→o.λbo→o.a

(θ′ → θ′′)∗ = (θ′)∗ → (θ′′)∗ ff ∗ = λao→o.λbo→o.b

(if M then N1 else N2)∗ = λÐ→x
Ð→
θ∗ .λao→o.λbo→o.M∗ (N∗1

Ð→x a b) (N∗2
Ð→x a b)

where, in the last equation, N1 and N2 have type
Ð→
θ → B. The translation (−)∗ can be

extended to all the other term constructors in the obvious way. Note that, since this

translation gives us a λY -term, we can already apply the transformation of Section 2 and

obtain a λY -term generating the Böhm tree of M∗. To get the PCF Böhm tree of M instead

one can modify the ↓θ, ↑θ terms as follows.

↓B= λxB
∗

.x (λ.tt) (λ.ff) ↑B= λeo→o.λao→o.λbo→o.λno.if (e n) (a n) (b n)
↓θ′→θ′′ = λx(θ

′→θ′′)∗ . λvo. lam v (↓θ′′ (x (↑θ′ λ.(var v))) (succ v))
↑θ′→θ′′ = λeo→o. λa(θ

′)∗ . ↑θ′′ (λvo. app (e v) (↓θ′ a v))

Assuming Γ = x1 ∶ θ1, . . . , xk ∶ θk, we can then set Mrep =↓θ M∗[↑θi
λ.var i − 1/xi] k.

The notion of order on types and terms is generalised to PCF2 by setting ord(B) = 0. As

for λY , Mrep can be simplified by one β-reduction step to M ′ of order ord(M) + 2. M ′ can

then be transformed into a HORS of order ord(M) + 1 [18].

5 Conclusion

We have shown that faithful representations of η-long Böhm trees of arbitrary λY -terms and

PCF Böhm trees of PCF2-terms can be generated by higher-order recursion schemes. We

can use the result to reduce various decision problems related to the λY -calculus or PCF2 to

problems for higher-order recursive schemes.

The first class of problems to which the reduction technique can be applied are equivalence

problems.

▸ Corollary 19. The following problems are recursively equivalent: HORS equivalence, Böhm

tree equivalence in the λY -calculus, PCF Böhm tree equivalence in PCF2.

The decidability status of these problems is currently unknown, but they are known to

be related to two other interesting problems: the equivalence problem for deterministic

collapsible pushdown automata [10] and contextual equivalence for PCF2-terms with respect

to contexts with state and control effects (contextual equivalence for PCF2-terms with respect

to purely functional contexts is undecidable, even without Y [14]).

In a different direction, we can exploit the decidability result for MSO on trees generated

by HORS [16] to decide a variety of properties of Böhm trees. Here the undecidability result

for binders places a limit on the kind of binding-related information that can be captured by

MSO on our representations. However, many interesting problems on Böhm trees still fall

within the range of our representation.

▸ Corollary 20. The following problems are decidable for λY - and PCF2-terms: normal-

izability (is a given term equivalent to a Y -free term?), finiteness (is the Böhm tree/PCF

12 Böhm Trees as Higher-Order Recursive Schemes

Böhm tree finite, i.e. a λ�/PCF2,�-term?), solvability (is the Böhm tree/PCF Böhm tree

non-empty after leading abstractions?), prefix (does the Böhm tree/PCF Böhm tree have a

given finite prefix?).

The results follow from the fact that all the relevant properties are expressible in MSO.

Normalizability and solvability for the λY -calculus were already known to be decidable [19].

To the best of our knowledge, the other consequences are new. In future work, we would

like to understand the exact complexity of these problems and see whether our results yield

optimal bounds.

Acknowledgment. We would like to thank Sylvain Salvati for pointing out to us the

undecidability argument for MSO on trees with binding. This research was conducted while

the first author was in Cambridge, supported by the Advanced Grant ECSYM. The second

author gratefully acknowledges the support of the EPSRC (EP/J019577/1).

References

1 A. Abel, T. Coquand, and P. Dybjer. Normalization by evaluation for Martin-Löf type

theory with typed equality judgements. In LICS, pp 3–12, 2007.

2 S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction for PCF. Inf. and Comput.,

163:409–470, 2000.

3 S. Abramsky and G. McCusker. Linearity, sharing and state. In Algol-like languages, pp

297–329, Birkhaüser, 1997.

4 T. Altenkirch, P. Dybjer, M. Hofmann, and P. J. Scott. Normalization by evaluation for

typed lambda calculus with coproducts. In LICS, pp 303–312, 2001.

5 U. Berger and H. Schwichtenberg. An inverse of the evaluation functional for typed lambda-

calculus. In LICS, pp 203–212, 1991.

6 P.-L. Curien. Abstract Böhm trees. Math. Struct. in Comput. Sci., 8(6):559–591, 1998.

7 W. Damm. The IO- and OI-hierarchies. Theor. Comput. Sci., 20:95–207, 1982.

8 N. G. De Bruijn. Lambda calculus notation with nameless dummies. In Indagationes

Mathematicae (Proceedings), volume 75, pages 381–392. Elsevier, 1972.

9 P. Dybjer and A. Filinski. Normalization and partial evaluation. In APPSEM, LNCS 2395,

pp 137–192, 2000.

10 M. Hague, A. S. Murawski, C.-H. L. Ong, and O. Serre. Collapsible pushdown automata

and recursion schemes. In LICS, pp 452–461, 2008.

11 J. M. E. Hyland and C.-H. L. Ong. On Full Abstraction for PCF. Inf. and Comput.,

163(2):285–408, 2000.

12 N. Kobayashi. Types and higher-order recursion schemes for verification of higher-order

programs. In POPL, pp 416–428, 2009.

13 J. Laird. Full abstraction for functional languages with control. In LICS, pp 58–67, 1997.

14 R. Loader. Finitary PCF is not decidable. Theor. Comput. Sci., 266(1-2):341–364, 2001.

15 R. Nakajima. Infinite normal forms for the λ-calculus. In Proc. Symp. λ-calculus and

Computer Science, pages 62–82. Springer-Verlag, 1975.

16 C.-H. L. Ong. On model-checking trees generated by higher-order recursion schemes. In

LICS, pp 81–90, 2006.

17 G. D. Plotkin. LCF considered as a programming language. Theor. Comput. Sci., 5:223–

255, 1977.

18 S. Salvati and I. Walukiewicz. Recursive schemes, Krivine machines, and collapsible push-

down automata. In RP, LNCS 7550, pp 6–20, 2012.

19 R. Statman. On the lambdaY-calculus. Ann. Pure Appl. Logic, 130(1-3):325–337, 2004.

20 G. Winskel. The Formal Semantics of Programming Languages. MIT Press, 1993. Foun-

dations of Computing Series.

	Introduction
	Y-calculus
	Böhm trees of Y-terms
	Undecidability of MSO with binders
	De Bruijn representations of binders

	Internalized normalization by evaluation
	Semantic NBE for the Y-calculus
	Internalization

	Generalization to PCF
	PCF2 and PCF2 Böhm trees
	Representability

	Conclusion

